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Abstract The fragmentation of α lamellae and the sub-
sequent spheroidization of α laths, in α/β titanium al-
loys, are well known phenomena, occurring during and
after deformation. We will illustrate the development of
a new finite element methodology to model these phe-
nomena. This new methodology is based on a level set
framework modeling the deformation and the ad hoc
concurrent or subsequent interfaces kinetics. In the cur-
rent paper, we will focus on the modeling of the surface
diffusion at the α/β phase interfaces and the motion by
mean curvature at the α/α grain interfaces.

Keywords spheroidization . grooving .α laths . surface
diffusion .α/β titanium alloys

Introduction

Two-phase α/β titanium alloys are materials with numerous
applications in different industrial domains, mostly due to
their attractive mechanical properties. They present high
strength, fatigue and corrosion resistance, low density and
good ductility [1].

Titanium alloys exhibit different microstructures depend-
ing on the applied thermomechanical path. Spheroidization is
a phenomenon observed at α/β titanium alloys with initial
stable microstructure of α lamellae inside β grains, during
deformation and subsequent thermal treatment. More precise-
ly, during this phenomenon, the fragmentation of α lamellae
and the subsequent spheroidization and coarsening of α laths
is observed [2].

Spheroidization has received considerable attention due to
its importance in microstructural control. The new
spheroidized microstructure shows enhanced strength and
ductility; so evidently, this phenomenon raises high interest
for the industrial applications [1, 2].

In this paper, we will illustrate a new finite element (FE)
methodology in order to model these microstructural evolu-
tions. Our interest is focused on the predominant mechanisms
occurring during the first stages of the spheroidization at the
lamellae interfaces without considering the microstructure de-
formation modeling. The α/α grain interfaces are introduced
arbitrarily leading to surface diffusion at the α/β phase inter-
faces and motion by mean curvature at the α/α grain inter-
faces. For the purpose of modeling efficiently these interfacial
kinetics, a level set framework was introduced. If some studies
concerning the full field modeling of coarsening mechanism
exist [3], at the authors’ knowledge, the 2D or 3D full field
modeling of the first steps of laths spheroidization in α/β
titanium alloys is a poorly researched subject on the state of
the art.
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Some basic cases of surface diffusion will be detailed in order
to introduce the numerical methodology. A first case of immer-
sion of a real microstructure from experimental data will also be
considered. Finally, a simple case of lamellae splitting due to the
interaction of motion by surface diffusion at the α/β interface
and motion by mean curvature at theα/α sub-boundaries will be
described.

The physical mechanisms

According to Semiatin [2], several mechanisms are activated
simultaneously during thermomechanical process leading to
spheroidization. During deformation, it is observed that high
angle misorientations are formed inside the α lamellae.
Subsequently these misorientations lead to the formation of
grooves which imply the penetration of the β phase and lead to
the splitting of the α lamellae (see Fig. 1). After the splitting of
the α lamellae in smaller parts, a microstructure with α pancake
shape particles is obtained. In order to reduce the interfacial en-
ergy, the α particles tend towards a shape where the surface area
is minimized for a given volume i.e. a spherical one. Then,
coarsening (i.e. volume diffusion well known as Ostwald ripen-
ing [4]) can take place. To be more precise the spheroidization of
the microstructure is a consequent event of the four combined
following mechanisms:

& crystal plasticity during deformation which introduces the
α/α sub-boundaries inside the α lamellae,

& motion by surface diffusion at the α/β interfaces,
& motion by mean curvature at the α/α interfaces,
& coarsening.

Except the mechanism of crystal plasticity that it obviously
occurs during hot deformation, there is no clear distinction of
when each one of these mechanisms occurs. At this point it is
very important to specify that during spheroidization, we do not
have phase fractions evolution.

In the following, we will focus on the mechanisms which are
responsible for the splitting of the α lamellae. Grooving is

usually initiated by atomic scale processes near the region of
α/α grain boundaries and the α/β phases intersection.

