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ABSTRACT

In the present study, mean field models of grain growth (Hillert and Burke–
Turnbull models) are compared with 3D full field simulations considering an
isotropic grain boundary energy and mobility and under the absence of second-
phase particles. The present 3D full field simulations are based on a level set
description of the grain interfaces within a finite element framework. The digital
initial microstructures are generated using a coupled ‘‘Voronoı̈–Laguerre/dense
sphere packing’’ algorithm. Based on full field simulation results, new formu-
lations of Burke–Turnbull and Hillert models are proposed. In contrast with
classical formulations, the new ones account for the possible heterogeneity of
the initial grain size distribution.

Introduction

Metallurgists have long observed that the macro-
scopic properties of the material, such as ductility,
strength, thermal conductivity, and hardness are
strongly related to the microstructure, and especially
to the mean grain size Rh i. Thus, understanding the
phenomenon of grain growth (GG) occurring after
recrystallization is crucial for the optimization of the
microstructure and the final in-use properties of the
material.

Single-phase fully dense polycrystals can generally
be described by a log-normal grain size distribution
(GSD) [1–3], defined by hRi and a standard deviation
(r). The standard deviation is related to the width of
the grain radius dispersion around hRi. During grain
growth mechanism, grain boundaries migrate under

capillarity effects which results in an increase of hRi
and r. A previous study has highlighted that the
heterogeneity in terms of GSD in the microstructure
at the early stages of grain growth may have a first-
order influence on the overall kinetics [4], but this
work was only based on 2D considerations.

Macroscopic models, also called mean field (MF)
models, are widely used to describe the grain growth
kinetics, mainly due to their low computational cost.
These models are based on empirical or semi-em-
pirical laws and require experimental investigations
to calibrate fitting parameters. Furthermore, given
that these models are most of the time based on
average fields (mean radius and mean curvature),
they are not adapted for capturing heterogeneous
phenomena such as abnormal grain growth.
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Thanks to the increase in computer performances,
finer approaches called full field (FF) models have
emerged in the last decades. These approaches con-
sider a complete description of the microstructure
topology at the polycrystal scale. A review of the
most significant numerical methods is given in [5].
Probabilistic voxel-based approaches such as Monte
Carlo [6–8] and cellular automata [9] are very popular.
Another approaches found in the literature is the
phase-field [10] method, which offers the advantage of
avoiding the difficult problem of tracking the inter-
faces. Finally, grain growth can also be modeled
using a level set description of the interfaces within a
finite element framework [11–14], which is the full
field method used in this work.

In this study, we propose to quantify the influence
of the initial GSD in the context of 3D grain growth.
More specifically, the predictions of the Hillert [15]
and Burke–Turnbull (B&T) [16] grain growth models
are confronted with full field numerical simulations
at the scale of a representative elementary volume
(REV) and under the assumptions of isotropic grain
boundary energy and mobility, constant temperature,
and no precipitates. The digital initial microstruc-
tures are generated using a coupled ‘‘Voronoı̈–La-
guerre/dense sphere packing’’ algorithm [17, 18].

Full field modeling of grain growth

Material parameters and numerical tools

A 5-h heat treatment at a constant temperature of
1050 !C for the austenitic 304L steel is simulated.
Isotropic values are considered for the grain bound-
ary mobility (M) and energy (c). More precisely the

product Mc is fixed to 8.28 " 10#7 Jmm#2, which is

representative of a 304L stainless steel at 1050 !C
[4, 19]. The material is assumed to be free of second-
phase particles (no Zener pinning effect).

The numerical simulations are performed on a
cubic REV whose edge length varies from 2.00 to 2.85
mm. Each simulation was performed on 60 Intel Xeon

CPUs. An unstructured mesh composed of 2923

tetrahedral elements is used.
Eight different initial GSDs are considered to gen-

erate eight initial digital polycrystals. Each of them is
defined by an initial mean grain radius hR0i and
standard deviation r0. Their characteristics are sum-
marized in Table 1 (line 1–4). The distributions LNi

with i 2 1; . . .; 7f g follow a log-normal distribution.
The last one, referred to as BiM, is bimodal with
modes k1 ¼ 50 lm and k2 ¼ 100 lm. The initial num-
ber of grains in the REV is close to 8000, while at least
1200 grains remain at the end of the heat treatment
(see Table 1). The REV dimensions, the time step and
the mesh size are chosen so as to justify a good
convergence of results in terms of grain boundary
kinetics [13, 20].

