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In the last decades, many numerical models have been proposed to simulate thermomechanical treat-
ments and their related effects on the microstructure. The present study deals with a relatively recent full
field model using the level set method within a finite element framework. The ability of this approach to
consider static recrystallization in two and three dimensions with nucleation has been demonstrated in
previous studies (Bernacki et al., 2008, 2009). Although accurate, this model lies on a numerical formal-
ism which is rather inefficient from a numerical point of view and do not permit to consider complex 3D
aggregates in reasonable computation times. The present paper introduces a new efficient implementa-
tion of the static recrystallization (SRX) model which aims to overcome this limitation by taking full
advantage of recent numerical developments (Shakoor et al., 2015; Scholtes et al., 2015). Its efficiency
is evaluated through large scale 3D simulations of SRX with several thousand of grains. Acceleration fac-
tors of up to 40 are obtained, compared with the existing implementation. The predictions in terms of
evolution of the recrystallized fraction are also confronted with classical analytic models and experimen-
tal results from literature, showing good agreement.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The mechanical and thermal properties of metallic materials are
strongly related to their microstructure. The understanding and
the modeling of the microstructural evolution mechanisms is then
crucial when it comes to optimize the forming process and the final
in-use properties of the materials. During deformation, a portion of
the energy remains stored in the material under the form of met-
allurgical defects (mostly dislocations), leaving the material in an
unstable state from a thermodynamic point of view. Depending
on the amount of stored energy, different phenomena can then
become active in order to recover equilibrium (recrystallization,
grain growth, recovery. . .). The understanding and modeling of
these phenomena is a complex topic of great interest in the litera-
ture. Among all, recrystallization (ReX) corresponds to the rear-
rangement of grain boundaries (i.e. the grain interfaces) under
the effect of stored energy gradients throughout the microstruc-
ture. This process can appear during the deformation stage
(dynamic recrystallization, DRX). It can also continue during a
thermal post-treatment (post-dynamic recrystallization, PDRX),
or be only activated during this post-treatment (SRX).

Thanks to the explosion of the computer capacities, very precise
numerical techniques are now available to model ReX. These lower
scale approaches, the so-called full field models, are based on a
complete description of the microstructure topology at the poly-
crystal scale. Over the last decades, several mesoscale numerical
models have been proposed to simulate ReX [5,6]. Probabilistic
voxel-based approaches such as Monte Carlo [7,8] (MC) and cellu-
lar automata [9,10] (CA) are very popular. Furthermore, these
methods scale extremely well with parallelization as they rely on
regular grids, but the lack of physical time in the MC method and
the difficulty to approximate accurately the grain boundary curva-
ture with CA are still open issues. There are also difficulties with
these approaches to treat the polycrystal deformation and the
grain boundary motion in the same numerical framework. There
are also deterministic approaches, which are more precise, as they
do not rely on probabilistic laws, but also more greedy in terms of
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computational resources due to the fact that they involve the res-
olution of large systems of partial differential equations (PDEs).
Thus several workers have developed the vertex method [11,12],
wherein the grain boundaries are defined in terms of vertices;
the interface motion is then imposed by the displacement of a
set of points. A limitation of these front-tracking approaches lies
in the handling of topological events (grain shrinkage, appearance
of a nucleus) in three dimensions. Another approach found in the
literature uses the phase-field (PF) method, which offers the
advantage of avoiding the difficult problem of tracking interfaces
[13,14]. Finally, ReX can also be modeled using a level set (LS)
description of the interfaces in a finite element (FE) framework
[15,1,16,17] or in the context of uniform grids with Fourier trans-
form resolution [18]. The FE–LS and FE–PF methods are actually
quite close and share some common features (no explicit tracking
of the interfaces, deterministic approach lying on the solving of
PDE systems). Although the PF method lies on strong physical
and thermodynamical foundations, its formulation introduces
purely numerical parameters (like the grain boundary width). On
the other hand, the LS method only requires measurable quantities
which have a direct physical interpretation, making it a priori more
simple to use [19]. One interest of using a FE framework instead of
uniform grids is the possibility to handle large polycrystal defor-
mations with the well-known Crystal Plasticity Finite Element
Method (CPFEM) [16,2,15] and to deal with a global resolution
framework concerning the modeling of the thermomechanical
treatments and their subsequent microstructure evolutions.

The full field modeling of ReX using unstructured FE meshes is a
very exciting research topic due to the possibility to simulate many
physical phenomena (particle pinning, annealing twin develop-
ment, solute drag, CPFEM and field dislocation mechanics. . .).
However, the numerical cost of these approaches remains their
main drawback, explaining why they are hardly used in 3D.
Recently, new numerical tools have been proposed to increase
the numerical efficiency of these models, which are respectively
a direct and parallel reinitialization method [3] and an efficient
recoloring scheme enabling to perform optimized and
coalescence-free simulations [4]. These optimizations have been
tested in the context of pure grain growth (GG) in two and three
dimensions, and have permitted significant time and memory sav-
ings. Nevertheless the ReX formalism employed in [1] is not com-
patible with the recoloring scheme introduced in [4]. It is also
extremely greedy in terms of computational resources. The present
paper thus aims to introduce an optimized implementation of the
ReX model enabling to perform 3D simulations of SRX with reason-
able computational efforts.

After recalling the main features of the present FE–LS numerical
model in the next section, the new ReX formalism and its imple-
mentation are extensively detailed in the third section. The effi-
ciency of the new model is finally challenged in the last section
through realistic 3D SRX simulations and the numerical predic-
tions in terms of recrystallized fraction are confronted with classi-
cal analytic laws and experimental observations from the
literature. It is especially demonstrated that the improved model
is very efficient from a numerical aspect and captures well the
recrystallization kinetics.
Fig. 1. Velocity~v of a grain boundary consisting of a capillarity contribution~vgg and
a term representing the energy jump across the interface ~ve. Here, the concave
shape of C12 gives the orientation of ~vgg and it is assumed that E1 < E2, explaining
why the vector ~ve is oriented from G1 toward G2.
2. Initial formalism and limitations

As mentioned above, the model considered in this paper uses a
LS description of the interfaces in a FE framework. A LS function w
is defined over a domain X as the signed distance function to the
interface C of a sub-domain G of X. The values of w are calculated
at each interpolation point (node in the considered P1 formulation)
and the sign convention states w P 0 inside G and w 6 0 outside:
8t wðx; tÞ ¼ �dðx;CðtÞÞ; x 2 X;

CðtÞ ¼ x 2 X;wðx; tÞ ¼ 0f g;

�
ð1Þ

where dðx;CðtÞÞ corresponds to the Euclidean distance between a
point x 2 X and the interface C of the sub-domain G.