These kinetics can be described by motion by surface dif-
fusion at α/β interfaces and motion by mean curvature at the
α/α sub-boundaries (Fig. 2).

These two competitive mechanisms, occurring simulta-
neously, lead to the lamellae splitting. After the splitting of
the α lamellae, surface diffusion at the α/β interfaces of the
laths becomes the dominant mechanism before the coarsening
by volume diffusion. Next section illustrates experimental da-
ta describing this sequence.

Experimental analysis

Some hot compression tests have been realized (TA-6 V alloy)
and are detailed below. We have worked with double coned
samples and three experiments have been performed (Fig. 3) at
950 °C. After the described thermomechanical treatments, a mid-
dle cut is realized and the microstructure is observed by SEM-
EBSD analysis exactly at the center of the samples correspond-
ing to the maximum strain area.

All the experiments start with a thermal treatment of 30min at
950 °C in order to reach equilibrium of the volume fraction of the
two phases. The first experiment involves only deformation at
950 °C (ε=20%, ε̇ =0.1s−1) in order to visualize the microstruc-
ture exactly after deformation. Additional 15 min (respectively
1 h) of annealing at 950 °C is considered for the second (respec-
tively the third) experiment. The purpose is then to quantify the
effect of annealing time on the microstructure evolution.

Figures 4, 5, 6 illustrate representative SEM images from each
stage of the microstructure evolution after each experiment. Just
after deformation, we can see a not so fragmented microstructure
but from the variation of the grey scale color inside the lamellae
we can guess a lot of sub-boundaries (Fig. 4). After 15 min of
annealingwe see changes on the shape but not so sever ones. The
shape evolution of the lamellae is obvious but we cannot observe
spheroidized microstructure (Fig. 5). After one hour of annealing
we can see finally a more spheroidized and coarsening micro-
structure (Fig. 6).

In order to discuss quantitatively of the microstructure evolu-
tions, an important number of such representative images in

Fig. 1 Splitting of α lamellae into α laths
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terms of lath area and lath aspect ratio evolutions have been
analyzed. Basically, by approximating the α laths as ellipses,
the aspect ratio is then defined as the ratio between the major
axis and the minor one.

The results obtained, by measuring approximately 500 α
laths for each case, are summarized in Fig.7. They illustrate a
fast evolution of the mean shape ratio during the first 15mins
with a quasi-stable mean surface value. During 15 mins and
1 h, the mean shape ratio decreases slowly whereas the
increase of the mean surface ratio is important. These
experimental results are coherent with the involved mecha-
nisms [1, 2]:

& After deformation, sub-boundaries inside the lamellae are
present and sphereodization is not activated.

& During the first minutes of the thermal treatment, surface
diffusion and motion by mean curvature are the predom-
inant mechanisms which lead to the laths appearance and
sphereodization of the laths without a real growth of the
mean lath surface (limited effect of the volume diffusion).

& After this first step, coarsening becomes the predominant
mechanism.

From the observations above, we believe that, modeling the
first steps of spheroidization implies the necessity to simulate
the boundary motion due to surface diffusion atα/β interfaces
and due to the mean curvature at the α/α sub-boundaries.
Subsequent modelling of coarsening is of course of prime
importance to predict the laths volume time evolution but is
only a natural perspective of the present works which are, at
yet, dedicated to the two first mechanisms.

Next section illustrates the governing equations of surface
diffusion and motion by mean curvature.

The physical equations

Motion by surface diffusion

According to Mullins [5], in order to describe the atoms flow

at the α/β interface we can consider a surface flux j
!
:

j
!¼ ν υ!; ð1Þ

where ν denotes the number of drifting atoms per unit area and
υ! denotes the average velocity of these drifting atoms.
Assuming local equilibrium, we can express υ! with the
Nerst-Einstein formula as following:

υ
*¼ Dαβ

kT
∇s μ; ð2Þ

Fig. 2 Interaction between the two competitive mechanisms of surface diffusion and motion by mean curvature
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Fig. 3 Hot compression experiments (ε˙ =0.1s−1) after 30 min of
annealing at 950 °C: a) ε=20%, b) ε=20% and annealing of 15 min at
950 °C and c) ε=20% and annealing of 1 h at 950 °C

