

Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale

Modesar SHAKOOR

Advisors: Pierre-Olivier BOUCHARD Marc BERNACKI

Context

O Damage and failure prediction - arbitrary loading conditions

Influence of the microstructure

O Cold rolled bainitic steel

P.-O. Bouchard, L. Bourgeon, H. Lachapele, E. Maire, C. Verdu, R. Forestier, R. E. Logér Onsthe influence of particles distribution and reverse loading on damage mechanisms of ductile steel alloys, *Water. Sci. Engng. A*, 496: 223–233, 2008

Ductile damage at the microscale

DISPLACEMENT

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method
- 3. Void nucleation and growth
 - Micromechanical models
 - Fracture criteria
 - RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method
- 3. Void nucleation and growth
 - Micromechanical models
 - Fracture criteria
 - RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

Damage models

- Empirical damage indicators and fracture criteria
 - Latham & Cockcroft 1968
 - Bao & Wierzbicki 2004
- Continuum damage models
 - Kachanov 1958
 - Lemaitre and Chaboche 1978
- Micromechanics-based damage indicators
 - McClintock 1968
 - Rice & Tracey 1969
- Porous plasticity
 - Gurson 1975
 - Tvergaard and Needleman 1984
 - Gologanu, Leblond and Devaux 1993
 - Tekoglu, Leblond and Pardoen 2012

Micromechanics

Micromechanics: analytical approaches

Reality

[T.F. Morgeneyer]

- Random arrangements of particles & voids
- Random sizes and shapes
- Void nucleation, growth & coalescence
- Complex & non proportional loading paths
- Heterogeneous plasticity and damage in the matrix

Gurson model

- Single void
- Spherical shape
- Only void growth
- Proportional loading, no shear
- Von mises plasticity in the matrix, no damage

Micromechanics: numerical approaches

Unit cell approaches

- Periodic arrays of voids or particles
- Ellipsoidal shape
- Void growth & coalescence
- Complex and non proportional loading
- Von mises or porous plasticity in the matrix

Micromechanics: numerical approaches

Objectives of the present work

Microstructures of arbitrary size and shape

Particle debonding Particle fragmentation

Matrix micro-cracking Large deformations Complex topological events

Model all micromechanisms simultaneously More realistic simulations Comparisons with experiments Need for an advanced numerical framework

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method
- 3. Void nucleation and growth
 - Micromechanical models
 - Fracture criteria
 - RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

O Literature review

O Literature review

O Literature review: previous work at CEMEF

Level-Set method

$$\forall x \in \Omega, \phi_i(x) = \begin{cases} d(x, \partial \Omega_i), x \in \Omega_i \\ -d(x, \partial \Omega_i), x \notin \Omega_i \end{cases}$$

[S. Osher and J.A. Sethian, JCP, 1988]

Implicit interface

- Interface modeling more difficult
- Remeshing easier
- Topological events easily handled
- Volume loss

Crack modeling techniques

• Region deletion

E. Roux, M. Shakoor, M. Bernacki, P.-O. Bouchard. A new finite element approach for modelling ductile damage void nucleation and ¹⁶ growth – analysis of loading path effect on damage mechanisms. *Engineering Fracture Mechanics*, 22:075001, 2014

O Literature review: previous work at CEMEF

Void growth

Implicit interface

- Interface modeling more difficult
- Remeshing easier
- Topological events easily handled
- Volume loss

Crack modeling techniques

• Region deletion

O New developments: body-fitted remeshing

Explicit interface

- Interface modeling easier
- New remesher
- Topological events handled
- Volume conservation

Void growth

O New developments: geometric error based remeshing

M. Shakoor, M. Bernacki, P.-O. Bouchard. A new body-fitted immersed volume method for the modeling of ductile fracture at the ¹⁹ microscale: Analysis of void clusters and stress state effects on coalescence. *Engineering Fracture Mechanics*, 147, 398-417, 2015

New developments: level-set reinitialization \bigcirc

Local mesh Level-Set Geometric refinement functions error

Need to keep distance property

Previous work: indirect methods

New development: direct method

۲

- Space ٠ partitioning algorithm
- Robust ۲
- Negligible cost •

O Illustration of numerical capabilities

- Level-set method + explicit interfaces
- Geometric error based mesh refinement + level-set reinitialization
- Remeshing for large deformations & topological events

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method

3. Void nucleation and growth

- Micromechanical models
- Fracture criteria
- RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

Micromechanical models

 Matrix = linear isotropic elasticity + von Mises plasticity with isotropic hardening

- Particles = linear isotropic elasticity
- Particles fragmentation criterion = maximum principal stress σ₁
- Particles debonding criterion = normal stress σ_n

Fracture criteria

- Level-set functions to define crack geometry
- Dynamic meshing of new interfaces

Unit cell simulations

- Single particle RVE, particle density ~ 20%
- Particle harder than matrix

Multi-voids or multi-particles RVEs

[Lecarme et al., IJP, 2011]

