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Introduction

Metal forming

Metallic materials are extensively used in the transport and energy industries among others.
These materials can be high-performance metal alloys, as in turbine engines of planes and ships.
Since these alloys have large production costs, metals of lower performance can be preferred,
such as iron and aluminum alloys. A last category of metallic materials, called metal matrix
composites, are composed of a main component called the matrix, which is a metal alloy, and
other microscopic components. These other components, called reinforcements, inclusions,
particles or fibers depending on their properties, are used to improve some specific characteristics
such as strength, resistance to corrosion etc., with respect to the matrix material alone.

For all those metallic materials, from composites to high-performance alloys, failure is an impor-
tant issue that has to be predicted and controlled. Indeed, a better prediction of failure would
enable more efficient forming processes, reducing both the cost and the environmental impact of
fabrication. Additionally, in many sectors such as the transport industry, a better understanding
and modeling of failure mechanisms would permit the use of advanced composite materials,
reducing the weight of the products and their energetic consumption.

The occurrence of failure is highly linked to the flawlessness of the material. Even in high-
performance alloys, defects can be found, as voids or inclusions may be trapped inside the
material during its forming, or may appear during heat treatments due to chemical reactions. For
alloys and composites, the defects are linked to the reinforcements themselves, or the different
components of the alloy. Indeed, the bond between the different components may fail, or the
difference of strength between the components may induce local stress increase and eventually
failure. This failure of some components of the microstructure or the bonds between these
components due to mechanical loading gives rise to microscopic voids that are at the origin of
materials’ damage.

Depending on several aspects of the microstructure, such as anisotropy, density of each compo-
nent, arrangement and shapes of the components, voids may nucleate and grow in very complex
patterns. This complexity will be strongly increased if loading itself is complex. Indeed, final
pieces are generally the product of several forming stages, each relying on various loading
modes (compression, tension, shear). These modes may be combined or applied consecutively
in different directions. Such a loading path is very frequent in metal forming and is referred to as
non proportional and complex loading path.

Last but not least, metal forming processes are based on irreversible and large deformations,
and hence plasticity. In general, plasticity and damage will develop concurrently in the whole
material, and will localize in some regions. This localization may be desired or not depending
on the forming process, hence it needs to be accurately predicted, controlled, and sometimes
avoided. In particular, simulations tools should determine accurately the local distributions of

9



10 METAL FORMING

plasticity and damage.

Both plasticity and damage will have an effect on the materials behavior, as plasticity will
generally lead to hardening, while damage will generally lead to softening. For realistic forming
simulations, both these effects have to be modeled. More complex aspects of plasticity and
damage could also have to be modeled depending on the material and the loading conditions:
anisotropy, competition between localization events at multiple scales, dependence on tempera-
ture and pressure, etc.

Recently, a global effort was initiated at the Center for Material forming - MINES ParisTech
(Cemet - MINES ParisTech) with the aim of developing innovative and efficient numerical
simulation tools for predicting and modeling the influence of forming processes on metals, and in
particular on their microstructure. This focus on the microscale is motivated by previous works at
Cemef - MINES ParisTech where these processes were addressed only at the macroscale, raising
important limitations, and experimental results showing the importance of the microstructure [1].
Ultimately, these simulation tools should account for all aspects that interest industrial partners,
based on appropriate numerical models for static and dynamic recrystallization [2, 3], crystal
plasticity [4], and ductile fracture [5, 6]. Virtual microstructures can be generated based on
statistical data [7], but real microstructures based on experimental observations are also targeted
[6]. In the case of damage and fracture, generalization of these developments to other materials,
such as polymer matrix composites, is not discarded, as these materials are also intensively
studied at Cemef - MINES ParisTech and are of great interest for industrial partners [8]. Finally,
in many applications, not only should the influence of macroscopic loading conditions on the
microstructure be modeled, but also the influence of this evolving microstructure on the macro-
scopic behavior of the material.

The micromechanisms of ductile fracture are briefly described hereafter, based on experimen-
tal approaches. Theoretical and numerical approaches are then considered, including existing
models to predict the occurrence and growth of damage. An emphasis is made on previous work
at Cemef - MINES ParisTech regarding micromechanical modeling and its limitations in order
to introduce the objectives of the present work.
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Ductile fracture: physics

The increasing use of metals and metal forming in the twentieth century has led researchers to
investigate ductile damage through the nucleation and growth of voids, using both experimental
and numerical means. With the development of advanced observation tools based on electrons
or X-rays, the microstructure of materials and the microscopic defects can be observed both in
two dimensions (2D) [9, 10, 11, 12, 13, 14] and three dimensions (3D) [15, 16, 17, 18, 19, 20].
These techniques enable to reconstruct the microstructure in 2D or 3D, including the crystal
structure of metals [15], with a high resolution (0.1 um to 1 wm). With advanced loading devices,
the nucleation and growth of defects can be observed in-situ [17, 19, 20, 21, 22], which is
very important as the same microstructure is then observed throughout loading. As opposed to
destructive imaging techniques, these in-situ techniques avoid all issues linked to experiments
reproducibility, thus easing results interpretation and modeling.

Experimental images obtained using these advanced observation techniques are presented in
Figure 1.

macroscopic,
- crack o

Figure 1 — Failure of a nodular cast iron specimen observed with Synchrotron Radiation Com-
puted Laminography (SRCL) during an in-situ tensile experiment. The distance between the two
holes is 1 mm. Courtesy of T. F. Morgeneyer.

These images correspond to a flat specimen of nodular cast iron, which at the microscale
features a ferritic steel matrix and graphite inclusions. In this material, damage nucleates under
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tension by debonding of the inclusions from the matrix. The nucleated voids then grow inde-
pendently from each other, until void growth starts to accelerate between neighboring voids.
This acceleration is the onset of void coalescence, which accumulates until the initiation of a
macroscopic crack. This crack will propagate until final failure of the specimen.

Ductile damage is defined by these void nucleation, growth and coalescence mechanisms,
that are highly dependent on the microstructure of the material. Due to the microscopic voids
that are present and growing in the material, its load carrying capacity will be progressively
affected, which will translate into softening of its mechanical response, as shown in Figure 2.
This softening may be more or less pronounced depending on the material and loading conditions.
While void nucleation and growth occur all along loading and lead to a progressive softening of
the mechanical response, void coalescence leads to an acceleration of this softening effect which
is significant only at large plastic strain.

coalescence

¥ &

inal failure -

force

nucleation

displacement

Figure 2 — Typical force/displacement curve of a ductile material under tensile loading. The
micromechanisms of void nucleation, growth and coalescence occur during the whole loading
path, but each mechanism is dominant at different loading steps. X-ray images are a courtesy of
T. F. Morgeneyer.

Finally, the initiation of the macroscopic crack, well-known as the damage to fracture transi-
tion, is the final step of ductile fracture. Modeling this step is only important for some forming
processes such as self-pierce riveting [23] or cutting [24], as in other processes macroscopic
cracks tend to be avoided.
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Ductile fracture: models

In this section, ductile fracture modeling is reviewed, with an emphasis on the limitations of
macroscopic models, and the necessity to look at the microscale. A first category of models,
known as uncoupled models, or damage indicators, can be found in the literature. These models
can have an empirical basis, such as the Latham & Cockcroft model, or a theoretical basis,
such as the McClintock [25] and Rice & Tracey [26] models. The application of these damage
indicators remains limited to situations where damage accumulates without influencing the
material’s load carrying capacity (softening is neglected).

In the second half of the twentieth century, a new theory, known as continuum damage models,
has been developed, enabling to predict the initiation and growth of damage and its impact on
the material’s elastic and plastic response, until fracture [27, 28]. Both damage indicators [24,
29, 30] and continuum damage models [23, 24, 31, 32] have been applied at Cemef - MINES
ParisTech to various metal forming processes where softening or ductile fracture had to be
predicted accurately. These studies have shown that in some loading conditions, these models
can be calibrated in order to obtain accurate predictions.

However, for complex loading conditions, some modifications are necessary. For instance, the
continuum damage model proposed initially by Lemaitre [28] is well-known to give poor predic-
tions when the material is locally subjected to compression. A modified version has hence be
used for some forming processes in recent works [23, 31]. Generalized versions of the Lemaitre
model have also been investigated [32]. These modifications are however phenomenological,
which makes difficult to link the notion of damage to the physical mechanisms of voids nucle-
ation, growth and coalescence in ductile materials.

Homogenization theory enables to overcome this specific difficulty. A study at the microscale
of the growth of a single void embedded in an infinite matrix was performed by Gurson [33],
inspired by previous works of McClintock [25] and Rice & Tracey [26]. An analytical solution
was derived thanks to quite restraining assumptions, and averaged in order to deduce a porous
plasticity load surface taking into account both plasticity and porosity. Among these assumptions,
the matrix was defined as rigid plastic, and the Representative Volume Element (RVE) used
for homogenization did not take into account neighboring voids. The widely used Gurson-
Tvergaard-Needleman (GTN) model introduces three phenomenological parameters in order to
adjust this load surface [34] and completes Gurson’s void growth model with two contributions
corresponding to void nucleation and coalescence [35]. The Gologanu-Leblond-Devaux model
[36] extends the GTN model to non-spherical voids, improving predictions under shear, where
voids do not grow but mainly rotate.
The GTN model has been used at Cemef - MINES ParisTech [32], and especially its extensions to
shear loading. These extensions typically introduce numerous parameters that require advanced
identification procedures [32]. Additionally, while the model proposed by Gurson is microme-
chanical and accounts for the physical mechanism of void growth, all extensions based on the
GTN model add phenomenological parameters to the model. Thus, while these extensions give
more realistic results regarding plasticity and softening, the link between model predictions and
the physical micromechanisms of ductile fracture is deteriorated. Another important limitation is
that because each extension of the Gurson model targets a specific loading configuration, and a
general model that could handle all possible loading conditions accurately is yet to be formulated,
applications to non proportional loading paths are limited.
As a conclusion, there is a need to understand the limitations of common damage models, and
develop damage models taking into account the microstructure and allowing for an accurate
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characterization of the microstructure and the potential defects.

In this aim, Finite Element (FE) analysis is often conducted at the microscale [37, 38]. These
investigations are performed in conditions close to the ones used by Gurson in his homogeniza-
tion methodology. The main advantage of numerical approaches is that they do not require too
restraining assumptions since solution is performed numerically and not analytically. However,
most works generally do not address the nucleation and coalescence of voids in the RVE. In
case of nucleation, FE analysis is performed on an RVE containing particles, and nucleation is
predicted after the simulation based on average stress measurements. In the same way, coales-
cence is studied with an RVE containing voids instead of particles. These works do not allow to
raise any conclusions regarding the possible interactions between void nucleation, growth and
coalescence, especially in the case of realistic microstructures where particles are distributed
randomly, and can have various shapes and sizes.

Based on these observations on existing works, an FE framework was developed at Cemef -
MINES ParisTech in order to perform simulations taking into account realistic microstructures
and modeling ductile fracture mechanisms at the microscale. The goal was to include microme-
chanical models accounting for the whole ductile fracture process, from void nucleation to final
failure of the RVE due to void coalescence.

This work was based on advanced numerical tools available in the laboratory FE code [5], which
were extended in order to model fracture events [6]. Promising results were obtained in 2D,
as real microstructures could be meshed and subjected to various loading conditions, proving
qualitatively the influence of loading path on ductile fracture. However, several limitations were
encountered, especially for 3D applications.

In particular, these developments relied on the LS method, which is described in details farther in
this work. This method helps the modeling of interfaces at large deformations and with complex
topological events such as voids coalescence. However, it has the main flaw of raising volume
conservation issues when it is combined with remeshing, which is necessary in order to reach
large plastic strains. Very fine FE meshes were used in previous developments to prevent the
geometry from being diffused. As the Level-Set (LS) method was also used to represent cracks,
sharp cracks could not be represented and were replaced by spherical nuclei, which were initially
given a quite large radius in order to avoid them being also diffused.

Then, the LS method does not include an interface modeling technique. The transition between
different material behaviors at interfaces was modeled using mixture laws, which are quite
complex to formulate for very different behaviors such as an elastic inclusion and a plastic matrix,
or a void and a solid.

Additionally, the remeshing technique relied on some specific properties of the LS method,
which require a reinitialization technique in order to be maintained during deformation. No
robust and efficient technique was available in the FE code to perform this operation.

Finally, some important aspects of solid mechanics such as contact were neglected, and the
fracture criteria used to model the micromechanisms of ductile fracture had yet to be extended to
3D.

Due to these limitations, very fine FE meshes and hence high computational resources were
necessary in order to reach large plastic strains in 2D. Consequently, applications to complex 3D
microstructures could not be considered. The latter are necessary not only to study the influence
of complex three-dimensional loading paths on ductile fracture micromechanisms, but also to
validate micromechanical models. Previous developments at Cemef - MINES ParisTech did not
address the challenging problem of validating micromechanical FE simulations with respect to
experiments since it was difficult to get reliable and accurate data all along loading history.
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Objectives and outline

The aim of the CORTEX Carnot Mines project was twofold: improving the FE method for
micromechanical modeling of ductile fracture, ideally to enable 3D simulations on real mi-
crostructures, and validating quantitatively the developments. The pursuit of the second objective
was largely aided by the start of the ANR COMINSIDE project during the second year of the
present study, which involved teams from the Centre des Matériaux (MINES ParisTech) and the
LMT Cachan (ENS Cachan). This manuscript details the contributions of the work done within
the Carnot CORTEX project and their use in the frame of the ANR COMINSIDE project.

e A literature review is first proposed in Chapter 1, with a more thorough description of
micromechanical modeling and homogenization theory. As micromechanical calculations
are often conducted with the FE method, a brief description of this method and the
numerical scheme used at Cemef - MINES ParisTech is given. The Gurson model and its
extensions are discussed, with an emphasis on studies relying on numerical calculations.

e Before introducing any material behavior law or fracture criteria, important numerical
issues have to be answered. Among them, an appropriate methodology has to be introduced
in order to represent the microstructure in an FE context. This methodology should be
compatible with the numerous and complex void nucleation, growth and coalescence
events that will occur during the simulation, as shown in Figure 1.

The numerical method presented in Chapter 2 and proposed in the present work to solve this
problem relies on two main tools, namely the LS method and mesh adaptation. In particular,
results are presented to prove that the proposed mesh adaptation technique improves
significantly a major defect of the LS method, which is volume conservation. However, it
is shown that the advantages of the LS method are preserved, with no significant increase
of the computational cost. The application of this method in the frame of computational
fracture mechanics and the meshing of sharp cracks during the simulation is also described.

e In the aim of addressing real microstructures, three important ingredients are added to the
numerical method in Chapter 3, and applied to real microstructure meshing, based on 3D
X-ray data.

The first ingredient is an error estimator, enabling to achieve better accuracy in the
representation of the microstructure’s geometry. This estimator has been found in the
literature and implemented in the FE library developed at Cemef - MINES ParisTech.
The two other ingredients are necessary in order to address void growth at large plastic
strain, and ductile fracture modeling. Indeed, a LS reinitialization procedure is needed to
maintain the regularity of the LS method, especially when large deformations occur. Such
procedure was already implemented in the FE code, but its robustness and computational
cost were quite limiting for 3D applications. A new procedure is proposed in the present
work, and its efficiency both in terms of accuracy and computational cost is compared to
existing approaches. This method is completed with a connected components identification
algorithm, which is necessary in order to assess fracture criteria individually for each
inclusion or void.

Finally, these three ingredients are used to mesh real microstructures based on 3D X-
ray data, where the geometry is accurately captured thanks to the error estimator. The
regularity of the LS method is enforced thanks to LS reinitialization, and the different
inclusions and voids of the microstructure are identified thanks to connected components
identification.
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e With the enhanced LS method and its additional ingredients detailed in Chapter 2 and

Chapter 3, simulations can be conducted with microstructures that undergo large defor-
mations and complex topological events such as fracture or coalescence. The remaining
open questions are linked to constitutive modeling. As the focus is on damage modeling,
a simple plasticity model is used for the matrix material, while a more thorough biblio-
graphic study is conducted to develop appropriate fracture criteria to predict and model
void nucleation. These models are presented in Chapter 4, and used in micromechanical
calculations conducted in the frame of homogenization theory. Convergence results are pre-
sented with respect to numerical parameters and RVE size, and the importance of modeling
simultaneously void nucleation, growth, and coalescence mechanisms is demonstrated.

While void coalescence is assumed to be purely driven by plastic localization in Chapter
4, recent experimental observations suggest that this phenomenon may be more complex.
These experimental studies are reviewed in Chapter 5, and a micro-cracking criterion is
proposed to predict the initiation of micro-cracks in intervoid ligaments. This criterion is
used in 2D simulations and compared to experimental results found in the literature.

Validation with respect to 3D data acquired during in-situ experiments is addressed in
Chapter 6. Thanks to the experimental-numerical framework presented in this chapter, 3D
numerical simulations taking into account real microstructures and measured boundary
conditions are conducted and compared locally with 3D observations during loading. To
the author’s best knowledge, this is the first time such simulations are conducted, and that
local error measurements with respect to experiments are considered in the case of ductile
fracture.

Finally, Chapter 7 sums up the main developments and achievements of this work and
highlights several ideas of improvement related to the field of ductile fracture. Applica-
tions of the numerical tools developed in this work to other materials (e.g., polycrystals,
polymer matrix composites) and challenging research problems (e.g., static and dynamic
recrystallization, fluid-structure interaction, multiphase flow) are also considered.
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You can’t go walking through
Mordor in naught but your skin.

Samwise Gamgee
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Résumé en francais

Tout matériau métallique est hétérogene a 1’échelle microscopique, que ce soit a cause de sa
structure cristalline, des renforts, ou encore des défauts. Ainsi, la microstructure de ces matériaux
est composée de plusieurs phases métalliques, souvent elles-mémes séparées par des particules
non métalliques et des cavités. Les interfaces entre ces différentes composantes sont des sites
de concentration de contraintes pendant le chargement, ce qui mene a la germination de cavités.
Ce phénomene de germination peut se manifester par la décohésion, qui est due a la rupture
d’une interface entre deux composants, ou par la fragmentation, qui est due a la rupture d’un des
composants.

Les cavités ainsi germinées croissent indépendamment les unes des autres pendant le chargement,
jusqu’a un certain point critique ou elles commencent a interagir entre elles. Ce point critique est
le début de la coalescence des cavités. Il est marqué par une accélération de la croissance des
cavités s’avoisinant, jusqu’a leur liaison totale, qui est parfois accompagnée de micro-fissures.
L’accumulation de ces liaisons entre paires de vides mene a la formation d’une macro-fissure, et
a la rupture ductile finale du matériau.

Ainsi, la rupture ductile est complexe par nature, car des fissures se développent a deux échelles.
Par ailleurs, de récentes études a la fois expérimentales et théoriques mentionnent que plus de
deux échelles pourraient €tre impliquées, de par I’existence de cavités de taille inférieure au
micrometre qui pourraient avoir une influence majeure sur la coalescence des cavités de taille
supérieure. Les études expérimentales ont un rdle clé et ont beaucoup aidé a la compréhension
de la rupture ductile, grice notamment aux techniques d’imagerie par rayons X. Ces techniques
permettent aujourd’hui I’observation in situ de la rupture ductile, pour des éprouvettes jusque
quelques millimetres d’épaisseur et une résolution proche du micrometre.

Des algorithmes de suivi automatique de cavités ont été développés pour obtenir des mesures
locales de la croissance des cavités a partir de ces données tridimensionnelles (3D). Il y a un
fort besoin pour ces techniques de pointe a cause de la distribution aléatoire des cavités dans le
matériau, et de la distribution également aléatoire de leurs tailles. Afin d’éviter ces difficultés,
certains auteurs ont étudié la conception de matériaux modeles avec des trous percés au laser.
Ajouté a cette nature complexe et multiéchelle de I’endommagement, 1’interaction de ce dernier
avec la plasticité représente un défi supplémentaire pour les scientifiques a la fois en expéri-
mentation et en modélisation numérique. L’extension récente des techniques de corrélation
d’image a la 3D est prometteuse car les mécanismes de localisation plastique peuvent maintenant
étre mesurés localement. Ces résultats suggerent que dans certains matériaux la plasticité se
développe de maniere significative avant toute coalescence de cavité.

La modélisation de phénomenes multiéchelles requiert une théorie mathématique multi-
échelles. L’application analytique de la théorie de I’homogénéisation a la rupture ductile
représente une des pistes les plus prometteuses dans I’objectif d’obtenir des criteres de plasticité
et d’endommagement inspirés de I’échelle microscopique, mais s’appliquant a I’échelle macro-
scopique. La revue bibliographique conduite dans ce chapitre a propos de ces calculs analytiques
se restreint au modele de Gurson, qui ne prend en compte que la croissance de cavités. Les
aspects germination et coalescence sont abordés de maniere plus détaillée dans les chapitres 4 et
5.

Le modele de Gurson et ses extensions sont basés sur des hypotheses trés contraignantes en ce
qui concerne la microstructure des matériaux considérés, les lois constitutives utilisées a 1I’échelle
microscopique, et les conditions de chargement. Afin de quantifier les erreurs produites par ces
modeles, et contribuer a leur amélioration, les approches multiéchelles numériques sont d’un
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grand intérét.

Ces approches numériques empruntent la méme théorie multiéchelles que celle utilisée pour
I’homogénéisation analytique. La différence principale réside dans le fait que la solution du
probleme d’homogénéisation est calculée numériquement, le plus souvent en utilisant la méthode
des éléments finis, qui consiste a représenter toutes les inconnues a I’aide d’un maillage et de
variables discretes portées par les nceuds de ce maillage. Ainsi, on peut s’ atteler a la modélisation
de microstructures complexes, avec des lois constitutives avancées a I’échelle microscopique, et
des conditions de chargements arbitraires.

Cependant, la plupart des analyses éléments finis existantes dans la littérature se restreignent
a des microstructures idéales. Les volumes élémentaires représentatifs utilisés ne contiennent
en général qu’un seul vide, avec des conditions aux limites périodiques. Certaines études ont
également considéré les inclusions, mais les mécanismes de germination sont souvent idéalisés,
notamment en faisant I’hypothese d’une décohésion initiale ou d’une inclusion pré-fragmentée.
En effet, des méthodes numériques et modeles micromécaniques avancés restent a dévelop-
per pour la prise en compte d’inclusions de formes, tailles et distributions arbitraires, et des
mécanismes de germination, croissance et coalescence complexes engendrés par de telles mi-
crostructures, pour de large déformations plastiques. Le développement de telles méthodes fait
partie des défis a relever dans cette these, ce qui est abordé dans les chapitres suivants.
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Introduction

This literature review is split into two main parts. The first one addresses ductile fracture as a
physical phenomenon that calls for advanced experimental means. Thanks to the latter, the voids
nucleation, growth and coalescence mechanisms can be observed in two dimensions (2D) and
three dimensions (3D) in various loading configurations. In the second part, the modeling of
these mechanisms is considered. As proposed in the fundamental works of McClintock [25] and
Rice & Tracey [26], ductile fracture calls for micromechanical modeling, because the influence
of macroscopic loading conditions on the microstructure has to be studied. Mathematically
sound principles have to be introduced in order to make this transition from macro to micro.
Additionally, in the work of Gurson [33], this mathematical reasoning was elaborated further
in order to also include an influence of the microstructure on the macroscopic behavior. These
different steps are described herein, including a review of previous works at the Center for
Material forming - MINES ParisTech (Cemef - MINES ParisTech).
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1.1 Experimental methods

In this section, the void nucleation, growth, and coalescence mechanisms are described based on
experimental observations. In particular, a focus is made on the physical phenomena that lead
to these damage events under various loading conditions, while their modeling is addressed in
Chapter 4 and Chapter 5.

As ductile fracture is still an open research topic, many questions are raised in this section and
multiple assumptions are proposed to explain the different phenomena. Thanks to the numerical
modeling tools and the experimental-numerical framework proposed in this work, the validity of
these assumptions can be studied for various conditions.

1.1.1 X-ray imaging

Since the ultimate objective of the present work is comparison with experiments in 3D at the
scale of a Region Of Interest (ROI) containing up to hundred inclusions and voids, it is important
to discuss the experimental means that permit the acquisition of 3D data. Although the present
work focuses solely on numerical modeling, a 3D description of the materials microstructures
is required to start calculations, and voids have to be observed during loading to compare with
experiments.

Most techniques used in recent experimental studies on ductile fracture are based on X-ray
imaging. As used for example in medicine, an X-ray Computed Tomography (CT) scan consists
in an X-ray source and X-ray sensors placed around an object (which is a part of the human body
in medicine) that needs to be scanned [9, 17, 19, 20, 21]. Since X-ray absorption is different
depending on the materials, the attenuation of the X-ray beam between the source and the sensors
will vary spatially, and the resulting 2D X-ray image will show this contrast. By rotating either
the object or the source and the sensors, multiple scans can be acquired. These multiple 2D
radiographs can be used to reconstruct a 3D view of the object, using a filtered back projection
algorithm [62].

Due to a significant X-ray absorption of some metallic materials, even using very high energy
beams, and the very small size of the features to observe (microscopic voids), even using high
resolution sensors, only small regions of ~ 1 mm? can be observed. Since the beam has to go
through all sections of the specimen in order to obtain projections during a whole rotation, the
thickness of the samples is also limited. Therefore, tomography is typically applied to round
tensile samples of radius up to = 1 mm in the region crossed by X-rays, as illustrated in Figure
1.1(a). In fact, these very high energy X-ray beams can only be obtained thanks to specific X-ray
sources such as synchrotron radiation, which are difficult and expensive to access.

Even using Synchrotron Radiation Computed Tomography (SRCT), the restriction of round
samples is quite limiting. An alternative, known as Synchrotron Radiation Computed Laminog-
raphy (SRCL), has been proposed in order to overcome this limitation. Small sections are still
required, but only in one direction, hence enabling the use of flat specimens, that are interesting
in ductile fracture experiments as localization events at multiple scales are studied [16, 22, 63,
64, 65]. The use of these flat specimens is possible because the rotation of the material is no
more done around the tensile direction, as illustrated in Figure 1.1(b).

Apart from the developments of these imaging technologies, an important difficulty raised by
ductile fracture is the reproducibility of experiments. Since only a small region is observed, the
failure of this region will be significantly influenced by the local microstructure, and results such
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Figure 1.1 — Schematic drawing of: (a) a typical Synchrotron Radiation Computed Tomography
(SRCT) setup, (b) a typical Synchrotron Radiation Computed Laminography (SRCL) setup,
8 ~ 60°. Figures reproduced respectively from [63] and [22].
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as crack propagation patterns will vary from one experiment to another. In order to understand
the progressive damage and failure phenomena that will occur, it is important to observe them at
different loading steps, for the same microstructure. This challenge has led to the development
of in situ experimental procedures that rely on advanced loading machines [17, 19, 20, 22]. In
the case of tomography and laminography experiments, the main difficulty in the development of
these machines is that they will be placed on a rotating stage, hence limiting their size and weight.

Results obtained during in situ tensile experiments and using X-ray imaging procedures
on various materials are presented in Figure 1.2. The microstructure is clearly distinguishable,
together with the subsequent void nucleation, growth and coalescence mechanisms. The influence
of each material’s X-ray absorption properties on the contrast of the final image also appears
in this figure. For instance, the distinction between the void phase and the particle fragments
in Figure 1.2(b) is not obvious. This issue is problematic for some materials, which therefore
cannot be studied with these X-ray techniques.

Matrix: pure aluminium
)
particles =
S
-
void ié—
. ~— \
nucleation ;
particle
fragments

particles

(b) void nucleation (c)
and growth

Figure 1.2 — X-ray images: (a) Computed Tomography (CT) images of aluminum alloys rein-
forced with zirconia/silica (ZrO,/Si0O,) particles, figures reproduced from [66], (b) CT image of
a steel sample containing manganese sulfide (MnS) particles, figure reproduced from [67], (c)
Computed Laminography (CL) image of nodular cast iron, courtesy of T. F. Morgeneyer.

1.1.2 Void nucleation

In the following, experimental results obtained using the techniques described in the preceding
section are presented, with a focus on void nucleation. As stated in the introduction of this
manuscript, the microstructure of metal alloys is composed of a matrix, which is the main
component of the alloy, particles, that are the different components of the alloy, and voids, that
are the physical sign of damage. Void nucleation occurs either by particle fragmentation or
particles/matrix interfaces debonding [21, 37, 68, 69, 70, 71].
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In Figure 1.3, Scanning Electron Microscopy (SEM) images featuring both void nucleation
modes are shown. These pictures correspond to an aluminum alloy reinforced with aluminum
oxide (Al,O3) and silicon carbide (SiC) particles [72], meaning that particles can be of different
compositions. Additionally, it is clear from the SEM images that particles can also be of different
sizes, shapes, and arrangements. These properties of the microstructure have a large influence
on void nucleation, that has been studied in the literature. Other external conditions, such as
temperature and loading type have also been studied.

(@) | )

Figure 1.3 — SEM images of: (a) particle/matrix interface decohesion, (b) particle fragmentation.
Loading was tension in the horizontal direction. Figures reproduced from [72].

1.1.2.1 Loading direction / particles orientation

Based on [73, 74], it is clear that under tensile loading particles elongated along the loading
direction tend to break whereas interface debonding is favored for particles elongated in the
transverse direction. However, there is no such conclusion for intermediate orientations or
complex loading paths. Though experiments on randomly oriented particles have already been
carried out [70, 71, 75, 76], there is a lack in Finite Element (FE) modeling of these situations
and comparisons with experiments.

1.1.2.2 Particles size and shape

The effect of particle size was observed in some studies [74, 77, 78]. It appears that bigger
particles tend to break earlier during loading than smaller ones. This can be explained statistically
as bigger particles contain more defects. Shape is related to the effect of particle orientation that
has already been described. Furthermore, it has been observed that the most elongated particles
are more prone to breaking than spherical ones [74, 78, 79]. This is also called the aspect ratio
effect.

1.1.2.3 Temperature

The influence of temperature was first observed in Reference [73]. A more precise study was
made in Reference [80] by in situ observation of void nucleation in a metal matrix composite
containing titanium carbide (TiC) inclusions. The experiments at different temperatures showed
that interface decohesion is the major mode of void nucleation at higher temperatures (> 800° C
for the considered material) whereas particle fragmentation is observed at lower temperatures.
Similar discussions can be found in Reference [70].
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1.1.2.4 Matrix/particles properties mismatch

The strong dependence between void nucleation modes and mechanical properties of both phases
(particle and matrix) has been mentioned above. In the case of an elastic-plastic matrix containing
elastic inclusions, the effect of matrix hardness has been studied by some authors [21, 68, 78,
79]. A qualitative conclusion is that a harder matrix favors particle fragmentation, while a
harder particle favors decohesion. The same conclusion was raised in Reference [81] for elastic
inclusions in an elastic matrix.

1.1.2.5 Particles volume fraction and distribution

This effect is somehow related to the effect of properties mismatch. Indeed, it is clear that if the
matrix contains more reinforcement, it can be modeled as a harder material when considering an
isolated particle. Then, the conclusion that a harder matrix favors particle fracture can be applied
[71, 78].

However, literature also mentions other effects, as the effect of stress relaxation caused by
void nucleation [69, 74]. In recent studies [75, 76], it has been observed by means of SEM
imaging of an aluminum alloy matrix containing SiC inclusions that void nucleation by particle
fragmentation or interface debonding favors void nucleation in neighboring reinforcements. This
effect was also studied in Reference [69].

1.1.3 Void growth and coalescence

While void nucleation is clearly defined as it occurs in two precise modes of fragmentation and
debonding, it is less obvious to distinguish the different modes of void growth and coalescence.
First, void growth is characterized by the fact that the void does not interact with any neighboring
voids. In particular, in the absence of coalescence, there is no acceleration or deformation of
the free surface that could indicate the presence of a neighboring void. On the contrary, void
coalescence is characterized by an acceleration of void growth, and in particular the accelerated
growth of a singularity on the free surface. This distinction is illustrated in Figure 1.4 for
cylindrical voids under tension or shear. The shape of the voids at the onset of void coalescence
may vary because the latter does not generally occur at the same instant in all materials. For
instance, the rotation of the voids may be more or less significant before void coalescence occurs
in the shear case in Figure 1.4(b). The distinction between void coalescence under tension and
shear, including the 3D aspects, are detailed in the following.

growth ! coalescence
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Figure 1.4 — Schematic drawing of the distinction between void growth and coalescence for two
cylindrical voids under: (a) tension, (b) shear.
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The main challenges regarding void coalescence modeling are the prediction of the singularity

on the free surface and its location depending on void arrangements and loading type. In the
case of complex loading paths, loading history is also an important factor.
From an experimental point of view, voids are generally randomly distributed and hence difficult
to observe [22, 66, 82]. In Reference [83], the authors have proposed to manually insert holes in
test materials (an aluminum alloy, a copper alloy, and pure copper) by means of laser drilling.
Based on this technique, 2D experiments were carried out with two or more holes, where hole
spacing and positioning could be controlled, and void growth and coalescence were observed us-
ing SEM [83]. This procedure was also extended to 3D experiments [84], using CT observations
[10, 17, 85, 86]. These results have shown that there are at least two distinct void coalescence
mechanisms under tensile loading, depending on hole arrangements. When the holes are aligned
perpendicular to the tensile direction, voids grow towards a diamond shape, with a significant
necking of intervoid ligaments, until final failure of these ligaments. As shown in Figure 1.5,
this effect is observed both in 2D and 3D.

00000000 D000 0

Figure 1.5 — Experimental observation of void coalescence by intervoid ligament necking: (a)
SEM images of a 2D test using an aluminum alloy, (b) CT reconstruction of a 3D test using a
copper alloy. Figures reproduced from [87].

When the holes are aligned at 45° with respect to the tensile direction, a localization mech-
anism takes place between neighboring holes aligned in bands at 45°. This localization in
shear bands leads to failure along these bands. Another main aspect of this shear coalescence
mechanism is that if coalescence occurs at sufficiently large plastic strain, especially if the void
spacing is large, the voids rotate and flatten in the direction of the shear band. This mechanism is
specific to shear-dominated loading, and raises the issue of modeling a major change in void
morphology, with no significant change in void volume. As shown in Figure 1.6, shear-band
coalescence is observed both in 2D and 3D, but the flattening of the voids can be more or less
pronounced, and the amount of growth the voids undergo before coalescing also varies.

Due to these two mechanisms of intervoid ligament necking and shear-band coalescence,
voids rarely coalesce along the tensile direction. However, this mechanism does exist, especially
if voids are very elongated along the tensile direction (for example if voids nucleated around
particles that were already very elongated in that direction). This mechanism, known as voids
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Figure 1.6 — Experimental observation of void coalescence by strain localization in shear bands:
(a) SEM images of a 2D test using an aluminum alloy, (b) CT reconstruction of a 3D test using a
copper alloy. Figures reproduced from [87].

collapse, or necklace coalescence [37, 88], is illustrated in Figure 1.7. Because this mechanism
is linked to pre-existing anisotropy of the microstructure in the initial material, it has been often
disregarded for void coalescence modeling.

