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Abstract.  A new constructive ellipse packing algorithm is presented. It allows to respect the imposed area, shape and 
spatial orientation distribution (i.e. the inertia tensor) and achieve high packing densities. The packing density 
decreases with increasing particles aspect ratio what is in agreement with results reported in the literature. The 
generated packings with complex imposed area, shape and spatial orientation distributions with densities in the range 
of 0.74 and 0.8 are presented. The efficiency of the algorithm is demonstrated by comparison with the Optimized 
Dropping and Rolling method for disk packing. Moreover, the proposed packing strategy enables to generate very 
easily non-equiaxed polygonal structures by using Laguerre-Voronoï tessellation of the generated disk-based ellipse 
packing.
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The problem of packing of objects with different 
geometrical shape attracted considerable amount of 
attention during the last few decades due to its 
application in modelling of granular materials, porous 
media, foams, polycrystalline structures and so on. Most 
studies were carried out for the packing of uniform and 
arbitrary sized spheres [1], considering the problem of 
optimal packing [2-5], (and its dual, the sphere cutting 
problem [6, 7]) or space-filling [8-14].  

In the context of space-filling problem, the sphere 
packing can be obtained by the dynamic methods, in 
which particles usually change their position and/or their 
size during the filling process to improve the local and 
global densities, or by the constructive methods, 
generating particles sequentially and calculating their 
positions thanks to geometrical rules. 

The dynamic methods were widely used for the 
ellipsoid packing and high densities were reported in 
published works [15-18]. For the methods in which 
ellipsoidal particles are generated by choosing randomly 
initial position and orientation and letting them fall in an 
open box under the gravity, an anisotropic behaviour of 
the packing system was reported [18, 19]. In the case 
when the spatial orientation of ellipses is fixed, it was 
found that the packing by dynamic methods can result in 
low densities [20].  

The constructive method of axisymmetric elliptical 
particles approximated by four connected arcs was 
proposed in [21] and it was extended to three dimensional 
(3D) axisymmetric ellipsoidal forms in [22]. In [23] the 
authors developed an advancing front packing algorithm. 

Recently, an overlapping detection algorithm for the 
sequential packing of elliptical particles was proposed 
and generalized in [24]. Relatively high packing densities 
were reported, but the generation of packing with an 
imposed spatial orientation distribution was not 
considered. It should be noted that due to numerous 
rejections of randomly generated positions of particles 
during the filling process in the sequential inhibition 
method, the computation time for achieving high and 
even moderate packing densities is typically long. 

A constructive ellipse packing method is proposed in 
the present work. Each elliptical particle is approximated 
by a set of circles. Recently, this method was examined 
for applying in discrete element simulations [25]. In the 
present study, we focus on the packing of particles which 
can be applied not only to consider modelling of granular 
materials, but also for the generation of polygonal 
structures (which can be used, for example, to describe 
polycrystalline materials statistically). In this case, higher 
packing densities are necessary to provide good accuracy 
in respecting the desired polygon area, shape and spatial 
orientation distributions. In the proposed packing method, 
the list of accommodated in domain ellipses is built in 
which they are sorted according to the position in the 
domain (height). To reach high packing densities, each 
new particle is placed at the lowest possible position by 
testing pairs of ellipses from the “Height list”.  

The paper is organized as follows. At first, the 
discretization of ellipses on multi-circles is described. 
Then, the algorithm of packing is presented with 
introducing the Height list used to optimize packing 
density. Some numerical tests are reported for imposed 
area, shape and spatial orientation distributions. Finally, 
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densities and computation time provided by the proposed 
algorithm are compared with the Optimized Dropping 
and Rolling Method (ODRM) [9] in particular case of 
disk packing. 
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In this section, the approach used to approximate an 
ellipse by a set of circles is described in the first part. In 
the second part, the algorithm of ellipse packing is 
detailed. 
�
� ������!��������
�
Assuming that the principal axes coincide with the axes 
of local Cartesian coordinates Oxy, the corresponding 
ellipse equation is: 
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 ,                      (1) 

where a and b are the major and minor half-lengths of 
principal axes. 