Fig. 4 representative microstructure after 20% deformation (Fig. 3a
experiment)
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whereDαβ denotes the surface diffusivity of the α/β interface,
μ the chemical potential, k the Boltzmann constant and T the
absolute temperature. The ∇s operator corresponds to the sur-
face gradient operator defined as the tangential component of
the gradient:

∇sμ ¼ ∇μ− ∇μ∙nð Þn ¼ P∇μ; ð3Þ
with n the outward-pointing unit vector normal to the surface
and P = I − n⨂ n.

By considering Eq.(1) and Eq.(2), the following equation is
obtained:

j
*¼ νDαβ

kT
∇s μ: ð4Þ

Assuming that there is mass conservation, the surface mo-
tion can then be described by:

vn ¼ −Ω ∇s j
*

 !
; ð5Þ

where vn ¼ υ* ∙n denotes the normal velocity of the surface
and Ω the atomic volume. By combining Eq. (4) and Eq.
(5), we obtain:

vn ¼ −
νΩDαβ

kT
Δsμ; ð6Þ

with Δ s = ∇s ∙ ∇s the surface Laplacian operator (or Laplace-
Beltrami operator).

Considering κ as the mean curvature (sum of the main
curvatures in 3D) and γαβ the α/β interface energy and by
ignoring the possible effects of anisotropy, the following rela-
tionship is also verified:

μ ¼ −γαβΩκ ð7Þ

Thanks to Eq.(6) and Eq.(7), we obtain:

vn ¼
γαβνΩ

2Dαβ

kT
Δsκ ¼ BΔsκ; ð8Þ

with B ¼ γαβνΩ
2Dαβ

kT , the kinetic coefficient. Eq. (8) describes
the relation between the motion by surface diffusion and the
surface Laplacian of the mean curvature [6–9].

Motion by mean curvature

In order to describe precisely the surface evolution of an α
lamella, the influence of the mean curvature should be also
considered [8].

The grain boundary energy is indeed important for the la-
mellae splitting.

Fig. 5 microstructure after 20% deformation and 15 min annealing
(Fig. 3b experiment)

Fig. 6 microstructure after 20% deformation and 1 h annealing
(Fig. 3c experiment)

Fig. 7 Time evolution of 2D morphological characteristics of the laths
population
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The grain boundary energy is given by the well-known
Gibbs-Thompson relationship where the normal velocity vn
of the grain boundary is described proportionally to the mean
curvature κ:

vn ¼ −κ
γαabν

ˇΩ
kT

e−
Q
RT ¼ −Aκ; ð9Þ

with A ¼ γαabν
ˇΩ

kT e−
γαabν

ˇΩ
kT , where γαa denotes the grain bound-

ary energy, b is the burgers vector norm associated with the
hoping event, νˇ is the Debye frequency, R the gaz constant
and Q the apparent activation energy.

Motion of the interfaces

Surface diffusion and mean curvature motions are taking part
simultaneously during the phenomenon of spheroidization. A
global velocity combining both of these motions can then be
summarized as:

vn ¼ B Δsκð Þχα=β−Ακχα=α; ð10Þ

with χα/β the characteristic function of the α/β phase inter-
faces and χα/α the characteristic function of the α/α grain
interfaces (Fig. 2).

Level set formulation

A level-set (LS) model was formulated in order to deal with
the topological changes at the α/β interfaces. The level set
method was chosen due to its capability to immerse/de-
scribe/capture easily in a FE context the interfaces [10–13]
and also due to the fact that geometrical quantities as the mean
curvature κ and the outside normal n can be obtained as:

n ¼ ∇φ
∇φk k ; ð11Þ

and

κ ¼ −div nð Þ ¼ −∇
∇φ
∇φk k ; ð12Þ

with

φ x; tð Þ ¼ �d x;Γ tð Þð Þ ð13Þ

φ is then defined over the domain Ω as a signed distance
function to the interface Γ of the subdomain of interest that we
will denote Π.