Figure 1.7 — Experimental observation of necklace coalescence during tensile tests (in the vertical
direction) on a steel alloy. Figures reproduced from [88].

Recent works on void coalescence modeling focused on modeling void coalescence by
intervoid ligament necking and shear-band coalescence in the presence of plasticity, hardening,
and general loading conditions. A physical interpretation of these phenomena is that plasticity
localizes at least at two scales. The first scale leads to plastic localization bands that include
totally multiple voids, while the second scale is finer and leads to plastic localization bands be-

tween voids. This second category includes plastic localization due to necking or shear between
neighboring voids [38, 89].
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Going further with this interpretation, damage could also occur concurrently at these two scales.
The first population of voids would be totally included in the first category of localization bands,
while the second category of voids would be totally included in the second category of bands.
This second void population would hence be of submicron size for typical metal alloys. The
presence of these smaller voids would mean that intervoid ligament necking and shear-band
coalescence would not only be explained by plasticity, but also damage at a lower scale. An
attempt to classify these different ductile fracture modes is shown in Figure 1.8.
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failure by localized failure by damage failure by ductile tearing
failure by localized plastic flow prior to softening included failure by void from void coalescence
plastic flow damage localized plastic flow coalescence induced microcracks
macroscopic plastic localization dominated void coalescence dominated
failure failure
‘engineering failure’ when localization ‘engineering failure’ usually when a
starts; key in plastic forming processes microcrack initiates; key in most structural
but also in some structural problems applications and in some forming problems

involving large shear components and/or
very pure metals

Figure 1.8 — Classification of ductile fracture modes depending on the balance between plasticity
and damage at multiple scales. Figure reproduced from [89].

To prove or discard these theories, yet more advanced experimental means are necessary. As
explained above, recent X-ray imaging techniques typically have a resolution of the micrometer.
In order to validate the presence of submicron sized voids, it would be necessary to apply
nanotomography or nanolaminography techniques to ductile fracture experiments. An additional
difficulty would be to simultaneously quantify plasticity together with damage [22].

1.1.4 Digital Volume Correlation

An interesting aspect offered by in situ experiments is that 3D images of the same microstructure
at consecutive loading steps are available. While most authors rely only on averaged information,
such as the total porosity over each image [1, 20, 21, 64], the possibility of considering inclu-
sions and voids individually based on manual [64] or automatic [20] procedures is now being
considered. The purpose of this approach is to study the participation of isolated voids in the
coalescence and failure process.

While these techniques are based on geometrical information, such as the volume of each void
and its change, a more global approach is offered by Digital Volume Correlation (DVC). This
technique is the 3D extension of Digital Image Correlation (DIC). The latter is now available
in multiple commercial codes and is used extensively to identify material properties, especially
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when damage models are involved [90, 91, 92].

DIC relies solely on 2D images of the surface of the specimen, where contrast is usually enhanced
by speckling the specimen. Consecutive images are compared and a least-squares problem is
solved, where the variable is the 2D displacement field u to go from the first image to the second
one, and the objective function to minimize is the gray level residual. This residual is defined as
the difference between the first image deformed by the given displacement field g(x + u(x)), and
reference image f(x). It is coined gray level residual because the colors of the two images are
directly subtracted and summed on the whole domain.

In most cases, this problem is ill-defined. For instance, if the speckle is too coarse with
respect to the mesh used to discretize the displacement field, the contrast may be insufficient and
poor compared to the number of unknowns to determine. This problem is drastically increased in
DVC [93, 94, 95, 96], as it is impossible to speckle inside the specimen. The method hence relies
directly on the microstructure in order to obtain contrast. It can work only for materials with a
significant density of particles and voids, and the mesh used to discretize the 3D displacement
field will generally be of size comparable to that of these features [65, 97, 98, 99]. Additionally,
the space of possible solutions can be reduced by adding continuity and mechanical admissibility
constraints [100].

The important aspects are that DVC yields 3D displacement fields between consecutive 3D

X-ray images, and that the resolution of these displacement fields is usually limited because
the formulation on which DVC is constructed is ill-defined in the absence of contrast. As
mentioned above, regularization methods have been proposed in order to help the solution of
this problem, by adding constraints to restrict the solution space, these constraints generally
being progressively relaxed during the solution [100, 101]. Additionally, while the accuracy of a
DVC result can be assessed by studying gray level residuals, the residuals themselves rely on the
presence of contrast.
With the obtained displacement fields, the formation of strain localization patterns can be studied
[22, 63]. These surprising results show that the correlation between plasticity and damage may
be more complex than what is usually assumed in the literature, and that ductile fracture may be
ruled mostly by plasticity for some materials, with negligible void growth [22, 89].
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1.2 Theoretical and numerical methods

Theoretically, a material’s mechanical response at the microscale could be studied using Di-
rect Numerical Simulation (DNS). This would mean meshing the microstructure of the whole
material, and then applying macroscopic boundary conditions directly on this mesh. It seems
obvious that such an approach would have a huge cost and could be applicable only in the case
of very small specimens. Hence, for larger specimens and industrial applications, researchers
have studied methods where micromechanics could be taken into account, without the huge
computational cost of DNS. These methods are based on the so-called homogenization theory,
that is detailed in this section, with an emphasis on its application to ductile fracture.

Added to the macroscopic domain, which is the industrial piece or ingot that is being studied,
homogenization theory introduces a microscopic domain, through a Representative Volume
Element (RVE). While the macroscopic domain is considered homogeneous, the RVE takes
into account explicitly the microstructure of the material. Most numerical studies address RVEs
containing only voids [102, 103, 104, 105, 106, 107], but computational approaches taking into
account the particles, their load-carrying capacity, and the subsequent void nucleation events
can also be found in the literature [108, 109, 110, 111, 112]. The strain and stress fields in the
macroscopic domain vary depending on loading and geometric conditions, but these variations
are small when considered at the scale of the RVE. Therefore, some macroscopic mechanical
variables can be approximated by a Taylor expansion (a polynomial) at the scale of the RVE.
This assumption is called scale-separability, and its validity depends on the ratio between the
characteristic length ¢,; of the macroscopic domain, and the size {gyg of the RVE.

An added difficulty is that the RVE has to be representative of the real microstructure of the
material. It has to be large enough so that any mechanical variable averaged on the RVE does not
depend on the choice of RVE. This means that RVE size will be larger than the average size of
an inclusion or a void £,,. As a conclusion, RVE size has to be large enough to enable a sufficient
number of realizations of the microstructure and void nucleation, growth and coalescence events,
but small compared to the structure

KM > KRVE > Km- (11)

In most metal forming applications, £y, is of the order of the millimeter, while ¢, is of the order
of the micrometer. For small pieces and especially for the small specimens used in tomography,
scale-separability is questionable since the millimeter is the size of the structure.

Once these characteristic lengths have been defined, numerous possibilities are still open. Ho-
mogenization theory has led to a wide range of so-called homogenization schemes that all allow
for analytical or numerical solution. While all these schemes rely on similar mathematical princi-
ples, the validity of these principles depends on scale-separability, and the choice of boundary
conditions. For a detailed review of all these schemes, the reader is referred to [112]. In the
following, the FE code developed at Cemef - MINES ParisTech is described to understand how
continuum mechanics equations are formulated and numerically solved. Then, some classical
homogenization schemes are presented.

1.2.1 Finite Element scheme

In this part, the FE library developed at Cemef - MINES ParisTech is described in the case of
an homogeneous material. This code is the result of numerous works on the FE method and its
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application to continuum mechanics for solid materials undergoing plastic flow [23, 32, 113,
114, 115] and then Newtonian and non-Newtonian fluids [116, 117, 118].

1.2.1.1 Continuum mechanics

In continuum mechanics, the domain Q c R? (d = 2,3) is a material or structure that moves or
deforms due to external forces. When d = 2, the continuum mechanics equations will still be
written in 3D, but strains will be assumed to remain planar. In the present work, Q will generally
be the RVE. The unknown is hence the displacement u.

The FE code developed at Cemef - MINES ParisTech considers the so-called small deformation
theory, which is implemented within an updated Lagrangian formulation. Strains are measured
by a linear approximation &, which is the symmetric part of the displacement gradient

1
S:E(Vu+Vtu).

This approximation ¢ is called strain tensor hereafter (though it is only an approximation of the
strain tensor). The relation between this strain tensor and external forces relies on the definition
of the Cauchy stress tensor o, which is defined as the internal forces per unit area induced by the
deformation of the material. The balance equation in the static case is given by

V.o =0. (1.2)

: . 1 L
Defining the hydrostatic pressure p = -3 tr(o-) and the deviatoric stress tensor s = o + pl, where

I is the identity matrix in R, this balance equation can be expressed as
V.s—-Vp=0. (1.3)

The link between o and & is material dependent, and coined constitutive model, or behavior law.
For instance, in the case of isotropic linear elasticity, it is given by Hooke’s law

o =2ue+ Atr(e)l, (1.4)

where u and A are the Lamé coefficients, and are proper to each material. They are linked to
Young’s modulus E and Poisson’s coefficient v through the relations
E Ev 2
= . }, = 9 X = /1 + = ’
21+ T =2 +v) 3#

u

where X is the bulk modulus. Inserting these relations in Equation (1.4), the latter can be
expressed in terms of s and p

1
s 2u (8 ~3 tr(s)l) (1.5)

-Xtr(e)

p

where tr(e) = V.u. In the case of small deformation elasto-plasticity, an additive decomposition
of the strain tensor into an elastic part & and a plastic part &”' is assumed

e=¢gl+ &,
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In the case of incompressible plasticity (non porous plasticity), tr(¢”) = 0, which leads to
tr(e) = tr(¢)). The constitutive equations regarding the elastic part are

el _ 1
2u (8 3 tr(s)) (1.6)
p = -Xtr(e)

S

while the plastic part depends on the definition of the yield surface f = f(o, &). Defining the

. . — . . . . ~pl .
von Mises equivalent stress o, the von Mises equivalent plastic strain rate € , and the von Mises
equivalent plastic strain " !

3 - pl 2 Ll
- . —pl =p

= \[=5:8, & = |=¢&Pl:erl = c,
V2 3 0

the von Mises (or J,) yield surface is

Ql

flo,&) =T — o),

— . . . . . =pl .
where (") is the yield stress of the material, which will depend also on & in case of
viscoplasticity. The yield surface defines the condition for plasticity, hence three situations can
be met:

e purely elastic loading if f < O,

0
e plastic flow if f = 0 and % > 0,

0
e clastic unloading if f = 0 and c9_f <0.
o

When the conditions for plastic flow are met, associative plasticity yields

~pl0f  3.p s
R

-pl _
& =
oo 2 0'0’

where & appears as the plastic multiplier. Inserting this last relation into Equation (1.6) requires
an objective time-derivative of the deviatoric stress tensor s. The Jaumann rate is implemented
in the FE code

S =84 5.0 — s, (1.7)

1
where w = > (Vu — V'u). This objectivity is only applied explicitly, meaning that balance

) LA ) ) )
equations are first solved as if s ~ §, and the deviatoric stress tensor is corrected afterwards
by using Equation (1.7). Thus, the constitutive equations in the case of elasto-plasticity can be

written as ; .
2u (a M LR tr(s’))

g 2 (o) 3
p = =-Xtr(é)

where both time derivatives § and p are discretized with an implicit Euler scheme. The balance
equations can then be formulated as

V.s(ev)-Vp = 0
p + Xtr(e(v)) 0

(1.8)

(1.9)

where s is given by a nonlinear relation in terms of & in Equation (1.8), which is itself a linear
function of v.
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1.2.1.2 First order Lagrange Finite Element method

The FE method, as described for example in Reference [119] or Reference [120], consists in a
discretization of unknown or known functions thanks to polynomial interpolation. With standard
Lagrange FE basis functions, the function ends up being uniquely represented by its values at
some particular locations. These locations, together with the basis functions, are carried by an
FE mesh.

Although the latter can be quite complex in a general FE setting, the FE code developed at Cemef
- MINES ParisTech relies solely on unstructured linear simplex meshes. A linear simplex is a
triangle in 2D, and a tetrahedron in 3D. The vertices of these simplexes are called nodes of the
mesh, while the simplexes themselves are called elements of the mesh.

For the mesh to be conform (i.e., compatible with the Lagrange FE method), the intersection of
any pair of elements (i.e., simplexes) must be a common node, edge or face to both elements.
If such mesh is built so as to cover the whole domain €, any continuous function such as the
pressure p can be approximated by its values at mesh nodes, and its value at any point of the
domain can be obtained by linear interpolation

pX) ~ pu(x) = > piNix),x € Q. (1.10)

i€enodes

The interpolation is linear because the basis functions N; are linear. If the function is regular
enough (p € H'(Q)), its derivatives can also be approximated, simply by using the derivatives of
the basis functions

Vp(x) ~ Vipu(X) = Z piVN(x),x € Q. (1.11)

ienodes

While pj, is continuous, the derivatives V;p, are discontinuous across element boundaries. The
basis functions and their derivatives are known and implemented in the FE code for a reference
element (a triangle or tetrahedron aligned with the Cartesian frame), and they are computed
on each element of the mesh through a linear mapping (this mapping being linear because the
simplexes are linear). In case of vectors such as the velocity v, the interpolation can be defined
component-wise, and the same principles apply.
This interpolation technique is already very interesting for many scientific and computer graphics
applications where complex functions have to be approximated at random points. However, the
FE method shows its full potential when applied to the numerical solution of partial differential
equations.

1.2.1.3 Mixed Finite Element method

In the case described in Equation (1.9), the functions v and p are unknown, but they can still be
approximated directly in the partial differential equation by the approximations v, and p;,. Then,
instead of being functions, the unknowns are vectors composed of the unknown values at mesh
nodes. This transition from continuous variables and equations to their discrete versions relies
on a weak form of the balance equations

fs(v):é(w)—fpdivw=f w.(on),Yw eV,
Q Q Q (1.12)
—fqdiv(v)—fgq:O,quP

Q aX

This weak form, coined mixed form due to the presence of two unknowns v and p, is obtained
by "testing" the strong form of the balance equations given in Equation (1.9) with test functions
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w and ¢, and integrating on €. Integration by parts can then be applied, which introduces the
outgoing normal vector n to the boundary of the domain 0€). The solutions v and p are assumed
to belong respectively to V = H Q)¢ and P = HY(Q).

The variables and integrals in Equation (1.12) are approximated in discrete spaces V), and ), so
that a discrete weak form is obtained. An important restriction is that the choice of V), and P}, is
not open, as the discrete weak formulation is well-defined only for some adequate choices [121].
In particular, locking issues arise when the material is incompressible.

The FE code implements the so-called P1" element, also called MINI element, or bubble element.
Each component of the velocity is approximated in this discrete space, while the pressure is
approximated in a standard P1 space, which is the space spanned by simplex-wise linear basis
functions. There are 3 basis functions per element in 2D, and 4 in 3D. Each of them is equal
to one at one of the nodes of the simplex, and zero at the others. The P1* space is obtained by
adding a basis function (and an additional unknown) at the center of each simplex. This basis
function is equal to one at the center of the simplex, and zero on its boundary. The additional
unknown is eliminated by a static condensation process, therefore no additional unknown is
actually introduced in the formulation.

Once the domain €, the normal vector n, the continuous spaces V and #, and the unknowns
v and p have been replaced by their approximations, the discrete weak mixed formulation is

obtained
f sp(vp) © E(wp) — f prdivw, = f wy. (o), Ywy, € Vi,
o o o0, (1.13)

gn div(v,) — %qh =0,Yq, € Py
Qh Qh

This system is nonlinear due to a nonlinearity in the expression s, in Equation (1.8). The Newton-
Raphson procedure used to solve this nonlinearity relies on a first order approximation of this
term. Given a current approximation of the velocity field vg, a better approximation v, = v2 + vy
is obtained by solving the following equations

ds) .
f ( hW0) : e(w,)) &(wp)
Q
- f prdivwy,
Qp

0
f ( éf”(vh) a(vh)) £(wy)
Vi

- sh(vh) s &(wy) (1.14)

Qy

+ Wh.(O'hnh), VWh € (Vh,
oQy,

—f thiv(vh)_f %Qh = 0,Yg, € Py
Qh Qh

where the nonlinear term has been approximated by s,(v;,) = sh(vh) +

v, (vh) &(ovy). Replacing
v, and p;, in Equation (1.14) with their expressions based on Equation (1 10) and Equation (1.11)

(with bubble basis functions for v;), and applying numerical quadrature rules to evaluate the
integrals, a nonlinear system in terms of discrete variables is obtained. More information on
the P1*/P1 and the static condensation process implemented in the FE code can be found in
previous publications [122, 123]. These publications also detail the solution of the nonlinear
velocity-pressure system thanks to a Newton-Raphson procedure at the global level and also at
the local (element) level for the return mapping of an elastic trial stress onto the plastic yield
surface [124].
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1.2.1.4 Parallel computing

An important aspect of the FE code developed at Cemef - MINES ParisTech is that it is imple-
mented in a distributed computing context [125]. This means that the mesh of the domain is
divided into multiple partitions, each distributed to a different process. The processes are likely
to be executed on different machines and therefore a process can access information known by
another process only through network communications.

The partitioning of the mesh is done element-wise first, meaning that each element of the mesh
is agglomerated into distinct partitions. Each process knows the connectivity of its elements, and
all variables stored in these elements. Regarding the nodes, each process knows the coordinates
of all the nodes of its elements, and also of all variables stored at these nodes. However, if a node
is shared by multiple processes, it is associated to only one of them, and cannot be modified by
the others.

This partitioning strategy is illustrated in Figure 1.9. In this example, the colors for the two nodes
at the extremities are determined directly by the coloring of the elements, while the nodes on the
edge shared by the two triangles could have been arbitrarily colored in green or orange by the
partitioning algorithm. Though only green can modify the value stored on the green node of this
edge, orange can read data from this node. The same remark applies for the orange node of this

edge.

/

Figure 1.9 — Example of partitioning of a 2D mesh containing two triangles. The two partitions
both in terms of elements and nodes are distinguished in orange and green.

The FE code implements some functions in order to define new operations element-wise
or node-wise, and computes quantities such as derivatives element-wise. Note that with linear
elements and linear FE fields, there is only one quadrature point per element. Other operations
enable to sum values from all nodes or elements to a scalar variable, or to sum values to a node
from its neighboring elements. These operations can be a sum but also a minimum or maximum
computation.

Other operations must be implemented carefully as communications between multiple processes
may have to be considered if data located on different partitions have to be accessed. This is
systematic for all operations that require to access a node’s neighbors, an element’s neighbors,
and the elements containing a given node.

Regarding FE solvers, all numerical integration, static condensation, nonlinear and linear so-
lution operations are implemented element-wise in the FE code, with no difficulty linked to
distributed computing, while global assembly and linear solution and the subsequent network
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communications are handled by the PETSc library [126].

Although an FE code allowing only linear simplexes and linear interpolations may be quite
restricting, it has the main advantage that all communications can be prepared very efficiently, as
the length of each message is fixed. This will be illustrated for example in Section 3.2. However,
the implementation of several key algorithms becomes quite complex in a distributed computing
context (Section 2.5, Subsection 3.1.3 and Subsection 3.2.2). This remark also applies to the
implementation of boundary conditions for homogenization calculations.

1.2.2 Homogenization theory

Once the RVE V has been defined, homogenization theory can be used to study the influence of a
forming process on the microstructure, by transferring the macroscopic stress or strain state to the
boundaries of the RVE. This technique is referred to as hierarchical approach in the following.
However, the homogenization theory can also be used to identify material parameters for a
given macroscopic constitutive model based on RVE simulations. Indeed, damage models have
a limited applicability to complex and non proportional loading paths, and require a targeted
identification for each type of loading. If RVE simulations could be proved to be predictive
for multiple types of loading paths, with the same material parameters, one could use RVE
simulations to automatically correct a macroscale constitutive model. This second and more
advanced utilization of homogenization theory is referred to as concurrent approach in the
following.

In the homogenization approach used in previous works [5, 6], the boundary conditions and

the definition of the RVE corresponded to an embedded cell approach [127, 128, 129]. In this
approach, the RVE is embedded in a larger computational domain (V € Q,V # Q), and the
microscopic material behavior is considered only inside the RVE, while a homogeneous behavior
is defined outside. Some limitations were pointed out such as controlling the stress state inside
the RVE or defining the homogeneous behavior in the rest of the domain. Additionally, this
method led to perturbations and stress concentrations at the transition between the homogeneous
material and the RVE. As a consequence, only the core of the RVE could be considered for
homogenization, which made difficult the setting of the initial particle volume fraction or void
volume fraction inside the RVE.
The definition of the homogeneous constitutive law used in the rest of the domain could be highly
helped by extending the hierarchical embedded cell approach to a concurrent approach, thanks
to a self-consistent scheme [127, 128]. In this incremental scheme, the macroscale constitutive
model used for the out-of-RVE material is first set using an initial guess of material parameters.
After solving balance equations, a first guess of the RVE’s mechanical response is obtained and
averaged in order to be compared to the macroscale constitutive model. Based on this sensitivity
analysis, material parameters for the macroscale constitutive model are corrected and the whole
process is iterated until convergence. The last step of this incremental scheme contains not only
an RVE simulation in a given macroscopic strain or stress state, but also material parameters for
the macroscale constitutive model adapted to this strain or stress state.

In the following, other widely used boundary conditions are presented, with a restriction to
homogenization methods where the RVE is the whole computational domain (V = Q), therefore
any relevant information such as stress state or void volume fraction can be easily computed.
The computational cost is also reduced because compared to an embedded cell approach only
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the RVE itself is meshed.

These methods are considered in this work for a hierarchical use, where local stress or strain
fields are extracted from a macroscale experimental or numerical experiment and applied on
the boundaries of the RVE. This could allow to follow and understand the consequences of
mechanical treatments performed by a metal forming process on the microstructure. Concurrent
schemes where these microscale simulations are used to correct macroscale constitutive models
are not considered yet.

The main focus of the present work is to validate RVE calculations directly at the microscale, and
then exploit these simulations in a hierarchical scheme. FE-FE schemes where the macroscale
simulation takes into account microscale physics are not considered in this work. These FE-FE
schemes have their own challenges, such as a huge computational cost, that has led for instance
to the use of model reduction techniques [130, 131, 132]. In the case of ductile fracture, plasticity
and damage localization also raise a number of issues that are being addressed for instance using
higher-order homogenization schemes [102, 103, 104, 106, 109, 133] and multiscale cohesive
zone models [107, 110, 111].

Some of the approaches mentioned in this section are illustrated in Figure 1.10. Green arrows
represent macroscopic variables that are transferred from macroscopic experimental measure-
ments or simulations to the RVE. Red arrows represent RVE-averaged variables that can be used
directly (FE-FE) in a macroscopic simulation, or indirectly by identifying material parameters
for a macroscopic constitutive model.
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Figure 1.10 — Heterogeneous material (a), and examples of multiscale methods: (b) periodic unit
cell, (c) windowing approaches, (d) embedded unit cell. Classification inspired from [112].

In order to describe linear (first order) homogenization theory, some basic definitions are
reminded [112, 134, 135]. The mechanical response of the RVE, or unit cell, is split into a
slow contribution, which would be the exact response in the absence of heterogeneity, and a
fast contribution resulting from the perturbation due to heterogeneity. The volume average of a
variable f over the RVE V is defined as

1
<f>:mfvf. (1.15)
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In an embedded cell approach, V # Q, while in the other approaches presented in this section,
V = Q. Two identities obtained using integration by parts have to be reminded regarding the
displacement field u and the stress field o

1 1
<Vu> = MfVu = mfu@n

1f ! ﬂv®( | (1.16)
<o> = — g = — Xxo.n).

VI Jv VI Jav

where n is the outgoing normal vector. The second identity uses the fact that the mechanical
problem to be solved is

Vo=0inV,

and hence the stress field is divergence-free. Boundary conditions are yet to be defined to
close this problem. The aim of these conditions is to fulfill Hill-Mandel’s lemma, which is the
fundamental basis of homogenization theory (not satisfied yet)

1 1
<0'28>:—f0'28:—fI/t.(O'.I’l):<O'>Z<8> (1.17)
VI Jy VI Jav

where integration by parts has been used once again. Boundary conditions that fulfill the
lemma in Equation (1.17) are described in the following. In the case of Taylor-Voigt Boundary
Conditions (TVBCs), Kinematic Uniform Boundary Conditions (KUBCs) and Periodic Boundary
Conditions (PBCs), loading is strain-controlled, while in the case of Hill-Reuss Boundary
Conditions (HRBCs) and Static Uniform Boundary Conditions (SUBCs), it is stress-controlled.
Mixed boundary conditions that are often used in the literature [112, 135] are not considered in
this work.

1.2.2.1 Taylor-Voigt Boundary Conditions

In the case of strain-controlled boundary conditions, the displacement and strain fields «# and € in
the RVE admit the following additive decomposition
u = E.x + u* inV
<e> = E + <euh> (1.18)
where E is a prescribed homogeneous strain, usually equal to the strain field at a Gauss point of
a macroscopic simulation, and «" is coined fast part of the displacement field. The particularity
of TVBCs is that this fast part " is assumed to be zero on the whole RVE

u' = 0 iV
<eg> = E.

As a consequence, it is easy to prove that the lemma in Equation (1.17) is satisfied

<o:g> = % fav u.(o.n) = % LV(E.X).(U.n)

1
=FE:|— X®@on)|=<o>E=<0><&>.
VI Jov
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1.2.2.2 Kinematic Uniform Boundary Conditions

A less restrictive definition of strain-controlled boundary conditions with the additive decom-
position in Equation (1.18) is given by KUBCs, where the fast part of the displacement field is
assumed to be zero only on the boundary of the RVE

u® = 0 on dV,
1

<Vu#>:—fu#®n = (0 =><eg>=E.
VI Jov

The proof of the lemma in (1.17) is identical to the one for TVBCs, because the fast part vanishes
at boundaries

1 1 1
<T.g>= — u.(o.n)=— (E.X).(o.n) + — ' (o) =<0 ><e>.
VI Jav VI Jav VI Jav

1.2.2.3 Periodic Boundary Conditions

PBCs are also based on the additive decomposition in Equation (1.18), with the restriction that
the fast part of the displacement field is assumed to be identical on opposite sides of the RVE,
while the normal stress is assumed to be opposite. This implies that the RVE has a particular
geometry, which is usually chosen to be a cube or a hexagon [136, 137]. Based on this restriction,
the boundary dV of the RVE can be split into two sets of faces S| and S,

<Vu#>:%fu#®n+%fu#®n:0=><8>:E
S1 S»

due to the fact that u* is equal on opposite faces, but the normal vectors 7 go in opposite directions.
This decomposition into two sets of faces also has the following consequence

fu#.(o'.n):fu#.(o'.n)+fu#.(0'.n)20.
av Sy S2

This result extends the proof of Hill-Mandel’s lemma to all types of strain-controlled boundary
conditions.

1.2.2.4 Hill-Reuss Boundary Conditions

It can be shown that though both strain-controlled and stress-controlled calculations converge
to a unique mechanical response, the first type of boundary conditions yields upper bounds on
effective material properties while the second type yields lower bounds [112, 134, 135]. The
use of both strain-controlled and stress-controlled RVE calculations can hence be interesting to
check the validity of a result.

HRBC:s are the stress-based equivalent of TVBCs, so that instead of assuming a homogeneous
strain in the RVE, a homogeneous stress X is assumed

o = XinV,
<o> = <X>=2.

Proof of the lemma in Equation (1.17) is easily obtained

1 1
<og:.:e> :—fa:s:—fZ:s
V] vl VI Jv
=2:|—= gl=Y<e>=<o><e>.
VI Jv
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1.2.2.5 Static Uniform Boundary Conditions

SUBC:s are the stress-based equivalent of KUBCs, so that instead of assuming a homogeneous
strain at RVE boundaries, a homogeneous normal tension X.n is assumed

on = 2nondV,

1 f 1
<o> = — X®(a’.n):—f X®2.n) =< X >= 2.
VI Jav VI Jav

Proof of the lemma in Equation (1.17) uses the same reasoning as above

<o:e> —|V|fu(0n) |V|fu(2n)

|V| u®n =Y <eg>=< T ><E>.

1.2.2.6 Numerical aspects

Because they are too restrictive and cannot take into account local events such as void growth
and coalescence, it can be assumed that TVBCs and HRBCs would give too loose lower and
upper bounds. This remark also applies to SUBCs and KUBCs, but only at RVE boundaries.
Thus, for large RVEs, these boundary effects decrease and a realistic mechanical response is
obtained.

Difficulties arise with PBCs because of multiple reasons.
First, the microstructure in the RVE has to be periodic, which requires specific digital microstruc-
ture generation tools. These tools are usually quite advanced in order to satisfy prescribed
particle distribution and size statistics corresponding to a given material [7, 138]. Adding a peri-
odicity constraint leads to a very complicated problem, which may not always have a satisfactory
solution for a given RVE size, especially for materials with high density [112, 139].
Then, mesh generation and adaptation, which plays a key role in the present developments, also
becomes quite troublesome when dealing with periodic meshes [140, 141].
Finally, parallel computing, which becomes necessary when using large RVEs, also raises techni-
cal difficulties because linear constraints between nodes on opposite faces have to be added to the
discrete balance equations. These constraints also have a negative effect on the sparsity pattern
of the matrices obtained by discretisation of balance equations [ 134], affecting the performance
of standard iterative linear solvers [126].

Though these technical difficulties may seem to penalize PBCs, they are actually widely used
because the mechanical response is known to converge more rapidly with increasing RVE size
[135]. Therefore, smaller RVEs can be used. Additionally, in some configurations, illustrated
in green in Figure 1.11, PBCs can be simplified thanks to symmetries. Indeed, if both the
microstructure and the loading are symmetric, only one fourth (or one eighth in 3D) of the
RVE can be simulated, with symmetry boundary conditions on two faces (three in 3D). Normal
displacements can then be applied on the remaining faces in order to constrain them to remain
planar, resulting in periodicity.
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Figure 1.11 — Simple periodic microstructure and different choices of PBCs. In green, boundary
conditions that can be implemented easily thanks to symmetries. In red, boundary conditions
that require to constrain displacements between nodes on opposite faces.

1.2.3 Homogenization in porous plasticity

1.2.3.1 Gurson model’s derivation

In this section, the homogenization theory described above is applied in the case of porous
plasticity, as done by Gurson [33]. This approach is similar to the micromechanical calculations
of McClintock [25] and Rice & Tracey [26], as it yields a void growth law, but it also uses
homogenization theory in order to deduce a macroscopic yield surface taking into account
the presence of a porosity. Opposed to numerical approaches, the RVE response is computed
analytically, with the advantage of resulting in a closed-form model, which can be implemented
and used directly at the macroscale in standard FE codes. Nevertheless, closed-form solutions
can only be obtained for simple RVEs, with very restrictive assumptions that may have a major
influence on the relevance of the final model.

In the sequel, the derivation of Gurson’s model is summarized, based on [37, 142, 143, 144], with
a particular care regarding the assumptions that it requires. First, Gurson considered a spherical

RVE of radius b with a spherical void of radius a at its center, as illustrated in Figure 1.12. The
3

porosity f is defined as the ratio between void volume and RVE volume, namely, f = Z—S.

matrix

Figure 1.12 — RVE consisting of a single spherical void included in a spherical domain used by
Gurson [33]. Figure reproduced from [37].
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In Gurson’s work, KUBCs are considered as in Equation (1.18), but since these boundary
conditions are still too general to analytically derive a solution, a specific velocity field of the
following form is assumed

. b .
v=A VIV = E,—e VP = E'x inV (1.19)
I

. . tr(E o
where E is a prescribed homogeneous strain rate, E,, = (E) and £’ = E — E,, I are respectively

its mean and deviatoric parts, and e, is the first vector of the spherical basis.

The procedure used by Gurson consists in expressing the microscopic trial plastic work and aver-
aging it on the whole RVE using Equation (1.15) and Equation (1.17). Though the computation
of this integral is eased by the fact that von Mises perfect plasticity is assumed, it remains quite
complex and relies on a Taylor series expansion of one of the terms to integrate (not detailed
here). In Reference [144], the authors showed that based on Cauchy-Schwartz’s inequality, it can
be proved that the first order approximation of this term used by Gurson is restrictive. Performing
a second order Taylor expansion, they proved that a closed-form solution can still be obtained,
with more accurate results. A third order expansion was also performed, but with no significant
improvements on the results.

The macroscopic trial plastic work obtained with this integration has then to be derived with
respect to the macroscopic strain rate in order to obtain the macroscopic Cauchy stress tensor X.
In the isotropic plasticity case, this is eased as both the macroscopic strain rate and stress tensors
are diagonal in the same basis. Derivation is hence carried out in that basis, and both the mean
part %, of X and the macroscopic von Mises equivalent stress ¥ can be expressed in function of

E,, and E’. The combination of these two relations and the elimination of the dependence on E,,
and E’ gives the final expression of the Gurson yield surface

=2

b 3%,
=+ 2fcosh(—:) ~1-f*=0. (1.20)
o 20

Several comments can be made on that result. First, the dependence on the macroscopic triaxiality

IS o . . .
ratio n = — is not artificially added such as in empirical or phenomenological models, but

o
emerges naturally from homogenization of the initial microscopic problem. This result already
appears in the Rice & Tracey void growth model [26].

In Reference [144], the authors proved that a better approximation during the computation of

the macroscopic trial plastic work enabled to naturally introduce the normalized Lode angle 6 =

27 det(X')
1——arccos| - ——

T o
yet, but a clear advantage of this approach is that the dependence on both invariants of the Cauchy

stress tensor stems naturally from a micromechanical calculation, and not from macroscopic
considerations.

in Equation (1.20). These results have not been validated experimentally

1.2.3.2 Restrictive assumptions

In the summarized derivation of the Gurson yield surface presented above, multiple points have
been highlighted in italic. These points are assumptions and potential sources of errors for
industrial applications where the Gurson model does not provide realistic solutions.
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o A first restrictive assumption is the choice of an RVE containing a single spherical void,

since real microstructures feature multiple voids and inclusions. Models accounting for
the presence of inclusions have been considered by some authors [145, 146]. These are
important for the modeling of void nucleation, which is discussed in more details in
Chapter 4.
The shape of the void is also restrictive, as it has been mentioned in this manuscript that
under shear voids may rotate and flatten. This influence of shape has been taken into
account for instance in the Gologanu-Leblond-Devaux model [36] and its extensions [ 146,
147, 148, 149]. Studies specifically targeting shear loading have also been carried out [89,
106, 148, 150, 151, 152]. Regarding the influence of neighboring inclusions and voids, it
has been the object of multiple void coalescence models proposed in the literature, which
are discussed in Chapter 5.

e Assuming von Mises perfect plasticity, and hence no elasticity and no hardening restricts
the applications for real materials where both these phenomena can be important [33, 147,
148, 153]. Other plasticity models have been investigated in the literature, as plasticity at
this scale could be influenced significantly by the crystal structure of the metal [154, 155,
156, 157], especially if the size of the grains is comparable to that of the voids. Anisotropic
plasticity models have also been considered [158, 159, 160]. Moreover, porous plasticity
models and higher-order approaches have been investigated in order to model the presence
of a secondary void population in the RVE and size effects due both to plasticity and
damage [106, 137, 161, 162, 163, 164].