Full field simulation results

A histogram representing the instantaneous GSD is
generated every minute of the heat treatment simu-
lation. Each histogram is composed of 30 equally
spaced intervals delimited by 0 and 300 lm. Next, the
term distribution curve is introduced to denote a linear
approximation of a GSD histogram. The objective of
these distribution curves is to simplify the represen-
tation of the GSDs for future comparisons. Figure 1
provides a schematic illustration of the distribution
curve obtained by piecewise linear approximation of
a histogram.

Table 1 Characteristics of the
initial (lines 1–4) and final
(lines 5–8) GSDs predicted by
the full field simulations

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM

Initial state (t ¼ 0 h)
hR0i (lm) 62.0 66.0 74.3 75.3 82.2 89.4 99.0 75.2
r0 (lm) 6.90 11.8 19.4 7.50 25.9 30.9 17.7 25.5
ln(r0/hR 0i) -2.20 -1.71 -1.35 -2.30 -1.14 -1.05 -1.71 -1.08
No. grains 7920 7576 7474 8100 7460 7636 7588 7472
Final state (t = 5 h)
hRfi (lm) 109 120 135 111 151 160 138 115
rf (lm) 39.0 45.0 53.2 39.8 59.9 66.3 50.7 36.0
ln(rf/hRfi) -1.03 -0.98 -0.93 -1.03 -0.92 -0.88 -1.00 -1.16
No. grains 1483 1278 1244 2552 1221 1341 2803 2092
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Figure 2 shows all the distribution curves predicted
by the full field simulations for every initial GSDs at
the early (solid curves) and final (dashed curves)
stages of the simulation. These will be confronted
with the Hillert model predictions in the next section.

Table 1 (line 5–8) presents the characteristics of the
final GSDs predicted by the full field simulations. The
ratio ln(rf=hRfi) is observed to tend toward the value
#1:00 after 5 h of treatment for every initial GSD.
Figure 3 illustrates several REVs of full field simula-
tions at the beginning and at the end of the heat
treatment, for the LN1 and BiM initial GSDs. Among
the REVs representing the log-normal GSDs, only the
REV obtained for the LN1 initial GSD is depicted
since this latter is representative of all the log-normal
initial GSDs. A preponderant blue color is observed
at the beginning of the heat treatment for the LN1

initial GSD, meaning that r0 is small for this distri-
bution and most grains have sizes close to hR0i. In the
BiM initial GSD, two preponderant blue and green
colors are observed in the REV at the beginning of the
heat treatment. These two colors depict the two
modes of the bimodal distribution, centered on grain
size values of 50 and 100 lm.

Confrontations of full field simulation
results with Hillert model

Hillert model

In 1965, Hillert proposed a mean field model [15] for
normal grain growth. This model has already been

discussed in many studies. Several authors, as in
[21–24], recently confronted the predictions of this
model with full field simulation results. Hillert model
is considered to be more accurate than other grain
growth models such as the one of B&T [16], since it is
based on a discrete representation of the
microstructure. This discrete microstructure is com-
posed of N classes of spherical grains having a radius
Ri (i 2 1; . . .;Nf g). Each class of grains evolves
according to the following equation:

_Ri ¼ bMc
1

Rcr
# 1

Ri

! "
; ð1Þ

where _Ri is the time derivative of Ri and Rcr is a
critical grain radius. By applying the volume con-

servation in 3D, it can be demonstrated that Rcr ¼
hR2i=hRi [22, 24, 25]. For each initial GSD, the number
of classes in the Hillert model has been taken equal to
the number of grains in the REV of the corresponding
full field simulation (see Table 1). The parameter b is
a geometrical dimensionless constant which refers to
the inherent approximations concerning the assumed
idealized geometry in the Hillert model representa-
tion. In 3D, b is assumed to be close to unity [15].
Other authors have nevertheless reported values
above unity, such as b ’ 1:25 [21] and b ’ 1:1 [23]. In
[22], the authors recently discussed a linear relation-
ship valid in 3D between the parameter b and the

index hRi2=hR2i which aims to account for the geo-
metrical relations between the neighborhood grains
for any given initial distribution.

Hereafter, the notation Hi(b) designates Eq. 1. So
Hi(1) corresponds to the classical Hillert formulation
[15]. As it employs several grain classes, this model
has the advantage of being able to predict the GSD
evolution in addition to the hRi evolution. Previous
works have shown the ability of the classical Hillert
model to correctly capture the grain growth kinetics
in 2D for different initial GSDs [4]. In the same
manner as for full field simulations, a GSD histogram
is generated every minute of the Hillert simulation.
The distribution curves are then deduced from the
GSD histograms according to the method illustrated
in Fig. 1.