The sign convention of Eq. (11) corresponds to a distance
function negative inside Π and positive outside.

Thus the interface velocity can be rewritten in a level set
form as:

v*¼ vn
∇φ
∇φk k ¼ vnn ¼ B Δsκð Þ−Ακð Þn; ð14Þ

with:

B ¼
γαβvΩ

2Dαβ

kT
; at the α

.
β interfaces

0 ; otherwise

8<
: ð15Þ

A ¼
γαabν

ˇΩ
kT

e−
Q
RT ; at the α

.
α interfaces

0 ; otherwise

8<
: ð16Þ

It can also be proved that in the considered level-set formu-
lation [6, 14], vn can be re-written as:

vn ¼ B Δsκð Þ−Ακ ¼ B
∇φk k ∇∙ ∇φk kP∇κð Þ−Ακ ð17Þ

The velocity is then defined in the entire domain and cor-
responds in the vicinity of the zero level-set function ofφ, i.e.
Γ, to the interfaces velocity [6, 7]. A new numerical method-
ology of resolution is detailed in the following section
concerning the surface diffusion mechanism.

A surface diffusion methodology

For the modelling of the induced flow from the surface diffu-
sion mechanism at the α/β interface, a FE methodology is

adopted. At any time t, the transport velocity v* is defined by:

v*¼ B Δsκð Þn ¼ B
∇φk k ∇∙ ∇φk kP∇κð Þn; ð18Þ

with B ¼ γαβvΩ
2Dαβ

kT . The B coefficient is defined as a constant
and it is chosen to neglect any anisotropy concerning the in-
terface energy and the diffusivity. Additionally, isothermal
conditions are assumed. The time evolution of Γ(t) is then
obtained by solving the following convective system:

∂φ
∂t

þ v!∙ ∇φ
�! ¼ 0

φ x; 0ð Þ ¼ −d x;Γ 0ð Þð ÞχΠ þ d x;Γ 0ð Þð Þχ �Π

8<
: ð19Þ

The interface can then be obtained at each time step as the
0-isovalue of the distance function and the velocity is updated
by following Eq.(18) before the following time step. At the
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following subsections, more extensive details are given for the
resolution algorithm.

Surface diffusion velocity identification and transport
resolution

The methodology used to obtain the surface diffusion velocity
is based on the FE based strategy introduced by Bruchon et al.
in [6, 15].

Indeed, as P1 description of the LS is considered in the
proposed methodology, one of the basic issues in the problem
of surface diffusion is that the velocity is defined by the
Laplacian of the curvature, which means that the velocity is
a function of the fourth order spatial derivative of φ. The
numerical strategy proposed by Bruchon et al. consists to
solve this problem by considering a Bregularized^ formula-
tion. More precisely Eq.(18) is solved in a weak form by using
a FE formulation. Further information can be found in [6, 15].

Convection-Reinitialization methodology

By assuming the appropriate calculation of the surface veloc-
ity, the traditional strategy of convection and subsequent
reinitialization steps is used. The main idea is to solve the
advection equation and to rebuild the metric properties of
the LS function in order to keep a distance function (‖∇φ(x,
t)‖ = 1) at least near the interface Γ(t). Classical approaches
consist in solving, separately, the convective part and the
reinitialization part thanks to the resolution of a classical
Hamilton-Jacobi system [13] or to adopt an unified advection
and renormalization methodology by solving one single equa-
tion based on a smooth description of the LS [16]. Here, a new
approach is proposed.

This new approach is based on a separate resolution of the
transport and of the reinitialization part. Convective equation
is firstly solved thanks to a stabilized P1 solver (SUPG or RFB
method). Then, a parallel and direct reinitialization algorithm
detailed in [17], which has been proven to be extremely fast
and accurate, is used. In this algorithm, the Γ(t) interface is
firstly discretized into a collection of segments (respectively
triangles in 3D) and the nodal values of the level-set function
are then updated by finding the nearest element of the collec-
tion and calculating the distance between the considered node
and this nearest element. This method takes advantage of a
space-partitioning strategy using k-d tree and an efficient
bounding box strategy enabling to maximize the numerical
efficiency for parallel computations.