A more complete review of the Gurson model and its extensions can be found in recent reviews
[37, 38].

1.2.3.3 Numerical approaches

The different limitations of the Gurson model have led researchers to rely extensively on numeri-
cal procedures. When a damage model gives incorrect results with respect to an experiment or
an industrial application, it is difficult to understand the differences and explain them. However,
the main advantage of the Gurson model and its extensions, is that the differences can be directly
compared at the microscale.

For instance, it is mentioned above that the derivation of Gurson’s model is based on a Taylor
series expansion. Indeed, Gurson used only a first order approximation of the microscopic
trial plastic work. In Reference [144], the authors considered second order and third order
approximations. A numerical solution however, does not require such approximations. Thus, the
error induced by Gurson’s approximation, and the improvements obtained using higher-order
approximations, can be quantified with respect to the numerical solution. In Reference [144],
the authors conducted FE simulations using the same RVE as Gurson (Figure 1.12) and the
same KUBCs (Equation (1.19)). Because Gurson’s model (Equation (1.20)) depends explicitly
on the macroscopic triaxiality ratio 7, it is important to conduct computations where 7 is fixed.
As higher-order approximations depend on the Lode angle 6, the latter should also be fixed. A
relevant macroscopic variable such as the porosity rate f can be used to assess the validity of an
analytic approximation, as in Figure 1.13. In this example, it can be seen that there is a nearly
20 % difference between the higher-order approximations and Gurson’s initial one. Additionally,
as Gurson’s model does not depend on the Lode angle 6, it is very sensitive to the latter and the
error becomes significant for some values.
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This comparison nevertheless considers the same spherical RVE with a spherical void as
Gurson, the same von Mises perfect plasticity model, and the same loading. Thanks to numerical
methods, more complex configurations have been considered in the literature [37].

e In Figure 1.14(a), the RVE with pre-fragmented inclusions and hence penny-shaped voids
used in Reference [145] is shown. In this study, the effect of particles on load carrying
capacity was investigated, as well as void shape. This study nevertheless considered only
periodic arrangements of particles or voids, while real materials feature complex particles
and voids arrangements, including particles and voids clusters.

e The same remark regarding periodic arrangements applies to the RVE considered in
Reference [164], as shown in Figure 1.14(b). However, this study included the effect of
a secondary void population, which may lead to matrix softening in intervoid ligaments.
Instead of representing explicitly the secondary voids, they were homogenized using a
Gurson model in the matrix.

e The same method was used in Reference [108], as shown in Figure 1.14(c). This study
considered RVEs of randomly positioned particles. A Gurson model was used in the
matrix to model a secondary void population. A debonding criterion was used to predict
and model the initiation and propagation of cracks at the interface between the matrix
and particles. However, fragmentation mechanisms were not modeled. The number of
particles was also quite small (up to 10), and no sensitivity analysis was conducted with
respect to RVE size.
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Figure 1.14 — RVEs used by various authors: (a) periodic arrangement of initially fragmented
particles, figure reproduced from [145], (b) periodic arrangement of voids with a secondary void
population in the matrix, figure reproduced from [164], (c¢) random arrangement of debonded
particles, figure reproduced from [108].

Other authors have considered more general loading conditions [148], or the instantaneous
fragmentation of some inclusions for small plastic strains [112].
These studies however do not consider several key micromechanical aspects of ductile fracture.
When random arrangements of voids or particles are used insead of periodic ones, no sensitivity
analysis regarding RVE size is conducted. Such analysis would be important to prove that the
chosen RVEs are indeed representative of the studied materials. It can be postulated that such
analysis would prove that the considered number of particles and voids is not sufficient.
Additionally, most works consider only voids. When particles are taken into account, both
particle fragmentation and debonding mechanisms are not considered simultaneously, while in
real materials and general loading conditions both phenomena may be observed (Subsection
1.1.2).
Finally, though some works taking into account the effect of a secondary void population can be
found, the damage to fracture transition in the matrix material is not modeled. In particular, void
linkage events between pairs of voids have been observed in the literature at large plastic strains
(Subsection 1.1.3). These phenomena are sometimes accompagnied by micro-cracks, which
would require a transition from a continuous damage model to a discontinuous fracture model.
As a conclusion, numerical methods taking into account large microstructures with complex
arrangements of particles and voids are yet to be developed. Particles of complex shapes should
be considered. There is also a need for numerical methods enabling the modeling of void
nucleation events with a competition between particle fragmentation and debonding. Conducting
such simulations at large plastic strains would require an advanced damage and fracture criterion
in the matrix in order to model the coalescence and linkage of voids.
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Conclusion

All metallic materials are heterogeneous at the microscale, due to their crystalline structure,
reinforcements, and defects. Hence, there are multiple metallic phases, sometimes separated by
non-metallic particles and voids. The interfaces between these different components are sites
of stress localization during loading, which leads to the nucleation of voids. This nucleation
phenomenon can occur either by debonding, which is the failure of an interface between two
components, or fragmentation, which is the failure of one of the components.

Voids grow independently from each other during loading, up to a certain critical point where
they start to interact. This critical point is called the onset of void coalescence. It is marked by
an acceleration of void growth between neighboring voids, up to linkage of these voids, which is
sometimes accompanied by micro-cracks. The accumulation of void linkage events leads to the
formation of a macro-crack, and the final ductile fracture of the material.

Ductile fracture is hence complex by nature, because cracks develop at two scales. Recent
experimental and theoretical studies mention that more than two scales could have to be consid-
ered, as submicron size voids may also develop and have a major influence on void coalescence.
Experimental studies are of great interest and have importantly helped the understanding of
ductile fracture, thanks to recent X-ray imaging techniques. These techniques now allow for an
in situ observation of ductile fracture for millimeter-thick specimens, with a resolution close to
the micrometer.

Automatic void tracking algorithms have been developed to obtain local measurements of void
growth based on these three-dimensional (3D) data. The need for these advanced procedures is
due to the random distribution of the voids, and their random sizes. Some studies have addressed
the manufacturing of model materials with laser drilled microscopic holes to avoid these issues.
Added to this multiscale and complex aspect of damage, its interaction with plasticity is also a
challenging problem for both experimental and numerical modeling scientists. The recent exten-
sion of image correlation techniques to 3D is promising as strain localization can be measured
locally. Results obtained using these techniques suggest that in some materials plasticity may
develop and localize significantly before void coalescence occurs.

The modeling of multiscale phenomena calls for multiscale mathematical frameworks. The
analytic application of homogenization theory to ductile fracture is of great interest to derive
microscale-based plasticity-damage constitutive models that can be used at the macroscale. The
literature review in this chapter regarding these analytic derivations was restricted to the Gurson
model, which only accounts for void growth. Discussions about void nucleation models are
presented in Chapter 4, while void coalescence modeling is considered in Chapter 5.

The Gurson model and its extensions are based on very limiting assumptions regarding the
microstructure of the studied materials, the constitutive models used at the microscale, and the
loading conditions. In order to quantify the errors produced by these models, and help their
improvement, numerical multiscale approaches are worth considering.

Numerical approaches follow the same multiscale framework that is used for analytic homoge-
nization. The main difference is that the solution is computed numerically, most often using the
Finite Element (FE) method, which relies on a representation of all unknowns by a mesh, and
discrete variables carried at the nodes of this mesh. Thus, complex microstructures, advanced
microscale constitutive models, and general loading conditions can be accessed.

However, most FE analysis studies found in the literature consider only simple microstructures.
The used Representative Volume Elements (RVEs) generally contain only a single void, with
Periodic Boundary Conditions (PBCs). Some works have also considered inclusions but the
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subsequent void nucleation mechanisms are often simplified, by assuming initial debonding or
a pre-fragmented inclusion for instance. Advanced numerical methods and micromechanical
models are yet to be developed in order to take into account randomly positioned and shaped
inclusions, and the subsequent complex void nucleation, growth and coalescence events up to
large plastic strains. Numerical tools developed in the present work to address such challenges
are presented in the following chapters.
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54 RESUME EN FRANCAIS

Résumé en francais

La modélisation de microstructures telles que celles étudiées dans cette these se fait généralement
dans un cadre Lagrangien. La méthode des fonctions de niveau est intéressante car elle permet
de modéliser tres simplement des phénomenes topologiques complexes comme la liaison de
vides. Néanmoins, pour de grandes déformations, les opérations de remaillage, indispensables
dans un cadre Lagrangien, sont généralement percues comme trop coliteuses numériquement.
Dans ce chapitre, en associant un algorithme de mouvement de maillage avec un critere de
qualité et de retournement d’élément, il est montré que la fréquence des opérations de remaillage
peut étre réduite. Ainsi, une méthode Lagrangienne avec fonctions de niveau peut devenir plus
qu’intéressante vis-a-vis d’une méthode Eulérienne avec fonctions de niveau, aussi bien pour de
grandes déformations que pour des changements topologiques complexes.

Le principal défaut de la méthode Lagrangienne est alors une tendance a diffuser de maniere
importante les interfaces et le volume de chaque phase lors des opérations de remaillage. La
nouvelle méthode de remaillage avec contrainte de conservation de volume présentée dans ce
chapitre permet de contrdler et réduire cette diffusion, menant ainsi a des résultats trés promet-
teurs pour de grands déplacements. En comparaison avec les deux premieres approches, cette
nouvelle méthode ajoute également le maillage explicite des interfaces, ce qui est connu pour
poser des difficultés lorsque de grandes déformations et des modifications topologiques doivent
étre prises en compte. A 1’aide de ’utilisation des fonctions de niveau comme intermédiaires,
il est montré que cette méthode est capable de prendre en compte de tels événements, sans
augmentation significative de I’erreur d’approximation ou du temps de calcul.

A la connaissance de ’auteur, ceci est la premiere fois que de tels résultats sont obtenus avec des
interfaces maillées explicitement, et en ayant recourt exclusivement a de 1’adaptation de maillage.
Cela est d’un grand intérét notamment d’un point de vue du colit numérique et de I’utilisation de
cet algorithme pour le calcul parallele, car 1’adaptation de maillage s’appuie uniquement sur des
opérations locales.

Il serait intéressant d’étudier I’application de cette méthode a d’autres phénomenes physiques,
comme les écoulements multiphasiques, ol la tension de surface et les discontinuités fortes aux
interfaces sont difficiles a modéliser lorsque les interfaces ne sont pas maillées explicitement.
Cette difficulté a été notée également lors de la modélisation des phénomenes de recristallisation
statique et surtout dynamique, avec le défi supplémentaire lié aux joints multiples. Ces problemes
sont discutés dans le chapitre 7.

Pour conclure, cette méthode adaptative avec fonctions de niveau et conservation de volume
améliorée est un outil robuste qui peut étre utilisé pour le suivi d’interfaces dans des simulations
ou tous types d’événements ont lieu (grands déplacement, grandes déformations, modifications
topologiques). Cette robustesse permet également d’utiliser des maillages moins raffinés ou
d’améliorer la conservation de toutes les échelles de variation d’une géométrie, incluant les
échelles les plus fines. Les développements réalisés dans ce chapitre s’étendent aisément au
calcul parallele, bien que 1’étape de génération du maillage explicite des interfaces nécessite
certaines précautions.

Combinées, ces méthodes paralleles de génération et adaptation de maillages peuvent étre
utilisées pour générer des maillages explicites depuis des fonctions de niveau a la volée pendant
la simulation. Ainsi, des applications liées a la mécanique de la rupture sont accessibles. En
comparaison avec des travaux précédents, cette approche préserve la possibilité de modéliser et
propager des fissures de formes arbitraires, évitant ainsi toute dépendance pathologique envers la
discrétisation. Bien que cette méthode engendre une perte de masse, due au volume artificiel
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donné au germe inséré a chaque initiation ou propagation de fissure, cette perte de masse est
drastiquement réduite grace au maillage explicite des interfaces. Par ailleurs, la pointe de fissure
peut étre discrétisée avec précision sans raffinement excessif du maillage.

Un point important de cette méthode de mécanique numérique de la rupture est que la technique
d’adaptation de maillage mentionnée ci-dessus peut €tre appliquée a la phase vide, puisque
les fissures, et donc la phase vide, sont représentées par des fonctions de niveau et maillées
explicitement. En effet, une limitation connue de la méthode des éléments finis étendus (X-FEM)
est 'impossibilité de modifier arbitrairement les éléments portant la fissure, a cause de leur
enrichissement. En conséquence, 1’application des techniques X-FEM aux grandes déformations
induites par la croissance des cavités et a leur coalescence est limitée. De telles difficultés ne
sont pas rencontrées avec la méthode proposée dans ce chapitre, qui permet d’adapter le maillage
automatiquement depuis I’amorcage des fissures jusqu’a leur coalescence, en passant par leur
croissance en vides sphériques (chapitres 4 et 5). Un probleme intéressant lié a la présence de
fissures est le déclenchement de phénomenes de contact et de pénétration aux levres des fissures,
incluant des possibilités d’auto-contact. Ce probleme est étudié dans I’annexe A.
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Introduction

Finite Element (FE) simulation in multiphase domains arises in many applications of compu-
tational solid and fluid mechanics. At a macroscopic scale, fluid-structure interaction involves
a heterogeneity that is due to the presence of a solid structure, usually in rigid body motion,
surrounded by a fluid, usually in turbulent flow [165, 166]. At a smaller scale, all materi-
als are heterogeneous. For example, one may cite the microstructure of dual-phase steels or
particle-reinforced composites, which contain a main phase, the matrix, second-phase particles,
and defects [0, 167]. Metal phases can themselves be decomposed into a heterogeneous grain
structure [43, 168].

Once the initial mesh is generated, a challenging problem arises in transient simulations: tracking
moving and deforming interfaces. Depending on the magnitude of these displacements and
deformations from one time increment to another, various methods may be used. Lagrangian
methods can be based on explicit meshes of interfaces or implicit representations [169], where
the interfaces are carried by FE fields stored at mesh nodes (Level-Set [170], Phase-Field [171,
172]), or at mesh elements (Volume Of Fluid [173]).

A focus is made in the following on the Level-Set (LS) method in particular, as the Phase-Field
and Volume Of Fluid methods are not suited for fracture mechanics applications where crack
tips have to be discretized (though the Phase-Field method is gaining an increasing interest
for computational damage mechanics applications [ 174, 175]). Advanced representations have
also been proposed in the literature, for example by coupling two of these methods [176], or
enhancing an Eulerian LS method with Lagrangian particles [177, 178], or with remeshing
techniques [168, 179, 180, 181].

Large displacements and deformations are difficult to handle using Lagrangian techniques
because of the risk of element flipping. While many commercial codes implement remeshing
techniques to prevent element flipping at domain boundaries, it is less common to remesh internal
boundaries. Even with implicit interfaces, remeshing is difficult because of the risk of diffusing
the FE fields carrying these interfaces.

When the interfaces move or deform too fast as in fluid mechanics, or when their topology
becomes too complex to be followed as in recrystallization [168], it is common to resort to fixed
mesh methods. In this last category of methods, convection is not solved by mesh motion as in
Lagrangian methods but through convection equations that involve the FE fields carrying the
interfaces. The solution of such equations with LS functions raises volume conservation and
stabilization issues. Although these issues are sometimes addressed using topological mesh
adaptation in order to improve the interfaces description [168, 180], the term "fixed mesh meth-
ods" will be used in this chapter to refer to all Eulerian methods, regardless of whether they are
coupled to topological mesh adaptation or not.

Finally, an interesting compromise between Lagrangian and Eulerian methods is offered by
Arbitrary Lagrangian-Eulerian methods. The aim of these methods is to avoid as much as
possible the volume conservation and stabilization issues raised by Eulerian LS methods, by
activating Eulerian convection only in areas where the deformations are too large to be followed
by pure mesh motion. Regarding interfaces, explicit representations require the interfaces to
remain purely Lagrangian throughout the simulation (otherwise the mesh of the interface would
be delayed with respect to the interface itself). This choice was made, for example, in Reference
[182] and also in Reference [183], with the major consequence that it restricted the range of
applications to simulations where no large stretching or topological change occurred.
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The particularity of the simulations targeted in this thesis is the presence of at least three
phases: the matrix, which is the main phase of the alloy, particles, and voids. The number of
phases may be larger if the crystalline structure of the matrix is taken into account, or if particles
of different nature (and therefore different behavior) are present. Since the aim is to address
forming processes, large plastic strains occur and deformations are significant, especially around
the void phase, due to void growth. Interfaces between each of the three or more phases do not
only deform significantly, but also appear and disappear due respectively to void nucleation and
linkage.

All possible events that have to be handled are illustrated in Figure 2.1. This list does not apply
only to ductile fracture but to a wide range of multiphase applications.

e From Figure 2.1(a) to Figure 2.1(b), two objects have merged, or linked, together. In
ductile fracture, this phenomenon takes place between voids due to necking or shear bands,
but in other applications such as multiphase flow, it takes place between gas and liquid
bubbles due to the flow, with the importance of surface tension.

e From Figure 2.1(a) to Figure 2.1(c), the motion was omitted and replaced by the propaga-
tion of a crack through the objects. This situation is not only linked to ductile fracture but
to material science and solid mechanics in general.

e Finally, from Figure 2.1(a) to Figure 2.1(d), an external motion pushed the two objects
towards each other, but the interface is still present. This situation is well described by
contact mechanics, which can take into account not only the reaction force preventing the
two objects from penetrating each other, but also friction forces.

OS¢ @@
So e

Figure 2.1 — Complex topological events that need to be addressed in this chapter: (a) initial
topology of two spheres, (b) linkage, (c) crack propagation, (d) contact.

In a previous work [5], a Lagrangian LS method was chosen as it eased computations with
the linkage event in Figure 2.1(b), which is naturally handled by the LS method given that all
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phases, including the void phase, are embedded in a single mesh. However, this event cannot be
controlled in an LS framework, and any pair of objects of the same phase, including particles,
link the same way as voids [6]. As illustrated in Figure 2.2, this is not physical as particle
interfaces should behave as in the contact situation in Figure 2.1(d). Additionally, a special care
has to be taken when using the LS method to represent cracks [169].

Von Mises eq.

stress (MPa)
800.0

— 6000

Figure 2.2 — Example of a fragmented elliptic particle where contact between fragments (white
arrow) was not taken into account by the used Lagrangian LS method, and may have led to a non
physical closure and healing of the particle. Figure adapted from [6].

Computational fracture mechanics is a prolific research topic and multiple strategies have
been proposed to model the initiation and propagation of a crack in homogeneous or heteroge-
neous materials. These strategies can be distinguished into two categories, depending on whether
a loss of mass is induced or not.

On the one hand, the crack may be modeled by explicitly splitting faces and therefore inserting
a discontinuity in the mesh, or by inserting zero-thickness elements as in a Cohesive Zone
Model (CZM) [184]. Both techniques are well-known to produce mesh dependent results when
they are used between existing faces of the mesh. Indeed, the crack propagation path is then
highly influenced by the orientations of the faces of the mesh. Techniques based on remeshing
operations have been proposed in the literature to avoid this mesh dependency [1 14, 185, 186,
187], by aligning the mesh onto arbitrary directions. The latter ones are determined thanks to
appropriate crack propagation criteria. In the case of small deformations, one may prefer to
avoid remeshing by using the eXtended Finite Element Method (X-FEM) [169, 188], which can
also be enhanced with a CZM.

On the other hand, cracks may be modeled by removing a part of the mesh, instead of splitting it.
The kill-element method consists in removing elements along the crack direction. This technique
is well-known to produce mesh dependent results, as once again the crack propagation path is
determined by the shape of the elements of the mesh.

In a previous work [6], because all phases, including the void phase, were embedded in a single
mesh, cracks could be initiated and propagated simply by modifying the LS function to the void
phase. This was an important improvement over the kill element method, as the proposed method
enabled to remove arbitrary shapes, hence avoiding any mesh dependency.

Because voids were represented by a single LS function, very fine anisotropic meshes were used
to represent cracks and especially crack tips (Figure 2.2). These very fine meshes had important
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consequences on the computational cost.

Moreover, this method shared with the kill-element method the limitation of generating a loss of
mass at each initiation or propagation. To reduce this loss of mass, the nuclei of arbitrary shapes
that were used to modify the LS function to the void phase were defined as small as possible,
which required even finer meshes, and even higher computational requirements.

In this chapter, a mesh generation procedure is presented in order to obtain a conform FE
mesh (with explicit interfaces) from LS functions (Section 2.1).
Then, a new mesh adaptation technique that combines both explicit meshing of interfaces and
implicit LS representation is presented (Section 2.2). Compared with a standard LS method with
moving or fixed mesh, it is shown that this method reduces drastically the diffusion of interfaces
during convection and remeshing.
Although this approach relies on Lagrangian mesh motion (Section 2.3), it is proven that it
remains competitive for large displacements and deformations, especially regarding volume
conservation. An advantage of the whole procedure is that it is purely topological, and may
be applied in all dimensions, including space-time frameworks. To meet this requirement, the
method is restricted to first-order simplex meshes, a simplex being a line segment in one di-
mension (1D), a triangle in two dimensions (2D), a tetrahedron in three dimensions (3D), and a
pentachoron in four dimensions (4D).
Numerical experiments are proposed with interfaces that undergo large displacements or defor-
mations, and topological changes (Section 2.4).
The integration of these developments in the distributed computing framework developed at the
Center for Material forming - MINES ParisTech (Cemef - MINES ParisTech) is then considered
(Section 2.5).
Finally, a computational fracture mechanics methodology is built over these parallel mesh gener-
ation and adaptation methods (Section 2.6), with applications to crack insertion and propagation
in heterogeneous materials.
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2.1 Meshing internal interfaces

Choosing an appropriate interface discretization does not only have consequences on the dif-
ficulty of interface tracking. The numerical solution of equilibrium equations, constitutive
models, and other physical problems is also highly impacted by this choice, in terms of difficulty,
accuracy and computational cost. The most simple and straightforward approach is doubtlessly
explicit interface meshing. Having a conform FE mesh at interfaces does not require any specific
treatment during the solution, apart from the use of different constitutive models depending on
which phase an element belongs to. However, as stated above, most interface tracking methods
do not maintain conform FE meshes at interfaces.

In particular, the LS method only addresses interface tracking, and has to be coupled to mixture
laws or the X-FEM for interface modeling. In some fluid-structure interaction problems, the
deformation of the solid phase can be neglected as the focus is made on the flow or on thermal
exchanges. Hence, nullity of the solid’s deformation rate can be imposed by defining its behavior
as a fluid with penalized viscosity [189, 190]. Consequently, the elements that are crossed by
the LS function have their behavior defined by a mixture law taking into account both fluid and
solid behaviors. As both fluid and solid phases are modeled by a fluid behavior, this mixture law
simply consists in mixing the viscosities, yielding the same result as a Volume Of Fluid method.
When the deformation of the solid is of interest, this principle can also be applied for nonlinear
behavior such as visco-plasticity. When mechanical properties other than viscosity come into
play, such as in visco-elasticity [191] or crystal plasticity [4], homogenizing both fluid and solid
behavior becomes more complex. Additionally, this technique is known to decrease the order of
convergence at interfaces [169], which is often compensated by aggressive local mesh refinement
at interfaces [4, 166, 168, 189, 190, 191]. This strategy was used in previous work [5, 6] and
resulted in a large computational cost, limiting 3D applications.

As an alternative to mixture laws and explicit interface meshing, X-FEM is widely used in
computational solid mechanics. Compared to mixture laws, this method actually represents the
discontinuity in behavior at the interface and has been shown to improve the order of conver-
gence [169]. Indeed, the geometry of the interface, which is only carried by the LS functions, is
accurately taken into account through enriched basis function and quadrature rules.

However, applications of X-FEM to large deformations remain limited. Since the latter typically
require repetitive remeshing operations, a method such as X-FEM that is specifically designed to
avoid remeshing operations is not adapted. For the present applications with large plastic strains,
an explicit interface meshing methodology has been preferred. Hence, interface modeling is
quite easily achieved, while interface tracking requires advanced mesh adaptation techniques, as
described in the following sections.

For the generation of these conform FE meshes at an interface, standard tools based on
the Delaunay criterion or a frontal approach can be used [192]. However, if the geometry is
generated on-the-fly, for example during crack propagation, or if it is not based on a Computer
Assisted Design (CAD) file, as in image immersion, then alternatives are necessary. LS functions
are well-suited to play this role, as any analytic geometry can be represented by an LS function,
and images can be converted to signed distance functions using appropriate algorithms (Section
3.4).

Once these LS functions are defined, a procedure is necessary to generate a conform FE mesh
at the interfaces they represent. This operation, known as fitting, or cutting, is inspired from
the cut-cell method [193]. In the present case, the domain € of dimension d is the union of N
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subdomains €Q; corresponding to the N phases, each having its own LS function ¢; defined as

+diSt(X, (99,(t)), X € Qi(t),

VLY X € Q). $ilx. 1) = { ~dist(x, (1)), x & Qi(0).

Fitting consists in browsing all edges of the mesh and splitting into two the edges where an LS
function ¢, takes two different signs. At such edges, the intersection S/ between the interface
and the edge (i, j) is obtained by means of linear interpolation based on its two vertices S and S/

Pi(ST)
Pi(ST) — pu(ST)

Applying this procedure to all edges and all LS functions results in a mesh that is conform to
internal interfaces, but is likely to be of very poor quality, and requires to be adapted.

S =8 —(S'=8%)




62 2.2. VOLUME-CONSERVING MESH ADAPTATION

2.2 Volume-conserving mesh adaptation

Depending on the application, various definitions can be used to represent the interface in implicit
methods. LS functions are widely used in multiphase fluid dynamics, where they are discretized
on a fixed mesh, and convected through a convection equation. Although this allows to reduce
the dependence on mesh adaptation, it raises a major issue regarding volume conservation. In
solid mechanics, this issue may be circumvented by using a Lagrangian mesh, which naturally
convects interfaces through mesh motion. Because this process may deteriorate element quality,
it is usually combined with remeshing. Mesh adaptation may also be employed together with
appropriate error estimators, both in moving and fixed mesh methods.

The aim of the method proposed hereafter is to reduce volume loss and interface diffusion caused
by the remeshing process itself. Although it is presented in the case where the interface is carried
both by a LS function and by the mesh, it can easily be generalized to pure LS representations
(Subsection 2.2.4).

2.2.1 Anisotropic mesh adaptation

Mesh adaptation is an open research field that has motivated various approaches. Most techniques
consist in defining a certain set of operators, and applying them one by one in order to improve
mesh quality. In the present work, the quality is defined for any simplex 7 as [194]

T 1
Q(T) = min (Com,hﬁ/p —d), (2.1)
hM hM
where
e (¢ is a normalization factor so that a regular simplex would have a quality of 1, ¢y =

Vd + 1

e |T|is the volume of T and |T|; = |T| v/det(M(T)),

1 . .
e hy, is the Euclidean norm of edge lengths hy, = J[C—l Z NN ’||12W(T) , with
GPENUT Y i<
N({T}) being the set of the nodes of T,
did+1
e ¢ is the number of edges in a simplex, ¢; = ( > ),

o [Vl = VWAv,ve RY, A e RY x RY.

In these formulae, M is a metric field defined at mesh nodes which drives anisotropic mesh
adaptation, and M(T) is the interpolation of M at the center of T. Although the presented
algorithms enable anisotropic meshes, only isotropic meshes are used in this work, as stretched
elements are difficult to maintain in a Lagrangian framework, due to the risk of element flipping.

Thus the metric field is defined as M = diag(-5), where h is a prescribed mesh size. For further

details on metric fields and how they can be used to adapt not only the size but also the shape of
mesh elements, the reader is referred to Section 3.1.
Summing up Equation (2.1), an over-sized, under-sized or ill-shaped element has a quality close
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to 0, and an appropriately sized and shaped element has a quality close to 1. Though this criterion
takes into account both element shape and size, it is possible in the implementation to define
different regions in the mesh so that the full expression in Equation (2.1) is considered for some
regions, while only the shape term (i.e., co|T|y/ hj‘&) is considered in other regions.

Regarding the set of operators used to adapt the mesh, many propositions can be found [182,
195], for example: node smoothing, edge swapping, edge splitting, edge collapsing. As detailed
in Reference [196], edge swap itself can be declined into many different versions in 3D. Most
techniques consider local patches of elements in the mesh, and try to improve them with each
one of these operators. These techniques often distinguish the optimization of mesh size from
the optimization of element quality by first applying edge split and collapse to reach an optimal
size on every edge of the mesh, and then trying to improve element shape using node smoothing
and edge swap [182, 195].

In the present work, the technique introduced in Reference [194] is preferred. This technique

is presented in Algorithm 1. All nodes and edges of the mesh are considered one by one. Al-
though considering nodes and edges proves to be sufficient in practice, this method can also
deal with the faces of the mesh. The patch of elements to improve is defined as all elements that
contain the given node or edge (line 12). The external faces of this patch are extracted easily
by searching for the faces that belong to only one element of the patch. Then, for each node of
the patch, the generic operator consists in connecting all the external faces to this node (line 16).
The qualities of the elements built by this procedure are computed for each tested candidate, and
the winner is the one having its worst element with the highest quality (line 17).
This generic operator, named star-connection operator, has the advantage of considering all swap-
ping, splitting, and collapsing operations at once. Node insertion and smoothing are implemented
by adding the center of the patch to the list of candidates (line 15). Although no comparison has
ever been performed with classical approaches, a possible drawback of considering all operations
altogether is that some operations may be redundantly tested.

An example of patch for a nodal target is described in Figure 2.3(a). After extraction of the
external faces, as shown in Figure 2.3(b), several candidates are tested (Figure 2.3(c-h)), with
swapping operations that cover a larger set of topological possibilities than a simple edge swap.
Finally, the node smoothing candidate in Figure 2.3(h) seems to be preferable (in the isotropic
case).

A similar example is described in Figure 2.4, but with the target being an edge of the mesh.
While the candidate in Figure 2.4(e) is equivalent to an edge split, the candidates in Figure 2.4(c)
and Figure 2.4(d) are equivalent to a simple edge swap. Moreover, these two candidates consist
in the same topological modification, which is an example of the redundant operations performed
by Algorithm 1.

This algorithm has certain advantages compared to classical approaches.

e When edge length optimization is uncoupled from element shape optimization, there might
be a risk of infinite loop [182, 195], as element shape improvement may require to collapse
edges that were split during edge length optimization. Uncoupling edge coarsening and
refining also raises the same risk [182, 195].

In the proposed method, because the quality criterion takes simultaneously into account
both objectives, such issues are avoided, and convergence is obtained without restricting
the maximum number of iterations in any way.
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Algorithm 1 Quality maximization through local topological operations, lines 12 and 17 contain
key operations that are enhanced in the present work.
1: function MeEsHADAPT(Mesh mesh)

2: Node node
3: Element element, target
4: ElementList queue
5: Mesh patch, candidate, winner
6:
7: queue.addAll(mesh.nodes())
8: queue.addAll(mesh.edges())
9:
10: while queue.notEmpty() do
11: target <— queue.poll()
12: patch « { node.neighbors()}
node € target.nodes()
13:
14: winner « patch
15: for node € ({ patch.nodes() } U { patch.barycenter() })\{ target.nodes() } do
16: candidate « patch.starConnect(node)
17: if candidate.isConform() and candidate > winner then
18: winner < candidate
19: end if
20: end for
21:
22: if winner # patch then
23: mesh « (mesh \ patch) U winner
24: queue.addAll(winner.nodes())
25: queue.addAll(winner.edges())
26: end if
27: end while
28: return mesh

29: end function




CHAPTER 2. MESH ADAPTATION WITH ENHANCED VOLUME CONSERVATION 65
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Figure 2.3 — Example of patch at the neighboring of a node: (a) initial patch, (b) external faces
extraction, (c-h) candidates.
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(a) (b) (c)

Figure 2.4 — Example of patch at the neighboring of an edge: (a) initial patch, (b) external faces
extraction, (c-e) candidates.

e The proposed method is purely topological. This point is essential for the implementation in
order to avoid classical programmer mistakes inherent to the implementation of geometric
procedures. In particular, Algorithm 1 is far easier to implement than classical remeshing
algorithms. Another major consequence of avoiding geometric operations is the extension
to space-time methods, and, in particular, to remeshing in four dimensions (see Appendix
A of [116]).

e Any other local remeshing operation can be introduced without significant programming
effort. The only modification to make in order to add new operations is to change the
patch definition at line 12 of Algorithm 1. The algorithm works for any patch of connected
elements. The latter means that the domain formed by the patch has to consist in one
Connected Component (CC).

Regarding implementation details, they are hidden behind the undefined structures and
functions used in Algorithm 1. In the C (as of [197]) implementation of this algorithm developed
in the present work, two arrays are used to store the mesh, one containing each node’s coordinates
and the other each element’s connectivity. The elements neighboring each node are stored in an
additional two-dimensional array, which enables to increase the number of neighbors for one
node without modifying the whole structure. The Mesh structure contains these three arrays.
Though using arrays may seem inappropriate for a problem like remeshing which implies
significant changes in the number of nodes and elements, they are preferred because they avoid
repetitive memory allocations. When at any point of the algorithm, it is tried to add a new item
to an array which has already reached maximum capacity, this array is reallocated with twice
its current capacity. This functioning is similar to the C++ class vector, and the number of
reallocations is proven to be negligible and independent from the number of nodes or elements.
The Node structure is just an integer referring to a node’s position in the coordinates array. The
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Element structure is a small connectivity array used to store an element. It can also be used to
store faces, edges, or nodes. This enables the ElementList structure used for queuing to contain
faces, edges or nodes. This structure itself is a linked list.

Based on these structures, the functions addAll() and nodes() at line 7 of Algorithm 1 are easy
to implement. The function edges() at line 8 consists in collecting all edges of the mesh and
eliminating duplicates. This last operation requires to sort the edges. Sorting is used repetitively
in Algorithm 1, and the quick-sort algorithm has been chosen to perform this task. Function
notEmpty() at line 10 is obvious, together with poll() at line 11, which removes the last item
from the queue and returns it. Operation neighbors() is solved directly by the neighbor array,
and the intersection at line 12 is based on sorting and dichotomic search. At the same line, patch
is not actually a complete mesh, since neighbors do not have to be computed.

The barycenter of the patch is computed by function barycenter() at line 15, and starConnect()
at line 16 has already been detailed. The external faces of the patch only have to be extracted
once for all candidates. At line 17, the comparison criterion has already been explained, and
the function isConform() is a key point of the proposed algorithm which is detailed in the next
subsection. Finally, line 23 implies replacing obsolete elements with new ones in the connectivity
array, and possibly inserting a new node in the coordinates array.

