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Abstract. Fragmentation of α lamellae and subsequent spheroidization of α laths in α/β titanium alloys occurring 
during and after deformation are well known phenomena.  We will illustrate the development of a new finite 
element methodology to model them. This new methodology is based on a level set framework to model the 
deformation and the ad hoc simultaneous and/or subsequent interfaces kinetics. We will focus, at yet, on the 
modeling of the surface diffusion at the α/β phase interfaces and the motion by mean curvature at the α/α grain 
interfaces.  

1 Introduction 
Two-phase α/β titanium alloys are materials with 
numerous applications in different industrial domains, 
mostly due to their attractive mechanical properties. 
They exhibit different microstructures depending on 
the applied thermomechanical path. Starting from an 
initial stable microstructure of α lamellae inside β 
grains, the phenomenon of spheroidization can be 
observed during and after the microstructure 
deformation. More precisely, during the deformation, 
the fragmentation of α lamellae and the subsequent 
spheroidization of α laths occurs.  
Spheroidization has received considerable attention 
due to its importance in microstructural control. The 
new spheroidized microstructure shows enhanced 
strength and ductility, so evidently, this phenomenon 
raises high interest for the industrial applications [1]. 

 In this paper, we will illustrate a new finite 
element (FE) methodology in order to model these 
microstructural evolutions. The interest is focused on 
the first mechanisms occurring during spheroidization 
at the lamellae interfaces without considering the 

microstructure deformation modeling. The α/α grain 
interfaces are introduced arbitrarily leading to surface 
diffusion at the α/β phase interfaces and the motion 
by mean curvature at the α/α grain interfaces. In order 
to model efficiently this interfacial kinetics, a level set 
framework was introduced. 

Some basic cases of surface diffusion will be 
detailed in order to illustrate the first steps and the 
numerical choices of the methodology.  

2 Describing the physical problem  
According to Semiatin [2], the first basic mechanisms 
occurring during hot deformation, in order to get the 
spheroidized microstructures, are the surface 
diffusion at the α/β interfaces and the motion by the 
mean curvature at the α/α  grain interfaces. The 
motivation for the formation of grooves in α lamellae 
and the consequent splitting of them, is the tendency 
of the different interfaces to evolve in order to 
minimize the total interfacial energy. Grooving is 
usually initiated by atomic scale processes near the 
region of α/α grain boundary and α/β interface 
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intersection. Next section illustrates the governing 
equations of this phenomenon. 

2.1 Motion by surface diffusion 

According to Mullins [3], in order to describe the 
atoms flow at the α/β interface we can consider a 
surface flux  �⃗:

                               �⃗ = ��⃗,                               (1)

where � denotes the number of drifting atoms per unit 
area and �⃗ denotes the average velocity of these 
drifting atoms.   Assuming local equilibrium we can 
express �⃗ with the Nerst-Einstein formula as 
following:

                                υ���⃑ =
	
�

� �
∇� μ,                            (2)

where ��� denotes the surface diffusivity of the α/β
interface, μ the chemical potential, � the Boltzmann 
constant and T the absolute temperature. The ∇�
operator corresponds to the surface gradient operator 
defined as the tangential component of the gradient:

                 ∇�μ =  ∇μ − (∇μ ∙  n)n = P∇μ,         (3)

with � the outward-pointing unit vector normal to the 
surface and � = � − �⨂�.

By considering Eq.(1) and Eq.(2), the following 
equation is obtained: 

                                ȷ⃑ =
�	
�

� �
∇� μ.                           (4) 

Assuming that there is mass conservation, the 
surface motion can then be described by: 

                           v� = −Ω (∇�ȷ⃑),                        (5)    

where �! denotes the normal velocity of the surface 
and " the atomic volume. By combining Eq. (4) and 
Eq. (5), we obtain:

                            v� = −
�# 	
�

� �
∆ �μ,                    (6) 

with ∆ � = ∇� ∙  ∇� the surface Laplacian operator
(or Laplace-Beltrami operator).