Moreover, this methodology presents two other benefits:

& it enables to avoid the validation/calibration of unphysical
parameters necessary to reinitialize the LS function [13,
15],

& it enables to obtain directly an exact P1 description of n
[18] before to solve Eq. (18) rather than following the
classical less precise methodology where the normal is
computed by performing a P1 interpolation of the first
derivative of the LS function.

First academic case

In this section we examine an ellipsoid shape under surface
diffusion. We want to test the efficiency of the proposed for-
mulation for a simple case with an analytical solution.
Considered computational domain is a 1 mm × 1 mm square
centered in (0,0). An initial ellipse (a = 0.3 mm and
b = 0.2 mm) of equation x2/a2 + y2/b2 = 1 is considered. Of
course, this shape is going to evolve towards a circle shape
while conserving its area. Thus limit radius, i.e. limit value of

a and b is given by the value
ffiffiffiffiffiffiffiffi
πab

p
≈0:43416mm.

Initially, in order to test the efficiency of the approach
without dealing with the effect of meshing/remeshing op-
erations in the results, a fixed mesh is considered during
simulations. An initial isotropic mesh adaptation is consid-
ered in a ring centered in (0,0) and defined as 0.19mm ≤ r ≤
0.31mm in order to keep a very fine mesh size, defined as h
in Table 1, in all the zone crossed by the zero isovalue of
the LS function during the simulation. The Fig. 8 illustrates
the FE mesh used (a), a zoom on the FE mesh (b), the
initial distance function field (c), the curvature field near
the interface (d) and the normal velocity field near the
interface obtained initially thanks to the FE resolution of
Eq. (18) (e). Red or white line corresponds to the initial
ellipse interface (0 isovalue of the LS function).

In all simulations B is assumed to be homogeneous and
equal to 1 mm4/s. Exact velocity of the point (a(t),0) is known
[15] and given by:

va! tð Þ ¼ B
3 b2−a2
� �

a

b6
i
!¼ va tð Þ i! ð20Þ

Table 1 Summarized data and results of some tested configurations

Data Case 1 Case 2 Case 3 Case 4

h in the fine zone in μm 1 1 2 1

#Elt 2.74e5 2.74e5 7.1e4 2.74e5

Time step in ms 1 5 10 0.1

Conv + exact Rein. X X X

Unified approach X

Calculation time 12CPU 1 h 17mins 1 min 6 h 28mins

e1 in % 2.5 2.6 2.1 2.2

e2 in % 3 3.1 2.9 2.8

Int J Mater Form



Hence a(t + dt) can be easily evaluated thanks to a forward
Euler method:

a t þ dtð Þ ¼ a tð Þ þ dt va tð Þ; ð21Þ
and b(t + dt) can be easily obtained by verifying the area
conservation at anytime:

b t þ dtð Þ ¼ a 0ð Þb 0ð Þ=a t þ dtð Þ: ð22Þ

This method is then used with a time step of 1 ms to evaluate
the Bexact^ evolution of a and b values during the shape evolu-
tion. Concerning FE simulations, at each time step, the positions
of (a(t),0) and (0,b(t)) are determined on the zero-isovalue of the
distance function and then compare to the Bexact^ solution. Final
time of all simulations is fixed to 1 s.