2.2.2 Mesh adaptation with internal interfaces

The extension of the previous algorithm to conserve preexisting internal boundaries is imple-
mented in the function isConform() at line 17 of Algorithm 1. In the standard definition, this
function only has to verify that the new candidate is a conform (in an FE sense) mesh of the
domain defined by the previous patch. By construction, this candidate is a well-defined topology:
it has same external faces as the previous patch, and none of its faces has more than two neighbors.
For this topology to be conform, two constraints have to be added: the new elements have to be
correctly oriented (i.e. positive volume), and the total volume of the candidate patch has to match
the volume of the previous patch. This constraint prevents element overlapping and flipping,
while element degeneration is prevented by the quality criterion.

In Figure 2.5, two variants of an initial 2D topology (Figure 2.5(a)) are presented. Both variants
have the same total volume as the initial patch, but they are not considered. Element 4 in Figure
2.5(b) has a negative volume (flipped element). Element 6 in Figure 2.5(c) corresponds to a
degenerated element and hence does not maximize the quality criterion.

@ (b) ©

Figure 2.5 — Initial patch (a) and forbidden remeshing operations: (b) element 4 has negative
volume, (c¢) the flat element 6 has a quality that is lower than the initial patch’s worst quality.
External faces of the patch are highlighted in light gray.
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To address the conservation of internal interfaces, LS functions come into play. Inside the
initial patch, an element is attributed to a phase if the associated LS function is positive or null at
its barycenter. If multiple LS functions are null for the same element (pathological case), this
element is attributed to the phase which has lower index. In Figure 2.6(a) and Figure 2.7(a), two
2D examples (respectively with 2 and 3 phases) are shown where the colors indicate which phase
an element belongs to. Based on this attribution, the interface faces corresponding to a phase
are the faces that separate an element of this phase from elements belonging to other phases.
In Figure 2.7(a), interface faces are pointed out by markers, but there is no marker for the blue
phase because it has no LS function.

(a) (b) (©) (d)

Figure 2.6 — Mesh adaptation with two phases: (a) initial patch, (b) illegal operation, (c) conform
operation, (d) relaxation of the phase volumes conservation constraint.

(a) (b) (c) (d)

Figure 2.7 — Mesh adaptation with three phases: (a) initial patch with the interface between
orange and other phases pointed out by white circles, and the interface between green and other
phases pointed out by white squares, (b) illegal operation, (c) conform operation, (d) relaxation
of the phase volumes conservation constraint.

The first constraint added to the operation isConform() is: if there are any interface faces
inside the patch, the candidate chosen at line 16 has to belong to all of them. For example, the
operation illustrated in Figure 2.6(b) does not conform with this new definition. The fact that
the candidate has to belong to all interfaces extends this constraint to any number of phases, as
illustrated in Figure 2.7(b).

For the 3D applications addressed in the present work, this constraint proves to be insufficient
because it authorizes aggressive interface remeshing, leading to significant diffusion. Therefore,
another constraint is added by comparing the distribution of phase volumes in the initial patch
and in the new patch. The tolerance on relative change € for the volume occupied by each phase
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inside the patch is given by a Gaussian law based on two parameters Q,, and Q,

1 min — 2
eXp (_5(%) )a Qmin > Q/n QO' >0
min) = 7 2.2
EQ(Q ) 0, Qmin > Q,u’ QO‘ =0 ( )
1’ Qmin < Qy

where Qi is the worst quality of the initial patch. This constraint is really restrictive and nearly
blocks interface remeshing for shapes with high curvature when element quality is acceptable,
while it is relaxed to prevent issues during FE solution when element quality is poor. For example,
the operations in Figure 2.6(c) and Figure 2.7(c) are always conform, while only relaxation can
enable the operations in Figure 2.6(d) and Figure 2.7(d).

In practice, both values Q, and Q. are chosen empirically as small as possible, to prevent
excessive diffusion, but high enough so that the influence on the conditioning of the FE problems
is negligible. Typical values are 0.05 < Q,, < 0.1, 0 < Q, < 0.1. For higher values, relaxation
would be too important and volume conservation would be severely affected. For lower values,
convergence of the FE solvers would be affected, depending on whether metric anisotropy is
significant. Exceptions are presented in Appendix A, where a setting Q,, = Q, = 0 is used (no
relaxation) because interfaces are not remeshed. These exceptions actually cover a wide range of
structural problems, including fluid-structure interaction problems where the boundary of the
structure does not deform significantly.

Both interface and volume conservation constraints do not actually require node-wise signed
distance functions, and only element-wise tags such as the colors in Figure 2.7 would have
been sufficient as interfaces are explicitly meshed. LS functions are only required in order to
build the initial mesh (Section 2.1) or initiate and propagate cracks (Section 2.6). However,
the proposed remeshing algorithm will often be coupled to error estimators based on distance
functions (Section 3.1). Thus, there is an interest for a remeshing algorithm that automatically
updates these distance functions when remeshing interfaces. This is also simpler for the user
who only has to keep track of these node-wise signed distance functions instead of alternatively
using LS functions and element-wise tags.

2.2.3 Robustness improvement

Ideally, thanks to the strategy defined in the preceding section, no element should have a quality
lower than Q,, after remeshing. In practice, numerical experiments with domains involving more
than two phases reveal that this situation can occur at intersections between multiple phases.
Improving the robustness of the method is essential to avoid the presence of very low quality
elements that may reduce the conditioning of the FE solution and hence increase computation
time. It is also essential to the remeshing strategy itself: if the remeshing algorithm is efficient
enough, relaxation of the volume preservation constraint should happen very rarely.

To achieve this aim, new operations are added to the remeshing process. As stated in Subsection
2.2.1, this is easily done by adding a new possibility, called wide gather, to the patch definition
at line 12 of Algorithm 1. This definition is activated only when the following conditions are
met at the end of an iteration of the remeshing loop: the target was an edge, no modification was
performed (the condition at line 22 was not verified), and the patch contains an element with
quality under Q,. Under these conditions, at the next iteration, the target is kept to the same

edge, but the intersection operator m at line 12 is replaced by a union operator U
This simple change adds a wide range of new topological modifications, including edge collapse.
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Since, by construction, the patch still consists in one CC, the FE conformity and volume
conservation criteria remain valid. An example of patch constructed using this new definition is
pictured in Figure 2.8(a) and Figure 2.8(b). Among all candidates, the patch pictured in Figure
2.8(1) 1s aesthetically interesting, but is not reachable directly using the standard patch definitions
of Figure 2.3 and Figure 2.4.
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Figure 2.8 — Example of patch at the wide gathered neighboring of an edge: (a) initial patch, (b)
external faces extraction, (c-i) candidates.

2.2.4 Concluding remarks

After discussion of the limitations of previous developments [5, 6] and the state of the art, it is
chosen to use an FE method with conform interface meshing, as illustrated in Figure 2.6. This
is essential for the accuracy of the FE solution at the interface, especially at crack tips. For
small deformations, a comparable accuracy could also be obtained using X-FEM, as described
in Reference [169].

Though only explicit meshes are used in this work, it is important to precise that since the
volume conservation condition defined in Subsection 2.2.2 is purely based on the distribution
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of phase volumes, it is readily applicable to implicit methods. If interfaces were implicit, these
volumes could be accurately computed by subdividing the elements crossed by the interfaces, as
already required by X-FEM [169]. Because there would be no interface faces, only the volume
conservation constraint would apply, and the interface preservation constraint would be dropped.
In relaxation mode, all operations would be allowed. Hence, implicit methods would ease the
remeshing process, with the advantage of volume conservation.

Additionally, element subdivision can be performed by pure edge splitting, as defined in Section
2.1. Thus, it can be observed that the implementation of the volume conservation constraint is
purely topological, and in particular, the whole algorithm remains dimension-independent.
Such an approach with implicit interfaces would be interesting for other applications than ductile
fracture, such as multiphase flow or grain growth, where the computational cost of following
interfaces with explicit meshes may be too high. Explicit meshes should nevertheless not be
discarded too promptly, as they allow a better discretization of singularities, which are smoothed
with implicit methods. This is important for instance at multiple junctions in grain growth
modeling (Chapter 7).
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2.3 Mesh motion and transport

In this section, a simple iterative technique is described in order to move mesh nodes, based on
a given displacement field, without triggering element flipping. This technique is not different
from usual procedures implemented in commercial codes or used for example in Reference
[182]. However, its coupling with the relaxation method defined in the preceding section gives a
powerful tool that can handle large deformations and complex entanglements of interfaces. The
problem of transporting history variables after each remeshing process is also addressed in this
section.

2.3.1 Mesh motion

Since convection is modeled by mesh motion in Lagrangian methods, there is a risk of element
flipping locally if an element is misaligned with respect to the direction of the displacement
increment, or if an element is small with respect to the magnitude of the displacement increment.
This 1s illustrated in Figure 2.9(a) and Figure 2.9(b), where the displacement field is voluntarily
singular (only one node is moving). The best way to avoid such situation is to maintain every
element as close as possible to a regular simplex [196]. This is the reason why mesh anisotropy
is generally avoided in Lagrangian methods, or at least controlled carefully in the regions where
the displacement field is known a priori to be oscillatory.

In Algorithm 2, a method is proposed to operate mesh motion progressively, with a constant
checking of element flipping and quality decrease. This checking is based on the operations
coordinates(), volumes() and qualities(), which are directly solved from the coordinates and
connectivity arrays. Under the assumption that the initial mesh does not contain any flipped
element, the condition at line 15 of Algorithm 2 ensures that no element flipping occurs during
mesh motion. It is avoided by rolling back when it occurs, and starting again with a smaller
displacement increment, as shown respectively in Figure 2.9(c) and Figure 2.9(d).

Of course, the same problem would appear even if small increments are used, hence the mesh
has to be adapted at some point. This is triggered at line 17 if at least one of the two following
conditions were met during mesh motion: element flipping was detected, or the worst quality
of the mesh decreased too significantly. For example, the remeshing operation in Figure 2.9(e)
solves the problem in Figure 2.9(b), as shown in Figure 2.9(f). The procedure MeshTransport
at line 20 is a standard operation which consists in transporting all fields stored at nodes and
elements from the old mesh to the new mesh after remeshing. This operation includes the
correction for multiphase domains detailed in Subsection 2.3.2.

2.3.2 Transport of history variables

History variables are mainly present in solid mechanics, where updated Lagrangian formulations
require the knowledge of stress and strain states element-wise, throughout the simulation. To
describe the issue addressed in this subsection, the following element-wise Heaviside functions
are defined for each phase i

| 1 where ¢;(x) >0,
Hi(x) = { 0 elsewhere.

These H; functions are computed on the elements of the initial mesh, and are transported by a
basic transport method after remeshing: for each element of the new mesh, the value of any
element-wise field is taken from the closest element of the initial mesh (distance is computed
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Algorithm 2 Mesh motion with element flipping prevention, S is a user-defined tolerance on
quality decrease, Q. is a user-defined initial quality, or the quality obtained after the last
remeshing, the lines in bold contain key operations that are enhanced in the present work.

1: function MesutMove(Mesh mesh, NodeField X, j, Real 3, Real Q,14)

2: Real a, O,

3: NodeField X3, X,ew

4: Mesh mesh®™

5:

6: repeat

7: X4 < mesh.nodes().coordinates()

8: Xnew — X()bj

O: a2

10: repeat

11: mesh.nodes().coordinates() <« X,

Xold + Xnew
12: Xy — ———"%
2

13: o — a

14: until min (mesh.elements().volumes()) > 0
15: Qyew < min (mesh.elements().qualities())
16: if @« # 1 or Q. < Y0, then

17: mesh® «— mesh
18: mesh «— MEesHApapT(mesh®)
19: MEsHTRANsPORT(mesh, mesh®)
20: Qoia < Onew

21: end if

22: until ¢ = 1

23: return mesh

24: end function

(a) (b)
(d) (e) )
Figure 2.9 — Example of node motion (highlighted in light gray) provoking element flipping: (a)

initial mesh, (b) mesh after motion, (c) rollback, (d) new try with half motion, (e) remeshing by
edge swap, (f) final motion.

(c)
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from center to center). Although the present method has the aim of conserving internal interfaces,
some local optimizations of these interfaces may change their position, for example in the
aggressive case illustrated in Figure 2.7(d). Thus, for some elements, recomputing Heaviside
functions H; from the LS functions modified by the remeshing process may yield a result different
from H;. As a consequence, an element may be attributed history variables from a phase it does
not belong to, which is wrong from a thermomechanical point of view. This is illustrated in
Figure 2.10, where an expected blue element of the new mesh has its barycenter (marked by a
white star in Figure 2.10(b)) located in an element of the initial green phase (highlighted in white
in Figure 2.10(b)), which makes it wrongfully considered as a green element.

To correct this mistake, two strategies seem possible: moving the interfaces in order to agree
with the transported history variables, or correct the transport method in order to agree with
the interfaces. In the present framework, it seems appropriate to leave interface tracking to the
mesh motion and adaptation algorithms, and modify the transport of history variables. To correct
this method, for each phase i, history variables of elements where transported H; is different
from recomputed H; are corrected by projecting the history variable of the closest element which
has H; = H; = 1. To perform this operation efficiently, the barycenters of all elements where
H; = H; = 1 are stored in a specific structure described in Subsection 3.2.2. For each element
where H; is different from recomputed Hj, the cost of finding the closest element in this structure
is logarithmic on the number of elements in the structure. Consequently, the cost of the present
treatment is negligible. An example of corrected result is illustrated in Figure 2.10(c).

/N
(a) (b) (©

Figure 2.10 — Example of an incorrect transport of history variables: (a) initial mesh, (b) adapted
mesh, (c) corrected transport. The two phases are colored in green and blue according to the H;
functions, and the interface is highlighted in red according to the ¢; functions.
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2.4 Results

In this section, the proposed method is applied to track interfaces in multiphase simulations.
Though these test cases are academic, they correspond to real and challenging computational
solid and fluid mechanics problems. The efficiency of the algorithms presented in this chapter
is investigated in terms of mesh quality and computation time. All computations are per-
formed on a 1.2 GHz Intel Xeon processor. The volume conservation parameters are fixed to
0,=0.05,0,=0.

In an attempt to establish a panel of applications where the method presented in Section 2.2
and Section 2.3 could be competitive and preferable compared to standard approaches, several
test cases are proposed. A particular attention is given to volume conservation and computation
time for small and large displacements and deformations. Topological changes such as linkage
of objects are also addressed. Unless otherwise mentioned, the domain € is the 3D box [0, 17,
an unstructured uniform isotropic mesh is used, and the time step is fixed to 0.01, all spatial and
temporal data being nondimensionalized.

e [EUL refers to an Eulerian LS method where all interfaces are implicitly described by LS
functions, the mesh remains fixed during the whole simulation, and convection is operated

0
by solving % +vV¢ = 0, with a first order implicit Euler scheme, a first order Lagrange

FE and SUPG stabilization. More advanced and recent stabilization methods, such as
[198], could be used, but it is reasonable to suppose that the chosen stabilization method
would not change the conclusions raised in this section.

o ILAG refers to a Lagrangian LS method where all interfaces are implicitly described by
LS functions, and convection is operated by mesh motion using Algorithm 2 with 5 = 0.5,
but regardless of the interfaces and their conservation.

e FLAGc refers to the method proposed in this chapter, which is the same as ILAG, but with
explicit interface meshing and enhanced volume conservation.

For the comparison to be fair, the initial mesh is the same for all methods, but in the case of
FLAGc an explicit interface is obtained using the interface fitting procedure described in Section
2.1. As mesh quality is likely to be deteriorated after this operation, it is followed by a mesh
adaptation step using Algorithm 1. This ensures that the initial interpolation error is the same for
all methods, though this initial adaptation step may induce some volume loss at the initial state
for the FLAGc method if relaxation occurs.

Computation time measurements consider only the solution of the convection equation in the
IEUL case, and the whole cost of Algorithm 2 in the ILAG and FLAGc cases, which includes
mesh motion, remeshing, and transport of FE fields. For comparisons between these last two
methods, the Number of Remeshing Operations (NRO) is also reported.

2.4.1 Large displacements: sphere rotation

Though in this chapter no material behavior is defined, this first problem has to be seen as a rigid
sphere rotating inside a fluid in turbulent flow. Hence, the displacements and the deformations
inside the fluid cannot be modeled by a Lagrangian mesh. However, an Arbitrary Lagrangian-
Eulerian method could be used to track the rotation of the sphere by mesh motion [182, 183].
The presently proposed method falls in this category. In this test, only the IEUL and the FLAGc
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methods are compared, and in the case of the FLAGc method mesh motion is applied only where
¢ >0.
The set-up is directly inspired from [177], where an enhanced LS Method was proposed, which
consisted in adding Lagrangian markers on an Eulerian LS, also to reduce LS diffusion during
convection. The sphere is placed at (0.5, 0.75, 0.5), has a radius of 0.15, and its rotation is ruled
by the velocity field

v(x) = (=27(0.5 = x),2m(0.5 — x),0).

This case is illustrated in Figure 2.11.

Time 0.00 0.25

FLAGc
time step :
0.001 :

FLAGc
time step :
0.01
IEUL e
. P P e s
time step = ey
- e e v
0.01 Pt et
SEESE

Figure 2.11 — Sphere rotation with a mesh size of 0.025 using the FLAGc method with two
different time steps and the IEUL method.

It can already be observed in Figure 2.11 that diffusion is way more significant for the IEUL
method, while it is controlled using the FLAGc method. On the one hand, this poor performance
for the IEUL method was expected, as the meshes used in this section are not as fine as the finite
difference grids used in Reference [177] for example, or the structured 2D FE meshes used in
Reference [198]. On the other hand, the performance of the FLAGc method could be improved
by starting with an explicit mesh of the interface directly built from a proper meshing tool [192],
and fixing Q,, to 0 since there is no interface deformation. Volume conservation would then be
optimal, as demonstrated in Appendix A.

However, it seems obvious that other moving mesh techniques such as [182] or [183] would
certainly yield the same result with far less computation time. These techniques consist in
defining artificial velocity fields for the nodes inside the fluid phase, in order to maintain a good
quality as long as possible, and delay the use of computationally expensive algorithms such as
Algorithm 1.

Another possibility for rigid body motions would be embedded mesh techniques [199], where the
interfaces are implicit, and carried not by FE fields on the computational mesh, but by separate
surface meshes. Nevertheless, these approaches are restricted to rigid body motions or small
deformations, while the LS methods (FLAGc, ILAG and IEUL) considered in this section cover
a wider range of applications.
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Figure 2.12 — Evolution of sphere volume during a full rotation using the reference time step and
a mesh size of: (a) 0.1, (b) 0.05, (c) 0.025. (d) Evolution of sphere volume during a full rotation
using a time step of 0.001.

In Figure 2.12(b) and Figure 2.12(c), the IEUL method shows first order convergence, but

the results regarding the FLAGc method are surprising, as the volume goes increasing, and so
does the error. These startling results are due to the fact that between Figure 2.12(a) and Figure
2.12(b), there is a major change in the composition of the volume error: the temporal error
becomes dominant over the spatial one. This is confirmed by Figure 2.12(d), which is the same
numerical experiment, but with a time step 10 times smaller.
Additionally, in Figure 2.12(a), increments where remeshing was operated can be clearly rec-
ognized as the points where sphere volume drops abruptly. Indeed, a larger mesh size reduces
the number of calls to the remeshing procedure. On the contrary, in Figure 2.12(b) and Figure
2.12(c), the drops of the sphere volume are reduced both by the fact that the mesh is finer, and
that remeshing is more frequent, and are hence less visible.

More precise information is summarized in Table 2.1, which also reports the computation
time for each simulation. The relative error is computed based on the sphere volume, and the
measurements are performed after 20 increments (resp. 200 increments for the cases of Figure
2.12(d)). While the FLAGc method is approximately 10 times costlier, it is also more accurate.
In particular, it is robust and gives a satisfactory solution, even for the coarsest mesh size, while
the sphere did not survive 20 increments for the IEUL method. Using a mesh size of 0.1 for
the FLAGc method and 0.025 for the IEUL one, the computation time is inverted and the IEUL
method is approximately 10 times costlier, for an error that is more than 3 times bigger than the
one obtained with the FLAGc method.

Note that since in this case, there are no continuum mechanics equations to solve, the computation
time for the finer meshes is underestimated. In practice, if one had to use finer meshes to avoid
diffusion, the cost of all other operations (Navier-Stokes solution, output writing, etc.) would
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increase the advantage of the FLAGc method. Therefore, for coarse meshes, or when the
interfaces show multiple scales of variations, the FLAGc method would be significantly more
interesting than the IEUL one in preserving all variations during the simulation, including the
smallest ones.

Method Meshsize Time step Computation time (s) Error (%)

FLAGc 0.1 0.01 62 15.8
0.05 0.01 570 10.0
0.025 0.01 8935 15.3
0.05 0.001 580 6.5
0.025 0.001 6909 0.3
[EUL 0.1 0.01 9 100
0.05 0.01 98 93.6
0.025 0.01 808 57.8

Table 2.1 — Computation time and relative error on the volume of the sphere after 40% of rotation
for the two methods, the three used mesh sizes, and the two used time steps.

2.4.2 Large deformations: sphere stretching

This case is representative of an heterogeneous material with multiple phases that are likely to
deform at comparable rates. A sphere of radius 0.15 is placed at the center of the box, and an
incompressible vertical stretching is applied by defining the velocity field as

| 1
v(X) = _E(XI —-0.5), I(x, = 0.5), —E(xg -0.5)].

With such stretching of the interface, pure moving mesh techniques such as [182] or [183] do
not apply anymore, since interfaces need to be remeshed. This case is illustrated in Figure 2.13.
The evolution of the volume of the sphere during stretching is presented in Figure 2.14 for
three different mesh sizes. There is a clear difference of accuracy between the IEUL method,
which diffuses at each increment, and the ILAG method, which diffuses only at remeshing. The
diffusion at remeshing is then drastically reduced with the FLAGc method (note that remeshing
is not triggered at the same increments for the ILAG and FLAGc methods).

Additionally, convergence can be observed on these graphs for the three methods, as diffusion
is reduced by mesh refinement. This is confirmed in Table 2.2, where the relative error is
computed based on the sphere volume after 100 increments. For the FLAGc and ILAG methods,
the gap between the error using the coarsest mesh size and the intermediary one is big due simply
to the fact that the first mesh size is too coarse for such stretching. Then, a first order convergence
is obtained. The same observation can be made for the IEUL method, with the difference that
the sphere is totally diffused using the coarsest mesh, as illustrated in Figure 2.14(a).

Finally, measurements of computation time in Table 2.2 must be considered carefully since
they highly depend on the number of remeshings triggered for the ILAG and FLAGc methods.
Though this number is low in the present case, it could be more significant depending on the
magnitude of the deformation the mesh undergoes at each time step. The main conclusion
that can be raised from these results is that the volume preservation constraint does not induce
a significant cost increase, as at equal NRO, the computation time of the FLAGc method is
comparable to the one of the ILAG method.
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Figure 2.13 — Sphere stretching with a mesh size of 0.025 using the three different methods.
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Figure 2.14 — Evolution of the volume of the sphere during its stretching. After 100 increments,
the major diameter is doubled, while the other two are divided by V2. The mesh size is: (a) 0.1,
(b) 0.05, (c) 0.025.
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Method Meshsize Computation time (s) Error (%) NRO

FLAGc 0.1 6 18.9 2
0.05 49 7.2 2
0.025 820 3.1 3
ILAG 0.1 10 45.7 3
0.05 46 8.3 2
0.025 422 2.7 2
IEUL 0.1 23 100
0.05 252 92.5
0.025 2101 43

Table 2.2 — Computation time and relative error on the volume of the sphere after full stretching
for the three methods and the three used mesh sizes.

2.4.3 Topological changes: sphere stacking

Applications where topological changes occur do not restrict to crack propagation, where crack
branching and merging are difficult to handle from a meshing point of view [114], but easily
modeled using an implicit interface. Other examples are recrystallization [168], where grains
may appear or disappear during the simulation, or polymer injection, where bubbles may nucleate
and link [191, 200]. Generally, in all these applications, explicit interface meshing becomes very
difficult and is generally avoided [191, 200].

The present test aims at showing that the present method can handle complex topological changes
and, more importantly, maintain a good element quality when they occur. It is designed to repro-
duce what happens during void linkage in ductile fracture.

The domain contains three spheres of identical radius 0.15 which are placed at (0.3,0.2,0.5),
(0.7,0.2,0.5) and (0.5,0.5,0.5), and the lower face of the box is of the same material as the
spheres (¢ is zero on this face). In this test, a Stokes problem is solved using the mixed P1*/P1
FE method described in Subsection 1.2.1 at each time step, with homogeneous Dirichlet boundary
conditions for the velocity, and homogeneous Neumann boundary conditions for the pressure.
The parameters of this problem are the nondimensional viscosity and gravity, which are set
respectively to 1000 and (0, —1000, 0) inside the spheres, and 10 and (0, —10, 0) in the rest of the
domain. As illustrated in Figure 2.15, the spheres and the plane are expected to link altogether
(as in polymer injection for example). Due to the significant computational cost of the Stokes
solver (not reported here), the configuration with a mesh size of 0.025 is not considered for this
test.

For the coarsest mesh, the results in Figure 2.16(a) show a poor performance of the FLAGc
method. Maintaining a body-fitted mesh raises complicate issues when the spheres start to touch,
consequently the NRO is greater than with the ILAG method (Table 2.3), and volume relaxation
is omnipresent. Then, when the spheres have linked (after = 500 increments), mesh quality seems
to have been restored, as volume is better conserved. The main difference between the FLAGc
method and the ILAG one is that the ILAG method diffuses approximately the same amount of
volume whatever the encountered deformation or topological change, while the FLAGc method
controls this diffusion.

In fact, if the FLAGc method was used with an implicit interface, one could assume that
remeshing would be less frequent, and a better performance could be recovered. Although
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Figure 2.15 — Spheres stacking with a mesh size of 0.05 using the three different methods.

such experiment is not performed in this section, the results in Figure 2.16(b) with a finer mesh
prove that the FLAGc method controls indeed volume diffusion, while the ILAG method keeps
releasing the same amount of volume at each remeshing.
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Figure 2.16 — Evolution of the volume of the spheres during stacking for a mesh size of: (a) 0.1,
(b) 0.05.

Regarding the IEUL method, the conclusions are the same as in the preceding sections:
convergence is of first order, but the difference with the other methods is large. An interesting
point is that the IEUL method is way costlier in this case, as reported in Table 2.3. This is due to
the fact that the cost of the ILAG and FLAGc methods is mainly due to Algorithm 1. Decreasing
the time step has no reason to influence significantly the NRO and hence to change significantly
computation time. However, the IEUL method relies on the solution of a convection equation
at every time step. Although a preconditioned conjugate residual iterative method is used and
the number of iterations decreases with the time step, there is still an irreducible cost at each
solution.
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Method Meshsize Computation time (s) Error (%) NRO

FLAGc 0.1 103 40.6 16
0.05 889 5.0 22
ILAG 0.1 62 35.9 4
0.05 600 14.4 9
IEUL 0.1 251 100
0.05 2940 100

Table 2.3 — Sphere stacking test: computation time and relative error on the volume of the spheres
after 1000 increments for the three methods and the two used mesh sizes.

2.4.4 Robustness investigation

For all preceding numerical experiments, a particular attention was given to volume conserva-
tion and computation time. Because the method proposed in this chapter is based on a mesh
adaptation algorithm, it is also important to verify that this algorithm is efficient. In that purpose,
element quality, as defined in Equation (2.1), is computed at each increment and integrated over
time for all tests performed with the FLAGc method.

This quality distribution is expected to be concentrated around two peaks corresponding respec-
tively to the elements of the domain far from any interface, and the elements having their quality
deteriorated by the presence of a neighboring interface. As most histograms presented in Figure
2.17 feature only one peak, a first qualitative conclusion is that, in most cases, element quality is
not deteriorated significantly by the volume conservation constraint.

First, in the sphere rotation case in Figure 2.17(a), it can be seen that element quality is efficiently
restored after the passing of the sphere, as element quality is concentrated around 0.7 for all used
mesh sizes. Regarding the sphere stretching case in Figure 2.17(b), the histogram is slightly
shifted to the left because the whole domain is stretched and remeshing is not operated frequently
enough to maintain higher quality; hence, the quality of some elements is allowed to decrease.
The fact that there are very few ill-shaped elements is nevertheless satisfactory and remeshing
based on a quality decrease criterion seems appropriate.

Finally, element quality distribution for the spheres stacking case is the only distribution that

clearly exhibits two distinct concentration points: one around 0.3 and one around 0.7 (Figure
2.17(c)). This suggests that a whole part of the domain is represented with elements of inferior
quality and that these elements are kept in the mesh for a long time. This is most likely due to
the small space between the spheres that progressively narrows down and then disappears. The
numerous contact areas between the spheres and the plane and between the spheres themselves
could also explain this decrease of mesh quality.
A zoom on the sphere in the lower left corner is presented in Figure 2.18. It is important to point
out that the FLAGc method handles very well the linkage events between the different objects,
hence preserving the advantages of the LS method. While in the literature mesh regeneration
techniques have been used to address such problems in Lagrangian frameworks [114, 181],
to the author’s best knowledge, this is the first time that such results are obtained with body-
fitted interfaces, based purely on mesh adaptation. This is interesting in a point of view of
computational cost and parallel computing, as mesh adaptation relies only on local operations.
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Figure 2.18 — Spheres stacking with a mesh size of 0.05 using the two Lagrangian methods,
zooming in on the lower left corner.
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2.5 Parallel implementation

As described in Subsection 1.2.1, the FE code in which all the present developments are integrated
is based on a distributed computing paradigm. Because the mesh is partitioned among multiple
processes, mesh modifications have to be undertaken carefully. In particular, it would be very
technical to implement mesh modification operations on patches containing nodes that are shared
among multiple partitions. Although it is stated in Subsection 1.2.1 that the FE code lacks
methods to ease the development of such operations, it is not true in the case of mesh adaptation,
which is at the core of this FE library [125].

The methodology implemented in this library for parallel remeshing consists in first remeshing
independently each partition, inter-partition boundaries being blocked. Then, repartitioning is
performed so that poor quality elements land far away from these inter-partition boundaries,
using the methodology introduced in Reference [125], and remeshing is applied independently
again. As illustrated in Figure 2.19, this cycle is repeated several times. Thus, all methods
presented in Section 2.1 and Section 2.2 can be implemented in a totally sequential manner, with
no regard with respect to the parallel aspects, apart from the fact that inter-partition boundaries
are tagged and blocked. All parallel aspects, mainly repartitioning, are handled by the existing
FE code.

However, in order to ensure that all edges of the mesh are actually reached by the fitting
procedure described in Section 2.1, the quality of the elements with edges that are not conform to
all interfaces is penalized. The repartitioning procedure will then move inter-partition boundaries
far from these elements, so that they can be remeshed. Additionally, the method proposed in
Reference [125] established a fixed number of remeshing/repartitioning cycles, which did not
necessarily allow for a global adaptation of the whole mesh. An additional iteration was hence
added so that these cycles are repeated until all nodes and elements of the mesh have been
actually reached by the algorithms presented in Section 2.1 and Section 2.2.
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Figure 2.19 — Application of the parallel remeshing procedure to a 2D mesh, arrows pointing
downward represent remeshing steps, while arrows pointing upward represent repartitioning
steps. Partitions are distinguished by the coloring. Figure reproduced from [201].
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2.6 Extension to computational fracture mechanics

Insertion of new interfaces during simulations with explicit representations is usually done either
by splitting existing faces of the mesh, or generating a new mesh carrying the new interfaces
[114, 185, 186]. In this section, a method requiring only mesh adaptation is proposed, hence
avoiding to modify the mesh in regions far from the crack.

To insert a crack, three LS functions are defined, as illustrated in Figure 2.20. Two of these
LS functions define the two faces of the crack, while the third one defines a filter enabling to
propagate the crack progressively instead of letting it cross the whole domain. These functions
are defined analytically using appropriate crack initiation or propagation criteria (Chapter 4 and
Chapter 5), then the interface fitting procedure is applied only in the regions selected by the filter
LS function.

For example, a small portion of the matrix/particle interface can be debonded as in Figure 2.20(b),
or a particle can be fragmented without affecting neighboring particles as in Figure 2.20(c). The
use of LS functions aims at simplifying fracture modeling, which does not need to implement
mesh modification operations, as these operations are already implemented in Algorithm 1.
These operations are only local, which enables to reduce drastically the computational cost with
respect to a global mesh generation procedure [114].

It would be tempting and more rigorous to define only two LS functions, namely one for the

filter and one for the crack, mesh the latter using the technique in Section 2.1, and then split the
faces carrying it to insert the free surface. However, a key aspect of the present developments is
the ability to handle void linkage, which requires to mesh the void phase, as in Subsection 2.4.3.
Hence, it is necessary to define two crack faces and have them slightly separated by a small (one
order below mesh size) numerical thickness ¢ so that the elements belonging to the intersection
between the three LS functions do not have a zero volume. These elements are added to the LS
function of the void phase, and removed from other LS functions, so that the mesh adaptation
algorithm can be applied.
An important issue raised by this approach is that these elements that are inserted between the
two crack faces are likely to be of very poor quality, due to the small numerical thickness ¢.
Thus, the volume conservation constraint defined in Subsection 2.2.2 is likely to be relaxed in
these elements, leading to crack closure. To avoid this, the authorized relative change €, for the
volume occupied by the void phase inside each patch during mesh adaptation, given by Equation
(2.2), is modified by replacing each quality parameter (Q,, Q) and variable (Q,,;,) by volumes
(Vu, Vo, Vinin). For instance, the volume threshold V,, under which the volume conservation
constraint is totally relaxed for the void phase will be < &'. Numerical examples using this
computational fracture mechanics with LS-based crack modeling and remeshing are presented in
Chapter 4 and Chapter 5.
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Conclusion

Modeling microstructures such as those found in metal alloys is generally carried out in a
Lagrangian framework. The Level-Set (LS) method is an interesting numerical tool as it enables
to model easily complex topological changes, such as void linkage. However, for large deforma-
tions, remeshing operations, which are necessary in Lagrangian simulations, are usually pointed
out to be too computationally demanding. In this chapter, coupling a mesh motion algorithm
with a quality and element flipping criterion (Section 2.3), it is proved that remeshing can be
delayed enough so that a Lagrangian LS method becomes more than interesting compared with
an Eulerian LS method, even when large deformations and topological changes occur (Subsection
2.4.2 and Subsection 2.4.3).