From Eq. (6), it is notable that the normal velocity 
is associated with the chemical potential of the atoms. 

Considering κ as the mean curvature (sum of the 
principal curvatures in 3D) and %�� the α/β interface 
energy and by ignoring the possible effects of 
anisotropy, the following relationship is obtained:

                             μ = −γ'*Ω κ.                            (7)

Thanks to Eq.(6) and Eq.(7), we obtain: 

                   v� =
-
��# /	
�

� �
∆ �κ = B∆ �κ,             (8)       

with 0 =
123�" 2�56

� 7 , the kinetic coefficient. Eq. (8) 
describes the relation between the motion by surface 
diffusion and the surface Laplacian of the mean 
curvature [4] [5] [6] [7].

2.2 Motion by mean curvature  

In order to describe precisely the surface evolution 
of an α lamella, the influence of the mean curvature
should be also considered [5] [7]. The %�� grain 
boundary energy is indeed very important for the 
lamellae splitting.

The grain boundary energy is given by the well-
known Gibbs-Thompson relationship where the 
normal velocity �! of the grain boundary is described 
proportionally to the mean curvature κ:

                       v� = −κ -
9:�;#

� �
 e<>?

@ A = −Aκ,             (9)               

with E = 12FGHIJ

K L
 M<NO

Q R, where %�S denotes the grain 
boundary energy, b is the burgers vector norm 
associated with the hoping event, �̌ is the Debye 
frequency and ΔΕ is the difference in free energy 
between the two grains. 

2.3 Motion of the interfaces

Surface diffusion and mean curvature motions are 
taking part simultaneously during the phenomenon of 
spheroidization. A global velocity combining both of 
these motions can then be summarized as: 

                         v� = B(Δ�κ) − Ακ,                    (10) 

where B is defined in α/β phase interfaces and A is 
defined in α/α grain interfaces.

3 Level set formulation 
A level-set model was formulated in order to deal 
with the topological changes at the α/β interface. The 
level set method was chosen due to its capability to 
immerse/describe/capture easily in a FE context the 
interfaces [8] [9] [10] [11] and also due to the fact 
that geometrical quantities as the mean curvature κ
and the outside normal n can be obtained as:
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                                   n = ∇Y
‖∇Y‖ ,                             (11) 

and 
                      [ = \]�(�) = ^ ∇_

‖∇_‖,               (12)
with 

`(a, b) = ±\(a, Γ(b)).                 (13) 

` is then defined over the domain Ω as the signed 
distance function to the interface Γ of the subdomain
of interest that we will denote Π.

The sign convention of Eq. (11) corresponds to a 
distance function negative inside Π and positive
outside. 

Thus the interface velocity can be rewritten in a 
level set form as:

         v�⃑ = v�
∇Y

‖∇Y‖ = v�n = (B(Δ�κ) − Ακ)n,     (14)  

with: 

B =

⎩
⎨

⎧ γ'*vΩi D'*

k T
  , at the α/β interface                

                                                                            (15)
 0         , otherwise                                  

E =

⎩
⎨

⎧   
%�S}�̌"

� 7
 M<~�

K L   ,    �b bℎM 5/5 ]�bM����M                

                                                                                       (16)
             0             , �bℎM��]�M                                  

It can also be proved that in the considered level-
set formulation [4] [12], �! can be re-written as:

v� = B(∆�κ) − Ακ

                       = �
‖∇Y‖ ∇ ∙ (‖∇φ‖P∇κ) − Ακ        (17) 

The velocity is then defined in the entire domain 
and corresponds in the vicinity of the zero level-set 
function of φ, i.e. Γ, to the interface velocity [4] [5].

4 Generation of the microstructure 
As already mentioned, the α lamellae and their shape 
evolution are going to be represented with the use of a 
level set function. A new Representative Volume 
Element class was built in our fully parallel multi-
component C++ Library called CIMLib [13] and used 
for these numerical developments in order to describe 
α colonies in β grains by using the level set approach.