The LS interface is then displaced according to a given velocity
field ~v by solving a transport equation:

@wðx;tÞ
@t þ~v � rwðx; tÞ ¼ 0;

wðx; t ¼ 0Þ ¼ w0ðxÞ;

(
ð2Þ

It is well admitted that the velocity of a grain boundary ~v can be
expressed as the sum of two terms:

~v ¼ ~vgg þ~ve; ð3Þ
with ~vgg and ~ve the capillarity and stored energy contributions,
respectively (see Fig. 1).

In a level set (LS) framework, the former can be expressed as
follows [20,17]:

~vgg ¼ �mcDwrw; ð4Þ
by assuming that the LS function w is nearly a distance function (i.e.
krwk ¼ 1) at least inside a thin layer�e around the interface. In this
expression, M and c are respectively the grain boundary mobility
and energy. For the sake of simplicity, the terms Ng and Np are intro-
duced in order to designate, respectively, the number of grains and
the number of LS functions used to represent the microstructure. A
simple option consists in representing each grain by a LS function,
which leads to Np ¼ Ng . An alternative is the use of a coloring tech-
nique, which enables to limit the number of needed functions
Np < Ng . See [4] for further details. Given the previous simplifica-
tions, the transport problem of Eq. (2) can be easily reformulated
as a set of Np convective–diffusive equations (CDEs):

@wiðx;tÞ
@t �McDwiðx; tÞ þ~ve � rwiðx; tÞ ¼ 0;

wiðx; t ¼ 0Þ ¼ w0
i ðxÞ;

(
8i 2 1; . . . ;Np

� �
; ð5Þ

associated with the condition krwiðx; tÞk ¼ 1; 8i 2 1; . . . ;Np
� �

;

8x=jwiðx; tÞj 6 e.
On the other hand, the computation of the term ~ve requires

more attention. This term actually depends on the stored energy
gradients throughout the microstructure. In [1], the energy is
assumed homogeneous inside a given grain, which implies that
the energy gradient is non-zero only at grain boundaries and null
elsewhere. In other words, intragranular heterogeneities are not
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considered and energy is assumed spatially constant in a given
grain. Furthermore, this formulation lies also on a constant energy
values ei for each LS functions wi, which can be time-dependent,
eventually. Given the previous statements, the most natural way
to compute the term ~ve in the vicinity of a grain boundary separat-
ing the grains of indexes i and j is as follows [2]:

~veðx; tÞ ¼ Mijf wiðx; tÞ; lð Þ ejðtÞ � eiðtÞ
� � rwiðx; tÞ

krwiðx; tÞk
; ð6Þ

where f is a decreasing function varying from 1 (for wi ¼ 0) to 0 (for
wi ¼ l), andMij is the interface mobility between grains i and j. Here-
after the grain boundary mobility is assumed homogeneous
throughout the microstructure, with a constant M value. Further-
more, the time variable will now be systematically omitted for
the sake of clarity, although it is obvious that all considered quan-
tities are (or can be seen as) time-dependent.

Nevertheless this simple formulation generates discontinuities
at multiple junctions which result in ill-conditioned problems.
An alternative to avoid this issue was proposed in [1]. It uses the
weighted contributions of all the LS functions and their respective
energies at each node of the FE mesh:

~veðxÞ ¼ M
XNp

i¼1

XNp

j¼1
j–i

viðxÞf wjðxÞ; l
� �

ei � ej
� � rwjðxÞ

krwjðxÞk
; ð7Þ

with vi the characteristic function of the ith LS function
8i 2 1; . . . ;Np

� �
. This formulation has the advantage of avoiding

the identification of the neighboring grains and leads to a smooth
velocity field even at multiple junctions.

This approach has been extensively tested and validated in
[1,2]. However in these works, each grain is represented by a LS
function (i.e. Np ¼ Ng) in order to consider an independent energy
level for each grain. This approach is therefore not compatible with
large scale simulations, especially in 3D, because the numerical
cost of these simulations depends strongly on the number of LS
functions. For this reason, a coloring technique is used, whose prin-
ciple is to represent a set of distinct grains by the same Global Level
Set (GLS) function [21]. By this mean, the number of needed func-
tions Np can be considerably reduced Np � Ng (Fig. 2). Neverthe-
less, there are incompatibilities between this coloring approach
and the above ReX formalism [1]:
Fig. 2. 25 grains microstructure represented by four GLS functions, respectively
colored in white, green, orange and blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
� given that the energy is a quantity which is constant for a given
GLS function, all the grains represented by this function have
necessarily the same energy, which makes no sense from a met-
allurgical point of view,
� each recoloring operation (see [4] for details) would inevitably
modify the energy of the concerned grain, which would receive
the energy corresponding to the recipient GLS function and lose
the energy associated with its own mechanical state.

In the next section, a new implementation of the ReX model is
proposed. Although it is much more numerically efficient and per-
mits to take full advantage of the recoloring technique detailed in
[4], this new implementation is strictly equivalent to the current
one from a metallurgical point of view.

One major drawback of the LS approach lies in the possible
alteration of the metric property during the transport stage (i.e.
krwk– 1). This is particularly problematic when a specific
remeshing technique depending on the distance property is used
at the interface. Furthermore the diffusive formulation introduced
in Eq. (5) remains valid only if the function w is locally a distance
function. Finally, the condition number associated with our weak
formulation (P1 interpolation, implicit method) depends largely
on the regularity of the function w [1].

The distance function must therefore be reinitialized at each
time step to recover the metric property krwk ¼ 1. This operation
is performed through a parallel and direct reinitialization algo-
rithm detailed in [3], which has been proven to be extremely fast
and accurate. In this algorithm, the GLS interface is firstly dis-
cretized into a collection of segments (respectively triangles in
3D) and the nodal values of the GLS function are then updated
by finding the nearest element of the collection and calculating
the distance between the considered node and this nearest ele-
ment. This method takes advantage of a space-partitioning tech-
nique using k-d tree and an efficient bounding box strategy
enabling to maximize the numerical efficiency for parallel
computations.
3. New implementation of the ReX formalism

The objective is to create a new description of the polycrys-
tal wherein each grain has its own energy which is completely
independent of the GLS functions. The probably most natural
way to achieve this goal consists in replacing the energy ei
(constant for the whole FE mesh) of each GLS function by an
energy field E iðxÞ evaluated at each interpolation point (see
Fig. 3).

Such an extension is not straightforward and requires the
developments of new algorithms to:

1. initialize the energy fields by assigning an energy level to each
grain of the microstructure at an early stage of the simulation,
with respect to a prescribed energy field,

2. compute the velocity field ~ve with an energy which is no more
constant for a given GLS function,

3. track the respective grain energies during the simulation,
4. handle efficiently nucleation events in order to limit the num-

ber of GLS functions and maintain low computational costs.