Table 1 summarizes all the parameters (time step,
mesh size in the fine mesh zone, number of elements

of the used mesh, method used), the CPU time of the
simulations and the corresponding precision of the re-
sults obtained concerning the positions of (a(t),0) for
t ∈ [0, 1s] by using the unified convective-renormalized
approach described in [15, 16] and the new one pro-
posed here with different time step and h values.
These cases are representatives of an important number
of other performed simulations. Errors are defined as:

e1 ¼ ∥asim tð Þ − aexact tð Þ∥L1

∥aexact tð Þ∥L1

¼ Σijasimi − aexacti j
Σijaexacti j

and; ð23Þ

e2 ¼ ∥asim tð Þ − aexact tð Þ∥L2

∥aexact tð Þ∥L2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σi asimi − aexactið Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σia2exacti

q ; ð24Þ

where i denotes the discretization in time.
From different simulations (Cases 1 to 4 of Table 1 are

representatives), we can summarize the following comments:

– Considering the precision of a(t) predictions (see e1 and
e2 errors on Table 1), both approaches are relevant to
model surface diffusion. Figure 9 illustrates, at t = 0.2 s
and t = 1 s, the difference of the exact interface and the
results obtained with the Case1.

– The time step of the Case4 (dt = 0.1 ms) is the max-
imal value usable for h = 1μm and the unified formu-
lation to avoid numerical instabilities. Such instabil-
ities were not identified for the new proposed ap-
proach even for important time step and mesh size
(Case 3 for example).

– As illustrated in Table 1, calculation time of the new pro-
posed approach is then clearly very attractive compara-
tively to the unified approach.

– Even for the new proposed approach, decreasing the dt
and h values below, respectively, 10 ms and 2 μm seem
not improve the results quality (e2 ≈ 3 % ). It can be

Fig. 8 First academic case: the FE mesh used (a), zoom on the FE mesh
at the interface between coarse and fine mesh (b), the initial distance
function field (c), κ near the interface (d) and vn near the interface (e)

Fig. 9 Comparison at t = 0 s, t = 0.2 s and t = 1 s of the exact solution
(red lines) and the Case 1 0-isovalue (blue lines)
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explained by the fact that the residual error is due to the
FE resolution of Eq. (18).

Second academic case: volume loss and mesh
adaptation

Next, we consider a more realistic shape of a long ellipse with
a = 0.5 mm and b = 0.1 mm and mesh adaptation. Indeed, in
order to obtain acceptable calculation time to model surface dif-
fusion of complexmicrostructure, a fixedmeshing strategy as the
one of the previous section is not an option. A meshing and
remeshing strategy must be used.

To beginwith, twometric basedmeshing strategies associated
with the MTC topological mesher were tested. MTC is a P1
automatic remesher based on elements topology improvement
that was developed for Lagrangian simulations under large
strains [19]. This tool was extended to anisotropic mesh adapta-
tion [19], for which it was extensively used in context of FE
microstructure description [6, 12, 13, 15–17].

The first metric considered, is the metric described in [16].
This metric enables to obtain isotropic or anisotropic (in the
normal direction of the interface) fine mesh in the vicinity of
the interface without considering its curvature. In this paper, iso-
tropic adaptation was considered (Method 1 in Table 2).

The second metric considered, is based on an a priori error
estimator linking the interpolation error on the LS function to its
gradient vector and hessian matrix. As already described, these
variables allow to obtain the normal vector to the interface and its
main curvatures. Using these data, a metric field can be built in
order to obtain a fine mesh size in the vicinity of the interface
depending on local curvatures [20] (Method 2 in Table 2).

Simulation and data results are reported in Table 2 for both
meshing/remeshing methods. The BConv + exact Reinit^ strate-
gy was used. Final time of both simulations is fixed to 1 s.As the
mesh size near the interface is of the same order than the mesh

Table 2 Summarized data and results with mesh adaptation

Data Case 5 Case 6

h in the fine zone in μm 1 1

#Elt <10,000 <10,000

Time step in ms 1 1

Conv + exact Rein. X X

Calculation time 12 CPU 1 min 1 min

Remeshing method Method 1 Method 2

Volume loss in % 7.5 1

t=0s

t=0.2s

t=1s

Fig. 10 A Ba = 0.5 mm and b = 0.05 mm^ configuration with a mixed
implicit/explicit description of the interfaces: (top) initial distance
function field and the obtained interfaces (white lines) at t = 0 s, 0.2 s
and 1 s. (Bottom) Zoom on the conform mesh at t = 0.2 s, the interface is
defined by the red line

Fig. 11 α/β microstructure after 20% of deformation and 15 min of
annealing

Fig. 12 Binarized version of Fig. 11
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size used in Case1 and Case2, same precision could be expected.
However, remeshing is also synonymous of diffusion concerning
the FE fields carrying the interface at each remeshing operation
necessary to follow interfacemotion. Then, volume conservation
was tracked for these cases.