The basic steps of this method are: 
a) consideration of a given domain as a β grain.

b) division of the domain in colonies (by Voronoï 
tessellation for example [14]).

c) In each colony, Voronoï seeds belonging to a 
prescribed common axis are introduced.  

d) Partition of each colony into regions, which are 
based to the minimum distance of the points of 
the domain from the Voronoï seeds of the 
corresponding colony. Each region consists of all 
the integration points closer to the corresponding 
seed that any other, called as Voronoï cells [14].

e) A variable ε is introduced for shifting the 
Voronoï cells in order to manage the description 
of the two different phases. This variable can be 
defined from a distribution or from the desired 
volume fraction of the α phase.

f) All these operations can be described in a exact 
analytical way in the considered LS framework. 

Figure 1. Representation of an initial microstructure of a β
grain with three different α colonies thanks to a LS 
approach.

Figure 1 illustrates a 2D case in a 1mm x 1mm 
domain. The red regions describe the α lamellae and 
the blue regions the β media.  Furthermore, in order to 
emphasize the efficiency of the developed method to 
describe statistically the microstructure of interest, a 
corresponding illustrative back-scattered electrons 
(BSE) image obtained thanks to a scanning electron 
microscope (SEM) from an initial microstructure of 
TA-6V alloy is displayed in Figure 2.
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Figure 2. An initial microstructure of TA6V, with 3 
different colonies.

5 A surface diffusion methodology 
For the modelling of the induced flow from the 
surface diffusion mechanism at the α/β interface, a
finite element solver that follows a level set method is 
used. At any time t, the transport velocity ���⃑ is defined 
by:

            ����⃑ = B(∆�[)� = 0
‖∇`‖ ∇ ∙ (‖∇`‖�∇[)�,      (18)

with B =
%56�"2 �56

� 7
. The B coefficient is defined as a 

constant and it is chosen to neglect any anisotropy 
concerning the interface energy and the diffusivity.
Additionally, isothermal conditions are assumed. The 
time evolution of Γ(b) is then obtained by solving the 
following convective system:

                                  

�
�_
��

+  � ���⃗ ∙ ∇`�����⃗ = 0

`(a, 0) = −\�a, Γ(0)��� + \�a, Γ(0)����
    (19)   

The interface can then be obtained at each time 
step as the 0-isovalue of the distance function and the 
velocity is updated by following Eq.(18) before the 
following time step. At the following subsections, 
more extensive details are given for the resolution 
algorithm. 

5.1. Surface diffusion velocity identification 
and transport resolution 

The methodology used to obtain the surface diffusion 
velocity is based on the finite element based strategy 
introduced by Bruchon et al. in [4] [15].

Indeed, as P1 description of the LS is considered 
in the proposed methodology, one of the basic issues
in the problem of surface diffusion is that the velocity 
is defined by the Laplacian of the curvature, which 
means that the velocity is a function of the fourth 
order spatial derivative of φ. The numerical strategy 
proposed by Bruchon et al. consists to solve this 
problem by considering a “regularized” formulation.
More precisely Eq.(18) is solved in a weak form by 
using a FE formulation. Further informations can be 
found in [4] [15].

5.2. Convection-Reinitialization methodology 

By assuming the appropriate calculation of the 
surface velocity, the traditional strategy of convection 
and subsequent reinitialization steps is used. The 
main idea is to solve the advection equation and to 
rebuild the metric properties of the level-set function 
in order to keep a distance function (‖∇`(a, b)‖ = 1)
at least near the interface Γ(b). Classical approaches 
consist in solving, separately, the convective part and 
the reinitialization part thanks to the resolution of a 
classical Hamilton-Jacobi system [11] or to adopt an 
unified advection and renormalization methodology 
by solving one single equation based on a smooth 
description of the level-set [15]. Here, a new 
approach is proposed.