The notation L2Hi represents the instantaneous L2

relative error measured between the distribution
curves predicted by the Hillert and full field models.
This quantity is computed as follows:
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Figure 1 Distribution curve obtained by linear approximation of
a histogram.
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Figure 2 Initial (solid curves)
and final (dashed curves)
distribution curves predicted
by the full field simulations for
the different initial GSDs.
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L2HiðtÞ ¼ 100"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

Si # S0i
$ %2

XN

i¼1

ðS0iÞ
2

vuuuuuuut
; ð2Þ

where, as illustrated in Fig. 4, the distributions are
approximated by a linear interpolation and Si (resp.
Si’) denotes the area of the i-th obtained trapezoid
under the Hillert (resp. the full field) distribution

curve. Hereafter, the notation hL2Hii designates the

time average of the L2HiðtÞ errors for a given
simulation:

hL2Hii ¼
1

Nincr

X
L2HiðtÞ; ð3Þ

where Nincr is the number of time increments (equal
to 300 in this study, dt = 1 min).

Optimization of the Hillert model

The values of hL2Hii errors obtained with the Hi(1)
model are depicted by blue bars in Fig. 5. This error
remains globally constant around 20 % for all the
initial GSDs. These results confirm the versatility of
this model although a difference of 26 % is observed

0 62.5 125 187.5 250

LN1 t = 0h LN1 t = 5h

BiM t = 0h BiM t = 5h

Figure 3 Grain boundary
networks at initial and final
stages of the simulation for the
LN1 and BiM initial GSDs.
The color code corresponds to
the equivalent sphere radius of
each grain.
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for the LN4 and BiM initial GSDs. The distribution
curves predicted by the Hi(1) (blue curves) and the
FF model (red curves) are also compared at different

stages of the heat treatment in Fig. 7. The kinetic of
grain growth obtained with the Hillert model seems
to be slower than that obtained with the FF model.
This is observable in Fig. 7 at each instant of the
simulation by a time shift of the Hillert distribution
curves with respect to the full field distribution
curves.

As stated above, the value b ¼ 1 proposed by Hil-
lert relies on many assumptions. For example Hillert
considers that each shrinking grain has four imme-
diate neighbors just before disappearing. Further-
more, he considered that the b value is two times
larger in 3D than in 2D where b = 0.5 according to
Hillert [15]. Although these assumptions are judi-
cious and justified, we propose to recalibrate this
Hillert parameter based on the results of the full field
simulations. Thus, several Hillert calculations have
been performed by varying the b value from 0.5 to 2
by step of 0.01. We denote bopt the value of b in Eq. 1

that minimizes hL2Hii error for each initial GSD. The
values of bopt are provided in Table 2. Red bars in

Fig. 5 show the residual hL2Hii error obtained with
bopt. These residual errors have approximately been
reduced by half compared to the classical value of b
equal to 1. Furthermore, the values of bopt are dis-
tributed around a mean value of 1.40 noted bfit (see
green dots in Fig. 6).

To validate the calibrated value of b = 1.40, the
distribution curves predicted by the Hi(1.40) (green
curves) and the full field models (red curves) are
compared at different stages of the heat treatment in
Fig. 7. It is worth noting that Hi(1.40) model provides
non-negligible improvements for the prediction of
the GSDs compared to the initial Hi(1) model.
Indeed, the time shift observed in Fig. 7 between full
field and Hi(1) distribution curves has been now
rectified since this new value of b = 1.4 is larger than
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distribution curve.
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Figure 5 Comparison in terms of hL2i error on the distribution
curves predicted by the full field and Hillert models (see Eq. 2 for
details).

Table 2 Line 1–2 Optimized Hillert model parameter bopt calculated by inverse analysis from the full field simulation results (see Eq. 1)

and fitted Hillert model parameter bfit obtained by averaging the values of bopt

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM

bopt 1.32 1.32 1.28 1.43 1.41 1.39 1.52 1.53

bfit 1.40
j0 1.35 1.36 1.38 1.43 1.57 1.58 1.57 1.72
jopt 1.48 1.47 1.53 1.53 1.67 1.63 1.69 1.7

jfit 1.59

Line 3 Values of j0 defined as the ratio between bopt and the initial index hRi2=hR2i at time = 0 s of every simulation. Line 4–5 Optimized

j values (jopt) calculated by inverse analysis from the full field simulation results (see Eq. 5) and fitted j value (jfit) obtained by averaging
the values of jopt
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the old one and thus logically increases the kinetic of
grain growth. In a general way, the shapes of the
GSDs are also in good agreement with the observa-
tions detailed in [21]. GSDs are observed to be ini-
tially sharp and then become larger and larger during
the heat treatment. After 2.5 h of treatment in the BiM
initial case, one single peak is observed on the dis-
tribution curve, which means that the two modes
merge in the first hours of the heat treatment.