It is worth emphasizing that, even if the present study deals
only with scalar energy fields, the algorithms introduced in this
section are completely general and address also problems involv-
ing vector and/or tensor fields. The interested reader may find an
other example of application in [22], in which the same tools are
employed to handle the crystal orientation fields in the context
of DRX.
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3.1. Initialization of the energy fields

The first step consists in initializing the energy fields E iðxÞ. This
operation if performed in two stages:

1. the separation of the connected components (SCC) in order to
identify the grains represented by the same GLS function,

2. the generation and assignation of the grain energies.

The SCC algorithm is extensively detailed in [4] and returns, for
each GLS function wi, an index field noted I i, wherein each grain is
represented by a unique identifier (see Fig. 4).

Let us designate by Gi the number of grains represented by the
ith GLS function at a given time. After performing the SCC algo-
rithm, an energy value is generated for each grain of index
g 2 1; . . . ;Gif g. These values can be directly imported from CPFEM
calculations or experimental data. In both cases, this procedure is
designated by the function GENERATE_VALUE() in Algorithm 1.
Once the energies have been defined, the mesh nodes are scanned
and the procedure detailed in Algorithm 1 is performed.
e3

e2

e5

e4

e1

Fig. 3. An energy field EiðxÞ in which each grain has an independent energy. The
blank zones correspond to an arbitrary negative value (�1 for the sake of
simplicity).

1

1

1

1

1

Fig. 4. Characteristic (a) and index (b) fields of a GLS function used
Algorithm 1. Initialization of the energy fields at the early stage of
the simulation
procedure GENERATE_ENERGY Field I i
Create a Table E with size Gi

for Integer g 2 1; . . . ;Gif g do
E g½ �  GENERATE_VALUE()

end for
for Node n 2 M do
if I iðnÞ > 0 then
EiðnÞ  E I iðnÞ½ �

else
EiðnÞ  �1

end if
end for
return Ei

end procedure

When a node n satisfying I iðnÞ > 0 is met, the corresponding
energy field receives the value previously generated for this grain
identifier. In the zones where I i ¼ 0, the energy field Ei is set to
an arbitrary negative value (�1 for simplicity), which indicates that
it is an undefined region. Fig. 3 illustrates the result obtained by
executing this procedure on the microstructure shown in Fig. 4(b).
3.2. Calculation of the velocity field ~ve

Considering that in our new formalism energy is no longer a
constant but a space-dependent variable, it seems obvious to refor-
mulate Eq. (7) as follows:

~veðxÞ ¼ M
XNp

i¼1

XNp

j¼1
j–i

viðxÞf wjðxÞ; l
� � EiðxÞ � E jðxÞ� � rwjðxÞ

krwjðxÞk
: ð8Þ

However, this extension makes no sense if used as such because all
the energy fields Ej (with j – i) are not defined inside the ith GLS
function (i.e. where vi ¼ 1). Let us illustrate this situation with the
simple two-grain microstructure depicted in Fig. 5(a). These grains
are respectively represented by two GLS function, w1 and w2, and
two energy fields E1 and E2 (see Fig. 5(b) and (c)).
3

2

5

4

1

to represent five grains. Unlabeled grains receive a null value.



Fig. 5. Simple two-grain microstructure illustrating the problem of computing the ~ve velocity field with the new formulation of Eq. (8).
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At the node n represented in Fig. 5(a), v1 is naturally equals to 0
and Eq. (8) boils down to:

~veðnÞ ¼ Mf w1ðnÞ; lð Þ E2ðnÞ � E1ðnÞð Þ rw1ðnÞ
krw1ðnÞk

: ð9Þ

Nevertheless the value of E1 at this node is negative, because it is
located in the undefined region of the field.

To solve this issue, the energy fields must be extended outwards
their respective GLS functions before computing the velocity field
~ve. While Gi > 1, the nodal value of a GLS function corresponds
to the distance of the nearest grain it contains. The energy fields
must therefore be extended in wi 2 �e;0½ � with the energy value
of this nearest grain. This operation should therefore be performed
simultaneously with reinitialization in order to keep high numeri-
cal efficiency.

The direct reinitialization algorithm introduced in [3] computes,
for each node, the distance to the nearest facet (segment in 2D, tri-
angle in 3D) constituting the piece-wise linear contour. As it is
insufficient in our case, it has been implemented in a different
manner. Thus, the new implementation now returns directly the
nearest element with all its associated features (coordinates of
the delimiting points, normal vector, field values. . .). Considering
that the only quantity of interest in the context of SRX is the stored
energy, a unique scalar value is attached to each facet during the
construction of the discretized interface. This value corresponds
obviously to the energy of the grain surrounded by this facet. Dur-
ing the reinitialization stage, the energy attached to the nearest
element is used to complete the stored energy field in wi 2 �e;0½ �
(see Fig. 6(a)). A great advantage of this new implementation lies
also on the possibility to compute the exact gradient of the GLS
function rw, by projecting the reinitialized node on the nearest
facet (see Fig. 6(b)). The nodal value of rw is finally used in Eq.
(8) to compute the velocity field ~ve.

The reinitialization of the distance functions and the extension
of the energy fields are thus performed simultaneously, which
involves few additional computations compared to a classical
reinitialization (without field extension). The impact of the field
extension procedure on the computation time is discussed in the
fourth section. Going back to the previous two-grain microstruc-
ture, the result of the reinitialization/extension procedure per-
formed on the energy field E1 is depicted in Fig. 5(d). The energy
field now lives also in �e;0½ �, which allows a correct computation
of the velocity field ~ve at the node n, through Eq. (9).

3.3. Tracking of the grain energies

After the velocity field ~ve has been computed, the GLS functions
wi evolve accordingly to the system of CDEs defined by Eq. (5).

For convenience, we introduce the notation N g;i to represent
the set of nodes located inside the grain with index
g 2 1; . . . ;Gif g, represented by the function wi. Hereafter the super-
scripts �t and �tþDt are employed to designate the values of a field
before and after the solving of the CDEs, respectively.

The energy fields E i must be updated at each time step to ensure
the energies remain fitted on their respective grains between two
consecutive increments. The employed procedure is relatively sim-
ple and consists in two steps:

� for each grain of index g 2 1; . . . ;Gif g, search the maximal pos-

itive energy value of the field Eti in the set of nodes N tþDt
g;i ,

� perform a second loop and assign this maximal energy to the

field EtþDti in all the nodes belonging to N tþDt
g;i ,



Fig. 6. Field extension (a) and computation of the exact gradient rw (b) with the reinitialization algorithm.
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� all other nodes n R N tþDt
g;i are tagged with �1 (undefined

region).

It is obvious such an algorithm requires the existence of an
overlap area between the old and updated positions of each grain,
i.e.:

N t
g;i \ N tþDt

g;i – ;; ð10Þ
in order to perform the identification. In other words, at least

one node having a positive energy value must be found in N tþDt
g;i .