Results described in Table 2 illustrate that the mesh adap-
tation techniques come with good precision and fast calcula-
tion times. Meshing adaptation based on the main curvatures
enables to obtain a very good conservation of the volume.
This aspect will be of course very important for real configu-
rations where the initial thin shape of the α lamellae implies
very high ratio between the minimal and the maximal values
of the interface main curvatures. So, this meshing strategy in
terms of metric seems particularly indicated.

If the results described previously in terms of calculation time
and precision could be sufficient to study the surface diffusion of
one thin ellipse, it seems clear that to further improve our numer-
ical framework, it is important to deal with real 2D or 3D
configurations.

In order to face this problem, we adopt a new topological
mesher, Fitz, developed by Shakoor et al. [20]. With Fitz, a body

fitted meshing and remeshing is possible while using complex
metric as previously described. It was then proved in [21] that this
new mesher associated with a volume conservation constraint
which is compatible both with implicit and body-fitted interfaces,
the modification of the interface due to remeshing can be delayed
enough so that a Lagrangian LS method becomes more
than interesting compared to an Eulerian LS method, even
when large deformations or displacements occur.

First tests are very promising, allowing in the Case6 con-
figuration to obtain a precision of 2% concerning the volume
conservation with a calculation time of 30s on 12 CPU.
Figure 10 illustrates a result obtained with this numerical
framework for a Ba = 0.5mm and b = 0.05mm^ configuration.

Moreover we anticipate, with this mixed implicit/explicit
description of the interfaces, an easier coupling between sur-
face diffusion at the α/β interfaces and motion by mean cur-
vature at the α/α grain interfaces.

Surface diffusion in real α/β microstructures

Having tested the validity of the surface diffusion solver in sim-
ple configurations, we consider now a more complex one. The
FE immersion of a realmicrostructure, from a SEMexperimental
image, is investigated.

The considered microstructure of size 1.1mm × 0.7mm, de-
scribed by the Fig. 11, is one similar to the configuration of the

Fig. 13 Lath evolutions due to
surface diffusion: (a) initial
configuration, (b) at t = tend/3, (c)
at t = 2tend/3 and (d) at t = tend

Fig. 14 Initial mesh adaptation around the α laths (zoom) Fig. 15 Simple case representing a lath crossed by a α/α grain boundary
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Fig. 5 (20% of deformation and 15 min of annealing). This
configuration is interesting as splitting can be considered as
achieved (see section 3). Binarized version (see Fig. 12) of the
microstructure described by Fig. 11 and the signed distance func-
tion of the laths have been obtained thanks to the ImageJ soft-
ware and have been immersed in an initial FEmesh thanks to our
FE C++ library CimLib [22]. Some laths, near of the domain
boundaries, were deleted in order to avoid border effects.

A first Eulerian LS framework BConv + exact Reinit^ sim-
ulation has been considered with representative physical pa-
rameters [2]. We experienced some difficulties regarding the
shape evolution of the interface during the simulation. Having
numerous laths interacting very quickly under surface diffu-
sion, lead to oscillations of the interfaces and severe volume
loss.

From the other hand, performing the same simulation with the
Lagrangian LS framework based on Fitz methodology, lead to
much more reasonable results considering the shape evolution of
the lamellae and volume loss as illustrated by the time evolution
of Fig. 13. The size of the mesh elements was fixed to hmin=
1μm close to the lath interfaces and to hmax= 5μm otherwise (see
Fig. 14). The time calculation was 2 h for 12 CPUs. The volume
loss from the beginning of the process to the end was limited to
2%. More quantitative validations of these simulations and dis-
cussions of the A and B coefficient values will be detailed in a
forthcoming publication.