In order to investigate further the theory of [22], we
define j0 as

j0 ¼
bopt

hRi2=hR2iðt¼0Þ
; ð4Þ

where the index hRi2=hR2i is taken at the instant t = 0
s of the treatment. This choice has been done since
this value does not significantly evolve during a
simulation. The different values of j0 computed for
every initial GSDs are provided in Line 3 of Table 2.
These ratios are not constant between each initial
GSDs, meaning that there is not a direct relation

between b and the index hRi2=hR2iðt¼0Þ for our cases.

However this index, which considers the geometrical
characteristics of neighboring grains, could be useful
to enrich the classical Hillert model (see Eq. 1).

Thus by replacing the b parameter in Eq. 1 by the
product of an assumed constant parameter noted j

times the ratio hRi2=hR2i, we can consider the fol-
lowing Hillert model derived from the Darvishi
Kamachali theory [22]:

_Ri ¼ j
hRi2

hR2i
Mc

1

Rcr
# 1

Ri

! "
; ð5Þ

where j is a constant parameter. We performed
several Hillert calculations using this new formula-
tion (see Eq. 5) and by varying the j value from 1 to 2
with a step of 0.01. We denote by jopt the value of j
that minimizes hL2Hii for each initial GSD. The jopt
values are presented in Line 4 of Table 2. Gray bars in

Fig. 5 show the residual hL2Hii error obtained with jopt.
These residual errors are slightly little smaller than
those obtained with bopt. However, this difference is

not significant enough to affirm that the model given
by Eq. 5 gives better predictions than Hi(1.4) model.
Furthermore, the jopt values are distributed around a

mean value of 1.59 noted jfit (see red dots in Fig.6)

resulting also in a low hL2Hii error close to that
obtained with the Hi(bfit) model (see purple bars in
Fig. 5). These similar errors are logically due to the
fact that the Hi(1.4) (Eq. 1) and the new Hillert for-
mulation (Eq. 5) give very close predictions since the

index hRi2=hR2i does not change much during all our
simulations. Finally, the distributions curves
obtained according to the new Hillert formulation all
overlay with those obtained according to the Hi(1.4)
model.

Confrontations of full field simulation
results with B&T model

B&T model

For materials with a single-mode and uniform grain
size, describing the evolution of hRi could be suffi-
cient as this quantity determines the global mechan-
ical behavior of the material. Especially, the Hall–
Petch relationship states that the Yield stress of
metallic materials can be expressed as a function of

hRi#0:5 [26]. Furthermore in such cases, the initial
GSD can be unknown and consequently the Hillert
model can hardly be used. Thus, other mean field
models can be used as a good alternative to describe
the grain growth kinetics. In 1952, Burke and Turn-
bull (B&T) investigated the physical mechanisms of
grain growth. They particularly assumed that grain
boundaries migrate by atom transport toward their
center of curvature, under a force due to their curved
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Figure 7 Distribution curves
predicted by the full field,
Hi(1), and Hi(1.40) models for
the different initial GSDs.
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shape. These findings gave rise to the B&T model
[16], which predicts a parabolic evolution of hRi as a
function of the time t:

hRi2 # hR0i2 ¼ dMct; ð6Þ

where d ¼ 0:5 according to [16, 21]. This analytic
mean field model has the advantage of being extre-
mely simple to use since it requires only a value for
the product (Mc) and for the initial mean grain size
hR0i.

The predictions of the B&T model will be con-
fronted with the full field simulation results, using

the following relative L2 error:

L2B&Tð%Þ ¼ 100"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X5 h

t¼0

hRiFFðtÞ # hRiB&TðtÞ
$ %2

X5 h

t¼0

hRi2FFðtÞ

vuuuuuuut
; ð7Þ

where hRiB&T and hRiFF represent, respectively, the
instantaneous values of hRi in the B&T and full field
models.