In practice, Eq. (10) is not satisfied in the two following
configurations:

(a) N tþDt
g;i ¼ ;, i.e. when the grain of index g disappears,

(b) N tþDt
g;i – ; but the displacement of g during t and t þ Dt is so

important that N t
g;i \ N tþDt

g;i ¼ ;,

Case (a) is actually not problematic as the energy of a dying
grain must necessarily be removed from the energy field, which
is what it is done by the algorithm. On the other hand, the scenario
(b) must absolutely be avoided. If it occurs, the considered grain
would lose its energy and receive a negative value instead, as illus-
trated in Fig. 7. To prevent this issue, it appears crucial to ensure a
Fig. 7. Energy field Eti before (a) and after (b) the updating procedure. The grain with ene
negative value.
proper identification of all the grains between two consecutive
increments. The satisfaction of this condition is actually strongly
related to the time step Dt. As a simple example, let us consider
a grain and the sphere centered on its centroid, which have a suf-
ficient radius Req to contain this grain. In this configuration, it is
obvious that Eq. (10) is verified between two consecutive incre-
ments as long as:

Dt <
Req

vmax
; ð11Þ

where vmax is the maximal velocity magnitude at the interface of
the considered grain. A worst case scenario for the satisfaction of
this inequality comes when a shrinking grain becomes very close
of the the mesh size Req � h. However, given the typical values of
vmax and h used in our simulations, the condition Dt < h=vmax is
always easily verified, even with the large time steps allowed by
our implicit numerical scheme. Fig. 7 illustrates the updating of
an energy field. In this example, the grain with energy e4 disappears
during the resolution of the CDEs. The grain having the energy e5
illustrates what happens when Eq. (10) is not satisfied, even if it
has been demonstrated above that this scenario does not occur in
practice.

The global algorithm for the updating of the energy fields is pro-
vided in Algorithm 2.
rgy e4 disappears between t and t þ Dt. The white zone corresponds to an arbitrary
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Algorithm 2. Updating of the energy fields between two consec-
utive increments
procedure UPDATE_ENERGY Field I i, Field Eti
Create a Table E with size Gi and initialize its components
E �½ �  �1
for Node n 2 M do
if I iðnÞ > 0 then
E I iðnÞ½ �  max E I iðnÞ½ �; Eti ðnÞ

� �
end if

end for
Process synchronization ! keep the maximal value in E
component by component
for Node n 2 M do
if I iðnÞ > 0 then
EtþDti ðnÞ  E I iðnÞ½ �

else
EtþDti ðnÞ  �1 (or any arbitrary negative value)

end if
end for
return EtþDti

end procedure
3.4. Improvement of the nucleation algorithm

During annealing at elevated temperatures, a deformed
microstructure usually recrystallizes discontinuously, through the
appearance and growth of new grains with low dislocation density,
the nuclei. This process is known as discontinuous recrystallization.
On the other hand, the microstructure may also evolve relatively
homogeneously throughout the material, with no recognizable
‘nucleation’ and ‘growth’ of the recrystallized grains. In these con-
ditions, the process can reasonably be classified as continuous
recrystallization. The microstructural mechanisms involved during
discontinuous and continuous recrystallization are actually similar
and the difference between these terminologies is purely phe-
nomenological, referring only to the spatial and temporal hetero-
geneity of microstructural evolution [23].

In this section, we present an algorithm which enables to intro-
duce dynamically new grains having their own features (stored
energy, crystal orientation. . .) into the microstructure. Although
only SRX in site saturated condition is considered in the present
study, it is obvious that this algorithm can also be employed to
address continuous ReX at the sub-grain scale.

During SRX, DRX or PDRX, nuclei can appear continuously dur-
ing the treatment or in site-saturated conditions. When a nucleus
emerges in the microstructure, it can grow or shrink, depending
on the capillarity force, the local energy gradient and the mobility
of the surrounding grain boundaries. In the present study, a con-
stant mobility is assumed for all grain boundaries, which means
that the behavior of a nucleus is only dictated by the balance
between capillarity effects and stored energy gradients. In a LS
framework, introducing new grains in the microstructure is
straightforward because it relies on simple arithmetic operations
on the distance functions. In [1,15], several SRX simulations have
been performed in two and three dimensions. Nevertheless, these
works are based on the initial ReX formalism detailed in Section 2,
and then suffer from the above mentioned drawbacks. More specif-
ically, in these simulations each grain and nucleus is represented
by its own distance function, making this approach hardly compat-
ible with large scale computations in 3D.

Next, we are interested in the improvement of this nucleation
algorithm in order to take full advantage of the GLS functions
(reduction of the number of operations, dynamic recoloring, mem-
ory savings. . .). For the sake of simplicity, each nucleus is assumed
perfectly circular. A set P of all the potential nucleation sites is
firstly constructed. It can contain all the nodes of the mesh or just
a subset of them (e.g. nodes located inside a layer around the grain
boundaries). A nucleation site with coordinates xg is then chosen in
P, randomly or with an eventual selection criterion (highest stored
energy, closest point from the grain boundaries,. . .). By noting r the
initial radius of the germ, its distance function / can be simply cal-
culated as follows:

/ xð Þ ¼ r � kxg � xk; ð12Þ
Next the new grain is affected to a GLS function. The index k is used
hereafter to designate the GLS function which receives the nucleus.
To determine k, we firstly evaluate, for each GLS function i, the min-
imal distance Xi between this nucleus and the grains already repre-
sented by wi. The kth GLS function satisfying:

Xk ¼ max
8i2 1;...;Nif g

ðXiÞ; ð13Þ

is finally chosen to host the germ, provided that Xk P s, with s a
positive security distance. If Xk < s, no existing GLS function can
receive the nuclei. A new function is therefore created
Np  Np þ 1 and initialized such as wNp

¼ /.
All the nodes n satisfying / > 0 are finally removed from P to

prevent the appearance of an other germ in the recrystallized
region and the following arithmetic operations are performed on
the GLS and stored energy fields:

~wiðxÞ ¼
max wiðxÞ;/ðxÞð Þ if i ¼ k

min wiðxÞ;�/ðxÞð Þ if i– k

� �
and

~EiðxÞ ¼
e0 if i ¼ k

�1 if i – k

� �
8i 2 1; . . . ;Np

� �
;

ð14Þ

with e0 the stored energy level in the recrystallized material.
This procedure is repeated until the desired number of created

nuclei is achieved or until the set P becomes empty (which corre-
sponds to a fully recrystallized microstructure).