The main defect of the Lagrangian method is the tendency of significantly diffusing the interfaces
and the volume at each remeshing operation. The new remeshing method with volume conser-
vation constraint presented in this chapter (Section 2.2) is then proved to control and reduce
this diffusion, and promising results are obtained for large displacements (Subsection 2.4.1).
Compared to the first two approaches, this new method also adds explicit interface meshing
(Section 2.1), which is well-known to raise difficulties when large deformations and topological
changes occur. Thanks to the intermediary use of LS functions, the method is proved to be able
to handle such events without a significant loss of accuracy or increase of computation time.
To the author’s best knowledge, this is the first time that such results are obtained with explicitly
meshed interfaces, based purely on mesh adaptation. This is interesting in a point of view of
computational cost and parallel computing, as mesh adaptation relies only on local operations.
It would be interesting to apply this method to other applications, such as multiphase flow, where
surface tension and high discontinuities at interfaces are difficult to capture when interfaces are
not explicitly meshed. This problem also appears in static and especially dynamic recrystal-
lization modeling, with the added difficulty that multiphase junctions have to be handled. Such
topics are considered in Chapter 7.

As a conclusion, this adaptive LS Method with enhanced volume conservation is a robust tool that
can be used to track interfaces in simulations where all types of events occur (large displacements,
large deformations, topological changes). This robustness also allows to use coarser meshes or
to improve the conservation of all scales of variations of the interfaces, including the smallest
ones. These features are easily extended to distributed computing, though some issues linked to
the mesh generation procedure have to be addressed (Section 2.5).

Coupled together, these parallel mesh generation and adaptation techniques can be used to
generate body-fitted meshes from LS functions, enabling fracture mechanics applications where
new interfaces can be captured on-the-fly during the simulation (Section 2.6). Compared to
previous work, this approach preserves the ability to initiate and propagate cracks of arbitrary
shapes, hence avoiding any mesh dependency. Although there is still a loss of mass, as the
inserted nuclei is given an artificial volume, this loss of mass is drastically reduced thanks to
body-fitted meshing. Additionally, crack tips are captured with no excessive mesh refinement.
An important aspect of this computational fracture mechanics approach is that, because the
cracks and hence the void phase are represented by LS functions and meshed, the adaptive LS
method discussed above can be applied to the void phase. For instance, a well-known issue with
eXtended Finite Element Method (X-FEM) techniques is that the elements carrying the crack
cannot be remeshed due to their enrichment. Thus, applications of these techniques to the large
deformations induced by void growth and coalescence are limited. Such issues are not encoun-
tered with the proposed method as remeshing operations are used to track the transformation of
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a sharp crack into a spherical void, and then its coalescence with neighboring voids (Chapter 4).
An interesting problem raised by the presence of cracks is the occurrence of contact and penetra-
tion problems, including self-contact. These issues are addressed in Appendix A.

Section 2.1 and Section 2.5 are highly inspired from results published in Reference [40],
while the remaining sections of this chapter, with the exception of Section 2.6, are highly inspired
from results published in Reference [4]].
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92 RESUME EN FRANCAIS

Résumé en francais

Dans ce chapitre, trois outils numériques supplémentaires sont ajoutés a la méthode éléments
finis. Parmi les objectifs figurent I’'import de données acquises par imagerie a rayons X vers
le maillage éléments finis et la génération de maillages adaptés a ces données. La technique
d’import d’images décrite dans ce chapitre requiert des opérations de traitement d’image assez
coliteuses, mais qui ne sont appliquées qu’une fois pour chaque image. Afin de limiter ces
cofits a la fois en termes de consommation mémoire et temps de calcul, ces traitements sont
systématiquement exécutés a 1’aide du code éléments finis lorsque cela est possible. Ainsi, les
algorithmes paralleles implémentés dans ce code sont exploités au maximum de leurs capacités.

L’ adaptation du maillage aux géométries trouvées dans les images, et plus généralement a

la morphologie des microstructures, s’appuie sur un recouvrement de la matrice hessienne de
chaque fonction de niveau. Ce recouvrement est réalisé a I’aide d’une implémentation distribuée
d’une technique de recouvrement par patchs superconvergent de second ordre détaillée dans ce
chapitre. Certaines valeurs propres des matrices hessiennes des fonctions de niveau représentent
les courbures principales locales des interfaces et sont utilisées pour raffiner le maillage dans les
régions a haute courbure principale maximale.
Cet estimateur d’erreur est validé numériquement sur des cas tests ou il est couplé avec
I’algorithme d’adaptation de maillage vu au chapitre précédent. Des ordres de convergence
proches de ceux prédits par la théorie sont obtenus. Pour des géométries singulieres, ces ordres
de convergence sont amoindris, ce qui est également en accord avec la théorie.

Pour que I’estimateur d’erreur soit fiable, il est important que les fonctions de niveau restent
aussi proches que possible de leur définition initiale de fonctions distance signée a I’interface.
En effet, une irrégularité de ces fonctions menerait a une mauvaise estimation des courbures
principales locales, et ensuite a un maillage trop fin ou trop grossier dans certaines régions. Afin
de maintenir cette propriété de distance signée, une procédure de réinitialisation des fonctions de
niveau est proposée dans ce chapitre.

En s’appuyant sur divers cas d’application, il est montré que cette méthode est tres intéressante
en termes de temps de calcul et précision en comparaison avec d’autres approches proposées
dans la littérature. En particulier, des géométries correspondant a des matériaux du vivant et
des composites observés par imagerie a rayons X peuvent étre immergées dans un maillage
éléments finis a 1’aide de cette méthode de réinitialisation de fonctions de niveau. Le colit de
calcul est alors largement dominé par les opérations d’adaptation du maillage aux courbures
principales locales de la géométrie, tandis que la méthode de réinitialisation a un cofit négligeable.

Avec les outils développés dans ce travail, I'import des images vers le maillage et 1’adaptation
de ce dernier a la géométrie, a I’aide de fonctions de niveau réinitialisées, peuvent étre suivis par
une étape de génération de maillage explicite aux interfaces. Un outil supplémentaire présenté
dans ce chapitre permet également de distinguer les différentes composantes connexes d’une
phase représentée par une unique fonction de niveau. Cette opération est complexe dans un
contexte de calcul distribué mais est indispensable pour effectuer certaines mesures statistiques
ou considérer des criteres de rupture par vide ou par inclusion.

A T’aide des différents outils développés dans ce chapitre, des maillages éléments finis
conformes et de bonne qualité peuvent étre générés et adaptés a toute géométrie. En particulier,
ces outils permettent d’accéder aux applications liées a la biologie et a la science des matériaux,
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ou I'utilisation de I’imagerie par rayons X en trois dimensions (3D) est prépondérante. En outre,
la procédure de génération et adaptation de maillage proposée dans ce chapitre a un temps de
calcul raisonnable et peut étre ajustée par I'utilisateur pour obtenir différents niveaux de précision
grace a un estimateur d’erreur.
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Introduction

Though it is based on a conform Finite Element (FE) meshing of interfaces, the mesh generation
and adaptation methodology introduced in Chapter 2 still relies heavily on the Level-Set (LS)
method. Hence, some aspects of this method have to be addressed.

First, results obtained using the volume conservation constraint introduced in Chapter 2
show that some numerical diffusion remains, and converges to zero linearly with mesh size,
but it is drastically reduced. Thus, thanks to explicit interface meshing and enhanced volume
conservation, the very fine meshes used in previous works [5, 6] are no longer required, but local
mesh refinement could still be used. The accuracy of the mechanical solution at the interface
could be improved, as mechanical fields are more likely to vary there than in the rest of the
domain. The geometry of the interface and all its scales could also be better captured if the mesh
size depended on geometrical quantities such as the principal curvatures. Error estimators and
metric-based mesh adaptation strategies to refine the mesh depending on the principal curvatures
are detailed in Section 3.1.

Then, the robustness of any LS method depends importantly on a key operation, known as LS
reinitialization. Multiple approaches have been proposed in the literature to solve this operation,
but numerical experiments showed that not all of them guarantee the same level of accuracy. As
described in Section 3.2, these experiments and the literature on the topic motivated the study
of a novel approach to the problem, applicable to the case of unstructured meshes distributed
among several processes.

Since in most LS frameworks, multiple objects of the same phase are embedded in a single
LS function, it is no longer possible to identify how many components are represented by an LS
function. For example, in the present study, the number of particles and their distribution in size
and space are not so easy to obtain, because all particles are embedded in the same LS function.
The same remark applies to voids, which makes it difficult to consider void coalescence criteria
that usually apply between pairs of voids. In other applications, the number of grains, bubbles,
fibers, and other physical components has to be retrieved for statistical or modeling purposes.
In Section 3.3, an algorithm is introduced in order to solve this problem, by identifying each
Connected Component (CC) inside the same LS function with a unique tag. The difficulty of this
problem is mainly linked to its parallel implementation.

Finally, image immersion techniques are necessary in the present study as experimental vali-
dation on real three dimensional (3D) microstructures is targeted. Meshing real microstructures
from 3D images is a complex and challenging problem that is significantly simplified in the
present work thanks to the LS reinitialization and mesh generation and adaptation procedures
presented in Section 3.2 and Chapter 2. In Section 3.4, these tools are used to import geometries
by transforming a gray scale 3D image to an LS function on an FE mesh, the latter being adapted
thanks to curvature-based error estimators as in Section 3.1. The images used in these example
span over a wide range of materials including human bone, polycrystals and fiber-reinforced
polymers.
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3.1 Curvature-based mesh adaptation

3.1.1 Metric fields

Before defining any error estimator, it is necessary to give some details about metric fields and
metric-driven mesh adaptation, especially regarding how anisotropic meshes are obtained. The
reader is referred to Chapter 2 for details about the mesh adaptation algorithm. In particular,
in Subsection 2.2.1, an element-wise definition of mesh quality is given, with a reference to a
metric field M. This metric field is actually a second order tensor that is defined node-wise and
interpolated element-wise for quality computation, where it is used to distort the usual Euclidean
definitions of volume and length, hence defining a Riemannian space. Depending on M, the
remesher will see some edges longer or shorter than they are, and because the remesher is trying
to have the average edge length in each element as close as possible to 1, mesh anisotropy will
result.

An example is given in Figure 3.1 in the isotropic case. The initial mesh of a square domain
[0,1]% in Figure 3.1(a) is adapted with a metric field

(2) (®)

© ()

Figure 3.1 — Metric-driven mesh adaptation applied to a two dimensional (2D) isotropic example:
(a) initial mesh, (b,c) progressive adaptation, (d) final mesh.
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The small topological changes performed by Algorithm 1 progressively refine the mesh so
that all edges have a length close to 0.1 without inducing poorly shaped elements.
An example with anisotropy is given in Figure 3.2, using the metric field

1
h 10
1 0 1 0
T N T A T
1 01 0 0o 0 1
hg
where R is a rotation matrix, and the values A; are the mesh sizes prescribed in the directions

defined by the column vectors of R. In this example, R is the identity hence the directions are the
Cartesian directions, and the mesh sizes are 1 in the x direction, and 0.1 in the y direction.

(@ (b)

(©) (d) (©
Figure 3.2 — Metric-driven mesh adaptation applied to a 2D anisotropic example: (a) initial mesh,

(b,c) progressive adaptation, (d) final mesh, (e) final mesh as the remesher sees it.

The comparison between the result displayed in the Euclidean space in Figure 3.2(d) and its
representation in the Riemannian space defined by M in Figure 3.2(e) reveals the effect of the
metric field on the remesher.

3.1.2 Error estimators

The purpose of error estimators is two-fold, namely, obtaining an estimate of the error produced
by a numerical approximation, and then giving some insights into how this approximation could
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be improved in order to reduce the error. In an FE context, there are two ways of influencing the
error. The first way is to change the order of the FE method, and the second way is to change
mesh size. Both techniques can be applied locally. The former is known as p-adaptivity while
the latter as h-adaptivity. Both can of course be combined. In the present work, p-adaptivity was
discarded because it requires major changes in the FE code, while s-adaptivity only requires
appropriate error estimators and a mesh adaptation tool, the latter being already implemented in
Chapter 2.

Therefore, error estimators that could help predict locally the approximation error are investi-
gated. What is of interest in this section is the approximation error linked to the approximation of
a geometry by an LS function ¢. The reader is referred to [119, 120] for a more thorough intro-
duction to numerical errors produced by the FE method and their estimation. As a consequence
of Céa’s lemma, the approximation error is bounded by the interpolation error, which is the error
between the exact LS function to the geometry, and its FE interpolation. Given that the geometry
is regular enough, the interpolation error can be related to the Hessian matrix of the exact LS
function to the geometry. Further details on this error estimator can be found in Reference [166].
Because the objective is to describe the geometry more accurately, this estimator is only used
in a small layer around the interface. While local mesh refinement would enable to improve
the accuracy only in this small layer, anisotropic mesh adaptation would enable to improve the
accuracy differently depending on prescribed directions.

The anisotropic error estimator introduced in Reference [166] aims at refining the mesh in
the normal direction to the interface in order to better capture material heterogeneity, while mesh
size in the tangential direction(s) to the interface will depend on local principal curvature(s).
The number of principal curvatures depends on the dimension d. In the normal direction n to
the interface, a linear transition is defined between a mesh size 4, at a distance ¢, from the
interface, and a mesh size h,,;, on the interface, with A,,;, < h,,.. < €. The one (d = 2) or two
(d = 3) other directions are given by the eigenvectors of the Hessian matrix that are not colinear
with n, and mesh size in these directions is related to the corresponding eigenvalues. This
anisotropic error estimator has been applied to fluid-structure interaction problems in Reference
[166]. Anisotropic meshes are however not suited for the present Lagrangian simulations.
Hence, an isotropic error estimator is derived by considering only the maximum eigenvalue A,,,,,
of the Hessian matrix of the exact LS function (i.e., the maximum principal curvature). Mesh
size is then defined as

h = max (min( he + (hmax _ e ) f,hmax) ,hmm) , M = diag (l) . (3.1)
max /lmax €n h2

The role of bound #,,;, is to ensure that when the geometry is singular (at corners and sharp
edges of the interface), mesh size will not degenerate to a very low value. For a planar geometry
with 4,,,, — 0, the role of bound #,,, is to ensure that mesh size will not degenerate to a
very high value. Apart from these bounds, Equation (3.1) defines a linear transition from a
curvature-dependent mesh size at the interface, to a mesh size of 4, at a distance of ¢, from the
interface.

The curvature-dependent mesh size is a ratio between a meshing parameter /. and the maximum
eigenvalue 4,,,, of the Hessian matrix of the exact LS function. All normalization coeflicients
were voluntarily omitted in this formula, hence 4. is a parameter that permits to refine the mesh
if it is decreased, and coarsen the mesh if it is increased. This effect is independent from the
principal curvatures, thus discretization should be scale-independent, apart from the influence of

parameters h,,;, and A,
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In the present work, because multiple LS functions ¢; are defined, Equation (3.1) is first
applied independently on each LS function to obtain a mesh size 4;. Then the minimum of these
mesh sizes is taken as final value.

Additionally, because the geometry is evolving due to deformation and fracture, the exact LS
functions are not known. Therefore, a procedure is necessary in order to recover an accurate
estimate of the exact Hessian matrix of each LS function.

3.1.3 Gradient and Hessian recovery

Gradient recovery and Hessian recovery problems have both been discussed in the literature,
especially with the objective of building accurate error estimators. Hessian recovery is also
necessary to solve problems with curvature-driven interface motion such as grain growth (Para-
graph 3.2.3.2). The techniques proposed in the literature consist in first building a higher-order
approximation of the initial approximation thanks to a least squares formulation, and then using
this approximation to compute the desired Gradient or Hessian matrix [120].

For a given first order FE approximation, a higher-order approximation can be obtained using
a modified Superconvergent Patch Recovery (SPR) technique [202, 203]. For each node, this
technique consists in collecting the values of the given variable on every element containing this
node. Then, a second order Hermite interpolation of the variable is fitted on these values in a
least squares sense.

A common issue with a second order SPR technique is the significant number of unknowns,
namely, the value of the field, the d values for its gradient, and the d(d + 1)/2 values for its
Hessian matrix. In order to well-define the least squares problem, the patch must then contain
enough data (1 +d +d(d + 1)/2).

In the frame of the present work, a parallel algorithm was developed to reach this purpose. As
pictured in Figure 3.3(a), this algorithm consists in first collecting two sets at every node of
the mesh: the data, which contain the values of the field on the neighboring elements, and the
ghost, which contains the nodes connected to the considered node. Until data do not contain
1 +d+d(d+1)/2 elements, the two sets are fed by collecting the data and the ghost of the nodes
already located in ghost, as shown in Figure 3.3(b).

(2) (b)

Figure 3.3 — Illustration of the patch, or data (light gray) and the ghost (green dots) for a
considered node (black dot) at the first (a) and second (b) iterations of the feeding algorithm.
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Once the least squares problem is solved, node-wise gradients and Hessian matrices can be
extracted directly from the node-wise second order Hermite polynomials. Equation (3.1) can
then be solved and mesh size defined in the whole domain.

3.1.4 Results

In this section, meshes are adapted to different geometries thanks to the error estimator presented
above, and the accuracy and convergence of this procedure is proved numerically. The goal is not
to validate the SPR technique, which has already been validated by other authors [202, 203, 204],
but to validate the use of this SPR technique to construct an isotropic error estimator and then a
metric field, which are used to adapt the mesh thanks to Algorithm 1. In particular, results will
be affected if the adaptation algorithm fails at producing meshes that answer the requirements
specified by arbitrary metric fields.

These tests are carried out in the case of a regular geometry and then a geometry incorporating a
singularity. For both geometries, the domain Q is the 3D box [0, 1]°, discretized initially by an
unstructured mesh of uniform isotropic size 0.08, all data being nondimensionalized. There is
only one LS function, associated with a sphere of radius 0.3 centered with respect to the box
for the first geometry. It is replaced by a Zalesak sphere for the second geometry. The meshing
parameters are set to €, = 1, A4, = 0.16, h;,, = 0.01, and A, is varied. The goal is to verify that
the error converges to zero with decreasing ., and that the order of convergence in L? norm is 2.
The exact interpolation error is measured by the L*(77) norm of the difference between the exact
LS function ¢, and the interpolated LS function ¢, , this difference being directly computed at
Gauss points (it is zero at mesh nodes). The interface I' is not explicitly meshed, and the set 71
contains all the elements of the mesh that are crossed by the interface (i.e., ¢, takes opposite
signs on one of their edges).

3.1.4.1 Sphere

The LS function ¢, associated with the sphere is given by

d
6:(X) =03 = [ > (5~ 0.5
k=1

In order to verify that the remesher produces a mesh that satisfies the requirement specified by
the error estimator, it is necessary to have a converged error estimate. This is guaranteed by
performing 5 iterations of LS computation, error estimation, and remeshing. For the sphere test,
in the last two iterations, the number of elements does not vary significantly, so that the Sth mesh
can be considered as a converged result.

The results for this first geometry are presented in Table 3.1. An order of convergence slightly
higher than 2 is obtained, which means that the estimator may overestimate the error in some
cases. Since this overestimation is not significant, this is not a major issue.

h.  Errorin L*(77) norm  Order of convergence Number of elements

0.32 1.280 x 1077 5940

0.16 2.015x 107 2.67 27679
0.08 4.819 x 107 2.06 119467
0.04 9.015x 107° 242 496844

Table 3.1 — Convergence results for the error estimator based on LS functions. Sphere test.
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Because no parallel implementation of the SPR technique was available in the FE code, other
methods have been used in previous work at Cemef - MINES ParisTech for gradient and Hessian
recovery operations. The most widely used was through node-wise averaging. First, the gradient
was computed at Gauss points based on FE shape functions. Then, at each node, a node-wise
gradient was obtained by averaging the gradients of all elements containing this node. These two
steps were reiterated in order to obtain node-wise Hessian matrices. Results for the sphere test
using this node-wise averaging technique are reported in Table 3.2.

h.  Errorin L*(77) norm  Order of convergence Number of elements

0.32 1.631 x 107 4424

0.16 8.137 x 107 1.01 12665
0.08 2.828 x 1074 1.53 43591
0.04 5.850 x 1073 2.28 173658

Table 3.2 — Convergence results for the error estimator based on LS functions, using a node-wise
averaging gradient/Hessian recovery technique instead of SPR. Sphere test.

A more conventional approach that was available in the FE code is global least squares fitting.
This approach is similar to SPR, with the difference that only first order polynomials are used,
and the least squares problem is solved globally. Because linear polynomials are used, this
operation must be performed twice to obtain the Hessian matrices. Results for the sphere test
using this global least squares technique are reported in Table 3.3.

h.  Errorin L*(77) norm  Order of convergence Number of elements

0.32 1.209 x 1073 5743

0.16 4341 x 1074 1.48 21729
0.08 1.160 x 107* 1.91 86784
0.04 2.329 x 1073 2.33 358566

Table 3.3 — Convergence results for the error estimator based on LS functions, using a global
least square gradient/Hessian recovery technique instead of SPR. Sphere test.

It is important to point out that these techniques are known to produce less accurate results.
The present tests aim at showing the influence of these inaccuracies on mesh adaptation. The
results show that the order of convergence is deteriorated, especially using coarse meshes, while
it should be optimal for this regular geometry. Thus, a second order SPR technique is not only
relevant for gradient and Hessian recovery, but also for obtaining optimal meshes.

3.1.4.2 Zalesak sphere

The LS function ¢, associated to the Zalesak sphere is given by

d
¢4(X) = min (0.3 - Z(xk —0.5)?, = min(x; — 0.30,0.55 — xp, x, — 0.45)|.
k=1

For this geometry, the presence of several singularities means that /,,;,, will be reached in some re-
gions of the domain. Thus, more than 5 iterations are necessary to reach convergence of the error
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estimator. The results obtained at convergence (i.e., when the number of elements does not vary
significantly between two iterations of error estimation and remeshing) are presented in Table 3.4.

h.  Error in L*(77) norm  Order of convergence Number of elements

0.32 5.539 x 107* 113412
0.16 1.893 x 1074 1.55 245052
0.08 5.071 x 107 1.90 375837
0.04 2.953 x 1073 0.78 710522

Table 3.4 — Convergence results for the error estimator based on LS functions. Zalezak sphere
test.

There is a clear increase in the number of elements, when compared with Table 3.1, due to
a more complex geometry. The order of convergence is inferior because the mesh only varies
in the regions close to the spherical part of the geometry. This was theoretically expected and
confirms the role of the 4,,;, and A,,,, bounds, which is summarized in Figure 3.4.

Mesh size
g. 16
0.12
VAT v et i NG \ ‘
TR A RN i, g E0.08
A Eo.04
- 0.0]1

Figure 3.4 — Converged mesh for the Zalezak sphere test with 4. = 0.32. The interface is colored
with respect to mesh size: regions in red have A,,,, — 0 (mesh size is ), regions in blue have
Amax — o0 (mesh size is h,,;,), and remaining regions are regular (mesh size depends on /. and
the local A,,,,).

As a conclusion, an error estimator is presented in this section in order to adapt the mesh
close to interfaces based on the interpolation error on LS functions. This error is directly linked
to geometrically relevant information, namely, the maximum principal curvature A,,,,, which
is estimated thanks to an SPR technique. The implementation of the latter in a distributed
computing framework is addressed. An isotropic metric field is constructed based on this SPR
technique and the error estimator, and is used to drive mesh adaptation.

Results show that both the SPR technique and the mesh adaptation algorithm perform satisfacto-
rily, as an order of convergence close to the theoretical one is obtained. When the geometry is
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of low A,,.y, an upper bound on the mesh size prevents it from going to infinity, while for high
or infinite 4,,,,, a lower bound on the mesh size guarantees the best discretization possible, as
defined by the user. The influence of these bounds and the geometrical error parameter /. is
verified numerically.

As a consequence to this influence of A4,,,,, it is important that the LS function remains as close
as possible to a signed distance function. A loss of regularity would lead to undesired results
such as a very high local refinement in regions where it is not needed, or the opposite. This
regularity is maintained thanks to LS reinitialization, which is addressed in the next section.
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3.2 Level-Set reinitialization

3.2.1 Introduction

The LS method has been employed to simulate a wide variety of mechanical and metallurgical
phenomena [166, 169, 181, 205, 206]. A major drawback of this formulation lies in the fact
that after transport (in both Eulerian and Lagrangian cases), in general, the function is no
longer a distance function. This is particularly problematic when a specific remeshing technique
depending on the distance property is used at the interface (Section 3.1). In addition, some
phenomena, such as curvature-driven interface motions, require a distance function at least in
a thin layer around the interface in order to compute properly the corresponding velocity field
[207]. Finally, the conditioning of the transport problem solved in Eulerian methods also depends
on the regularity of the LS function [2].

For these reasons, the distance function needs to be reinitialized. Restoring the metric property is
equivalent to solving the following eikonal equation for a given LS function ¢ to an interface I

v { IVo(x, 0l = 1,x € Q),
#(x,1) = 0,x € T(f).

There exist different approaches to solve this equation including the well-known fast marching
method introduced by Sethian [208], which propagates a front from the interface and ensures
directly a gradient equal to unity. Though this approach has been later extended to unstructured
meshes [209], its implementation becomes extremely complicated when it comes to consider
anisotropic (i.e., obtuse) triangulations [210]. The latter relies on the insertion of numerical
supports for obtuse triangle and is mentioned as "cumbersome" in Reference [210].

Another major drawback of the fast marching method lies in the parallel implementation. More
specifically, the algorithm has to be performed several times on each partition to synchronize
the values between the processors, which requires significant implementation effort and poor
parallel efficiency.

(3.2)

In Reference [211], a Hamilton-Jacobi (H-J) formulation equivalent to Equation (3.2) was
proposed in order to correct iteratively the LS values around the interface by solving a partial
differential equation. This method thus requires the definition of a purely numerical parameter
known as the fictitious time step for reinitialization Atr. This quantity is generally of order of
the mesh size /4 in the direction normal to the interface. For convenience we assume in the
following that At = h. By noting e, the reinitialized thickness, €,/A7 increments are then needed
to reinitialize completely the layer ¢ € [—¢,, €,].

More recently, coupled Convection-Reinitialization (CR) methods emerged wherein the LS

function is automatically reinitialized during the solution of the transport equation [2]. Their
main advantage lies in the fact that only one solution step is needed for the simulation instead of
two for the classical H-J technique.
The signed distance function can also be replaced by any smooth function that satisfies the metric
property, at least in a thin layer around the interface. In the following these two variants will
be mentioned: the former using a classical distance function (CR-DF) and the latter working
with a hyperbolic tangent distance function ¢ = ¢, - tanh(¢/¢,) (CR-HTDF). Since the hyperbolic
tangent function has a gradient close to one only in the neighborhood of zero, the truncation
thickness ¢ has to be chosen big enough to verify the metric property at least in a thin layer
around the interface.
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Finally, a natural way to reinitialize LS functions consists in using a brute force algorithm to

perform a complete reconstruction of the distance function. This technique works in two steps:
discretize the interface (zero-isovalue of the LS function) into a collection of simple elements
and, for every node, compute the distance to all elements of the collection and store the smallest
one that becomes the updated value of the distance function.
Though it guarantees optimal accuracy, this Direct Reinitialization (DR) technique is generally
mentioned as extremely greedy in terms of computational requirements in the literature [211,
212]. Hence it is carefully avoided in most implementations, with the exception of [181]. In
Reference [213], a review of various improvements to this method proposed in the literature
to overcome this difficulty can be found. These works generally address only regular grids or
hierarchical meshes [214].

In the following, the DR method is investigated and a new parallel and efficient implementa-
tion is proposed for unstructured and possibly anisotropic meshes. It is then compared to other
approaches in terms of accuracy and numerical performances. Applications addressed in this
section cover not only the topic of the present work but also full field grain growth modeling.
The algorithms and the examples do not use the explicit interface meshing technique presented
in Chapter 2 but rely on standard Eulerian and Lagrangian LS methods.

3.2.2 Algorithm

As stated above, the DR method that is a basis for the present work starts from a simple idea,
which is illustrated in Figure 3.5. In the frame of P1 (linear by element) interpolation, the LS
function is represented by its values at mesh nodes. On each element crossed by the interface, a
discrete representation of a portion of the interface is constructed giving in the end a mesh of the
whole interface. In 2D, this element-wise discrete representation is an edge, while in 3D it is one
or two triangles. For sake of clarity, the initial FE mesh is hereafter referred to as mesh, while
the 1D or 2D interfacial mesh is referred to as collection.

Hence, reinitialization of the signed distance function can be performed at any mesh node by
searching the closest edge or triangle in the collection. As the computation of the distance
to an edge or a triangle will be a critical operation in this part of the algorithm, the optimal
implementations detailed in Reference [215] are used. The sign of the reinitialized function can
then be taken as the one of the initial LS function.

It can be seen that opposed to H-J approaches mentioned above, the DR method is way more
accurate: given a P1 representation of an LS function, the DR method performs a geometric
solution. Nevertheless, this method, if used as is, has large costs.

In the following, n represents the number of nodes in the mesh, and e the number of elements
in the collection. Using these notations, collection construction is of complexity O(n), while
distance computation is of complexity O(n - ¢). Hence, this last operation is too costly and makes
the algorithm unsuitable for computations, especially in 3D. This is basically the reason why H-J
methods are usually preferred.

Based on techniques widely used in computer graphics, data mining, and other domains, a
new DR method can be proposed, where the cost of distance computation is significantly reduced.
This optimization is based on a space partitioning technique. Such technique consists in dividing
the space, i.e., the collection, in several parts, thanks to a suitable criterion. More precisely,
hierarchical space partitioning techniques consist in dividing the space into p parts, and applying
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Figure 3.5 — DR method on a P1 mesh: (a) collection construction, (b) distance computation.

the same procedure to these parts, and so on, until small parts are obtained where searching or
pruning can be performed at acceptable costs.

The number p is a constant inherent to the used methodology. For example, one may cite
quad-trees in 2D, with p = 4, where the whole space is placed in a bounding box, which is
divided in 4 boxes of identical dimensions, corresponding to the four quarters of the initial
box (these boxes are then divided again, and so on). Using such systematic division, one or
several boxes may be empty at some stage, and the division may not be optimal, especially in
the present case with unstructured and possibly anisotropic meshes. The same statement can be
made regarding oc-trees (p = 8), which are the 3D equivalent to quad-trees.

That is the reason why it is chosen to partition the space hierarchically using a k-dimensional
(k-d) tree, where the division is always made into p = 2 parts, using a criterion that depends
on the considered set of elements. This structure was first introduced in Reference [216], with
examples of potential applications. Among these applications, a focus is made in the following
on nearest neighbor searches: for each node of the mesh, the nearest element in the collection has
to be found. In the following a methodology, named Direct Reinitialization with Trees (DRT), is
explained, which reduces the complexity of distance computation to O(n log e).

Opposed to systematic methods, the chosen division criterion is based on an analysis of the
space that is to be divided. In the present case, this space is the initial collection, or a sub-set of it,
which can both be addressed as a set of elements, and division in 2 parts will be obtained using a
division plane. Optimally, this plane should divide the given set into 2 sub-sets containing the
same number of elements. To narrow such result without adding too large costs, it is chosen to
use planes normal to the Cartesian axis, and centered respectively to the set of elements. This
centering is obtained by computing the barycenter of each element, and choosing a plane that
goes through the barycenter of these points. The whole process of tree construction is given
below:

(b.1) Set the division plane (line in 2D) as the plane going through the barycenter of all elements
and having its direction alternatively defined by the x, y and z directions depending on the
depth in the tree.
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(b.2) Compute the signed distance from the vertices of all the elements in the collection to this
plane.

(b.3) Build a left child to the current tree by going back to (b.1) with all the elements having at
least a vertex with negative plane distance.

(b.4) Build a right child to the current tree by going back to (b.1) with all the elements having at
least a vertex with positive plane distance.

As illustrated in Figure 3.6, this process recursively builds a binary tree. As observed in Figure
3.6(c), it ends when at steps (b.3) and (b.4) one of the two subtrees contains the other. In such
situation, a leaf is created, and instead of containing a plane and two subtrees, this leaf contains
only the remaining elements of the collection.

Regarding the division plane, it is easy to find geometric configurations where the used simple
definition does not divide the elements in two balanced subtrees. However, such situations are
not met in practice, and tests have shown that this definition leads to a globally balanced tree.
Regarding costs, the computation of the barycenter is performed in linear time, and because at
each stage the number of considered elements should be divided by 2, the global tree construction
operation is of optimal complexity O(e log e).

Searches can then be performed for each node of the mesh using the following algorithm at
the root of the tree:

(b.5) Compute the signed distance from the node to the division plane.
(b.6) If it is negative, go back to (b.5) with the left subtree.
(b.7) If it is positive, go back to (b.5) with the right subtree.

This recursive process will reach a leaf, where distance computation will be performed by
considering one by one all the elements stored in this leaf. Then, it may appear at steps (b.6) or
(b.7) that the resulting distance is bigger than the distance to the division plane. In such case, it
is required to go back to (b.5) with the other subtree.

Though this operation is implemented to ensure consistency, it is not met often if the planes are
well defined, as in most applications. Moreover, due to all the divisions, the set of elements
stored in any leaf should be small enough to consider that distance computation is of optimal
complexity O(nloge).

In the examples shown in Figure 3.7 and Figure 3.8, the distance from a point x to the
interface needs to be computed. At each stage of the search, the notation d,, is the distance to a
division plane, obtained at an intermediary node of the tree, the distance d, is the distance to an
element, obtained at a leaf of the tree, and d* is the final result.

In the first case (Figure 3.7), the point is optimally located since it is close enough to the interface.
Hence, browsing two levels of the tree in (a) and (b) leads directly to the correct leaf in (c), and
since when browsing back in (d) and (e), the obtained distance is smaller than the distance to any
of the division planes, this distance is the final result.

In the second case (Figure 3.8), a worst case scenario occurs. The point is located in a leaf (b)
which gives a distance greater than the distance to the first division plane (a). Hence, the other
part of the tree has to be browsed (c). In this part of the tree, an optimal situation is met as the
recursive browsing (d) and (e) gives the final result.
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Figure 3.6 — Example of recursive tree construction in 2D.
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Figure 3.7 — Example of recursive distance computation in 2D with the DRT method, best case

scenario.
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Figure 3.8 — Example of recursive distance computation in 2D with the DRT method, worst case
scenario.

In the introduction, it was mentioned that H-J approaches, because of prohibitive costs, are

usually applied only in a small thickness around the interface. Implementing the same optimiza-
tion to the DRT method can drastically reduce distance computation costs. The first step of the
implementation consists in executing searches only for the nodes located in the reinitialization
zone. Then, at steps (b.6) and (b.7), if the resulting distance raises a need to look in the other
subtree but the distance to the plane is bigger than the thickness used for reinitialization, this
operation can be skipped.
Because in practice the thickness is small enough to reduce the order of n to the same order as e,
the final complexity of the new DRT method is expected to be O(e log €). Moreover, using this
optimization it appears that the best case scenario illustrated in Figure 3.7 occurs more often
than the worst case, because the point x will always be located close to the interface.