New formulation of the B&T model

The resulting L2B&T measured between the classical

B&T model predictions (Eq. 6) and the full field
simulation results are illustrated by blue bars in

Fig. 8. It is worth noting that these L2B&T are smaller

than the hL2Hii calculated in the previous section. In-

deed, L2B&T relies on a single quantity which is the

mean grain size of the material. On the other hand,

hL2Hii reflects the difference of shape between the two

distribution curves. Results show that L2B&T is globally

high for any initial case. Furthermore, L2B&T error

globally increases when the ratio r0=hR0i decreases.
This finding is actually quite logical and can be easily
explained. Indeed in the case of small r0=hR0i ratios,
the grain boundary kinetic slows down at the early
stages of the treatment because most grains have a
initial radius close to hRi. Consequently, the increase
of hRi takes longer to initiate and a plateau or even a
decrease could be observed at the beginning of the
thermal treatment. These typical evolutions occurring
during the transient regime are not straightforward
to capture with the classical B&T model. Further-
more, given that the transient regime can last few
hours in some initial configurations, it cannot be
neglected by the models. These results confirm the
interest of improving the classical B&T model. Recent
numerical investigations in 2D have also pointed out
that B&T model is not accurate for every r0=hR0i
initial ratios [4].

In order to make the classical B&T formulation
more accurate, the first objective is to determine
whether there exist for each initial GSD, other d val-
ues, noted dopt, that correctly describe the grain

growth kinetics. These dopt values are obtained by

minimizing the L2B&T for each initial GSD. The

resulting fitting curves obtained by combining Eq. 6
and the dopt are depicted in Fig. 9 (dashed curves) for

the LN4 and LN6 initial GSDs, which present the
smallest and highest r0=hR0i ratios, respectively. It is
observed that changing the values of d does not
correct the description of the transient regime. In
particular for small r0=hR0i ratios, a model such as
B&T model cannot be accurate enough to describe
these particular mean grain size evolutions.

In order to also check the consistency of this law in

the steady-state regime, the curves log(hRi2 # hR0i2)=
f(log(t)) have been plotted in Fig. 10 according to full
field results. A linear approximation of these curves is
also added. We observed that the slopes of the linear
approximations are quiet different for every initial GSD
as already observed in the work of [4], which means
that the classical B&T formulation cannot be sufficient
to describe the kinetic of grain growth for every initial
GSD.

Based on the previous observations, a new for-
mulation of the B&T model has been proposed in [4]
including a new fitting exponent n aiming to take into
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Figure 8 Comparison in terms of L2 error on the hRi values
predicted by the full field simulations and the different B&T
formulations (see Eqs. 6 and 8 for more details).
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account the different slopes observed in Fig. 10 and
the transient regimes observed in Fig. 9:

hRi2 # hR0i2 ¼ aMctn; ð8Þ

where a is considered as a fitting parameter
depending, in the same manner as the exponent n, on
the initial GSD characteristics. Thus, the validity of
the classical B&T model (see Eq. (6)) can be easily
verified if the slope n is equal to 1 and the fitted
parameter a is equal to 0.5.

Inverse analyses were performed in order to obtain

optimal values of aopt and nopt which minimize L2B&T.

These values (see Table 3) are plotted in Fig. 11 and

the corresponding L2B&T are illustrated by red bars in

Fig. 8. Interestingly, the results of Table 3 and Fig.8
show that there exists, for each initial distribution, a
set of parameters (aopt;nopt) which predicts very

accurately the evolution of hRi, with L2B&T\5%. Fur-

thermore, the LN6 initial GSD presents the couple of
parameters (aopt;nopt) that is closest to the B&T clas-

sical parameters (a = 0.5; n ¼ 1). This distribution has
the largest ratio (r0=hR0i ’ 0.35) of this study. It is
worth noting that increase the ratio r0=hR0i should
lead to a new couple of parameters (aopt;nopt) even

closer to the B&T parameters. In [4], the authors
found in 2D a couple parameters (aopt;nopt) close to

B&T parameters for initial GSDs having a ratio
r0=hR0i ’ 0.45..

The predictions of hRi obtained by combining Eq. 8
with the set of parameters (aopt;nopt) have been plotted

in Fig. 9 (dotted curves) for the LN4 and LN6 initial
GSDs. It is clearly observed that the resulting curves
obtained with Eq. 8 (dotted curves) are closer to full
field predictions than resulting curves obtained with
Eq. 6 (dashed curves). However, the transient regime
characterized by a decrease in hRi during the first
hour of treatment is not well described yet.