3.5. Optimization of the recoloring scheme

In [4], a recoloring scheme working directly on unstructured FE
meshes is detailed. This algorithm automatically detects the risk of
numerical coalescence (i.e. fusion of grains belonging to the same
GLS function) and perform preventive swapping (i.e. recoloring)
operations to avoid this issue. The criterion which triggers the
swapping operations in this previous work is the direct proximity
in terms of neighborhood between the grains. More specifically, it
is assumed that there exists a risk of coalescence whether two
grains belonging to the same GLS function are separated by only
one exterior grain. This swapping criterion is referred as C1 and
presents the advantage of not introducing any numerical
parameter. On the other hand, it may also be rather limiting when
it comes to model particular microstructures, with strong size
heterogeneities. Let us consider the polycrystal of Fig. 8(a) with
dimensions 0:3	 0:3	 0:3 mm3, composed of 48 grains and
represented by Np ¼ 15 colors.

300 nuclei are then introduced at the grain boundaries follow-
ing the procedure detailed in Section 3.4, giving Ng ¼ 348. Here
the set P is initialized with the nodes satisfying max wp

� �
6 h in

order to restrict nucleation in a narrow band around the gains
boundaries. The minimal security distance s between the existing
grains and the new germ is taken equals to the nuclei diameter
2r (see Section 3.4 for explanations).

It is obvious such a microstructure presents strong grain size
heterogeneities. More precisely, the larger grains act like bounds



Fig. 8. (a) 3D polycrysal composed of 48 grains and represented by 15 GLS functions; (b) the same microstructure after nucleation at grain boundaries ðNg ¼ 348;Np ¼ 15Þ.
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between the nuclei, creating a large number of conflicts if the cri-
terion C1 is used for the swapping procedure. By executing this ver-
sion of the algorithm (as it is done in [4]) on the microstructure of
Fig. 8(b), 69 new GLS functions are initialized to solve the conflicts,
leading to Np ¼ 84, which is critically high. This situation is obvi-
ously problematic from a numerical point of view because the
number of needed GLS functions determines the computation
time. A new swapping criterion which can be seen as an extension
of C1 has thus been developed. It is referred as C2 hereafter.

Let us designate by LðgÞ the long range neighborhood of the
grain with index g. Considering the C1 criterion, LðgÞ contains all
the first and second neighbors (FSN) of the grain g. More precisely,
the term second neighbor of g is used to designate a grain which is
a neighbor of at least one g’s neighbor, without being g itself. We
also introduce the table CðgÞ which returns the index p of the
GLS function wp that contains the grain of index g. Note gH a second
neighbor of g. With the C1 criterion, gH is directly added in LðgÞ,
without any restriction. As a result, this table LðgÞ finally contains
all the first and second neighbors (FSN) of g. In practice, if the dis-
tance separating two grains remains sufficiently high, there is no
risk of coalescence between two consecutive increments, even if
they are separated by only one exterior grain. So, in the C2 proce-
dure, the distance dðg; gHÞ separating g and gH is firstly evaluated in
order to determine whether gH is added in LðgÞ or not. If
dðg; gHÞ > n (with n a simulation parameter), the second neighbor
gH is ignored, which has two consequences:

� no conflict can arise between g and gH, even if CðgÞ ¼ CðgHÞ,
� by assuming CðgÞ – CðgHÞ initially, it is perfectly possible that
they become represented by the same GLS function after the
swapping procedure.

Thus it is obvious that working with C1 is equivalent to use C2

with n ¼ 1. In order to keep a high numerical efficiency, we do
not compute the exact distance between g and gH but the distance
between their respective bounding boxes in the cartesian coordi-
nate system used to generate the RVE. This distance determines
whether gH is accepted in LðgÞ or not. The Fig. 9 illustrates these
two situations: in Fig. 9(a), it is assumed that dðg; gHÞ < n, which
implies gH is added in LðgÞ ; in Fig. 9(b), the grain gH is ignored
because the separation is sufficient.

By applying the above C2 procedure on the microstructure of
Fig. 8(b) with n ¼ hRiReX (with hRiReX being the mean recrystallized
grain size), all the initial coloring conflicts can be solve without
creating any new GLS functions, as illustrated in Fig. 8(b). Next, a
heat treatment of 5 min at 1000 �C is simulated. A null stored
energy is affected to the nuclei while the deformed grains present
in Fig. 8(a) receive a value of 3:3	 10�4 J/mm3, which is a realistic
order of magnitude. The material and simulation parameters are
summarized in Table 1. The FE mesh is fixed and composed of
903 isotropic tetrahedral elements. The simulation time step Dt is
set to 5 s.

The same simulation has also been performed without any col-
oring, which corresponds to the initial formalism detailed in Sec-
tion 2, in order to illustrate the gains in efficiency permitted by
the new implementation. As illustrated in Fig. 10, the number of
needed GLS functions remains much lower all along the simulation
with the C2 criterion, which is thus proven more efficient that C1

for microstructures presenting strong grain size heterogeneities.
Obviously, without coloring algorithm the number of distance
fields is equal to the number of grains.

Simulations are performed on 6 Intel Xeon CPUs. Table 2 pro-
vides the computation times and their distributions. The average
number of active distance fields during a simulation is noted
hNpi. It is equal to 343 without coloring and falls down to 21 with
the previous optimizations, which results in a great improvement
of the simulation time.

Next, the optimized simulation using the coloring algorithm
coupled with the C2 swapping criterion is defined as reference con-
figuration. The computation time and the average number of
needed GLS corresponding to this simulation are noted, tC2

s and

hNpiC2 , respectively, and Table 2 provides tC2
s ¼ 1 h08 min and

hNpiC2 ¼ 21. Based on the results of Table 2, a simple linear rela-
tionship with slope 0:5 can be obtained between the number of
active GLS functions hNpi and the simulation time ts:

ts � tC2
s

tC2
s

¼ 0:5
hNpi � hNpiC2

hNpiC2
: ð15Þ



Fig. 9. Calculation of the distance between the bounding boxes of g and gH (represented by the red thick arrow) and decision concerning gH : (a) gH must be included in LðgÞ ;
(b) gH can be safely ignored. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Input parameters for the simulation of a 5 min heat treatment using the polycrystal of
Fig. 8(b).

Parameter Value Units

T 1000 �C
Dt 5 s
M 5	 10�13 m4 J�1 s�1

c 0.6 J m�2

r 11 lm
e0 0 J m�3

Fig. 10. Number of active GLS functions during the simulation of a 5 min heat
treatment at 1000 �C using the initial polycrystal of Fig. 8.

Table 2
Distribution of the computation time for the simulation of a 5 min heat treatment at
1000 
C using the polycrystal of Fig. 8. Simulations are performed on 6 Intel Xeon
CPUs.