A random ellipse can be modelled by a set of circles 
as follows [25]: 

- All the centers of circles are on the major axis and, 
hence, the circle equation is 
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where xi is the abscissa of the center and Ri is the radius 
of the circle with i = 0 for the central circle and i > 0 for 
the right part of the ellipse. 

- All the circles are tangent to the ellipse. If (xit,yit) is 
the point of tangency for the circle i with center (xi,0), 
after calculating the derivative with respect to x for the 
left and right parts of Eq.(1) and Eq.(2) and substituting  
x = xit, we obtain: 
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which gives: 
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with λ = a / b the ellipse shape ratio. Consequently, the 
radius of the circle Ri can be found from Eq.(1) and 
Eq.(2) by eliminating  y2 and substituting  x = xit where xit 
is given by Eq.(5): 
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- The center of the largest circle (0,0) is in the center 

of the ellipse and its radius is equal to the semi-minor 
axis b. 

- The center of the circle which is the nearest 
neighbour of the largest (central) circle, (x1,0), is imposed  

Figure 1. Approximation of the ellipse by a set of circles. 
 
by the user (the closer it is to the central circle, the better 
the final approximation of the ellipse is obtained).  

- If positions of the circles Ci-1((xi-1,0),Ri-1) and 
Ci((xi,0),Ri) are known, the center of the circle  
Ci+1((xi+1,0),Ri+1) is calculated subsequently from the 
condition of similarity of the triangle with vertices (xi,0), 
(xi+1,0) and (xi,yi) and triangle formed by vertices (xi-1,0), 
(xi,0) and (xi-1,yi-1)  thanks to Eq.(7)  (see also Fig.1):  
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- The point of tangency for the smallest circle of 

center (xNt ,0) is imposed as (a,0) and, hence, from (5) and 
(6) we obtain: 
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If Eq.(7) leads to xi+1 > xN , we impose xi+1 = xN and 

the iteration is terminated. After reflecting the circles 
{Ci((xi,0),Ri),  i=1..N}  over the y-axis, the description of 
the ellipse by a set of 2N+1 circles is obtained. The total 
number of circles approximating an ellipse depends on 
the ellipse shape ratio, λ, and the precision imposed by 
the user, x1. 
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The proposed ellipse packing method, called Advancing 
Layer algorithm (ALA), is described in this subsection. 
The flow-chart of the algorithm for placing the first row 
(ellipses are in contact with the bottom of the domain) is 
summarized in Fig.2. When the first row is completed, 
the bulk of the domain is filled as described in the flow-
chart detailed in Fig.3. 

Each new ellipse is generated according to the 
imposed area, A, shape (aspect ratio), λ, distribution. 
Then, the ellipse is decomposed on circles as it is 
described in the previous subsection with the precision 
imposed by the user and rotated by the angle α (see 
Fig.4) generated according to the imposed spatial 
orientation distribution. 

To place the ellipse Ei in contact with the bottom 
edge, the lowest circle should be determined and y-
coordinate of its centre is imposed to be equal to its 
radius. Then, y-coordinates of other circles of the particle 
are computed. When the particle is placed in the left 
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Figure 2. Flow-chart of the filling algorithm for the first row. 
 

 

Figure 3. Flow-chart of the algorithm for filling the bulk. 
 

 
Figure 4. The first ellipse in the bottom corner of the domain. 
The spatial orientation angle, α, is shown. 
 

 
Figure 5. Placement of the second ellipse in contact with the 
first one (the first row). 
 

Figure 6. Placement of the ellipse E3 on E1 and E2. The 
corresponding pairs of circles Cq

E1 - Cg
E3, Cp

E2 - Cf
E3 in contact 

and ellipses heights (HE1, HE2 and Hmax) are shown. 
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bottom corner of the domain, x-coordinates are defined 
analogically.  

After accommodating the first elliptical particle in the 
corner, other ellipses are generated and placed as 
described in the flow-chart for filling the first row 
(Fig.2). Fig.5 illustrates an example of two particles 
placed in contact with bottom: after placing E1 in the 
corner, the position of E2 is calculated by searching one 
of its circles to be in contact with the circles of E1 with no 
overlapping of other circles. 