Interestingly, laths coalescence events are observed during
surface diffusion. It is logical as one LS function is considered
for all the laths (as in [3] in context of phase field description of
the interfaces). However, at the authors knowledge, this kind of
evolutions was not reported in the state of the art ofα/β titanium
alloys during the first steps of the spheroidization. Once again, it
seems that consider the role of α/α grain interfaces are of prime
importance to predict a realistic evolution of the contacts between
the laths during surface diffusion phenomenon.

First simple case of lamellae splitting:

As already mentioned, two main competitive mechanisms are
involved in lamellae splitting. Motion by surface diffusion at
the α/β interfaces and motion by mean curvature at the α/α

sub-boundaries (see Fig. 2). The numerical framework based
on the Fitz meshing/remeshing tools and the enhanced la-
grangian methodology is now definitively adopted. The sim-
ple configuration of a lath crossed by a α/α grain interface as
described by Fig. 15 is considered.

Eq. (17) is taken into account in order to evaluate the global
velocity which is used to convect the LS functions (L1 and
L2) describing the two laths. Normalized velocity due to sur-
face diffusion (respectively due to motion by capillarity) is
described by the Fig. 16 (resp. the Fig. 17).

A realistic ratio between the A and B coefficients is used in
order to obtain a representative normalized evolution of the
two laths. Fig. 18 illustrates the mesh used for the simulation
(conformmesh at the interfaces and a ratio of five between the
size of the coarse mesh elements and the fine ones). This
figure clearly illustrates the impact of the mean curvature at
the α/α grain boundary concerning the fast appearance of
dynamic triple junctions. Even in context of small misorien-
tations and so in context of weak values of the γαa parameter,
the mean curvature remains extremely high at the initial T-
junction between the α/β interface and the α/α interface.

Finally Fig. 19 illustrates the splitting of the lamella in two
laths due to surface diffusion and motion by capillarity.

This case demonstrates that the proposed formalism en-
ables to deal with surface diffusion and motion by mean cur-
vature. The volume loss during this simulation was around

Fig. 19 Splitting modeling, from top to bottom: initial configuration, at
t = 0.1tend, t = 0.5tend, t = tend

Fig. 18 Description of the multiple junctions during splitting with a
conform mesh strategy

Fig. 16 Normalized surface diffusion velocity after few time steps

Fig. 17 Normalized mean curvature velocity after few time steps
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1.8%. Current calculations are dedicated to more complex
configurations.

Conclusions and perspectives

The first steps of a new FE numerical framework dedicated to the
modelling of the mechanisms of spheroidization in α/β titanium
alloys have been detailed. This numerical framework has been
illustrated with some basic numerical cases on surface diffusion
ofα laths for checking the efficiency of themethodology. Optimal
algorithm of resolution and meshing strategies were proposed in
terms of precision and calculation time. A new way was also
opened by considering a mixed implicit/explicit description of
the interfaces with the use of body fitted meshes.

A surface diffusion case on a real microstructure obtained from
experimental images was validated in terms of numerical efficien-
cy. We also demonstrate that the proposed formalism enables to
simulate lamellae splitting due to the competitive mechanisms of
motion by surface diffusion and motion by mean curvature.

The perspectives of this works are numerous. This article
illustrates a first step to propose full field simulation of
sphereodization and coarsening in α/β titanium alloys. First of
all, more representative simulations in terms of domain size must
be realized and the obtained results must be validated with in-situ
experimental results. In this context, the coefficients A, B need to
be finely calibrated in order to respect realistic kinetics.
Concerning the involved mechanisms, volume diffusion must
be added to the global velocity in order to predict realistic volume
evolution of the laths during spheroidization. It seems also im-
portant to highlight that the proposed methodology is usable in
3D without additional developments. At the authors knowledge,
3D full field modeling of laths for α/β titanium alloys was never
addressed. It is then an exciting perspective of these develop-
ments. Finally, we plan also to simulate the deformation step
thanks to an existing crystal plasticity finite element approach
developed in a LS context [23].
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