Without coloring C1 criterion C2 criterion

Np
	 


343 90 21

Solving of CDEs (see Eq. (5)) 7 h09 min 1 h56 min 27 min
Reinitialization 2 h01 min 1 h02 min 38 min
Others 37 min 8 min 3 min
Total simulation time 9 h47 min 3 h06 min 1 h08 min

B. Scholtes et al. / Computational Materials Science 122 (2016) 57–71 65
It undermines that the computation time is not proportional to the
number of distance fields. This finding may seem surprising but can
be actually easily explained by analyzing the execution time of the
reinitialization algorithm (see Table 2). For each distance field, a
piece-wise representation of the interface is firstly constructed at
the early stage of the reinitialization algorithm. The complexity of
a distance computation is, on average, a logarithmic function of
the number of elements constituting this discretized contour [3].
As fewer distance fields are employed in the new formalism, each
contains more grains, which increases the interface length and
therefore the number of facets. Consequently the reinitialization
of a distance field taken separately requires more efforts when col-
oration is employed, which justifies that the cost of this operation is
not a linear function of the number of GLS functions. The global
computation time devoted to reinitialization is however reduced
by a factor up to 3 thanks to the new implementation, which is still
very interesting.

4. 3D simulation of SRX using results of CPFEM computations

In this section, we investigate the deformation of a 3D polycrys-
tal with subsequent SRX in site-saturated conditions. A RVE is
firstly submitted to a channel-die compression test and its
mechanical state after deformation is used as input to perform sev-
eral SRX simulations. Different configurations are investigated in
which site-saturated and bulk nucleation are considered with
either heterogeneous or homogeneous stored energy distribution.
The model predictions are confronted with the experimental work
of Huang [24], wherein a 304L material has been submitted to hot
torsion tests with subsequent heat treatment in various thermo-
mechanical conditions, in order to investigate DRX, PDRX or SRX.

4.1. Deformation of the polycrystal

The behavior of the aggregate during the deformation is
described by a CPFEM model, based on a classical elasto-
viscoplastic formulation. This model assumes that elastic strains
are infinitesimal and plastic deformation is achieved by dislocation
slip along the 111f gh110i crystallographic system, expected in FCC
crystals deforming at low temperature. The details and validation
of the constitutive time integration scheme can be found in
[25,15]. A viscoplastic exponential flow-rule is used to relate the
slip rates to the applied stress [26]:

_ca ¼ _c0
sa

sc

����
����
1=m

sign sað Þ; ð16Þ
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by considering for each slip system a; _ca which is the rate of dislo-
cation slip and sa which is the resolved shear stress. The coefficient
_c0 is a reference slip rate, m is the sensitivity exponent and sc is the
critical resolved shear stress which is assumed to be identical for all
slip systems [16]. This model also considers two populations of
dislocations:

� the statistically stored dislocations (SSDs) which are the dislo-
cations accumulated in the material during homogeneous plas-
tic deformation,
� the geometrically needed dislocations (GNDs) which appear in
areas of strain gradient and thus ensure the crystal lattice
continuity.

The total dislocation density inside the material, noted q, is nat-
urally the sum of the densities corresponding to these two popula-
tions. The critical resolved shear stress evolves with the dislocation
density according to the following hardening law:

sc ¼ s0 þ 1
2
lb

ffiffiffiffi
q
p

; ð17Þ

where b and l correspond respectively to the norm of the Burgers
vector and the elastic shear modulus of the material.

We refer the interested reader to [25,15,16,22] for further
details concerning the temporal evolution of the dislocation densi-
ties, the CPFEM model and the FE formulation.

A polycrystal composed of 100 grains with initial dimensions
0:62	 0:62	 0:62 mm3 is submitted to a planar compression test
and deformed until the averaged strain inside the material reaches
a value of 30%. The FE mesh is composed of 1003 unstructured
tetrahedra and remeshing operations are performed every 5% of
deformation in order to ensure a good overall element quality all
along the simulation. At the end of the deformation, the energy
field D is deduced from the dislocation density field according to:

DðxÞ ¼ 1
2
lb2qðxÞ; ð18Þ

The final FE mesh and the GLS functions are then used as input for
the SRX simulations. Considering the initialization of the energy
fields Ek, two different distributions are investigated. In the former,
the average value of the field D is affected to all the grains of the
polycrystal, which results in a homogeneous distribution of the
stored energy. This first simplified configuration permits compar-
isons with the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory,
which assumes a homogenized deformation energy throughout
the microstructure. Hereafter the term ‘‘Homogeneized Energy”
designates this configuration.

In the second distribution, the energy of a given grain with
index g belonging to the ith GLS function is calculated by averaging
the values of D on the set of nodes located inside this grain N g;i. In
this configuration, the function GENERATE_ENERGY() of Algorithm
1 can be described by Algorithm 3. Obviously this representation,
referred as ‘‘Heterogeneous Energy”, is much more realistic
Table 3
Description of the simulated SRX configurations.

Configuration Energy distribution Nucleation

1 Homogeneous energy Bulk/random nucleation
2 Homogeneous energy Necklace-type/site of highest

energy
3 Heterogeneous

energy
Bulk/random nucleation

4 Heterogeneous
energy

Necklace-type/site of highest
energy

5 Heterogeneous
energy

Bulk/site of highest energy
because it also considers energy gradients between deformed
grains.

Algorithm 3. Generation of the grain energy in the ‘‘Heteroge-
neous Energy” representation

procedure GENERATE_ENERGY Field I i, Field D, Integer g
Create Floats e 0 and o 0
for Node n 2M do
if I iðnÞ ¼¼ g then
e eþDðnÞ
o oþ 1

end if
end for
Process synchronization! sum the values obtained by each
process for e and o
return e=o

end procedure
The dislocation density in the annealed material is around
1011 m�2 and is more than three thousand times smaller than the
ones resulting from the CPFEM simulation. It can thus be reason-
ably neglected. As a consequence nuclei receive initially a null
energy (i.e. e0 ¼ 0).

In the present study, the energy is considered homogeneous for
a given grain, which remains a strong assumption. In real materi-
als, intragranual heterogeneities may result in different migration
rates for the grain boundaries. Ongoing studies attempts to address
this limitation by considering heterogeneous stored energy fields
inside the grains [27]. Furthermore, we assume here that the grain
energies do not evolve during the treatment, which can also be
improved. Thus in our framework, when a migrating grain bound-
ary sweeps into the interior of a neighbor grain, the energy of this
advancing grain is naturally affected inside the migration region,
which remains a strong hypothesis. This approach has nevertheless
the advantage of avoiding a specific treatment in the migration
zone. On the other hand, updating the crystal orientation field in
the context of DRX requires much more attention and a specific
approach has then been developed very recently [22]. The latter
relies on an extension of the crystal orientation field, which is per-
formed during reinitialization, as detailed in Section 3.2.

It is well known that nucleation plays an important role in the
kinetics of recrystallization. In this study we consider nucleation in
site-saturated conditions with different spatial distributions for the
germs. In ‘‘Bulk” nucleation, P contains all the nodes from the FE
mesh, while it is only composed of the nodes close from the grain
boundaries in the case of ‘‘Necklace-Type” nucleation. Two differ-
ent approaches are also tested for the determination of the nucle-
ation site:

� ‘‘Site of Highest Energy” in which the node n 2 P having the
highest energy value (related to the field D) is chosen as nucle-
ation site,
� ‘‘Random Nucleation” wherein the nucleation site is randomly
picked in P.