Voids instead of particles

[D. Lassance et al., EFM, 2006]

Pre-fragmented particles

Importance of void nucleation modeling

O Influence on micromechanisms

Voids instead of particles

Pre-fragmented particles

Fragmentation criterion

Importance of void nucleation modeling

O Influence on macroscopic quantities of interest

- Strength underestimated for small plastic strain
- Ductility overestimated for large plastic strains

Importance of void nucleation modeling

O RVE size 165 µm, 33 voids, vertical tension, macroscopic stress triaxiality ratio 0.33

MINES ParisTech

CINIS

Cemef

Conclusions on unit cell calculations

- Unit cell simulations accounting for
 - Large microstructures
 - Random sizes
 - Random arrangements
- Simulations revealed
 - Influence of particles on void growth
 - Influence of void nucleation on void coalescence
- Comparison with experiments require
 - Meshing real microstructures
 - Realistic boundary conditions
 - Local error measurements

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method
- 3. Void nucleation and growth
 - Micromechanical models
 - Fracture criteria
 - RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

Validation of simulations

O Standard approach

Validation of simulations

THOUSE PROJECT COMINSIDE ANR FUNDED BY

Proposed approach \bigcirc

- Real microstructure meshed
- Measured boundary conditions ٠
- Local error measurements • between simulations and experiments

A. Buljac, M. Shakoor, J. Neggers, M. Bernacki, P.-O. Bouchard, L. Helfen, T. F. Morgeneyer, F. Hild. Numerical Validation Framework for ³³ Micromechanical Simulations based on Synchrotron 3D Imaging, Computational Mechanics, Submitted, 2016

DVC-measured boundary conditions

Validation of simulations based on 3D imaging

M. Shakoor, A. Buljac, J. Neggers, F. Hild, T. F. Morgeneyer, L. Helfen, M. Bernacki, P.-O. Bouchard. On the choice of boundary conditions for micromechanical simulations based on synchrotron 3D imaging, *IJSS*, Submitted, 2016

Validation of simulations based on 3D imaging

2,45%

Validation of simulations based on 3D imaging

13,99%

Outline

- 1. Literature review
 - Damage models
 - Micromechanics
- 2. Numerical framework
 - Level-Set method
 - Mesh adaptation method
- 3. Void nucleation and growth
 - Micromechanical models
 - Fracture criteria
 - RVE simulations
- 4. Void growth and coalescence
 - Meshing real microstructures
 - Applying measured boundary conditions
- 5. Conclusions and outlook

Conclusions

O Numerical methods

O Ductile fracture applications

- Random particle size and arrangement
- Void nucleation modeling
- Large plastic strains, void growth & coalescence
- Real microstructures
- DVC-measured boundary conditions

O Prospects

- Identification of material parameters
- Constitutive models for matrix and particles

O Prospects: PhD of Victor Navas (2015-2018)

- Non local GTN damage model in the matrix
- Influence of non-monotonic loading paths

O Prospects: work of Daniel Pino Muñoz

- Dynamically inserted cohesive zone elements
- Particle debonding & fragmentation
- To be coupled to present developments and tested in 3D

Matrix micro-cracking

- Model the damage-to-fracture transition with matrix micro-cracking criteria
- Present developments to be extended to 3D and validated against experiments

Contact mechanics

- Handling contact events between crack lips
- New and very promising contact detection algorithm
- Contact formulation to be improved

Other materials

 Fiber-reinforced polymer composites (work of Ivan Coppo -2016)

• Polycrystals

B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, M. Bernacki. New finite element developments for the full field modeling of microstructural evolutions. *Computational Materials Science*, 109, 388-398, 2015

Ductile fracture

O Aluminum 2XXX alloy

[T.F. Morgeneyer et al., Scripta Materialia, 2011]

Remeshing algorithm

Complex topological events

Particle debonding and fragmentation

- Filter level-set function to select elements affected by crack
- Crack lips level-set functions to introduce free surfaces
- Modifies level-set functions associated to the matrix, voids and particles

Boundary conditions for RVE simulations

- Periodic boundary conditions
- Axisymmetric loading
- Imposed macroscopic strain and stress triaxiality ratio
- Macroscopic = averaged on the Representative Volume Element (RVE)

 $a_n \circ a_n \circ a_n \circ a_n \circ a_n \circ a_n \circ a_n$ a^{0} oo a_{0} a^{0} oo a_{0} a^{0} oo a_{0} mean macroscopic macroscopic stress stress triaxiality ratio $O_D \circ O_D \circ O_D \circ O_D \circ O_D$ 00 00 macroscopic von Mises equivalent stress a^{0} oo a_{0} a^{0} oo a_{0} a^{0} oo a_{0}

Laminography

Meshing arbitrary geometries

Trilinear interpolation from image to mesh and regularization

[Stanford Bunny]

.