When the first row of ellipses is filled, the index 
number of each particle is recorded in the Height list at 
the position which corresponds to the height of the 
particle (its maximal y-coordinate). The ellipses in the 
Height list are sorted in ascending order, i.e. from the 
lowest ellipse (the first position in the list) to the highest 
one (the last element in the list). 

For completing the bulk of the domain, the flow-chart 
described in Fig.3 is used for any tested ellipse. After its 
generation (following imposed distributions), its 
decomposition and rotation, a new ellipse should be 
placed in contact with two other particles. Pairs of 
previously placed ellipses are tested starting from the first 
element to the last one recorded in the Height list. Fig. 6 
illustrates the placement of the ellipse E3 on the pair of E1 
(with the height HE1) and E2 (with the height HE2). The 
contact position is determined from two conditions of the 
contact for two pairs of circles (Cq

E1 with Cg
E3, Cp

E2 with 
Cf

E3 in Fig. 6) without any intersection with other circles. 
Two equalities of the sum of radii to the distance between 
centres of the corresponding circles from the chosen pairs 
give two equations with two unknown variables. The 
system can have two, one or zero solutions. Two 
solutions correspond to two possible contact positions for 
the new ellipse – “beneath” and “above”. When the new 
ellipse is placed in contact with the two others, the 
intersection with other previously placed particles should 
be checked. In the case of no intersection, the position is 
accepted and the index number of the new ellipse is 
recorded in the Height list according to its computed 
height. In Fig.6 the ellipse E3 is placed above E1 and E2 
(since the position beneath E1 and E2 cannot be accepted 
due to the intersection with other particles). When the 
overlapping with other particles is detected, another pair 
of elements is chosen from the Height list. If after testing 
all possible pairs of ellipses for placing the new particle 
the contact position was not accepted, the packing is 
stopped.  

In the presented form, the packing algorithm is quite 
time consuming and generates packings with 
inhomogeneous densities due to the fact that the pairs of 
particles to place the new ellipse are tested from the 
bottom to the top. This strategy is synonymous of higher 
packing density in the bottom part and in longer 
computation time since a lot of unsuccessful tests (with 
overlapping) should be performed before to reach the 
good position for a given new ellipse. To avoid it, the 
definition of the Top layer was introduced. It is defined 
as follows. Let Hmax be the height (maximal y-coordinate) 
of the highest ellipse placed in the domain (the last 
element in the Height list) and HEi be the height of  the 

ellipse Ei  (see Fig.6). The Top layer of the packing is

 
Figure 7. Ellipse cells for E1 and E3 and candidate domain (the 
biggest rectangle, see the text for details). 
 
composed  of the particles Ei for which  

 
    Hmax - HE1 <hTLamax ,                   (10) 

 
where amax is the maximal semi-major axis of the ellipses 
and hTL is a coefficient imposed by the user. The Top 
layer contains all the ellipses recorded in the Height list at 
last positions. The number of particles in the Top layer 
depends on the value of hTL. In the present work, the 
values from 1.1 to 2 were tested to optimize the 
computational time and the global packing density.  
 In Fig.7 the new ellipse E3 is placed on two 
previously accommodated ellipses: the first ellipse E1 is 
chosen from the Top layer and the second ellipse is 
chosen from the rectangular domain (the biggest 
rectangle in Fig.7. called further candidate domain) 
defined by the rectangular cells of E1 and E3 (two small 
rectangles in Fig.7). Fig.7 shows the case when the 
ellipse E4 is not tested for placing E3 since it does not 
intersect the candidate domain, the ellipse E2 overlaps 
with the candidate domain and, hence, can be considered 
for placing  E3. 

In addition, when the tests of intersection with the 
previously placed ellipses are performed, first the 
overlapping of the rectangular cells of ellipses is checked. 
If the cells overlap, the intersection test for the ellipses is 
then performed.  

In the described form, the ALA was applied for 
dimensionless ellipse and disk packings and the results 
are reported in the next section. 