This new approach is based on a separate 
resolution of the transport and of the reinitialization 
part. Convective equation is firstly solved thanks to a
stabilized P1 solver (SUPG or RFB method). Then, a
parallel and direct reinitialization algorithm detailed 
in [16], which has been proven to be extremely fast 
and accurate is used. In this algorithm, the Γ(b)
interface is firstly discretized into a collection of 
segments (respectively triangles in 3D) and the nodal 
values of the level-set function are then updated by 
finding the nearest element of the collection and 
calculating the distance between the considered node 
and this nearest element. This method takes 
advantage of a space-partitioning strategy using k-d

tree and an efficient bounding box strategy enabling 
to maximize the numerical efficiency for parallel 
computations. 

Moreover, this methodology presents two other 
interest: 
 -it enables to avoid the validation/calibration of 
unphysical parameters necessary to reinitialize [11]
[15],
 -it enables to obtain directly an exact P1 
description of � [17] before to solve Eq. (18) rather 
than following the classical less precise methodology 
where the normal is computed by performing a P1 
interpolation of the first derivative of the level-set 
function.
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6 First academic case 
In this section we examine an ellipsoid shape under 
surface diffusion. We want to test the efficiency of 
the proposed formulation for a simple case with an 
analytical solution. Considered computational domain 
is a 1mm x 1mm square centered in (0,0). An initial 
ellipse (a=0.3mm and b=0.2mm) of 
equation ai �i⁄ + �i }i = 1⁄  is considered. Of 
course, this shape is going to evolve towards a circle 
shape while conserving its area. Thus limit radius, i.e. 
limit value of a and b is given by the value √��} ≈
0.43416 ��.  

Initially, in order to test the efficiency of the 
approach without dealing with the effect of the 
meshing and remeshing in the results, a fixed mesh is 
considered during simulations. An initial isotropic 
mesh adaptation is considered in a ring centered in 
(0,0) and defined as 0.19�� ≤ � ≤ 0.31mm in order 
to keep a very fine mesh, defined as h in Table 1, in 
all the zone crossed by the zero isovalue of the level-
set function during the simulation.  

The figure 3 shows the FE mesh used (a), the 
initial distance function field (b), a zoom on the FE 
mesh (c), the curvature field near the interface (d) and 
the normal velocity field near the interface obtained 
initially thanks to the FE resolution of Eq. (18) (e). 
Red or white line corresponds to the initial ellipse 
interface (0 isovalue of the level-set function). 

In all simulations 0 is assumed to be 
homogeneous and equal to 1 �� /�. Exact velocity 
of the point (a(t),0) is known [15] and given by: 

         �S����⃗ (b) = 0 ¡ �G/<S/�S
G¢ £⃗ = �S(b)£⃗.          (20)                                                       

Hence a(t+dt) can be easily evaluated thanks to a 
forward Euler method:

     a(t + dt) = a(t) + dt v¥(t),            (21)                            

and b(t+dt) can be easily obtained by verifying the 
area conservation at anytime:

b(t + dt) = a(0)b(0) a(t + dt).⁄         (22)

This method is then used with a time step of 1ms

to evaluate the “exact” evolution of a and b values 
during the shape evolution. Concerning FE 
simulations, at each time step, the positions of (a(t),0)

and (0,b(t)) are determined on the zero-isovalue of the 
distance function and then compare to the “exact” 
solution. Final time of all simulations is fixed to 1s.

(a) (b)

(c) (d)

(e)
Figure 3. First academic case: the FE mesh used (a), the 
initial distance function field (b), zoom on the FE mesh at 
the interface between coarse and fine mesh (c), § near the 
interface (d) and �� near the interface (e). Red or white line 
corresponds to the initial ellipse interface (zero-isovalue of 
the level-set function).