After one germ has been created, all the mesh nodes located
inside (/ > 0) are removed from P. Five configurations are thus
simulated, which are summarized in Table 3.

4.2. Determination of the nucleation parameters, a multiscale
approach

Static recrystallization may occur when a deformed material is
subsequently annealed. In [28], the critical dislocation density



Table 4
Processing conditions and input parameters for the SRX simulations.

Parameter Value Units

T 1000 
C
_e 0.01 s�1

b 2:54	 10�10 m

l 4:55	 1010 Pa

M 5	 10�13 m4 J�1 s�1

c 0.6 J m�2

K1 1:01	 1015 m�2

K2 3.3
s 1:47	 10�9 N

h 0.3
Kg 7	 108 m�2 s�1

bg 3
r 11 lm
e0 0 J m�3
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needed to trigger SRX is identified through experimental tests.
However, a large number of experiments has to be performed with
different strain rates and annealing temperatures in order to cor-
rectly estimate this threshold value. Recently a mean field model
of DRX [29] and its adaptation to SRX [30] have been proposed.
The equations of this SRX model are used to estimate the critical
dislocation density qc , the number of nuclei � and their initial
radius r, which are needed inputs for the full field simulations
(see Table 4).

It has been demonstrated in [30] that qc can be estimated by
solving the following equation:

qc ¼ h
�2c _e K2

Ms2

ln 1� K2
hK1

qc

� 
2
4

3
5

1=2

; ð19Þ
Fig. 11. Initial microstructure before (a) and after (b-c-d) nucleation with the ‘‘Hetero
Recrystallized regions are represented in white. (For interpretation of the references to
where K1 and K2 represent, respectively, the strain hardening and
the recovery terms in the Yoshie–Laasraoui–Jonas equation [31]
used to compute the evolution of the SSD density. The parameter
h is a constant whose value is close to 0.3 [24] and s is the disloca-
tion line energy.

We consider that nuclei appear in areas where the dislocation
density is greater than the critical value qc. Consequently, in the
mean field theory nucleation only happens in grains whose the
homogenized dislocation density is greater than qc. As the nucle-
ation rate is difficult to evaluate experimentally, it is assumed that
only a certain percentage of the potential nucleation sites actually
nucleates. According to [29], the number of germs created in each
representative grain with index i and radius Ri, noted � i is obtained
by solving:

� i ¼ Kg T; _eð ÞSc NiR
q
i qi � qcð ÞbgP

qk>qc
NkR

q
k qk � qcð Þbg

; ð20Þ

where bg is a constant which should be close to 3, according to
Montheillet et al. [32], Kg is a probability constant depending on
the processing conditions and Sc is the total surface area of the
grains whose dislocation density is greater than qc . The exponent
q is equal to 2 or 3, depending whether it is assumed necklace or
bulk nucleation. [29]. As the full field model provides a complete
description of the polycrystal, all the intrinsic characteristics
(equivalent radius, dislocation density, surface area) of the grains
can be directly calculated without approximation. As a conse-
quence, each of them can be considered as a representative grain
in the mean field description, giving Ni ¼ Nk ¼ 1 8i; k in Eq. (21).
Finally, the total number of nuclei � is obtained by summing the
contributions of all the (representative) grains i:
geneous Energy” representation. The color code corresponds to the stored energy.
color in this figure legend, the reader is referred to the web version of this article.)
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� ¼
X
i

� i: ð21Þ

Due to the competition between the capillarity effects and energy
gradients, the initial germ size must be chosen high enough to
ensure their viability. The critical nuclei radius from which a germ
is considered as viable is noted rc , and the stability criterion is nat-
urally r > rc , with r the initial nucleus radius. In [33], the following
expression is proposed to estimate this quantity:

rc ¼ 4c
hqilb2 þ 4c

hRi
: ð22Þ

The mean dislocation density at the beginning of the SRX is
hqi ¼ 2:01	 1014 m�2. By using the data of Table 4 representative
of the 304L steel in the considered processing conditions,
Eqs. (19), (21) and (22) provide respectively qc ¼ 5:7	 1013 m�2;
� ¼ 3224 for q ¼ 2 (necklace nucleation), � ¼ 3235 for q ¼ 3
(bulk nucleation) and rc ¼ 3:89 lm.

Fig. 11 illustrates the initial microstructure before and after the
nucleation stage for different configurations (see Table 3). It is
worth emphasizing that, thanks to the new ReX formalism detailed
in the previous section, each grain of the microstructure (deformed
grain or nucleus) has its own energy, represented by a given color
in Fig. 11. This energy is also completely independent of the GLS
functions.

4.3. Large scale SRX simulations

The dimensions of the REV after deformation are 0:8	 0:62	
0:48 mm3. A refined FE mesh of 2003 unstructured tetrahedra is
employed for the SRX simulations in order to represent accurately
the nuclei in the initial microstructure. A heat treatment of 20 min
at 1000 � C is finally simulated. The time step is set to 5 s.

The bulk recrystallized fraction, defined as the ratio between
the volume of recrystallized material over the total volume, is
noted Xv . The JMAK relationship is commonly used to describe
its evolution during the heat treatment:

Xv ¼ 1� expð�BtnÞ; ð23Þ
where B is a constant and n is the Avrami exponent. In site saturated
conditions, values of 2 and 3 are expected when considering
necklace and bulk nucleation, respectively. As the JMAK theory
assumes a homogeneous deformation energy throughout the
microstructure, only configurations 1 and 2 are considered for this
first comparison. Fig. 12 illustrates that the present full field
Fig. 12. Calculation of the Avrami exponent n for configurations 1 and 2 (see
Table 3).
model captures greatly the recrystallization kinetics, as the
calculated Avrami exponents fall very close from the expected
values.

These numerical results are finally confronted with the experi-
mental observations of [24]. Fig. 13(a) depicts the evolution of the
bulk recrystallized fraction during the heat treatment for configu-
rations 3, 4 and 5 (see Table 3).

The graph of Fig. 13(a) illustrates that configuration 4
(necklace-type nucleation with selection of the highest energy
node) provides the most realistic prediction in terms of recrystal-
lized fraction. These results are in agreement with the experimen-
tal observations of Huang [24], where nuclei appeared mainly at
the grain boundaries during the recrystallization of the considered
304L steel. With bulk nucleation, the recrystallization kinetics is
accelerated due to the fact that nuclei have more space to grow,
because they do not interfere with each other in the initial
microstructure. In configuration 5, the advance of the recrystal-
lized front is slowed down, due to the formation of clusters in
the regions of highest energy.