Massively multi-domain computations often require a significant computational power to
obtain a good accuracy. The same remark can be drawn for 3D computations. For this kind
of simulations, a classical choice is parallelization using the distributed memory paradigm.
Opposed to shared memory, distributed memory enables each parallel unit, called process, to
have a separate memory, and to be possibly located on a different machine. This last point
is essential for large scale computations, where the whole mesh cannot be stored on a single
machine.

This paradigm nevertheless raises an issue in our case: since each process will only have the
knowledge of a part of the mesh, it will only be able to build a part of the collection; hence it will
not be able to compute distances to the collection. To solve this issue, one could simply gather
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the full collection on each process, and then build the k-d tree on each process. Experiments
have showed that though this method has a good performance for a small number of processes
(up to 20), it has a poor parallel speed-up.

To retrieve parallel efficiency, a more advanced technique has been developed. In this method,
each process builds its own collection and its own tree, ignoring other processes. Then, a
bounding box system is used. Each process computes the minimal box aligned to the Cartesian
axis that can contain completely its collection. At the step of distance computation, each process
will compute first the distance using its tree, and then will interrogate one by one the processes
when they can improve this distance.

This parallel implementation is summarized in Figure 3.9. In this illustration, distance com-
putation to point A is local since it is shorter than the distance to the box associated to Beige.
Regarding point B, the distance to the box associated to Orange is shorter than the local distance
computation performed inside Beige. Hence, the distance from B to Orange’s collection is
computed and chosen as it is shorter than the previous one.

This parallel space partitioning technique is also extended to the case when reinitialization is
only performed in a small layer around the interface. In practice, this avoids interrogating other
processes when the distance to their box is larger than the reinitialization thickness.

It can already be seen on the example in Figure 3.9 that bounding boxes are not optimal, as
Orange’s box includes a wide area around the interface. It is however expected that for a large
number of processes and a good repartition of the interface, communications will be minimized
and optimal parallel efficiency reached.

This bounding box technique at the global level completes the k-d tree optimization used at the
local level, and the DRT method can now be applied to perform LS reinitialization in parallel.

Figure 3.9 — Bounding boxes (broken line) on a 2D example with 4 processes (identified by the
color code). The solid white line is the interface, and the arrows represent distance computation
steps.

3.2.3 Results

In this part, numerical results obtained with the new DRT method are provided. Both DR and
DRT methods were implemented within the parallel C++ library Cimlib [2]. Regarding the H-J,
CR and CR-HTDF methods that are used for comparison, parallel implementations were already
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provided by the library. All the following computations were performed on the same 1.2GHz
Intel Xeon Linux cluster.

3.2.3.1 Academic cases

The first test case proposed is a square (respectively a cube in 3D) centered in a 1 X 1 (respectively
1 x1x 1 in 3D) domain and subjected to a velocity field equal to the LS function gradient vV = V¢,
all data being nondimensionalized for this test. The parameter ¢ for the CR-HTDF solver is
set to ¢ = 20h and €, = ¢ is kept for all methods in order to perform a fair comparison. The
theoretical values of the LS function ¢,,.,(X, ) and the theoretical internal area (respectively
volume in 3D) A, are calculated through

¢theo(x’ t) = ¢(X’ O) -1,
ﬂtheo(t) = (ZO - 2t)d >

with ¢ € [0, [y/2]. The term [/, corresponds to the initial edge length of the square/cube, which is
chosen equal to 0.5 both in two and three dimensions. The simulation time step is calibrated
separately so that the following global error on the internal area remains lower than 1 %

_ A heo(t) — ﬂ(t)”zzelo,o.zsj

L2
A o (£)][510>]

These first simulations are carried out within an Eulerian LS context (IEUL method in Chapter
2).

3.23.1.1 Shrinking square (Two Dimensions) In this two-dimensional test case, a fixed
unstructured and homogeneous mesh is used. The number of elements is equal to 150000, which
corresponds to an average mesh size 4 ~ 0.004. The main results of this set of simulations are
summarized in Table 3.5.

Method H-J CR-DF CR-HTDF DRT

At 0.01 0.0001 0.0001 0.001
ttransport (S) 6.4 5.8
treinit (S) 133 851 867 04

Table 3.5 — Results of shrinking square simulations run on 4 Central Processing Units (CPUs).
For the CR solvers, the LS function is automatically reinitialized during the transport, so there is
only one time for these two steps.

The new algorithm appears to be clearly the most efficient among all methods and is up to
300 times faster than the H-J approach. The CR solvers are proving more effective than the
H-J method but require a very small time step to guarantee scheme stability. Let NV be the set
of nodes belonging to the layer +5h around the interface, the relative discretization error R(¢)
between the exact and computed LS functions is calculated through

_ meo(x, 1) — P(x, Iy

ith N = 2,
RO = e DI with e 0l \/;”(X”’”

Such small layer is chosen because both CR methods are only valid close to the interface [2].
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Figure 3.10 — Shrinking square test case: (a) relative discretization error R(¢) between the exact
and computed distance functions around the interface +5h, (b) values of ||V¢|| for each method
att = 0.08.

Figure 3.10(b) illustrates the inability of the CR solvers to properly maintain the metric
property, especially in the corner vicinity. On the other hand, the DRT and H-J methods exhibit a
high level of accuracy. This first 2D test case thus demonstrates that the proposed algorithm is
both extremely fast (Table 3.5) and accurate (Figure 3.10).

3.2.3.1.2 Shrinking cube (Three Dimensions) A similar case is now investigated in 3D. In
order to limit the number of elements, a remeshing operation is performed at each time step using
the a posteriori error estimator and remeshing algorithms presented in Reference [217]. With
this estimator, elements located near the interface are stretched to form a refined and anisotropic
layer with thickness 2¢, around the zero iso-level. Outside this zone, the mesh is kept coarse
(Figure 3.11).

For this set of simulations, the total number of elements in the domain is equal to 500000.
The local mesh size 4 in the refined layer thus constantly evolves during the simulation. The
parameters €, and At are therefore updated at each time step in order to maintain €, = €, = 20h
and At = h. The time steps for all methods are chosen identical to the ones calibrated for the
two-dimensional case (Table 3.5).

In addition to the use of an anisotropic mesh, this case is also critical for non-direct ap-
proaches because the gradient is poorly defined along bisecting planes and diagonals. Hence, the
linear problems built by the H-J solver also have a poor conditioning (on average 430 iterations
are performed by the used GMRES iterative solver in 3D compared to around 20 in 2D).
During the simulation, one observes furthermore the appearance of a parasitic phase outside the
cube because oscillations start polluting the FE solution of the convection solver (Figure 3.12).
It proves the function becomes too irregular to be properly reinitialized leading to a modification
of sign of the LS function. The interface of this parasitic phase is then automatically detected
and captured by the remesher which adapts the mesh around it. As the total number of elements
is fixed, the calculation accuracy then falls because fewer elements are used to represent the cube
interface.
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Figure 3.11 — Anisotropic mesh used for the shrinking cube test case. The red thick line indicates
the zero contour.
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Figure 3.12 — Evolution of the cube internal volume and appearance of a parasitic phase with the
H-J approach due to an unsatisfactory reinitialization of the LS function.

The CR solvers exhibit unstable behaviors although the simulation time step remains an
order of magnitude lower than the mesh size in the refined zone (no violation of the stability
condition). These approaches seem therefore to be less robust than the H-J and direct ones. In
addition they require a good knowledge of the parameters needed for the stabilization. Results
obtained with the direct and H-J approaches are summarized in Table 3.6.

Method H-J] DRT
Rt (%) 57 0.54
fromir () 263.6  52.8

Table 3.6 — Results of shrinking cube simulations run on 20 CPUs.

In 3D, the DRT algorithm appears to be around five times faster than the H-J approach, while
keeping a very high accuracy. The gain in terms of computational performances is smaller than
in 2D. Nevertheless, this configuration is particularly unfavorable to the proposed algorithm.
During the simulation, the cube rapidly shrinks and becomes very small compared to the size
of the domain. Considering the proposed partitioning strategy and the number of processors
involved (20 CPUs for the cube shrinking case), the whole interface is poorly distributed across
the CPUs. The parallel implementation described earlier thus becomes far less efficient. This is
no longer true for massively multiphasic systems such as discussed in the next section wherein
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interfaces are naturally spread in a balanced way across the processes.

As a conclusion, these simple academic test cases confirm the superiority of the proposed
algorithm and demonstrate its robustness. It appears to be also well-suited with particular
triangulations (anisotropic meshes) and does not require any calibration, contrary to other
classical methods that require at least one numerical parameter.

3.2.3.2 Ideal grain growth

The second test case is an extremely popular problem in material science, namely, ideal grain
growth. This problem is particularly interesting because it can involve a large number of LS
functions Ny > 1. An efficient reinitialization of the LS functions is then essential when it
comes to reduce the computation time.

During grain growth, the normal velocity of the grain boundaries (i.e., interfaces delimiting the
grains) of all grains represented by the same LS function ¢; is proportional to their mean local
curvature « that can be expressed as follow

Vo, ) Vo,
Vil

V = mykit = —myV (

IVl

with 7 the unit outward normal vector and my a material parameter set to 8.28 X 107’ mm?*s™",
which is representative of a 304L austenitic steel at 1050 °C [207]. In a P1 framework such
as used in the present work, computing the mean curvature would rely on a Hessian recovery
technique that would induce unacceptable errors using the Hessian recovery methods already
available in the FE code [206]. It is thus impossible to use the CR solvers for this application.
Tests using the SPR method to compute the mean curvature have not been conducted yet and are
an interesting prospect (Chapter 7).

An alternative approach consists in reformulating the problem as a pure diffusion one solved
on a fixed mesh, by assuming each LS function satisfies ||[V¢;|| = 1 around the interface. LS
reinitialization is therefore fundamental for this application. Further details can be found in
previous works [206, 207]. In order to remove kinematic incompatibilities a particular treatment
is performed on each LS function ¢;(x, t)

~ 1
Fix.0) = 5 (qz-(x, 1) = max (@,(x, z))) .

This treatment removes vacuum regions at multiple junctions (with a precision equal to the local
mesh size) but also strongly alters the LS functions outside the grains, leading to catastrophic
results if LS functions are not reinitialized (second column in Table 3.7). Another strategy to
deal with these kinematic incompatibilities would be to rely on explicit meshing techniques such
as those developed in the present work (Chapter 7).

This set of simulations is performed on a 8 x 8mm?* domain with a fixed homogeneous mesh
composed of one million elements. The initial microstructure contains around 3600 grains
represented by only 27 LS functions thanks to a graph coloring technique (Figure 3.13). The
evolution of the mean grain size is tracked and the well-known Burke & Turnbull mean field
model [218] is used as reference solution (denoted Theo). The reinitialized thickness is fixed to
€ = 20 pm.
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Figure 3.13 — (a) 2D initial microstructure used for grain growth. The color scale corresponds to
the grain size; (b) evolution of the mean grain size and coarsening of the microstructure.

This benchmark is also used to compare the optimized (DRT) and non-optimized (DR)
versions of the proposed algorithm, which have respective complexity of O(nloge) and O(n - e).
The parallel implementations are challenged by running simulations on 4, 8 and 16 CPUs.

Method Without reinit H-J DR DRT
Comparison with Theo (%) 72 <3
4 CPUs 774 42 0.09
treinir () 8 CPUs 502 3 0.07
16 CPUs 248 1.52 0.03
Speedup (4/16 CPUs) 3.12 2.76 3

Table 3.7 — Results of 2D grain growth simulations. The total duration of the heat treatment is
equal to 5h.

It appears both the direct and H-J methods are in good agreement with the Burke & Turnbull
model. The reinitialization times for the H-J and DR approaches are of the same order while the
DRT one is around 80 times faster than the H-J method between 4 and 16 CPUs. The interest
of using a k-d tree appears clearly in these results. The latter ones also validate the parallel
implementation of the proposed DRT algorithm, as it exhibits a speedup comparable to the H-J
solver.

3.2.3.3 Void growth

For this last test case, modeling of ductile damage at the scale of a Representative Volume
Element (RVE) is addressed using the numerical framework developed prior to the present thesis
[5]. An isotropic mesh refinement is used to progressively refine the mesh from the boundaries
of the RVE to its center, where a void arrangement is located. At the interfaces between matrix
and voids, an anisotropic mesh is built using the error estimator proposed in Reference [166].
Close to the interface, a small mesh size is fixed in the normal direction, and the refinement in
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the other directions depends on local principal curvatures.

To compute the normal vector to the interface and the principal curvatures, the gradient and the
Hessian matrix of the LS function representing the void phase are estimated thanks to the SPR
technique described in Subsection 3.1.3.

The particularity of this framework is that it is Lagrangian hence the LS function is convected
directly by mesh motion (ILAG method in Chapter 2). Since the voids grow and may even
change shape during simulation, no LS reinitialization may lead to improper mesh adaptation.

() (f)

Figure 3.14 — 2D example of void (in blue) coalescence without (a,b,c) and with (d,e,f) reinitial-
ization using the DRT method.

In the 2D example shown in Figure 3.14, a void coalescence simulation is performed without
(a,b,c) and with (d,e,f) LS reinitialization. In pictures (a) and (d), it can be seen that due to
the vertical tension applied on the RVE, necking appears at the intervoid ligament. Pictures (b)
and (e) show a zoom on this ligament. Without reinitialization, the mesh is tightened, while
with a proper distance function, the mesh can be adapted identically on the whole interface.
After coalescence, growth in the tensile direction is accelerated and leads to pictures (c) and (f).
Obviously, only LS reinitialization can enable for a correct tracking of interfaces.

Since the framework is Lagrangian, the CR method cannot be used. Hence, both the new DRT



118 3.2. LEVEL-SET REINITIALIZATION

and the classical H-J approaches are applied to the 3D version of the configuration presented in
Figure 3.14. A 1 x 1 x Imm® RVE is subjected to vertical tension at a constant velocity with a
sticking boundary condition. On this 3D case, no coalescence is triggered, and the resulting void
shapes at 20% of elongation are shown in Figure 3.15.

To reach 20% of elongation of the RVE, which corresponds to 200 time steps and LS
reinitializations, the H-J method takes 127 minutes on 16 processors, while the new DRT method
takes 23 minutes in the same configuration. Though the efficiency of the DRT method compared
to the H-J method was already proven in previous simulations, this test case confirms the
superiority of the DRT approach when the reinitialization thickness becomes large.

(a) (b)

Figure 3.15 — Equivalent plastic strain and void shape after 20% of vertical elongation using the
DRT method.

3.2.4 Conclusion

Although indirect methods to reinitialize LS functions were historically developed to avoid
the computational costs required by direct methods, it is proved in this section that this idea
is questionable. For example, it is proved that simple DR through a brute force algorithm can
compete with an H-J approach in terms of performance for massively multiphasic problems such
as grain growth in polycrystalline aggregates.

Then, based on a k-d tree sorting of the interface discretization, a new DRT method is proposed
and applied to three different test cases arising from different contexts. The novelty of this method
relies in its parallel implementation, its capability to reinitialize efficiently the LS function only in
a small layer around the interface with a direct approach, and its compatibility with unstructured
anisotropic meshes.

This parallel and optimized DRT approach is proved to be as accurate as a classical DR
method, while being up to 20 times faster. Computation time reduction is also observed compared
to an H-J formulation, with speed-ups between 5 in 3D and 300 in 2D. Additionally, direct
methods, including the new DRT technique, reveal being the most accurate in theory as in
practice.

All tests are performed with unstructured 2D or 3D meshes, and anisotropic mesh adaptation for
the third one, to illustrate that the proposed method remains as efficient in all these configurations.
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However, it is mentioned that the efficiency of the bounding boxes method used for the parallel
implementation highly depends on mesh partitioning. Taking the interface into account inside
the mesh partitioning algorithm should be considered in order to further improve the parallel
performance of the proposed algorithm for general applications.
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3.3 Connected Components identification

In this section, the problem at hand is to identify each CC of a given LS function ¢. This is a
necessary step before computing any statistical data regarding the inclusions and voids and their
distribution. It also plays a key role in void nucleation and coalescence modeling, where each
inclusion or void has to be considered individually.

The approach chosen to solve this problem is based on a CC identification algorithm where
the FE mesh is considered as a graph, namely, mesh nodes are considered as graph vertices,
and mesh edges as graph edges. While this problem seems trivial, especially in the field of
graph theory, it becomes quite complex in a distributed computing context. Since the mesh, and
hence the graph, are distributed among several processes, a single CC may be partitioned among
multiple processes.

Before addressing these difficulties linked to the parallel implementation, the problem is first
formalized and then solved using a sequential algorithm. The objective is to create an FE field
at mesh nodes, noted 7, in which each CC has a unique identifier (id). To achieve this goal,
Algorithm 3 is proposed.

Algorithm 3 Recursive tagging of the CCs.
function Tac(Mesh mesh, Field ¢) : Field T
Node seed
Integer id
for seed € mesh.nodes() do
if ¢(seed) > O then
I (seed) « -1
else
J(seed) < 0
end if
end for
id <1
for seed € mesh.nodes() do
if 7(seed) = —1 then
ProracateTaG(Z, seed, id)
id « id+1
end if
end for
end function
function ProracaTETAG(Field I, Node seed, Integer id)
Node new_seed
T (seed) « id
for new_seed € seed.neighbor_nodes() do
if 7(new_seed) = -1 then
ProrPaGATETAG(Z, new_seed, id)
end if
end for
end function
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The notations are the same as in Algorithm 1, with the addition of the function neigh-
bor_nodes() that gives the set of the nodes connected to a given node by an edge. Unrolling this
algorithm, when a node located inside the LS function (i.e., ¢ > 0) is found, it is assigned an
integer value id. Its neighbors are then recursively contaminated until the interface is reached (i.e.,
when ¢ becomes negative). The variable id is finally incremented and the procedure continues
with the remaining unlabeled nodes, as illustrated in Figure 3.16. This algorithm has a complexity
which is almost linear.

It is obvious the previous algorithm does not work in parallel because a process cannot
access the nodes located on another partition. This difficulty is detailed by the example in Figure
3.17(a).

In this worst case scenario, three partitions Py, P; and P, share two CCs. One is totally
located on P, while the other is shared by the three partitions. Moreover the latter is seen as two
distinct components by P;. To solve this situation and any other situations that may occur with
more processes or components, the following divide and conquer procedure is proposed

1. each process performs Algorithm 3 independently, leading to independent tags, possibly
redundant,

2. in Algorithm 3, when an exterior (located on another partition) neighboring Node is met, it
is stored in a set,

3. this set is communicated between processes,

4. each process receives messages of type "Process X wanted to tag your Node N with tag
id"; if Node N already has a not null id, the conflict is communicated to the root process,

5. the root process solves the conflicts by applying Algorithm 3 on the tags instead of the
nodes,

6. the root process finally broadcasts the new global tags to the other processes.

Let Figure 3.17(b) be the result of the first step of this procedure on the proposed worst case
scenario. Py has recognized one CC, tagged as "Py’s 1", while both P, and P, have a number 1
and a number 2 CC. During its tagging loop, P has seen that some of its nodes are connected (by
an edge) to nodes located on P, and P,, and the same for the other two. To prevent redundancy,
a conflict is detected only if the identifier of the neighboring partition is higher than the one of
the current partition.

For example on partition 1 (corresponding to the process P;), if a Node of Py is met, there is no
conflict because 1 > 0. If a Node of P, is met, the conflict is detected and stored in the set. A
description of all possible situations can then be established (the item letters correspond to the
element edges represented in Figure 3.17(b))

(a) P; has a Node with no tag that P, sees as tag 1 — there is no conflict,
(b) P; has a Node with tag 2 that P, sees as tag 1 — the conflict "P, 1 means P; 2" is stored,
(c) P, has a Node with no tag that P, sees as tag 1 — there is no conflict,
(d) P, has a Node with no tag that P, sees as tag 1 — there is no conflict,

(e) P, has a Node with tag 2 that P, sees as tag 1 — the conflict "Py 1 means P, 2" is stored,
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qb<0

(e)

Figure 3.16 — Tagging procedure. The recursive propagation stops when a node satisfactory
¢ < 0 is met, which means that the interface has been crossed (green nodes in (c-d)).
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Figure 3.17 — Example presenting: (a) a worst case scenario for tagging in a distributed computing
context, (b) local tags after employing Algorithm 3 independently on each partition, (c) graph
giving the tag conflicts, (d) final global tags.

(f) P, has a Node with tag 2 that P, sees as tag 1 — the conflict "P; 1 means P, 2" is stored.

The next step of the algorithm is, for each process, to send its tags along with these conflicts
to the root process. All redundancies are then treated by applying Algorithm 3 on a specific
graph constructed by the root process in which the nodes are the local tags of each process and
there exists a connection between two nodes if there is a conflict between them, as illustrated in
Figure 3.17(c). After performing the algorithm on this graph, global tags that are unique for each
CC are obtained. The matching table between local and global tags is finally broadcast to all
processes, which then correct their numbering, as in Figure 3.17(d).

This step of the algorithm is thus critical because all the conflicts are treated by the root process.
Nevertheless, its complexity depends on the number of CC represented by the LS function, which
is several order of magnitude lower than the number of mesh nodes. Hence, the computational
cost of the algorithm is negligible with respect to other operations such as remeshing, or
mechanical solution.
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3.4 Image immersion and meshing

The numerical tools presented in the preceding sections and in Chapter 2 can be used to mesh
any geometry for which an LS function can be computed, and then adapt the mesh during
deformation. For most simple geometries (e.g., planes, spheres, triangles) analytic formulas can
be found. For more complex entities such as those found in Computer Assisted Design (CAD)
files, a preprocessing step may be used to transform the CAD file into a surface mesh, and then
compute LS functions based on this surface mesh.

For biology and materials science applications however, the use of CAD files is not possible
because the data are acquired using X-ray techniques. As the objectives of the present work
include comparisons with experimental data, a method has to be developed in order to mesh real
microstructures from X-ray data.

3.4.1 Method

Meshing heterogeneous domains is a difficult task that is however necessary for multiple applica-
tions. Although robust and fast solutions can be found for first order triangular or tetrahedral
mesh generation from CAD files [192, 219], their extension to arbitrary element types and orders
are still being developed [220]. Additionally, in many applications such as medicine or materials
science, the input is not a CAD file or a parametric description, but a 2D or 3D image of the
object. Mesh generation from this kind of data is an open and prolific research topic, for which
various approaches have been proposed [203, 221, 222].

A direct method would consist in first thresholding the image, applying a contour detection
algorithm to build a surface mesh of all interfaces and then building a volume mesh around
them [203]. The method presented in this section consists in first building a volume mesh
of the domain Q, usually of a box for the present applications. This mesh will generally be
structured with a uniform isotropic mesh size equal to A,,,, if one wants to progressively refine
the mesh in some regions, as in Subsection 3.1.4, or h,,;, if one wants to capture directly all
details of the image, and then coarsen the mesh in some regions. The choice between these
two approaches will generally be based on the complexity of the geometry; for instance, a high
density of interfaces with significant tortuousity will favor the second method.

Standard image processing operations [223, 224] are applied on the image to smooth the
data, threshold a selected phase, and then convert these binary data to a signed distance function.
The latter is interpolated to the FE mesh using a trilinear FE interpolation procedure where the
image is considered as a hexahedral grid, voxels being nodes.

It may seem preferable to compute the signed distance function on the FE mesh rather than
on the image, using LS reinitialization. The algorithm applied on the image does not benefit
from the distributed computing capabilities of the FE code, and is highly memory-consuming.
However, poor results are obtained when gray levels or binary data are directly interpolated from
the image to the FE mesh [222]. In particular, oscillations are obtained at the interface, which is
a major issue not only for mechanical computations but also for the mesh adaptation procedure,
which depends on local principal curvatures. Therefore, the LS function is computed directly on
the image, which may be a limiting part of the procedure, though it is only applied once for each
image.

After this LS function is interpolated to the FE mesh, LS reinitialization is generally applied
in order to have a distance field that is relevant with respect to the interface that was actually
interpolated on the FE mesh (some regions may have vanished due to a coarse mesh size).
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This LS function is used as an intermediary to locate the interface and construct an explicit
representation (Section 2.1). This mesh generation step is combined with an adaptation step
taking into account the local maximum principal curvature of the interface (Section 3.1).

A similar procedure was used for example in Reference [222], but with an indirect LS reinitial-
ization method, and no conform meshing of the interface. The quality of the interpolation from
the image to the mesh is also improved. The whole procedure is summarized with an example in
Figure 3.18. For applications with multiple phases and LS functions, it is just repeated for each
phase. If it is chosen to progressively adapt the mesh, steps (b-d) are repeated from 5 to 10 times
until no significant change in the number of elements is noticed.

Compared to classical approaches [203, 221], the main difference in the proposed method

is that both LS reinitialization and conform mesh generation steps rely on contour extraction
algorithms applied on the FE mesh, and not on the image. Recent X-ray imaging techniques
produce high resolution images, which are generally several orders finer than the FE mesh that
will be used for computations. While classical approaches always start from a surface mesh as
fine as the image, and then coarsen it if the user prescribes a coarse mesh size, in the proposed
method only the coarse mesh is used, and all algorithms are applied only on this mesh, except
for the image processing operations mentioned above.
Reducing the number of operations performed on the image and implementing them in the FE
code also has the benefit of enabling the use of the distributed computing capabilities of this
code, especially regarding parallel LS reinitialization (Section 3.2) and mesh adaptation (Section
2.5). In order to increase even more the efficiency of this approach, it would be interesting to
study the issue mentioned above regarding interpolation of the data from the image to the FE
mesh, especially for applications to very large images.

3.4.2 Results

In this section, applications are proposed in order to illustrate the capabilities of the image
meshing procedure. The computations start with an initial structured mesh of the domain, with
a mesh size equal to A,,;,, so that the image importation procedure in Figure 3.18 is performed
as is. In particular, no iterative process consisting in importing the image several times to
progressively adapt the mesh before the construction of the final conform mesh is used. As a
consequence, computational cost and memory consumption could be reduced for the following
computations, because the initial mesh is very fine compared to the desired one. Volume
conservation parameters are set to Q, = Q, = 0.05. All computations were performed on the
same 1.2GHz Intel Xeon Linux cluster.

3.4.2.1 Stanford Bunny

The Stanford Bunny is a well-known geometry proposed by the Stanford University Computer
Graphics Laboratory and used extensively in the meshing and computer graphics communities to
illustrate their algorithms. A Computed Tomography (CT) scan of a Stanford terra-cotta bunny
provided by Marc Leroy of Stanford CS was performed by Terry Yoo of the National Library of
Medicine, using a scanner provided by Sandy Naper and Geoff Rubin of Stanford Radiology.
The data consists of 360 scans of 512 x 512 voxels, which is also the size of the domain. This
first test is purely illustrative, though real animals and insects are typical examples of "objects"
for which CAD files are not easy to find or construct, while CT scans are possible.

A first mesh obtained with adaptation parameters A, = 0.2, hyo = €, = 50, i, = 10 is shown
in Figure 3.19(a). The discretization varies from a very fine mesh of size £,,;,, (blue) in regions
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Figure 3.18 — Image immersion and meshing: (a) initial X-ray image, (b) signed distance function
computed thanks to image processing, (c) signed distance function interpolated and regularized
on the FE mesh, (d) conforming FE mesh generated and adapted to interfaces and the local
maximum principal curvature, (¢) zoom on the FE mesh, (f) comparison between initial X-ray
image and interfaces in the final FE mesh (in white). Figure reproduced from Reference [42].
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with high principal curvatures such as the tail, while coarser elements (green) are obtained in
regions with lower principal curvatures such as the back. Far from the interface, a mesh size of
Nypax (red) is retrieved.
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Figure 3.19 — Mesh generation from the Stanford bunny CT scan: (a) coarse mesh, (b) fine mesh.

To show the flexibility of the technique and its ability to capture finer details by varying mesh
adaptation parameters, a finer setting /., = 0.1, 0y = €, = 25, hyi, = 5 1s used to obtain the
result in Figure 3.19(b). Comparing the two results, it can be seen that details are more accurately
represented with the fine mesh. This has a direct influence on computational cost, which is of
2 min for the coarse mesh of 84660 elements, and 34 min for the fine mesh of 550502 elements,
on 8 CPUs.
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3.4.2.2 Bone

At the intersection between medical science and materials science, the study of bone behavior
is important to understand the cause of bone fracture, and the impact of some illnesses such as
osteoporosis. In a recent work [225], CT scans were acquired from mandibular bone samples. As
illustrated in Figure 3.20(a) and Figure 3.20(b), this part of the human skeleton is heterogeneous
as it is composed of cortical bone and spongy cancellous bone. Because these two materials
have different material properties, it is complex to determine a homogenized Young’s modulus.
For accurate results, distribution and shapes of these pores should be taken into account, by
performing full field numerical simulations on RVEs and comparing them with homogenized
results.

As a first step towards such simulations, the image immersion method is applied to a volume
extracted from this 3D image. The size of the domain is set to 100 x 100 x 100 voxels, which is
the resolution of the extracted 3D volume. The mesh adaptation parameters are set to /., =
0.4, hyox = €, = 10, hyy,, = 2 for a first coarse setting, and A, = 0.2, by = €, = 5, iy = 1 for
a second fine setting. The generated meshes are shown in Figure 3.20(c) and Figure 3.20(e).
Due to the high density of interfaces and their numerous variations, most portions of the interface
are discretized with #4,,;,. Comparison between Figure 3.20(b), Figure 3.20(d) and Figure 3.20(f)
shows once again the effect of the meshing parameters. The importance of smoothing the data
in the images is also shown in these images, as the artifacts in Figure 3.20(b) do not appear in
Figure 3.20(f). The mesh obtained with the fine setting in Figure 3.20(e,f) seems to be both
accurate regarding the description of the interface and of good quality for FE computations.

This is confirmed in Figure 3.21, where mesh quality distribution is investigated. The
histogram is slightly shifted to the right with the fine mesh, as the proportion of elements close
to interfaces gets lower. The important observation that can be made on this graph is that
no element has a quality under Q, = 0.05, which proves that the volume conserving mesh
adaptation algorithm is robust enough to recover from the ill shaped elements created by the
fitting procedure.

Regarding computation time, it is of 5 min for the coarse mesh of 360410 elements, and
24 min for the fine mesh of 2289614, on 32 CPUs. Approximately 85 — 90% of this cost is due
to the mesh adaptation algorithm, and less than 3% to LS reinitialization. Comparison between
the coarse and fine settings shows that computation time is nearly proportional to the number
of elements. This proves that Algorithm 1 converges rapidly, without browsing the mesh too
many times. Finally, computation time for both results is reasonable as the number of elements
is significant in both cases.

3.4.2.3 Fibers

The study of the microstructures of composites is of great interest in order to determine the
macroscopic mechanical behavior of these heterogeneous materials. As in the preceding case,
this requires computations on small RVEs, which can be either real or virtual (generated based
on statistics).

In this test, the RVE is a small volume extracted from Synchrotron Radiation Computed To-
mography (SRCT) images obtained at beamline ID16 of the European Synchrotron Radiation
Facility - Grenoble (ESRF - Grenoble) during a previous work [226]. The material is a polymer
reinforced by glass fibers, with a dominant orientation that can be seen in Figure 3.22(a). The
size of the domain is set to 100 x 100 x 200, which is the resolution of the extracted 3D volume.
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Figure 3.20 — Mesh generation from mandibular bone tomography images: (a) slice of the initial
image, courtesy of Y. Tillier [225], (b) middle slice of the volume extracted from the initial image
with cortical bone in black, (c) surface view of the cortical bone in the generated coarse mesh,
(d) middle slice of the coarse mesh with cortical bone in black, (e) surface view of the cortical
bone in the generated fine mesh, (f) middle slice of the fine mesh with cortical bone in black.
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Figure 3.21 — Quality distribution in the meshes generated from mandibular bone CT scans.

The two sets of mesh adaptation parameters are the same as in the preceding section. The results
are presented in Figure 3.22(c-f). Because all reinforcements are of same shape and size, mesh
size at the interface is nearly constant, apart from some contact areas between neighboring fibers.
These contact areas cannot be modeled with the image meshing technique proposed in this
chapter. In fact, some fibers cannot be distinguished in the images due to the resolution of the
SRCT imaging technique (Figure 3.22(b)), and they cannot be distinguished in the meshes either
(Figure 3.22(d,f)). Modeling contact mechanisms between these fibers that are very close to each
other would require a different approach, for instance one based on digital microstructures and
CAD files [8].

Regarding quality distribution, the same trends as in Figure 3.21 are observed and the graphs
are hence not reported here. In particular, no element with a quality lower than O, = 0.05 is
present in the final meshes, and the histogram is slightly shifted to the right with the fine mesh,
due to a higher proportion of elements far from interfaces. For the same reason, computation
time is not reported either. It is observed to be proportional to the the number of elements, with a
significant mesh adaptation cost, and negligible costs for all other operations.

As a conclusion, this test shows the flexibility of the proposed method when the addressed
microstructure changes. Neither the quality of the result nor the cost of the method were severely
affected by the change of morphology. In particular, the present microstructure contains elongated
features, which have a simple geometrical shape (cylindrical) but with multiple contacts, while
the preceding microstructure featured a more tortuous and geometrically complex arrangement.

3.4.2.4 Nodules

As a last test case for the image importation procedure, Synchrotron Radiation Computed
Laminography (SRCL) images of nodular cast iron are used. As calculations and error measure-
ments with different meshes are carried out in Chapter 6 using these images, the present test only
focuses on illustrating the capabilities of the CCs identification procedure detailed in Section 3.3.
Due to the large number of nodules, the computation is run on 40 CPUs. Thus, the distributed
computing implementation of the CCs identification algorithm is used to its full extent. The
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Figure 3.22 — Mesh generation from composite SRCT images: (a) slice of the initial image,
courtesy of V. Fabre [226], (b) middle slice of the volume extracted from the initial image with
glass fiber reinforcements in black, (c) surface view of fibers in the generated coarse mesh, (d)
middle slice of the coarse mesh with glass fiber reinforcements in black, (e) surface view of

fibers in the generated fine mesh, (f) middle slice of the fine mesh with glass fiber reinforcements
in black.



132 3.4. IMAGE IMMERSION AND MESHING

result is shown in Figure 3.23. The different CCs are identified with different colors.

The number of nodules is close to the hundred, but some nodules are in contact, leading to false
results. For instance, the arrow in Figure 3.23 points to three nodules that form as a single CC
and will hence be considered as a single nodule for the fragmentation criterion. If the nodules
are not in contact in the initial image, this issue could however be avoided using a finer mesh, in
order to have some nodes between the nodules. If the nodules are in contact in the initial image,
then it is quite difficult to distinguish them. Physically, the importance of such treatment would
depend on whether load is transferred totally or partially between the nodules. Such advanced
modeling is not addressed in the present work. Hence, for these "connected" nodules, sticking
contact is assumed, and fragmentation is considered for the whole CC.