Table 1 summarizes all the parameters (time step, 
mesh size in the fine mesh zone, number of elements 
of the used mesh, method used), the CPU time of the 
simulations and the corresponding precision of the 
results obtained concerning the positions of (a(t),0)

for b ∈ [0,1�] by using the unified convective-
renormalized approach described in [15] and the new 
one proposed here with different time step and h

values. These cases are representatives of an 
important number of other performed simulations. 

Errors are defined as: 

M« =
‖S¬®(�)<S¯°F²³(�)‖´¶

‖S¯°F²³(�)‖´¶
=

∑ ¸S¬®<S¯°F²³¸

∑ ¸S¯°F²³¸
 and,      (23) 

Mi =
‖S¬®(�)<S¯°F²³(�)‖´/

‖S¯°F²³(�)‖´/
=

¹∑ ºS¬®
<S¯°F²³

»
/



¹∑ S¯°F²³
/



 ,       (24) 

where i denotes the discretization in time. 
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From different simulations (Cases 1 to 4 of  Table 
1 are representatives), we can summarize the 
following comments: 

-Considering the precision of a(t) predictions  (see 
M« and Mi errors on Table 1), both approaches are 
relevant to model surface diffusion. Figure 4 
illustrates at t=1s, the difference of the exact interface 
and the results obtained with the Case1. 

-The time step of the Case4 (\b = 0.1 ��) is the 
maximal value usable for ℎ = 1¼� and the unified 
formulation to avoid numerical instabilities. Such 
instabilities were not identified for the new proposed 
approach even for important time step and mesh size 
(Case 3 for example).

-As illustrated in Table 1, calculation time of the 
new proposed approach is then clearly very attractive 
comparatively to the unified approach. 

-Even for the new proposed approach, decreasing 
the \b and ℎ values below, respectively, 10 �� and 
2 ¼� seems not improve the results quality (Mi ≈
3%). It can be explained by the fact that the residual 
error is due to the FE resolution of Eq. (18). 

Figure 4. Comparison at t=0s and t=1s of the exact 
solution (red lines) and the Case 1 0-isovalue (white lines).

7 Second academic case: volume 
loss and mesh adaptation 
Next, we consider a more realistic shape of a long 
ellipse with a=0.5mm and b=0.1mm and mesh 

adaptation. Indeed, in order to propose acceptable 
calculation time to model surface diffusion of 
complex microstructure such as one of the Figure 1, 
fixed meshing strategy of the previous section is not 
an option.  Thus a meshing and remeshing strategy 
must be used.  

To begin, two based-metric meshing strategies 
associated with the MTC topological mesher were 
tested. MTC is a P1 automatic remesher based on 
elements topology improvement that was developed 
for Lagrangian simulations under large strains. This 
tool was extended to anisotropic mesh adaptation, for 
which it was extensively used in context of FE 
microstructure description [11] [10] [14] [15] [4]
[17].

The first metric considered is the metric describes
in [14], this metric enables to impose isotropic or 
anisotropic (in the normal direction of the interface) 
fine mesh in the vicinity of the interface without 
considering its curvature. Here, isotropic adaptation 
was considered (Method 1 in Table 2). 

The second used metric field is based on an a 
priori error estimator linking the interpolation error on 
the LS function to its gradient vector and hessian 
matrix. As already described, these variables 
represent respectively the normal vector to the 
interface and its main curvatures. Using this data, a 
metric field can be built in order to have a very fine 
mesh size in the normal direction to the interface, and 
to control the mesh size in the other directions 
depending on local curvature [18] (Method 2 in Table 
2).

Simulation and data results are reported in Table 2 
for both meshing/remeshing methods. The “Conv + 
exact Reinit” strategy was used. Final time of both
simulations is fixed to 1s. As the mesh size near the 
interface is of the same order than the mesh size used 
in Case1 and Case2, same precision could be 
expected. However, remeshing is also synonymous of 
diffusion concerning the FE fields carrying the 
interface at each remeshing operation necessary to 
follow interface motion. Then, volume conservation 
was tracked for these cases.