It is worth noting that the aopt and the nopt values
increase and decrease, respectively, with the r0=hR0i
ratio (see Table 3). This trend has already been
observed in the study proposed in [4]. These
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Figure 9 Evolution of hRi=hR0i during the heat treatment. Solid
curves correspond to the full field results, dashed curves represent
the B&T predictions obtained by combining Eq. 6 and dopt; and
dotted curves represent the B&T predictions obtained by combin-
ing Eq. 8 and the couple (aopt; nopt).
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observations confirm that the ratio r0=hR0i is relevant
for describing the evolution of a and n. Furthermore,
the sets of parameters (aopt;nopt) are observed to be

quasi-identical for the two LN2 and LN7 initial GSDs
which present the same r0=hR0i ratio. By plotting the
parameters ln(aopt) and nopt as a function of the ratio

ln(r0=hR0i) in Fig. 11, two linear relationships can be
deduced for the n and a model parameters:

lnðafitÞ ¼ 8:53 ln
r0
hR0i

! "
þ 7:11

nfit ¼ #0:78 ln
r0
hR0i

! "
þ 0:34;

ð9Þ

where these two constant parameters are quiet dif-
ferent from those obtained in [4] probably due to the
fact that this study is investigated in 3D. Combining
Eq. 8 and Eq. 9 results in the following improved
B&T formulation:

hRi2# hR0i2¼1224:15
r0
hR0i

! "8:53

"Mct
#0:78ln

r0
hR0i

! "
þ0:34

:

ð10Þ

Although the set (lnðaÞ ¼ 3:56; n ¼ 0:56) obtained for
the BiM initial GSD predicts well the evolution of hRi,
it does not follow the trends obtained for the log-
normal initial GSDs (see Fig. 11). So the formulation
of the B&T model given by Eq. 10 is only accurate for

log-normal initial GSDs. By using Eq. 10, small L2B&T

are obtained (see beige bars in Fig. 8b). An interesting
prospect of this study will be to perform the same
analysis for different bimodal distributions.

Conclusion

The present study is devoted to the modeling of ideal
grain growth phenomenon. More specifically, the
Hillert and B&T grain growth models have been
confronted with large full field simulations at the
polycrystal scale. These full field simulations are

based on a level set method working within a finite
element framework. Eight initial GSDs have been
considered for the comparisons.

The Hillert model is shown to be versatile since it
considers the initial GSD of the microstructure.
However, this model relies on a first-order parameter
b which needs to be finely calibrated. Numerical full
field investigations have highlighted a new value for
b, which is globally constant around 1.4 for all initial
distributions. We have finally demonstrated that the
calibrated Hillert model predicts finely hRi and the
evolution of the distribution curves, even for the BiM
distribution.

The classical B&T model does not take into account
the initial GSD, which makes it inaccurate in many
cases. Based on full field simulation results, a new
B&T formulation given in Eq. 10 has been proposed.
This new formulation has been proven to be able to
predict accurately the evolution of hRi for any log-
normal initial GSD, regardless of r0 and hR0i. On the
other hand, this new model is not universal and
needs to be improved in order to consider other kinds
of initial GSDs, like bimodal distributions.

Future work will be dedicated to (I) discuss the
variability of the full field results obtained in com-
parison with the MacPherson–Srolovitz equation [27],
(II) perform additional simulations considering ani-
sotropic grain boundary energy and/or mobility, (III)
complete the development of a full field model
devoted to dynamic recrystallization, (IV) perform
the same kind of analysis in the context of the static
and dynamic recrystallization phenomena, and
(V) perform experimental measurements to be com-
pared with the newly proposed mean field
formulations.
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Table 3 Line 1–2 Optimized
B&T model parameters aopt
and nopt obtained by inverse

analysis from the full field
simulation results (see Eq. 6) ;
(line 3-4) Fitted mean field
model parameters afit and nfit
obtained by using the new
formulations of Eq. 9

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM

aopt 6.20e–6 6.00e–4 1.66e–2 4.50e–6 7.45e–2 1.22e–1 6.18e–4 35.0

nopt 2.13 1.69 1.37 2.11 1.24 1.20 1.64 0.56

afit 8.67e–6 5.67e–4 1.22e–2 3.69e–6 7.32e–2 1.58e–1 5.66e–4 1.22e–1
nfit 2.06 1.67 1.39 2.13 1.23 1.16 1.67 1.18
lnðr0=hR0iÞ –2.20 –1.71 –1.35 –2.30 –1.14 –1.05 –1.71 –1.08

Line 5 Ratio of the initial GSD characteristics
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