#�$�������
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Most of the works dealing with ellipse packing consider 
the case when ellipse orientation (ellipsoids in 3D case) is 
not conserved during the filling process. According to 
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[20], when particles are allowed to rotate, the ellipse 

Figure 8. Ellipse packing density as a function of aspect ratio 
with imposed uniform A distribution law and uniform (shown in 
red) and normal (shown in blue) α distributions. 
 
packing density increases when the ellipticity increases  
until reaching a maximum value and then drops below 
the density of disk packing. Higher densities compared to 
the packing of disks can then be obtained but without 
respecting data concerning α. When no rotation is 
allowed, it was also shown that the packing density 
decreases as the ellipticity increases.  
 

In this 2D work, we focus on the problem of ellipse 
packing with spatial orientations conserved during the 
filling. A uniform ellipse area distribution law with 
normal and uniform α distributions on ]-π/2, π/2] range 
for the angle of orientation of the semi-major axis 
packing of ellipses have been used to generate packing by 
using the ALA. Depending on the aspect ratio, 4600 to 
5100 ellipses were generated (a high number of particles 
is used for better respecting the imposed distributions). 
Evolution of the packing density as a function of aspect 
ratio is described in Fig.8. These results are in agreement 
with [20]: density decreases with increasing aspect ratio. 
The obtained values are lower in the case of the uniform 
α distribution than the ones with normal α distribution. 
One may conclude that for a material with a preferential 
direction of ellipses elongation, packing with higher 
densities can be generated.  

Two examples of ellipse packing with imposed 
uniform A and α distributions are shown in Fig.9 and 
Fig.10 for the aspect ratios λ = 1.5 and λ = 4, respectively. 
One can see that there is no preferential direction in the 
orientation of the ellipses. More voids are observed in the 
case of higher ratio which is clearly indicated by the 
obtained packing densities: 0.7284 in the case of λ = 4 
and 0.8133 for λ = 1.5.  

Finally, to demonstrate the performance of the ALA, 
it was tested for a more complex case when a bimodal 
distribution is imposed for all three parameters, A, λ and 
α. The size of the considered domain is 30×30. A varies 
from 0.0001 up to 0.181 with two modes of 0.0386 and 
0.1271. λ is in the range of 1.5 to 4.4375 with two modes 
of 2.125 and 3.5625. Finally, α varies from -π/2 to π/2 
with two modes of -0.287π and 0.2π. The generated 
packing of 10696 ellipses with a density of 0.7979 is 
shown in Fig.11. 

 
Figure 9. 5081 ellipses with uniform A and α distributions and  
λ = 1.5, the packing density is 0.8133. 

Figure 10. 4596 ellipses with uniform A and α distributions and 
λ = 4. The packing density is 0.7284. 

Figure 11. 10696 ellipses with imposed bimodal A, α and λ 
distributions. The density is 0.7979. 
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Figure 12. Packing of disks with log-normal type size 
distribution by ODRM (5139 disks, density is 0.8083, CPU time 
is 1 s). 
 

Figure 13. Packing of disks with log-normal type size 
distribution by ALA (5220 disks, density is 0.8493, CPU time is 
1.9  s). 
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To demonstrate the efficiency of the ALA for disk 
packing it was compared with the ODRM [9]. The 
packings of disks by ODR and ALA were generated with 
an imposed log-normal radius distribution. The 
distribution width was fixed to Rmax/Rmin = 48, where Rmax 
and Rmin are, respectively, the maximal and the minimal 
disk radius. To define the top layer in the ALA, the 
parameter hTL was chosen to be equal to 1.1. The 
computation results are presented in Fig.12 and Fig.13. 
One can see that the ALA allows to place disks in the 
domain more homogeneously with higher densities 
compared to ODR. Packing densities obtained by ODR 
and ALA are 0.8083 and 0.8493, respectively. The CPU 
time needed for the ALA computation (1.9 s for the 
packing of 5220 disks) is about two times longer than the 

Figure 14. Comparison between the ALA and the ODR CPU 
times for different disk size distribution width. 
�

�
Figure 15. Dependence of the packing density provided by 
ALA on the disk size distribution width for packing about 
50000 disks with normal, log-normal and bimodal size 
distributions. 