Table 1. Summarized data and results of some tested configurations 

Data Case1 Case2 Case3 Case4

h in fine zone in ¼m 1 1 2 1
#Elt 2,74e5 2,74e5 7,1e4 2,74e5

Time step  in ms 1 5 10 0.1
Conv + exact Reinit X X X

Unified approach X
Calculation time on 12CPU 1h 17mins 1min 6h28mins

e1 in % 2.5 2.6 2.1 2.2
e2 in % 3 3.1 2.9 2.8
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Table 2. Summarized data and results with mesh 
adaptation. 

Data Case5 Case6

h_min in the fine zone in ¼m 1 1
#Elt <10000 <10000

Time step  in ms 1 1
Conv + exact Reinit X X
Remeshing period 5dt 5dt
Remeshing method Method 1 Method 2

Calc. Time on 12CPU 7 mins 4 mins
Volume loss in % 7.5 1

Results described in Table 2 illustrate that the 
mesh adaptation technique come with good precision 
and faster calculation time. Meshing adaptation based 
on the curvature enables to obtain a very good 
conservation of the volume. This aspect will be of 
course very important for real configurations where 
the initial thin shape of the α lamellae implies very 
high ratio between the minimal and the maximal
values of the interface curvature. So, this meshing 
strategy in terms of metric seems particularly 
indicated.

8 Discussions 
If the results described previously in terms of 
calculation time and precision could be sufficient to 
study the surface diffusion of one thin ellipse, it 
seems clear that to further improve our numerical 
framework, it is important to deal with real 2D or 3D 
configurations. 

In order to face this problem, we adopt a new 
topological mesher, Fitz, developed by Shakoor et al. 
[18].  With Fitz, a body fitted meshing and remeshing 
is possible while using complex metric as previously 
described. It was then proved in [19] that this new 
mesher associated with a volume conservation 
constraint which is compatible both with implicit and 
body-fitted interfaces, the modification of the 
interface due to remeshing can be delayed enough so 
that a Lagrangian Level-Set method becomes more 
than interesting compared to an Eulerian Level-Set 
method, even when large deformations or 
displacements occur.

 First tests are very promising, allowing in the 
Case6 configuration to obtain a precision of 2% 
concerning the volume conservation with a 
calculation time of 30s on 12 CPU. Figure 5 
illustrates a result obtained with this numerical 
framework for a “a=0.5mm and b=0.05mm” 
configuration.

Moreover we anticipate with this mixed 
implicit/explicit description of the interfaces an easier 

coupling between surface diffusion at the α/β
interfaces and motion by mean curvature at the α/α
grain interfaces.

Figure 5. A “a=0.5mm and b=0.05mm” configuration with 
a mixed implicit/explicit description of the interfaces: (top) 
initial distance function field and the obtained interfaces 
(white lines) at t=0s, 0.2 s and 1s. (Bottom) Zoom on the 
conforming mesh at t=0.2s, the interface is defined by the 
red line. 

9 Conclusions 
The first steps of a new FE numerical framework 
dedicated to the modelling of the mechanisms of 
spheroidization in α/β titanium alloys have been 
detailed. This numerical framework has been 
illustrated on the surface diffusion of α laths. Several 
cases were studied in order to check the efficiency of 
the proposed approach. Optimal algorithm of 
resolution and meshing strategies were proposed in 
terms of precision and calculation time. A new way 
was also opened by considering a mixed 
implicit/explicit description of the interfaces. All this 
numerical tools will now be exploited to deal with 
coupling between surface diffusion at the α/β
interfaces and motion by mean curvature at the α/α
grain interfaces. An existing crystal plasticity finite 
element approach developed in a level-set context 
[20] [17] will also be used to model the deformation 
of the α lamellae.

t=0s
t=0.2s

t=1s
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