In [24], the recrystallization fraction is measured on slices of the
material. One great advantage of the present numerical model lies
on the possibility to easily interpolate the 3D fields (wi and
Ei; 8i 2 1; . . . ;Np

� �
) on a planar mesh in order to construct a 2D

representation of the microstructure from the volume results
(see Fig. 14). Thus, 10 equally-spaced cutting planes of the virtual
polycrystal are analyzed. We compute the respective surface
recrystallized fractions of these 10 slices and then the average
value hXsi. The evolution of this quantity is plotted in Fig. 13(b)
for the configuration 4 and compared with the bulk recrystallized
fraction. It appears that the surface recrystallized fraction slightly
overestimates the real one, despite the number of considered cut-
ting grains is relatively important (>1000), which tends to indicate
a small space anisotropy of the recrystallized fraction. Moreover,
these results also demonstrate that the recrystallized fraction
may strongly varies depending on the observed cutting plane
(see the error bars in Fig. 13(b)), especially if the number of
observed grains in the cutting plane is not sufficient. This numeri-
cal tool could thus be wisely used to size correctly the samples
used for the experimental observations (determination of the min-
imal number of cutting grains), in order to guarantee that the
observed slice is representative of the bulk behavior of the
material.

Considering the great capacities of the present model, an excit-
ing perspective would be to challenge the numerical predictions
with more sophisticated experimental characterisations in terms
of volume recrystallized fraction and grain size. Although obtaining
these quantities is straightforward numerically (see Fig. 15), esti-
mating the recrystallized grain size inside the material is rather
complex experimentally. Generally, the 3D grain size is estimated
from the observed one by the mean of stereological considerations,
which rely on assumptions. More sophisticated methods
emerged recently, such as near-field high energy X-ray diffraction
microscopy (NF-HEDM) [34,35] and X-ray diffraction contrast
tomography [36], but in situ observations are still hardly
used because they require complex and specific experimental
facilities.

As illustrated in Table 5 for configuration 4, each 3D simulation
requires around one day of computations using 24 Intel Xeon CPUs.

The extension of the energy fields detailed in Section 3.2 is
performed simultaneously with reinitialization and entails an
additional cost of around 1% compared with a classical reinitializa-
tion (without field extension), which is negligible.

As the nucleation algorithm and the initialization of the energy
fields are only executed one time at the early stage of the simula-
tion, they represent a very small amount of the global computation
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time. In the same way, the numerical costs associated with the SCC
procedure, the nucleation algorithm, the initialization and the
tracking of the energy fields are negligible compared with the
reinitialization and the solving of the CDEs.

On average, 34 GLS functions are active during this simulation
(22 and 37 at the early and final stage of the simulation,
respectively) and the average number of grains present in the
microstructure is equal to 3067. By using the expression of
Eq. (15), the computation time needed for such a simulation
with the initial formalism of Section 2 can be estimated around
1 month and 20 days. Thus the improvements of Section 3 result
in an acceleration factor up to 45, which is quite satisfying.
Fig. 13. (a) Evolution of the bulk recrystallized fraction Xv during the heat treatment a
experimental observations of [24]; (b) comparison of the bulk and surface recrystallize
maximal values measured among the 10 slices.

Fig. 14. Creation of a 2D representation of the microstructure (slice) from the 3D simula
the references to color in this figure legend, the reader is referred to the web version of

Table 5
Distribution of the computation time for a 3D large scale SRX simulation (configu-
ration 4). The simulation is performed on 24 Intel Xeon CPUs.

Related
section

Computation
time

Percentage

Solving of CDEs 2, Eq. (5) 8 h 24 min 31.4%
Separation of connected

components
3.1 2 min 0.1%

Initialization of energy fields 3.1 <1 min 0%
Reinitialization 3.2 17 h 21 min 64.9%
Field extension 3.2 10 min 0.6%
Tracking of grain energies 3.3 <1 min 0%
Nucleation 3.4 <1 min 0%
Post treatment operations 57 min 3.5%
Moreover, due to the reduction of the number of needed fields,
the memory requirements are also drastically reduced.

Although very promising, the present model should neverthe-
less be further improved in order to capture the complexity of
microstructural mechanisms involved during the forming process.
First of all, the influence of anisotropy in terms of grain boundary
energy and mobility should be considered. More specifically, it is
well known that the real 304L material contains twin boundaries,
which are currently omitted in the simulations. There are recent
LS studies concerning the influence of anisotropic grain boundary
features in the context of 2D grain growth [19,37,38]. To our
knowledge, this topic has never been investigated in 3D with
stored energy for the time being. Next, the intragranular hetero-
geneity in terms of stored energy and its evolution during the
migration of the grain boundaries should also be considered. This
point is currently under study [27,22]. In the present paper, only
SRX is considered, which means that recrystallization starts only
after the deformation stage. First efforts to model DRX in a level
set framework with deformation of the polycrystal are very recent
[22]. The numerical approach employed for the modeling of DRX
works around a coupling between the CPFEM and GG/ReX models,
and uses the same numerical tools detailed in this paper. Further
experimental investigations should also be carried out in order to
verify the values of the input parameters needed for the full field
simulations (number and size of the nuclei, critical dislocation den-
sity. . .). Finally, as nucleationmodels adapted to SRX conditions are
relatively scarce in the literature, using the present model to
develop and/or calibrate an accurate nucleation law is also an
interesting prospect.
t 1000 �C for the configurations 3, 4 and 5 (see Table 3), and comparison with the
d fractions obtained for configuration 4. The error bars indicate the minimal and

tion results. The color code corresponds to the GLS functions. (For interpretation of
this article.)



Fig. 15. Simulated microstructure at different stages of the heat treatment (configuration 4). The color codes correspond to the stored energy. Recrystallized regions are
represented in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusion

This paper deals with the full field modeling of SRX using a LS
approach. A new numerical formalism and its implementation in
a FE framework are discussed. The latter relies on the use of GLS
functions with an efficient handling of nucleation events, which
ensures low numerical requirements. This new formalism takes
also full advantage of a dynamic recoloring scheme introduced
recently [4]. The model has been challenged through large scale
3D simulations of SRX and exhibits high numerical efficiency, with
acceleration factor up to 40 compared with the existing implemen-
tation. The numerical predictions have also been validated through
comparisons with analytic laws and experimental observations.
Various nucleation scenarii and their influence on the recrystalliza-
tion kinetics have been investigated. The present full field model
has thus been proven able to capture finely the evolution of the
recrystallized fraction in the material. Considering the advances
in terms of numerical efficiency permitted by the new implemen-
tation, an interesting prospect would be to perform additional
experimental characterisations, in order to challenge the model
predictions in terms of volume recrystallized fraction and grain
size. These developments broaden the field of applications of the
presented global LS-FE resolution framework.
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