Figure 3.23 — Mesh generation from nodular cast iron SRCL images, final mesh with CCs
identification. The nodules pointed out by the arrow are tagged with the same identifier because
they are very narrow and in contact at some points in the initial X-ray image.
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Conclusion

In this chapter, three numerical ingredients are added to the Finite Element (FE) framework
with the aim of importing X-ray data to the FE mesh and generating meshes that are adapted to
these data. The image importation procedure described in Section 3.4 is based on some image
processing operations, performed once for each image. Due to the cost both in terms of memory
consumption and computation time of these operations, treatments are systematically performed
using the FE code when possible. The distributed computing capabilities of this code are hence
exploited as much as possible.

The adaptation of the mesh to the geometry extracted from images, and microstructures in
general, relies on an Hessian recovery step. The latter is solved using a distributed computing
implementation of a second order Superconvergent Patch Recovery (SPR) technique, as detailed
in Section 3.1. The eigenvalues of the Hessian matrices of Level-Set (L.S) functions are used to
estimate the local principal curvatures close to interfaces, and refine the mesh in regions with
high maximum principal curvature.

Numerical experiments prove that the coupling between this error estimator and the mesh adap-
tation algorithm yields convergence rates that are close to the theoretical ones. For geometries
with singularities, these convergence rates are deteriorated, as could be expected.

For the error estimator to be relevant, it is important that the LS functions remain as close as

possible to signed distance functions. An irregularity would lead to a wrong estimation of the
local principal curvatures, and then to a mesh that is locally too fine or too coarse. Hence, an LS
reinitialization procedure is proposed in Section 3.2.
Numerical experiments prove that this algorithm is very interesting in terms of computation time
and accuracy with respect to other methods proposed in the literature. Applications on X-ray
images of biological materials and composites show that the cost of this operation is negligible
with respect to mesh adaptation.

Once images are imported to the FE mesh and regularized with LS reinitialization, the mesh
is adapted to interfaces, with an implicit or explicit representation. Identifying the different
components of the microstructure, for statistical or modeling purposes, is carried out thanks to a
parallel Connected Components (CCs) identification algorithm presented in Section 3.3.

Thanks to these different ingredients, FE meshes that are both conform and of good quality
are generated and adapted to various geometries corresponding to a wide range of applications
where three-dimensional (3D) imaging techniques are used extensively. This procedure has
reasonable computation time, and can be tuned for different levels of accuracy thanks to an error
estimator.

Section 3.1 is partially inspired from [40]. Section 3.2 is highly inspired from [39]. Section
3.3 is highly inspired from [43]. Section 3.4 is partially inspired from [42, 44].
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136 RESUME EN FRANCAIS

Résumé en francais

Ce chapitre s’appuie fortement sur les outils numériques développés dans les chapitres précédents
afin de traiter des simulations éléments finis de matériaux hétérogenes ou la microstructure est
maillée explicitement.

Un matériau avec une microstructure initialement composée d’une matrice élasto-plastique

et de particules élastiques fragiles est étudié. A partir de la littérature, des criteres de rupture sont
proposés afin de modéliser la décohésion et la fragmentation de ces particules lors de la phase
de germination. La décohésion est prédite a partir d’un critere local sur la contrainte normale
critique, tandis que la fragmentation est prédite a partir d’un critere moyenné par inclusion
sur la contrainte principale maximale. Ce dernier fait appel a 1’algorithme d’identification de
composantes connexes développé dans ce travail pour distinguer chaque inclusion. La méthode
des fonctions de niveau aide grandement la modélisation des fissures, tandis que I’adaptation de
maillage et la réinitialisation des fonctions de niveau sont utilisées pour suivre la déformation
des surfaces libres ainsi créées. Cette déformation mene a I’apparition progressive de larges
cavités qui finissent par interagir et coalescer.
Les simulations rendues possibles par ces développements et modeles sont validées numérique-
ment en deux dimensions (2D) et trois dimensions (3D) a partir d’une analyse de sensibilité sur
des quantités moyennées. Les variables locales, comme le chemin de propagation de fissure,
sont moins évidentes a valider. L’énergie de rupture devrait étre controlée a 1’aide de modeles
plus avancés, comme les modeles de zone cohésive.

Néanmoins, ’homogénéisation et la comparaison avec des modeles a champ moyen ne

nécessite que des quantités moyennées. Dans la littérature, ces comparaisons considerent en
général des volumes élémentaires représentatifs assez simples. En particulier, ceux-ci ne pren-
nent généralement pas en compte les formes, tailles et arrangements arbitraires que les particules
et les vides peuvent avoir dans une vraie microstructure. Dans les simulations présentées dans ce
chapitre, des microstructures avec des particules sphériques de tailles et positions aléatoires sont
utilisées. En imposant certaines restrictions quant a ces microstructures et aux types de charge-
ments qui leur sont appliqués, des conditions aux limites périodiques peuvent étre implémentées
assez simplement. Les problemes li€s au positionnement et a la numérotation arbitraires des
nceuds dans le cadre éléments finis adaptatif et parallele utilisé dans ce travail sont ainsi évités.
En outre, I’état de contrainte macroscopique dans le volume élémentaire représentatif peut étre
controlé.
Ces calculs micromécaniques sur volumes élémentaires représentatifs statistiques révelent des
phénomenes de rupture complexes, dus a la germination d’une multitude de cavités dans la
microstructure. En conséquence de certaines agglomérations de particules dans le volume élé-
mentaire représentatif, et de leur alignement particulier avec la direction de traction, la plasticité
se localise dans certaines régions. La croissance et la coalescence des cavités est favorisée dans
ces régions, y compris pour des déformations assez faibles. La capacité de charge du matériau
est séverement compromise par ces phénomenes de rupture locale de la microstructure.

Les simulations conduites dans ce chapitre ont un colit numérique assez élevé, surtout
en 3D. Celui-ci pourrait €tre réduit en simplifiant les conditions aux limites, ou en optimisant
I’implémentation parallele de certains algorithmes, en particulier en ce qui concerne le remaillage.
Toutefois, il serait certainement augmenté drastiquement si des lois constitutives plus complexes
étaient utilisées pour modéliser la microstructure et sa rupture, comme des lois cohésives par
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exemple.

Par conséquent, il est primordial de montrer que les résultats obtenus avec 1’approche numérique
développée dans ce travail different significativement de ceux obtenus dans la littérature en util-
isant des outils moins avancés et donc moins coliteux. En effet, la plupart des études existantes
considerent des particules pré-fragmentées, ou remplacent les particules par des vides dans la
microstructure initiale. Des comparaisons entre des simulations prenant en compte les particules
et leur rupture progressive par décohésion et fragmentation, et des simulations avec des particules
pré-fragmentées ou des vides sont effectuées dans ce chapitre. Ces comparaisons montrent que la
croissance des cavités est sous-estimée avec les approches conventionnelles. De plus, la capacité
de charge du matériau est sous-estimée dans la premiere partie du chemin de chargement, et
surestimée dans la seconde partie. Une propriété remarquable est que ces différences sont plus
ou moins importantes selon le rapport de triaxialité macroscopique.

Pour conclure, la prise en compte de la décohésion et de la fragmentation des particules pen-
dant le chargement est indispensable pour prédire de maniere fiable I’influence des procédés de
mise en forme des métaux sur la microstructure de ces derniers. Ces calculs micromécaniques 3D
sont également indispensables pour prédire I’influence des micro-fissures et des cavités présentes
dans la microstructure sur le comportement macroscopique du matériau. Les outils numériques
et les modeles de germination de cavités développés dans ce travail sont tres intéressants car
des microstructures complexes peuvent étre modélisées, y compris les phénomenes de rupture
complexes en découlant. L’application de ces outils de simulation et modeles a des trajets de
chargement complexes est une piste a explorer.
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Introduction

The mixed weak form of continuum mechanics equations, taking into account all the constitutive
models discussed in previous chapters, is recalled
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Notations are detailed in Subsection 1.2.1. As discussed in Appendix A, this formulation includes
contact terms arising from penalization of the constraint P, and its derivative D;, with respect to
the velocity field. Remeshing operations, especially at void linkage events, and the detection and
discretization of contact terms are helped by the fact that the void phase is meshed. However,
there is no constitutive model in these elements, apart from contact terms, and both the velocity
and the pressure unknowns are fixed using Dirichlet boundary conditions for nodes that are only
carried by void phase elements.

Regarding solid phases, Hooke’s law for linear isotropic elasticity is already mentioned in
Subsection 1.2.1, together with the additive decomposition between elasticity and plasticity
that is assumed for small deformations. Particles are generally considered as purely elastic and
brittle in the literature [69, 79, 108, 227], though dual phase steels and other materials with
multiple ductile phases have also been studied [71, 228, 229, 230]. Ductile fracture modeling of
these materials calls for crystal plasticity models and appropriate intragranular and intergranular
fracture criteria [231, 232, 233, 234]. The study of these materials and the application of the
mesh adaptation techniques proposed in this work to the discretization of grain boundaries will
be considered in a future work (Chapter 7).

In this chapter, it is assumed that particles debond from the matrix or fail before yielding can
occur [69, 79, 108, 227], and appropriate fracture criteria are investigated to model both phe-
nomena. Experimental results and observations presented in Subsection 1.1.2 indicate that void
nucleation occurs in the neighborhood of particles. They can debond locally and progressively
from the matrix, or experience internal failure [37, 68, 69, 70, 71]. Criteria are hence necessary
to model the initiation and propagation of cracks at the matrix/particle interface, and through the
particles.

These criteria should have the capability to predict that particle fragmentation is favored for
particles elongated in the tensile direction, or a hard matrix, while particle debonding is favored
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for particles elongated perpendicular to the tensile direction [73, 74, 78, 79], or a soft matrix [21,
68, 78, 79]. Particle size is affected by void nucleation in a similar manner, as in a microstructure
with particles of various sizes, larger particles tend to fragment, while smaller particles tend to
debond [74, 77, 78]. Clustering effects are also of interest in the present work as real microstruc-
tures and random particle arrangements will be considered [69, 74, 75, 76].

Regarding the matrix material, a simple von Mises plasticity model with isotropic hardening
is considered. As first applications, simulations performed in the frame of homogenization theory
using Periodic Boundary Conditions (PBCs) are considered.

Note that all constitutive models are discussed and used in the frame of cold forming (i.e., at
room temperature) and quasi-static loading conditions.
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4.1 Macroscopic criteria

It is important to point out that most studies found in the literature do not address crack initiation
and propagation in the Representative Volume Element (RVE). Calculations are hence conducted
with no fracture modeling. The averaged stress and strain fields are used to predict the amount of
failed particles. These criteria do not systematically make the distinction between debonding
and fragmentation. These works aim at improving macroscopic constitutive models, such as
Gurson-like models, by adding void nucleation laws. That is the reason why averaged quantities
are used instead of microscopic ones.

Although the aim of the present work is to model these phenomena in the RVE and pursue
simulations after the onset of void nucleation, the reasoning behind these criteria is of interest.
Therefore, a literature review is first conducted and then discussed in the frame of the present
developments.

4.1.1 Argon criterion

One of the first criteria found in the literature is the so-called Argon criterion, which aims at
predicting particle/matrix interface debonding [235]. An important remark made in this paper is
that a certain limit of elastic energy must be reached before interface debonding can occur, but
this condition is not sufficient [70, 71, 236]. This is the reason why a criterion was proposed to
predict when the interface strength is reached.

A spherical non-deformable particle included in an elastic-ideally plastic matrix and subjected
to pure shearing was considered. The strain and stress fields obtained by Finite Element (FE)
calculations were studied to formulate the following criterion that accounts for a possible
hydrostatic pressure by superposition

.+ =34 <34 4.1)

where %,, and T are respectively the macroscopic mean stress and the macroscopic von Mises
equivalent stress. The term X is the critical stress at which debonding is predicted. A modi-
fication of this criterion was proposed by the same authors to account for particle shape, it is
expressed as follows

T, + KT =34 <3

where k* is a coefficient depending on particle shape. This criterion has been used and discussed
by numerous authors [37, 71, 73,77, 235, 236].

It was proved by experiments and post-mortem Scanning Electron Microscopy (SEM) ob-
servations that the Argon criterion can also be used as a particle fragmentation criterion [77].
The material used was a quenched and tempered steel containing manganese sulfide (MnS)
and titanium nitride (TiN) inclusions. Void nucleation was observed by interface debonding
or fragmentation of TiN inclusions in the case of notched specimens under uniaxial tension.
Empirical values were determined for k* and £*. Another important remark made in Reference
[37] is that the critical stress Ef will not have the same value for predicting both phenomena.
This will be evidenced more clearly in the case of the Beremin criterion.

4.1.2 Beremin criterion

A few years after the Argon criterion was proposed, the Beremin team studied cavity formation
in an A508 steel containing elongated MnS inclusions during tensile tests [73]. They made post-



CHAPTER 4. MICROMECHANICAL MODELING OF VOID NUCLEATION 141

mortem observations on notched specimens of different notch radii, under various temperatures
and loading directions. When the inclusions were elongated in the tensile direction, most
particles broke before interface debonding could occur, while when they were elongated in the
perpendicular direction nucleation occurred by interface debonding between particles and matrix.
Although they evidenced these two different mechanisms, they formulated a unique criterion for
void nucleation

T+ kP (2 -%) =2f < 5P,

where X, is the maximum macroscopic principal stress (£; > X, > X3) and X is the macroscopic
yield stress. The coefficient k® depends on particle shape and loading direction. Calibration of
this coefficient is quite difficult, though closed-form expressions can be found for some special
cases in Reference [37].

Experiments at different temperatures led the Beremin team to remove the yield stress from

the equivalent stress to make their criterion temperature-independent. However, when omitting
this operation, it is proved in Reference [73] that the Beremin criterion is equal to the Argon one
in the case of uniaxial tension. Although this remark proves that these two criteria have a similar
nature, it is important to remind that the k? coefficient and the critical stress Zf defined in the
Beremin criterion are different in definition as in observation from the ones defined in the Argon
criterion [37, 71].
Moreover, the Beremin team identified two different values of the critical stress * for predicting
void nucleation depending on loading direction, namely one value corresponding to the onset
of interface debonding and the other one to particle fragmentation. This may be limiting for
applications to non proportional loading paths, where the loading direction can vary. Examples
of use of the Beremin criterion can be found in several studies [37, 70, 71, 73, 78, 236].

4.1.3 Landron criterion

In a recent study of the micromechanisms of damage in dual phase steels using advanced
observation technologies like X-ray Computed Tomography (CT) [71], a new criterion based
on the Argon one was proposed [228]. The experiments consisted in in situ tensile tests under
different stress triaxialities. This idea of using specimens with different notch radii already
appeared in the Beremin paper [73], which mentions that void nucleation is favored by higher
stress triaxiality ratio. The effect of triaxiality was also confirmed in other studies [26, 33, 79,
237].

The first step [71, 228] was to reveal explicitly the triaxiality in the Argon criterion

YW=3 +2=X(1+7),

where T = —= is the stress triaxiality and k* is chosen equal to 1 as in the original Argon

criterion. A w%rk similar to [73] is then performed to include the effect of strain inhomogeneity
between particle and matrix in the criterion. Moreover, based on a study of titanium alloys
presented in Reference [236], this effect can be taken into account by using a local formula for
the stress triaxiality ratio, which accounts for the effect of kinematic hardening X. The latter was
included in the model because it was showed that it affects the local stress triaxiality ratio at the
interface between matrix and particles in dual phase steels [236]. The resulting Landron criterion
is[71,228]

= z
ZL:Z[1+T_ )szf.
T-X
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= T-X
A direct identification with the Argon criterion (Equation (4.1)) leads to k* = k*(Z, X) = ——.

This reveals the phenomenological nature of the parameter k*, which reminds the parameters
added in the Gurson-Tvergaard-Needleman (GTN) model and its extensions, with respect to
the initial model of Gurson (Subsection 1.2.3). Hence, there is a need for models that take into
account all aspects of ductile fracture, including advanced plasticity and hardening phenomena.

4.1.4 Weibull formula

Another example of method that can be used to improve the previous criteria in order to take into
account important aspects of ductile fracture is the Weibull formula. This formula consists in
adding statistical considerations into a given macroscopic criteria. For instance, in Reference
[21], the authors considered the maximum average principal stress in each particle X, ,, and used
a Weibull formula to take into account the effect of particle size

Vp

Zip\"
PW(Vp’Zl,p) =1- exXp —7 2— ,

where V,, is the volume of the particle. The term X, corresponds to the critical value of X; for
which 1 — ¢~ ~ 63% of particles of reference size V, would break. The Weibull modulus m
measures stress dispersion. For instance, a low modulus prevents an overestimation of stress
concentration in particles and an early prediction of fragmentation [68].

When this probability is close to 100%, particle fragmentation is predicted. An experimental
procedure to identify this criterion parameters is presented in Reference [78]. The Weibull
criterion was successfully applied to predict the fragmentation of silicon carbide (SiC) particles
included in a metal matrix composite in Reference [74]. Applications to aluminum and alu-
minum alloy matrix composites with ceramic particles can be found in other studies [21, 68, 238].

Similar Weibull criteria can also be found in the literature for the prediction of interface
debonding. This probabilistic approach is an attempt to avoid the difficulties that appear when
one tries to predict particle failure based on the averaged stress X. The difficulties lie in the
calibration of the Weibull modulus m, which actually accounts for size and shape effects on
void nucleation, and, implicitly, any other differences between particles. Hence, a more precise
study of void nucleation prediction considering the local stress field in and around the particle is
necessary.



CHAPTER 4. MICROMECHANICAL MODELING OF VOID NUCLEATION 143

4.2 Microscopic criteria

A common aspect of all criteria presented above is that they are stress-based. These criteria
are based on the average stress X, and are not suited for the present developments where crack
initiation and propagation has to be predicted and modeled locally in the RVE. In the following,
a study of local stress fields around an inclusion is presented, and then used as a basis for the
development of microscopic void nucleation models.

4.2.1 Lee and Mear analysis

In Reference [79], the authors performed a study of stress concentration in an elastic spheroidal
particle subjected to tension along its three axes. They computed the following variables «’ and
k? by FE calculations

/ 1
K = —maxaog,,
S T,
) 1
k¥ = —maxoy,
S

where § is the stress applied along the z direction, which corresponds to the particle’s elongation
direction, Q, the particle, and I, = dQ,,. As shown in Figure 4.1, an inferior remote stress 7 is
applied along both other directions. The normal (microscopic) stress at the interface is noted o,
and the maximum (microscopic) principal stress 0.

%
|

Figure 4.1 — Spheroidal particle model used by Lee and Mear [79].

This study reveals that for an elastic-plastic matrix, the stress field is not uniform. Although

the critical value for «” is always reached at the outer edge C indicated in Figure 4.1, there is
no similar rule for «. The interfacial normal stress reaches its maximum in different points
depending on particle aspect ratio (it will be at the pole for a very elongated particle, and in a
larger area around the pole for a spherical particle).
Moreover, calculations reveal that the stress field is more or less uniform in the disk corre-
sponding to the circle C. This result indicates that particle fragmentation is likely to occur
instantaneously for the whole particle. On the other hand, the significant variations of the stress
field on the interface justifies the progressive nature of interface debonding, the critical value
being met at one point at a given time.

As a conclusion, criteria based on the maximum principal stress averaged per particle seem
to be appropriate to model particle fragmentation, and this phenomenon can be considered as
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instantaneous. Regarding particle debonding, it has to be considered locally at each point of the
interface, as it is a progressive phenomenon. These conclusions apply only for particles of nearly
spheroidal shape, and more complex criteria will certainly have to be studied for materials with
more complex microstructure.

4.2.2 Local criteria

Simple criteria to model void nucleation can be deduced from those implicitly used by the
authors of Reference [79] in their study. To model particle fragmentation, they considered the
maximum principal stress oy and studied the points or areas where it reaches its critical values.
Regarding particle/matrix interface debonding, they considered the normal stress at the interface.
These two criteria have been used together to predict void nucleation in Reference [69], where
they were successfully compared with experimental results of a copper matrix containing tung-
sten (W) inclusions. In Reference [70], the first criterion was used to predict both modes of void
nucleation, but the calculations made in Reference [79] show that the point of critical maximum
principal stress is not generally located where interface debonding will start. In the case of
Reference [79], it would mean that debonding first occurs at the outer edge C (Figure 4.1), which
is not consistent with observations.

In Reference [239], an improved version of the debonding criterion was proposed. If a point
of the interface is submitted to a shear stress o, then a negative normal stress o, (assuming the
normal is outgoing with respect to the particle) will make debonding difficult, whereas a positive
normal stress will favor it. This reasoning led to the following criterion

0'n+kF|0't|:0'F§0'f.

The choice of linear combination was verified on a fiber reinforced composite during uniaxial
tensile tests with various orientations. A description of the experimental procedure used to
identify the parameters k* and o can be found in Reference [239]. An application of this
criterion to a polyester matrix composite with glass fibers and a metal matrix composite with
SiC inclusions can be found in Reference [74]. Both materials were observed by means of SEM
during tensile tests to verify the criterion’s efficiency.

Basing the criterion on the normal stress at the interface to predict debonding has already been
justified [69, 70, 79]. However, the superposition of the shear stress has yet to be investigated.

This superposition of the two stresses reminds what is known as Cohesive Zone Models

(CZMs) [184]. In these methods, a nodal force or normal stress criterion is used as a trigger to
insert so-called cohesive elements at the interface. These elements have zero volume initially,
and their opening is ruled by a traction-separation law, which takes into account both normal and
shear stress. Applications of these methods to particle debonding can be found in the literature
[37, 237, 238].
These approaches and the use of the shear stress have been implemented but are not considered
in the present work due to the difficulty of identifying the additional material properties at the
microscale. However, as discussed in Chapter 7, this problem could be revisited in the future
thanks to the procedure presented in Chapter 6.
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4.3 Proposed models

Based on the preceding literature review, two distinct criteria are proposed to predict particle
debonding and fragmentation. The debonding criterion is no other than the one proposed by Lee
and Mear [79]

o, <P, 4.2)

where the normal stress o, at the interface can be computed easily from the Level-Set (LS)
function ¢, associated with particles

Vé, '
n=——,
65112

o, =non.

When the critical value o? is reached, the numerical method presented in Section 2.6 is applied.
In particular, the geometry used for the filter LS function ¢ is a sphere centered on the point
where o” was reached, and with radius the length ¢°. This criterion hence introduces one
additional material parameter o” and one numerical parameter £°.

As detailed in Section 2.6, the LS functions associated with the two crack faces ¢, and ¢, + ¢ are
meshed only in the region where ¢y is positive. The LS functions and the numerical parameters
are illustrated in Figure 4.2(a). Then, the LS function ¢, associated to the void phase and the LS
function ¢,, associated to the matrix are modified as follows

¢v = max (éw min(_¢p’ ¢p + €, ¢f)) > ¢rn = min(&ma _¢v)a (43)

where ¢, and ¢,, are the initial LS functions, before nucleation. Consequently, the small volume
(due to the artificial thickness ¢) of the crack is added to the void phase, and removed from the
matrix phase, leading to a small loss of volume that will be investigated in Section 4.5. After this
modification of the LS functions, the mesh is adapted, and the microstructure is modified due to
the new crack geometry.

Particle fragmentation modeling requires a nonlocal criterion, because it is considered as
instantaneous. This criterion is based on the particle-wise average maximum principal stress

1 .
—f ox(o) =o' <ol 4.4)
Jo, X(@0) Ja,
1 ,x>0 . . . C e e
where y(x) = 0 x<0° and Q, the volume occupied by particle i. This distinction

between particles is obtained thanks to the Connected Components (CCs) identification algorithm
presented in Section 3.3. This fragmentation criterion is also inspired from the Lee and Mear
analysis, but the particularity is that the crack position and orientation remain to be defined. First,
the position of the crack is given by the point

1
Gp = —f ox(oX. 4.5)
Jo, o) Ja,

In the present first order FE context, o is computed by diagonalization of o, which is defined
element-wise. The coordinates x in Equation (4.5) are hence the coordinates of the barycenter of
each element. The elements with zero or negative maximum principal stress are not considered
in order to ignore the parts of the inclusion that are under compression, and hence do not carry
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any tensile load. Fragmentation is not predicted if G, does not belong to an element of Q,, with
positive 0.

The first principal direction (the eigenvector associated to the eigenvalue o7y) is chosen as the
normal vector to the fracture plane. The LS function to this plane ¢,; defines the LS functions

. . € € . . .
associated with the two crack faces ¢, — EI and ¢,; + —l, while the filter LS function is ¢,,.

The latter is constructed by combining the LS function to inclusions ¢, and the CC identifiers.
Thanks to these LS functions, particle fragmentation can be triggered by modifying the LS
functions to voids ¢, and inclusions ¢,

$, = max (¢ min(—(@y — ) ¢y + 5. ¢p,.>) by = min(@y, —b,). (4.6)

In practice, in order to make sure that the inclusion is totally broken in two, and that the inserted
crack is penny-shaped with sharp edges in three dimensions (3D), and two crack tips in two
dimensions (2D), the LS function ¢,, is corrected to ¢, + £ . This numerical parameter ¢ has the
consequence that the LS function to the matrix phase is also affected by particle fragmentation
(Im = min(ém’ —=$))-

This is illustrated in Figure 4.2(b). Thus, particle fragmentation leads to crack tips in the matrix
phase, which has been observed for some materials and loading configurations where cracks
propagate simultaneously in the matrix and the particles. However, in most situations, fragmen-
tation is restricted to the particle, hence a very small £ should be used. This raises numerical
difficulties since mesh size has to be inferior to /. An improved crack insertion technique is
considered in Chapter 7.
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Figure 4.2 — LS functions and numerical parameters used for void nucleation modeling by: (a)
particle debonding, (b) particle fragmentation.

As a conclusion, two fracture criteria based on microscopic stresses are formulated in this
section. Debonding is predicted based on the normal stress at the interface, and leads to a
crack at a portion of the matrix/particles interface. This model adds two parameters o> and
£P. Fragmentation is predicted based on the average maximum principal stress per particle, and
leads to a crack across a whole particle. This model also adds two parameters o and ¢”. The
numerical method used to insert these cracks through LS functions and mesh adaptation requires
a numerical parameter €.

All parameters are summarized in Table 4.1. Thanks to these models, the two modes of void
nucleation can be predicted and modeled during RVE simulations. This evaluation of the criteria
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and the subsequent modifications on LS functions and the mesh is performed at the beginning
of each time increment, based on stresses o, obtained at the preceding time increment. A
mechanical solution is then conducted to obtain the new stresses 0,1, resulting in a weak
coupling between the nucleation models and balance equations.

criterion material parameter(s) numerical parameter(s)
debonding 0'? (MPa) £P (wm), g (um)
fragmentation o’ (MPa) £F (um), g (um)

Table 4.1 — Numerical and material parameters for the void nucleation criteria.
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4.4 Boundary conditions and stress state control

4.4.1 Choice of boundary conditions

In Section 1.2, various possibilities were listed regarding boundary conditions for RVE calcu-
lations. In addition, the numerical validation framework based on Digital Volume Correlation
(DVC) measurements presented in Chapter 6 should also be considered. It is disregarded in this
section as it can only be applied to small specimens. Thus, it could be used to experimentally
validate and calibrate microscopic models, but an alternative is necessary to exploit these models
in industrial applications. Direct Numerical Simulation (DNS) is clearly too computationally
expensive and cannot be applied in the case of meter-scale metallic structures such as ingots or
industrial parts in general.

Homogenization schemes are an interesting possibility. An embedded cell technique would allow
to mesh the microstructure only in some Region Of Interest (ROI) of the structure, while using
a macroscopic constitutive model in the rest of the structure. Using a self-consistent scheme,
material properties for the latter would be identified as a result of the computation. Such scheme
would be really interesting for industrial applications, but some technical difficulties arise, such
as non physical localization phenomena at the transition zone between the homogeneous material
and the RVE.

Simpler approaches are hence considered. Taylor-Voigt Boundary Conditions (TVBCs) and
Hill-Reuss Boundary Conditions (HRBCs) are likely to lead to large errors regarding void
coalescence, as linear strain or stress fields are imposed in the RVE. The same remark applies for
Kinematic Uniform Boundary Conditions (KUBCs) and Static Uniform Boundary Conditions
(SUBCs), but only at RVE boundaries. It can be assumed that very large RVEs would be neces-
sary to reduce the influence of these boundary effects. Therefore, PBCs are considered.

The main difficulty raised by PBCs consists in applying constraints between unknowns

located on opposite faces of the RVE. In particular, the use of distributed computing and mesh
adaptation randomize the positioning and numbering of mesh nodes. However, as mentioned
in Subsection 1.2.2.6, under some assumptions, the implementation of PBCs can be simplified.
Restricting the 2D (resp. 3D) RVE to symmetric microstructures, only one fourth (resp. one
eighth) of the RVE has to be simulated, with symmetry boundary conditions on two (resp. three)
of the faces. The velocities of the two (resp. three) remaining faces are to be fixed to normal
velocities, so that all faces of the RVE are constrained to remain planar.
Opposed to KUBCs, the tangential velocities at RVE boundaries are not constrained, thus
localization and void coalescence are possible. Although the use of symmetric microstructures
may have an influence on results, this setting still allows to access any stress state. An example
of RVE with these geometrical restrictions is given in Figure 4.3. The whole RVE (in light color)
is not meshed, but only the highlighted part, thanks to symmetry boundary conditions. Loading
is not represented in this figure as it is described more thoroughly in the next paragraph.

4.4.2 Stress state control

Experimental evidence and existing damage models suggest that at fixed temperature and pressure
conditions, damage change is mainly driven by plastic strain and stress state [37, 38]. In order
to obtain relevant results for analysis, it is important to perform simulations at a constant stress
state, or at a stress state that corresponds to a targeted application, and then measure damage
change with respect to plastic strain. For instance, in the case of metal forming, the stress state
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Figure 4.3 — Example of periodic microstructure with symmetries that simplify the implementa-
tion of PBCs. Thanks to symmetry boundary conditions, the part in light color is not meshed
(loading must also feature these symmetries).

at a critical point could be measured during the whole loading path, and then RVE calculations
could provide quantitative information on how the experimentally observed macroscopic plastic
strains would affect the microstructure for this stress state.

To identify a stress state, definitions of the three invariants of the macroscopic stress tensor X
and its deviatoric part ¥’ have to be reminded (Subsection 1.2.3)

z"m = tr (Z)a
3
_ 1
T = \/ o5, = \/ S (B = %P+ (5 = T+ (5 - 5)2), *7)
J; = det(X),

where 3,, is the macroscopic mean stress, = the macroscopic von Mises equivalent stress, Z; the
macroscopic principal stresses, and J; the third invariant of the deviatoric stress tensor. The first
two invariants X, and X appear in the definition of the macroscopic stress triaxiality ratio n

n=—= (4.8)
and the third invariant appears in the definition of the macroscopic normalized Lode angle 6

— 2 2
6 =1— — arccos (—7£) 4.9)
T 2 23
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A detailed presentation of 77 and 6 and their values for some widely used specimen geometries
can be found in Reference [240]. In particular, axisymmetric compression is identified by 0=-1,
while axisymmetric tension is identified by 6 = 1. A plane stress setting yields 6 = 0. The stress
triaxiality ratio can then favor the situation already set by the normalized Lode angle. A triaxiality

ratio > 3 will favor tension with increasing tensile stresses in the directions perpendicular to

the loading direction, while a triaxiality ratio < —= will favor compression with increasing

compressive stresses in the directions perpendicular to the loading direction. The remaining
1 1 . . ) o
range between -3 and 3 corresponds to combined compression-shear or tension-shear situations

if=+1, and pure shear ifg = 0.

All these settings are interesting as they can be met locally in various material forming processes,
and no model existing in the literature succeeds in predicting damage change for any 6 and any 7
[240, 241]. RVE calculations with more and more accurate microscopic models are hoped to
give some clues on how to build such a model.

In the present framework, the degrees of freedom in 3D are the three normal velocities applied

to the three faces of the domain that are not subjected to symmetry conditions. As mentioned
above, the goal is to use these three degrees of freedom to reproduce loading conditions at a point
of an industrial part during a forming process. These conditions will generally be computed
using a macroscopic FE simulation at the scale of the part, or measured experimentally.
Because damage is mainly influenced by the plastic strain and the stress state, the quantities of
interest to be computed or measured are the macroscopic strain rate E, in the loading direction,
and the stress state characterized by 7. In order to simplify the problem, the normalized Lode
angle 6 is not considered yet and will be assumed to be equal to +1 (i.e., axisymmetric tension or
compression).
First, the velocity v, of the upper face of the domain is fixed in order to obtain constant elongation
rate E,. Second, the two remaining velocities are fixed to the same value vz in order to set the
normalized Lode angle 6 to +1. This velocity vg is then the only remaining degree of freedom.
Note that there would be two degrees of freedom if an arbitrary 6 was considered. This is
summarized in Figure 4.4, where the velocities in red are fixed to the same predefined value, and
the velocities in blue have the same unknown value.

This unknown value is found using a linear search algorithm where the objective is to yield
a desired n. This algorithm is quite costly as a significant number of iterations (up to 20)
1s necessary to reach an acceptable approximation of n at the beginning of the simulations.
Although the obtained solution can be used as an initial guess for the following time increments,
requiring only up to 2 linear search iterations, any fracture event in the RVE induces major
changes that increase momentarily the number of iterations.
Improving this linear search algorithm to reduce this significant computational cost will be
considered in the future. Generalizing it to 2 degrees of freedom would certainly be also
interesting in order to address a wider range of stress states with varying 6 (Chapter 7). Note that
in 2D, plane strains are assumed, so that @ is free and 7 is fixed using the linear search algorithm.
Table 4.2 sums up the two settings used in this work. In both settings, v, is a predefined constant
velocity, and vg is computed by the line search procedure in order to reach a desired triaxiality
ratio. Note that vz should never be higher than v, in magnitude.
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Figure 4.4 — RVE under axisymmetric tension in: (a) 2D, (b) 3D. Thanks to symmetry boundary
conditions, the part in light color is not meshed.

. . tension . tension
axisymmetric . plane strain )
compression compression

V,B O 0 V/g O 0

E 0 v, O 0 v, O
0 0 0O 0 O

- +1, v, >0

0 1. v, <0 free

n user-defined user-defined

Table 4.2 — Macroscopic strain rate £ and macroscopic normalized Lode angle 6 for the two
stress states imposed in RVE calculations.

4.4.3 Consequences on the fracture criteria

The use of PBCs is not without consequences regarding fracture modeling. Because it is local,
the debonding criterion is not affected. However, due to its non local nature, the fragmentation
criterion should consider the fact that symmetry boundary conditions are used at some RVE
boundaries, while periodicity is applied at the remaining ones. This is quite complex to im-
plement, especially in a distributed computing framework (the implementation of both criteria
already being quite technical). To avoid this difficulty, particles are placed at a certain distance
from RVE boundaries. This ensures that the fragmentation criterion does not require any special
treatment due to the choice of boundary conditions.