�
Figure 16. Dependence of packing density obtained by ODR 
and ALA on the domain size for the imposed log-normal type 
distribution. 
 
time required for disk packing by ODR method (about 1 s 
for the packing of 5139 disks). The computation time for 
the ODR (tODR) and ALA (tALA) was compared for filling 
domains of different sizes (from 2000 to 110000 disks) 
with the same (log-normal type) size distribution. In all 
the cases, the time required for the AL method is about 
two times longer. However, the analysis shows that the 
ratio tALA/tODR decreases when the size polydispersity 
Rmax/Rmin decreases. This dependence is illustrated in 
Fig.14 (red curve). The ALA is about two times faster 
than ODR algorithm when the size polydispersity is equal 
to 4 and about two times slower when Rmax/Rmin = 50.  
This property is explained by the fact that, when the 
variability in disk size decreases, the number of particles 
tested in the top layer for placing a new one decreases 

    

    

 �
 

 

 
DOI: 10.1051/02004 (2016) matecconf/201MATEC Web of Conferences ,80 68002004

NUMIFORM  2016

6



 

 

  
Figure 17. Packing of 10221 disks (density: 0.8597) and 
corresponding cell structure (Laguerre-Voronoï tessellation) 
generated with imposed log-normal type size distribution. 

also (since less small particles are generated). The same  
analysis was performed for other types of distributions. 
The results are shown in Fig.14 as well. In contrast to the 
case of log-normal type A distribution, the ALA is faster 
than the ODR method for disk packing with imposed 
bimodal and normal A distribution laws.  

The results shown in Fig.14 were obtained for 
packings of about 50000 disks (the corresponding domain 
size is different for all the distributions and 
polydispersities), and a similar dependence of the CPU 
time on the polydispersity was found for packings of 
about 10000 disks for all three distributions. 
Packing densities obtained with the ALA for all the 
distributions (see Fig.15) and polydispersities were found 
to be higher than ones provided by the ODR algorithm. 
Fig.15 illustrates that in the case of the AL method the 
densities increase with increasing the polydispersity and 
can achieve very high values (0.88) whereas they are 
typically in the range of 0.8 and 0.81 for packings 
generated by the ODR method. In addition, the study of 
the packing density as a function of the domain size was 
conducted. Fig.16 illustrates the evolution of density as a 
function of the domain size for the imposed log-normal 
size distribution law. 

 
Figure 18. Packing of 4892 ellipses (density: 0.7737) and 
corresponding cell structure (Laguerre-Voronoï tessellation) 
generated with imposed aspect ratio λ = 3, uniform A and 
normal α distributions. 
 

Therefore, the proposed ALA is more effective and 
provides higher packing densities than the classical or 
Optimized Dropping and Rolling methods in the 
considered 2D context. 

(�%
������
���
The results reported in this paper demonstrate that the 
Advancing Layer Algorithm for packing of disks and 
ellipses provide high packing densities which are 
achieved thanks to the constructed Height list. The 
comparison with recently developed Optimized Dropping 
and Rolling method shows that the proposed packing 
algorithm has lower computational cost in 2D case for 
low and moderate variabilities in disks’ size. In addition, 
the generated packing has higher densities than the ones 
obtained by the ODR method.  

The dense packing of ellipses represented by multi-
circles was constructed for different imposed A, λ and α 
distributions. The analysis exhibits that ellipse packing 
densities are lower than the ones obtained for disks and 
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decrease as the ellipticity increases. Nevertheless, density 
of 0.8 for ellipse packing can be achieved and provides 
good agreement with imposed area, shape and orientation 
distribution. 

The packing method developed in the present work is 
based on the approximation of ellipses by a set of circles. 
Firstly, this facilitates the calculation of contact position 
and overlapping detection. Secondly, since the obtained 
packing is in fact a disk packing, the Laguerre-Voronoï 
Tessellation Method can be easily applied for generating 
polygonal structures [9]. Indeed, the high packing 
densities achieved thanks to the Height list used in the 
ALA provide good accuracy in respecting the desired 
inertia matrix distributions imposed for generating 
statistically equivalent cell structures (see Fig. 17-18). 

The extension of ALA to 3D packing and polygonal 
structure generation is also currently developed. In this 
case, triplets of ellipsoids (instead of pairs of ellipses in 
2D) are tested for placing each new particle. Some 
additional optimization techniques need to be 
implemented to improve the efficiency of the algorithm 
and to enable parallel processing. 
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