Void coalescence may also lead to numerical difficulties due to these PBCs. Plasticity may
localize in the ligament between a void and the boundary of the RVE, leading to its necking.
This is illustrated in Figure 4.5. When elements in the intervoid ligament become degenerated,
the mesh adaptation technique diffuses the ligament, hence naturally modeling void linkage.
This is not possible at RVE boundaries, because the boundary of the domain does not belong to
the void phase. Thus, elements are significantly stretched, leading to a numerical issue. This is
solved by setting the LS function to the void phase to zero (¢, = 0) for boundary nodes that are
neighboring a node of 9Q2,. Since such situation can only arise when the topology of the mesh is
modified, this treatment is applied after each remeshing operation.

The result is shown in Figure 4.5. Because this treatment is applied across an edge of the mesh,
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it is likely to be mesh dependent. Its effect can however be assumed negligible, because for large
RVEs failure will be mainly driven by the nucleation and coalescence of voids inside the RVE.

without \
treatment |

with
[ \
treatment

Figure 4.5 — Mesh of a microstructure of voids with multiple purely plasticity-driven void
coalescence and linkage events. Remeshing diffuses well the intervoid ligament when it is
between voids, but a numerical issue (outlined in red) arises for ligaments between a void and
the boundary of the RVE. This is corrected with the numerical treatment.
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4.5 Results

In the following, the two void nucleation models presented in this section are first validated, and
then used to study various aspects of ductile fracture. This study focuses on the influence of
particles and the subsequent failure mechanisms. Regarding the matrix material, it is modeled
using a simple rate-independent isotropic hardening model, based on a power law [242]

To@) = oy + K (5" (4.10)

where o, is the yield stress, K the plastic consistency and n the hardening exponent. This
hardening law is a parameter of the model and could be replaced by any other local plasticity
model, including rate-dependent plasticity. All material parameters E, v, oy, K and n are defined
element-wise, and are discontinuous because multiple phases are present in the domain.
Simulations are also carried out to show the interest of using an advanced computational fracture
mechanics approach, especially at large plastic strain.

4.5.1 Numerical ingredients

Because multiple numerical tools were developed in the previous chapters, it is important to
point out which of them are used in this section, and how.

First, the microstructures used in this section are not extracted from X-ray images, thus no image
processing technique is used (Section 3.4). The LS functions associated with the particles and/or
voids of the initial microstructure are computed analytically.

However, the initial mesh is generated using the edge splitting algorithm presented in Section
2.1, and the volume-conserving mesh adaptation algorithm detailed in Section 2.2, coupled to the
curvature-based error estimator described in Section 3.1. In order to reach large plastic strains,
simulations rely extensively on the mesh motion and transport algorithms presented in Section
2.3, and the LS reinitialization procedure introduced in Section 3.2.

The fracture criteria described in this section require the identification of each particle with a
single identifier (Section 3.3) and the modeling of cracks (Section 2.6).

The computational contact mechanics methodology introduced in Appendix A is used, but due to
its limitations, it is not used to its full extent. In particular, the Lagrange multipliers are omitted,
so that only penalization terms with a coefficient p. = 1 are accounted for. The mesh adaptation
step that should be triggered before each mechanical solution to ensure contact detection is also
omitted. Instead, it is assumed that because the mesh is regularly being adapted due to the mesh
motion algorithm, and the fracture criteria, the mesh in the void phase remains of good quality
throughout the simulation.

Thanks to all these numerical tools, simulations of complex microstructures with multiple

particle and void clusters are possible. Because the subsequent complex fracture events are
likely to localize, some parts of the microstructure may totally fail while other parts still have
a significant load carrying capacity. In particular, some parts of the microstructure may totally
relax before the end of the simulation, thus authorizing numerically problematic rigid body
modes (e.g., a fully debonded particle).
Due to the choice of boundary conditions, these abnormal solutions can be detected by tagging
CCs (Section 3.3) of the solid phase. At the beginning of the simulation, there will generally be
only one CC, but due to the nucleation of cracks some solid parts may separate totally. A CC
of the solid phase is said to be a rigid body if it does not have at least one node on each of the
following boundaries:
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e cither the bottom or the top face of the RVE,
o cither the left or the right face of the RVE,
o cither the back or the front face of the RVE (only in 3D).

As illustrated in Figure 4.6, these phases are eliminated from the computation and considered as
voids during mechanical solution. However, their volume is not accounted for in the calculation

D
e < & <)

@go OQD

Figure 4.6 — Elimination of CCs of the solid phase that could lead to rigid body modes during
mechanical solution: (a) initial microstructure with rigid body modes, (b) resulting microstructure
after the numerical treatment.

This treatment is problematic for some non proportional loading paths that could include
compression. To generalize the present numerical framework to such situations, a more robust
contact formulation should be investigated, including an alternative to this treatment of rigid
body modes.

4.5.2 Material

An interesting study on void nucleation can be found in Reference [66], where ductile fracture
of a particle reinforced aluminum alloy was investigated. This material is composed of an
aluminum matrix reinforced with 20% of Zirconia-Silica (ZS) particles. Particle fragmentation
is the dominating void nucleation mechanism, as shown in Figure 4.7. Some voids can be seen
in the initial microstructure in black in Figure 4.7(a) but are neglected in the present study.

In Reference [66], material parameters were identified for the matrix by carrying tensile tests
on purely matrix material specimens, and for the inclusions by using nanoindentation. Some
uncertainties may arise due to the limitations of these identification techniques. First, the forming
process is different for the purely matrix material and the reinforced one, so the behavior of the
matrix may also be different. Second, nanoindentation can only be applied to the inclusions at
the surface of the specimen, hence some differences may apply due to polishing for instance.
Nevertheless, such advanced identification is not commonly found in the literature. In particular,
the fracture properties of the inclusions were also determined and are given in Table 4.3. These
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Figure 4.7 — Tomography images of the particle reinforced aluminum alloy: (a) 3D view of the
initial microstructure, (b) view of a section showing particle fragmentation mechanisms at 4 %
of true plastic strain. Figures reproduced from Reference [66].

properties were determined by comparing X-ray tomography data acquired in situ with RVE
calculations. The latter considered a single inclusion with periodic boundary conditions. The
equivalent plastic strain was identified by measuring the section reduction of the specimen, while
the triaxiality was determined using Bridgman’s formula.

The limitations of this identification methodology are discussed in Chapter 6, and a promising
alternative is proposed. Properties given in Table 4.3 may vary depending on heat treatments and
particle volume fraction [68], but they are assumed constant to allow for comparisons.

Phase EMPa) v o,(MPa) KMPa) n
Material behavior | Matrix 72000 0.33 270 580 0.54
Particles 123000 0.23 00
Phase 0'? (MPa) £° (um) a‘f (MPa) £F (um)
Particles 1060 10 700 10

Fracture criteria

Table 4.3 — Material parameters for the Al2124 matrix and the ZS particles, including fracture
criteria parameters [66], to which are added the two numerical parameters £” and ¢*.

For the calculations in this section, statistical RVEs are used. Inclusions are considered as

spherical, with radii distributed according to a normal law of mean 20 pm and standard deviation
Sum [68].
To generate virtual microstructures, a set of particle radii is first generated based on the given
normal law. The size of the RVE is a user-defined parameter. Particles are consecutively
placed randomly in this RVE, with a safety minimum distance of 8 um between each other, and
between each of them and the boundary of the RVE. These constraints are important for the
CC identification algorithm on which the particle fragmentation criterion is based (Paragraph
3.4.2.4). When it is not possible to place inclusions anymore without having the volume fraction
exceed the prescribed one, the generation is stopped and the resulting RVE is returned. For 2D
calculations, a surface fraction is imposed, and plane strains are assumed.
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Unless otherwise mentioned, boundary conditions as defined in Section 4.4 are used and the
macroscopic stress triaxiality ratio 7 is maintained to 0.33.

4.5.3 Numerical validation

To begin with, numerical parameters such as meshing parameters and the time step are chosen
and validated. The time step is dimensionless because all calculations are performed in static
loading conditions, and material constitutive laws are rate-independent. The single-particle
RVE used for numerical validation has a size of 80 um in 2D, and 55 um in 3D. The reference
numerical parameters setting uses:

e remesher parameters Q, = Q,, = 0.05, V, = V, = 10 um’ in 2D and V,, = V,, = 10" °um’
in 3D (Subsection 2.2.2), a mesh motion parameter 8 = 0.5 (Subsection 2.3.1),

e meshing parameters €, = 12 um, h,,, = 0.2 um, h,,,, = 6 wm, h,,;,, = 2 um (Section 3.1),
e a crack thickness ¢ = 0.2 um (Section 2.6),
e a contact thickness €. = 0.1 um (Section A.2) (Section 4.3),

e atime step At = 0.001, which is decreased by a factor of two every 20 iterations of the
Newton-Raphson algorithm if convergence was not reached.

The particle has a radius of 20 um both in 2D and 3D. A sensitivity analysis is conducted by
varying numerical parameters and investigating the influence of this variation on relevant me-
chanical variables.

Remesher parameters only have an influence on volume conservation, which can be assessed by
considering the porosity and its increase during loading. A significant increase indicates that
volume diffusion is negligible, while a stagnation or a decrease is likely to be due to significant
numerical diffusion. Because the present framework relies extensively on remeshing operations,
all parameters that depend on mesh size are expected to have a significant influence.

Results may also be sensitive to the time step, because the discretization of the extra terms
resulting from the Jaumann derivative in Equation (1.7) and the fracture criteria are explicit. Ad-
ditionally, the uncertainty on macroscopic stress triaxiality ratio control is likely to be increased
with large time steps.

For comparisons with mean field models such as the GTN model, only averaged quantities
such as the porosity f and the macroscopic von Mises equivalent stress T are of interest. However,
for comparisons with experiments, convergence on local variables is also important. This is
verified based on the maximum normal stress at the matrix/particle interface o, (Equation (4.2))
and the particle-wise average maximum stress o (Equation (4.4)). The present sensitivity
analysis includes both averaged and local quantities. Sensitivity to mesh size is assessed using a
coarse mesh setting with €, hcyrys Ainaxs Bmin, € and €, multiplied by a factor of 2, and a fine mesh
setting with a factor of 0.5. Sensitivity to the time step is assessed using time steps of 0.01 and
0.0001.

4.5.3.1 Particle fragmentation reference results

The results obtained using the reference numerical parameters in 2D and 3D are shown in Figure
4.8 and Figure 4.9.
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(a) Microstructure at different RVE elongations, with particle in red and voids in white.
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(b) Evolution of the particle debonding indicator o, (threshold at 1060 MPa), the Rarticle fragmentation
indicator 0'[1’ (threshold at 700 MPa), the macroscopic von Mises equivalent stress X, and the porosity f.

Figure 4.8 — Reference result in 2D plane strain featuring only particle fragmentation.

As observed in these figures, using the material and fracture criteria parameters given in
Table 4.3, only particle fragmentation is predicted, both in 2D and 3D. This is in agreement with
experimental observations (Figure 4.7(b)). Both o, and O'f increase up to values that are close to
the critical thresholds, but the fragmentation threshold is reached first, at nearly 15 % of RVE
elongation in 2D, and at nearly 3 % in 3D.

Regarding the fragmentation crack, The 2D and 3D results are very similar, with a horizontal
fracture plane, which is also in agreement with experimental observations (Figure 4.7(b)). In
3D, because of a smaller RVE size, due to the fact that the particle volume fraction is initially
fixed to 20 %, the plane is already in contact with the RVE boundary at its nucleation. This
is not physical and is linked to the numerical parameter £, whose influence is investigated in
Paragraph 4.5.3.3.

Additionally, fragmentation cracks could be accompanied with a debonding of the matrix/particle
interface close to the fragmentation crack tip (Figure 1.3(b)). Although this is not the case for
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indicator 0'117 (threshold at 700 MPa), the macroscopic von Mises equivalent stress X, and the porosity f.

Figure 4.9 — Reference result in 3D featuring only particle fragmentation.

the present material (Figure 4.7(b)), the presence of a quite large part of the fragmentation crack
inside the matrix would prevent this phenomenon both in 2D and 3D. Thus, it will be important
in the future to improve the fragmentation criterion in order to avoid this numerical parameter £
(Chapter 7).

Regarding the crack thickness parameter ¢, its influence cannot be seen directly in Figure
4.8(b) and Figure 4.9(b). Since the fracture criteria are considered at the beginning of each time
increment, the porosity shown in these figures includes both the artificially inserted porosity due
to g and the porosity due to crack opening.

In order to distinguish the two, the artificial porosity is computed separately during the simu-
lation. It is equal to 0.18 % in 2D and 0.30 % in 3D at the onset of particle fragmentation. It
then decreases because no additional artificial porosity is inserted, while the global void volume
increases due to void growth.

This is a major improvement over previous work at Cemef - MINES ParisTech, where a mesh
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size at least ten times finer was required to reduce the artificial porosity to similar values in 2D
[6]. Moreover, this artificial porosity is negligible when compared to the final porosity, which is
close to 10 % in 2D and 20 % in 3D.

The porosity curves in Figure 4.8(b) and Figure 4.9(b) show no oscillations after the onset
of particle fragmentation, which proves that void volume is well conserved. Hence, remesher
parameters V,, and V,, are small enough and well-suited for the present study.

While volume is very well conserved, it is not the case for history variables. This can be observed
by looking at the macroscopic von Mises equivalent stress in Figure 4.8(b) and Figure 4.9(b).
At the onset of particle fragmentation, the load carrying capacity is severely affected, but it is
partially preserved because the fragmentation crack does not entirely cut the RVE into two halves.
Even in 3D, the crack intersects lateral boundaries but not the corners. Due to void growth
and coalescence, the thickness of these regions is progressively reduced and the load carrying
capacity tends to zero. During this process, small jumps can be observed in the macroscopic von
Mises equivalent stress curve (e.g., slightly before 25 % and 30 % of RVE elongation in Figure
4.8(b)).

These are not caused by a fracture event or the treatment of rigid body modes described in
Subsection 4.5.1, as shown in Figure 4.8(a) where the only void is the fragmentation crack. Thus,
these jumps are due to remeshing operations and in particular to numerical diffusion during the
transfer of history variables. Although these jumps are not significant globally, they may have
an influence locally. It will be important to improve the field transfer method in future work
(Chapter 7).

4.5.3.2 Particle fragmentation criterion

Based on the reference result discussed in Paragraph 4.5.3.1, a sensitivity analysis is conducted
in the present paragraph regarding numerical parameters.

In Figure 4.10, it 1s verified that reference results are converged regarding the onset of particle
fragmentation.

The fact that o} is null for the first loading step both in 2D and 3D is simply due to the fact
that the fragmentation criterion is computed at the beginning of each time increment. This also
explains why at the onset of particle fragmentation the load carrying capacity seems to be lost
progressively.
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Figure 4.10 — Sensitivity of the particle fragmentation indicator o during loading with respect
to the time step. Note that the scales of the graphs differ from 2D to 3D.
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However, the threshold for particle fragmentation is never reached in the 3D simulation using
the coarse time step. This means that this time step is too large to enable for the modeling of the
competition between the two void nucleation mechanisms. Particle debonding is predicted in
this simulation. It is hence discarded in the remaining of this analysis.

The differences between the curves using the reference and fine time steps are small, especially
in 3D. The measured absolute uncertainty of 1.5 % (2D) and 0.08 % (3D) of RVE elongation
regarding the prediction of particle fragmentation is nevertheless acceptable using the reference
time step.

In Figure 4.11, the influence of this uncertainty on porosity change is assessed (the result using
the coarse time step in 3D is not reported).
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Figure 4.11 — Sensitivity of the porosity during loading with respect to the time step.

No significant influence of the time step on void growth can be observed. The slopes of the
curves obtained using the reference time step correspond well to the slopes obtained using the
fine time step. The main differences are due to the delay regarding the prediction of the onset
of particle fragmentation. The corresponding absolute error on the porosity at 30 % of RVE
elongation is 1.1 % in 2D and 0.1 % in 3D. This is acceptable for the present material with high
porosity, but should be investigated further for industrial materials where the porosity is lower.
The influence of mesh size on the prediction of the onset of particle fragmentation is assessed in
Figure 4.12.

Opposed to simulations with varying time steps, particle fragmentation is predicted in all
these simulations. However, the onset of particle fragmentation is underestimated using coarse
meshing parameters both in 2D and 3D. The absolute uncertainties on RVE elongation at the
onset of particle fragmentation for the reference mesh remain small, namely 0.8 % in 2D and
1.0% in 3D.

The influence of these uncertainties on void growth is shown in Figure 4.13.

The results are similar to those obtained in the time step sensitivity analysis. Particle frag-
mentation is delayed but this does not affect void growth, as the slopes of the curves correspond
well between the reference result and the result with fine mesh. The absolute uncertainties on the
porosity at 30 % are 0.02 % in 2D and 0.04 % in 3D. The reference results are hence well-suited
for the present material. Moreover, the fact that these uncertainties are very small indicates that
the crack thickness parameter ¢ has, in the end, a very low influence on the results.

As a conclusion, absolute errors regarding the prediction of the onset of particle fragmentation
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Figure 4.12 — Sensitivity of the particle fragmentation indicator o during loading with respect
to mesh size.
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Figure 4.13 — Sensitivity of the porosity during loading with respect to mesh size.

close to the percent are obtained using reference numerical parameters. These uncertainties
mainly delay void growth, but do not affect significantly the slope of the porosity change curves.
The absolute uncertainty on the final porosity is hence also close to the percent.

Although these results validate the particle fragmentation criterion, the fact that the onset of
particle fragmentation is systematically delayed with fine numerical parameters remains to be
investigated. With a coarse mesh or time step, an underestimation of stress localization in the
particle would be expected, instead of an overestimation. This is investigated in the case of
particle debonding in Paragraph 4.5.3.6.

4.5.3.3 Particle fragmentation crack extension length ¢”

As mentioned in Paragraph 4.5.3.1, the numerical implementation of the particle fragmentation
criterion includes a length ¢ that leads to non physical result. The fragmentation crack is
extended in the matrix material, which does not correspond to experimental observations in
Figure 4.7(b). In this paragraph, 2D and 3D simulations with the reference numerical parameters
but varying ¢* are conducted to study the influence of this parameter. Results are reported in
Figure 4.14 for the 2D case.
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Figure 4.14 — Sensitivity of the results with respect to the fragmentation crack extension length
£ in 2D plane strain.

There is a significant influence for £/ = 10 um, which shows that with a too large crack
extension length the thickness of the intervoid ligament is severely reduced and void coalescence
is overestimated. This is corrected with smaller lengths both regarding the porosity and the load
carrying capacity of the intervoid ligament (the particle being broken).

This study is extended to 3D in Figure 4.15.
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Figure 4.15 — Sensitivity of the results with respect to the fragmentation crack extension length
¢" in 3D.

In 3D, with the used mesh size, the numerical treatment for void linkage at RVE boundaries
described in Subsection 4.4.3 is triggered even with £© = 2.5 um. Small void phase elements
are visible at the right boundary of the RVE for £ = 2.5 um in Figure 4.15(a). This could be
avoided by using a smaller mesh size. However, the macroscopic von Mises equivalent stress
curve in Figure 4.15(b) for the result with £ = 2.5 um shows that the load carrying capacity is
preserved. Hence, this activation of the numerical treatment for void linkage does not have a
dominant effect.

This is not true for the other two calculations, although void coalescence and linkage with RVE
boundaries is pronounced only after 20 % of RVE elongation with £/ = 5 um.

Therefore, due to a smaller intervoid ligament thickness, the sensitivity to £ is very high in
3D, both regarding the load carrying capacity and the porosity, due to an overestimation of
void coalescence. Although a converged result seems to be obtained in 2D with £ < 5 um, the
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pictures in Figure 4.14(a) show that plasticity localizes very early in the core of the intervoid
ligament. In particular, there is neither plasticity nor stress localization in the corners of the
particle fragments in these pictures, even using the smallest £

As a conclusion, the present sensitivity analysis indicates that the numerical parameter £ should
be exactly zero in order to obtain an accurate and physical modeling of particle fragmentation. It
will hence be necessary to improve the crack insertion method in the future in order to avoid the
use of this parameter (Chapter 7).

4.5.3.4 Particle debonding reference results

For particle debonding to be predicted instead of fragmentation, the particle fragmentation
criterion is deactivated. Debonding is then triggered both in 2D and 3D, but for larger strains, as
shown in Figure 4.16 and Figure 4.17.

While particle fragmentation in Paragraph 4.5.3.1 is predicted at an RVE elongation of nearly
15 % in 2D and 3 % in 3D, particle debonding does not occur until 25 % in 2D and 5 % in 3D.
Note that the competition between fragmentation and debonding is hence tighter in 3D, which
explains why debonding is predicted instead of fragmentation in Paragraph 4.5.3.2 using a too
large time step in 3D.
An important observation is that debonding occurs only in the bottom of the inclusion in the 2D
reference result, while it is observed both in the top and bottom parts in the 3D reference result.
Although this effect is revealed in these simulations only due to the fact that the debonding
criterion is local, the same result would have been obtained if particle fragmentation had been
considered for two particles in a symmetric microstructure. Depending on numerical errors, one
particle or the other would have fragmented (or both), with no possibility to obtain a converged
result. Such perfectly symmetric results cannot be found in nature, as residual stresses and
nanoscopic defects are likely to favor one crack propagation pattern or the other. An application
to a random microstructure is presented in Paragraph 4.5.3.7 to verify that convergence can be
obtained regarding the crack propagation path.

An interesting study is to compare the effect of particle debonding on the load carrying
capacity to the effect of particle fragmentation. For instance, in 3D, the macroscopic von Mises
equivalent stress curve in Figure 4.17(b) can be compared to that in Figure 4.15(b) using a
particle fragmentation crack extension length £© = 2.5um. The two curves are very similar,
regarding the beginning and the end.

However, particle fragmentation leads to a more severe and instantaneous drop of the load
carrying capacity (X ~ 250 MPa at 3 % of RVE elongation) while this is less significant and more
progressive in the case of debonding (£ ~ 300 MPa at 5% of RVE elongation). Void growth
is also slowed down in the case of debonding, as the porosity reaches 10 % at 50 % of RVE
elongation (Figure 4.17(b)), while this occurs at only 30 % of RVE elongation (Figure 4.15(b))
in the particle fragmentation case with £/ = 2.5 um. Thus, while particle fragmentation leads to
an instantaneous void nucleation mechanism, particle debonding is more progressive.

This effect is not necessarily due to the fact that debonding cracks may still be propagating at the
onset of void coalescence. This is the case in the 2D simulation, which can be seen for instance
between 30 % and 50 % of RVE elongation in Figure 4.16(a), where necking is clearly visible in
the ligament between the void and lateral boundaries, but debonding is still going on. Multiple
drops of the macroscopic von Mises equivalent stress curve are also visible in Figure 4.16(b).
However, it is not true for the 3D simulation, as only one void nucleation mechanism appears
clearly in Figure 4.17(b). Debonding cracks are propagating during the whole simulation (Figure
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mentation criterion being deactivated.



166 4.5. RESULTS

Qe

0% 10% 20% 30% 40% 50%

(a) Microstructure at different RVE elongations, with particle in red and voids in white.

——debonding indicator macroscopic von Mises equivalent stress ~ ——porosity
1200 14%
1 000 12%

800 ] 10%
600 / %

/ 6%

- / 4%

200 2%

0 J—/ 0%

0% 10% 20% 30% 40% 50%
RVE elongation

Stresses (MPa)
Porosity

(b) Evolution of tk_le particle debonding indicator o, (threshold at 1060 MPa), the macroscopic von Mises
equivalent stress X, and the porosity f.

Figure 4.17 — Reference result in 3D featuring only particle debonding, the fragmentation
criterion being deactivated.

4.17(a)), but only the first debonding event at 5 % of RVE elongation affects clearly the load
carrying capacity. Later debonding cracks propagate along the lateral boundaries of the particle.
Although these cracks do not affect the load carrying capacity in the present case, their effect
cannot be neglected as it would certainly be very important for non proportional loading paths
with varying loading direction.

4.5.3.5 Particle debonding criterion

Simulations with deactivated particle fragmentation criterion are numerically validated in this
paragraph. First, the time step is varied (Figure 4.18).

The absolute errors on the onset of particle debonding using the reference time step are 5.8 %
in 2D and 1.8 % in 3D. While the 3D result is acceptable, the error is quite high for the 2D one.
It is important to check the influence of this error on porosity change (Figure 4.19).



CHAPTER 4. MICROMECHANICAL MODELING OF VOID NUCLEATION 167

1200 time step 0,0001 1400 time step 0,0001
‘ —time step 0,001 —time step 0,001
;«7 1000 / time step 0,01 ;_«? 1200 time step 0,01
=5 21000 —
= 800 S
8 E 800
_'E 600 'g
=t S 600
5 400 5
=]
S S 400
3 o
a 200 Q 200
0 0
0% 10% 20% 30% 40% 50% 60% 0% 2% 4% 6% 8% 10%
RVE elongation RVE elongation
(a) 2D plane strain. (b) 3D.

Figure 4.18 — Sensitivity of the particle debonding indicator o, during loading with respect to
the time step.
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Figure 4.19 — Sensitivity of the porosity during loading with respect to the time step.

The same remarks as for particle fragmentation apply. In particular, the delay regarding
the onset of void nucleation does not seem to affect void growth, as the slopes of the porosity
change curves correspond for all used time steps. The absolute error on the porosity at 100 % of
RVE elongation in 2D using the reference time step is 1.7 %. It is 0.7 % in 3D at 50 % of RVE
elongation. These results validate the use of the reference time step for further FE analysis.
The dependence on mesh size is assessed in Figure 4.20.

The absolute uncertainties regarding the prediction of the onset of particle debonding using
the reference mesh are very low both in 2D (0.2 %) and 3D (0.01 %). However, porosity change
curves in Figure 4.21 show that the 3D results may be influenced by mesh size more significantly
than 2D ones.

A possible explanation is the sensitivity of the particle debonding site with respect to
numerical parameters. While a good convergence is obtained regarding the particle debonding
indicator, the latter reaches values very close to the critical threshold at multiple points of the
interface. The debonding of one of these points instead of the other is purely linked to numerical
errors. This effect is illustrated in Figure 4.22, and investigated further in Paragraph 4.5.3.7.

The results with coarse meshes either underestimate stress localization (2D), especially at
lateral boundaries of the particle, or overestimate void coalescence (3D) due to a small number
of elements between the particle and lateral RVE boundaries. This explains the quite large
difference between the results obtained using coarse meshes and the other results in Figure 4.21.
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Figure 4.20 — Sensitivity of the particle debonding indicator o, during loading with respect to
mesh size.
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Figure 4.21 — Sensitivity of the porosity during loading with respect to mesh size.

The small difference between the reference and fine results in 2D in Figure 4.21(a) is explained
by the fact that debonding occurs at only one side of the particle in both simulations. This is
not the case in 3D as debonding occurs at both sides using the reference meshing settings. This
explains the difference observed regarding porosity change in Figure 4.22. In Paragraph 4.5.3.7,
it is verified whether this has an effect on the prediction of the crack propagation path for random
microstructures.

4.5.3.6 Delay of void nucleation using fine numerical parameters

An important remark regarding the void nucleation prediction is that it is systematically delayed
using finer numerical parameters (time step and mesh size). This result is quite surprising be-
cause the use of explicit fracture criteria and remeshing operations with a diffusive field transfer
operator would theoretically imply an underestimation of plasticity and stress localization with
coarse meshes.

This surprising result hence suggests that the dominating error is not due to remeshing or the
explicit nature of the fracture criteria, but to the FE solution of balance equations. This is
investigated in Figure 4.23(a,b), where the plastic strain rate and the pressure are shown for the
2D simulation with the fine mesh at 0.5 % of RVE elongation.

It can be seen that because the initial mesh is generated using the fitting procedure followed
by mesh adaptation, some elements with poor quality remain at the matrix/particle interface.
These elements are voluntarily not eliminated in the present work because they do not affect
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Figure 4.22 — Microstructures in 2D plane strain and 3D using various meshing parameters, with
particles in red and voids in white.

severely the conditioning of the linear systems associated with the balance equations (Subsection
2.2.2), and plasticity does not seem to be affected (Figure 4.23(a)).

However, the pressure field (Figure 4.23(b)) seems to be affected by the presence of these
elements. This is verified by conducting FE simulations with an initial mesh of uniform size
2 wm where the particle is initially meshed more regularly using a mesh generation software
[192]. The result is shown in Figure 4.23(c) regarding the pressure field. Although oscillations
are still present, they are reduced.

Regarding the convergence rate, it is significantly improved as simulations with varying time
step predict an onset of particle fragmentation at 3.5 %, 3.59 %, and 3.594 %. The absolute
error is hence also significantly reduced compared to what is measured in Paragraph 4.5.3.5.
This improved convergence rate proves that the onset of particle fragmentation is delayed due
to oscillations of the pressure field at the matrix/particle interface, which seem caused by the
presence of elements of poor quality in this region of the mesh.

Although these oscillations are reduced with meshes of better quality, the fact that they
are still present incites to reconsider the used P17/P1 scheme for the solution of the balance
equations (Subsection 1.2.1), and not the mesh adaptation method. The fact that oscillations of
the pressure field are still present even with meshes of very high quality (Figure 4.23(c)) will be
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problematic in the future as pressure-dependent plasticity models will be used.

The cause of these oscillations could be attributed to the use of the bubble element for the
velocity approximation. However, the concentration of these oscillations at the interface, and
the fact that neither the velocity field nor its gradient (shown through the plastic strain in Figure
4.23(a)) are affected by these oscillations indicates that the problem could be purely linked to the
approximation of the pressure.

Comparisons between the P17/P1 element and elements with discontinuous pressure could be
interesting to validate these observations.
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Figure 4.23 — Simulation result in 2D plane strain at 0.5 % of RVE elongation: (a) equivalent
plastic strain rate using the fine meshing setting, (b) pressure field using the fine meshing setting,
(c) pressure field using an initial mesh of uniform size 2 um where the particle is initially meshed
using a mesh generation software [192]. In (b,c), oscillations of the pressure at the matrix/particle
interface are evidenced by the graphs.

4.5.3.7 Crack propagation path

Using a 2D statistical RVE of size 240 um, idealistic and symmetric configurations such as in
Figure 4.17 are avoided. Thus, it can be assumed that void nucleation will occur in the same
region of the RVE, and in the same mode, which will not depend on numerical parameters. In
Figure 4.24(a), this 2D microstructure is simulated using the reference time step and meshing pa-
rameters for the result in the top left corner (h2 dt0.001). Going to the right, a time step ten times
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(dt0.0001) and then a hundred times (df0.00001) smaller is used. Going to the bottom, mesh-
ing parameters €, Aeyurys Pinaxs Pmin, € and €. twice (h1) and then four times (£0.5) smaller are used.

The changes of the fracture indicators are shown in Figure 4.24(b) for fragmentation (o";’ ),
and in Figure 4.24(c) for debonding (o,,). All curves are stopped at the first fragmentation or
debonding event, because then it is not possible to know to which particle the values correspond
to. In particular, all curves shown in these figures correspond to the particle in the top right
corner of the microstructure in Figure 4.24(a).

At fixed time step, refining the mesh can have opposite effects. For dr0.001 (in blue in Figure
4.24(b) and Figure 4.24(c)), refining excessively the mesh delays void nucleation (k0.5 dt0.001).
For dt0.0001 (in green in Figure 4.24(b) and Figure 4.24(c)), mesh refinement does not seem to
have a significant effect, so results can be assumed to be converged. For dr0.00001 (in orange
in Figure 4.24(b) and Figure 4.24(c)), mesh refinement leads to an earlier prediction of void
nucleation (A2 dt0.00001).

At fixed mesh size, varying the time step gives very different results. However, the gaps are
reduced with finer meshes. For instance, the gaps between the dotted lines are far smaller than
the gaps between the solid lines in Figure 4.24(b) and Figure 4.24(c).

An important remark is that the curves in Figure 4.24(b) and Figure 4.24(c) seem to be converging
towards the results obtained with time step dr0.0001. However, depending on mesh size, different
results are obtained with this time step. The particle at the top right corner of the microstructure
(Figure 4.24(a)) debonds in h2 dr0.0001, fragments and debonds in 47 dt0.0001, and solely
fragments in h0.5 dt0.0001. The same remark can be made regarding the results on the diagonal
in Figure 4.24(a) (h2 dt0.001, h1 dt0.0001, and h0.5 dt0.00001).

The computational cost increases significantly with finer time steps and mesh sizes. For instance,
the computation times up to 15 % of RVE elongation for the simulations on the diagonal in
Figure 4.24(a) are of 5 min for h2 dt0.001 (6000 elements), 42 min for il dr0.0001 (20000
elements), and 44 h for £0.5 dr0.00001 (70000 elements). At least 90 % of this time is devoted to
mechanical solution.

As a conclusion, the present analysis shows that convergence on nucleation modes and
crack propagation path could be obtained, but at the expense of an increased computational
cost. The latter is mainly due to the fact that both the time step and mesh size need to be refined
simultaneously to obtain relevant results. Some uncertainties remain regarding the prediction of
the void nucleation mode. These are not due to the mesh generation and adaptation methodology
used to model cracks, but could come from the oscillations due to the FE scheme mentioned in
Paragraph 4.5.3.6.

The absence of a control of the strain energy release after the first void nucleation event could
also lead to uncertainties regarding the following nucleation events.

The reference numerical parameters are kept in the following as only averaged quantities are
of interest in this section. For validation of the proposed void nucleation criteria using local
comparisons with experiments (Chapter 6), the limitations mentioned in this paragraph will have
to be investigated more thoroughly.

4.5.4 Representative Volume Element size

RVE size can also be considered as a numerical parameter, introduced by the homogenization
scheme. While a too large RVE is not an issue in this section because no macroscopic structure
is considered (though computational cost may be a limitation), a too small RVE will yield results
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Figure 4.24 — Influence of time step and mesh size on void nucleation criteria for a random 2D

microstructure.
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that are not representative of the material. Added to the two 2D RVEs of sizes 80 um (1 particle,
Figure 4.8(a)) and 240 um (9 particles, Figure 4.24(a)), and the 3D RVE of size 55 wm (1 particle,
Figure 4.9(a)) already used in previous calculations, additional RVEs are generated. All these
RVEs (except the single-particle RVEs) are shown in Figure 4.25. The bis 2D RVEs are used
further in this analysis.

It is reminded that due to symmetry boundary conditions, the dimensions and numbers of parti-
cles mentioned in Figure 4.25 should be multiplied by 4 in 2D and 8 in 3D. In this figure, only
the meshed region is represented, and abusively called RVE.
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Figure 4.25 — Statistical RVEs used for the validation of RVE size. Particle volume fraction is
close to 20 %, and particle radii follow a normal law of mean 20 pm and standard deviation 5 pm.

Based on the remarks made in Paragraph 4.5.3.7, only averaged quantities are used for this
validation, though full field quantities can be considered qualitatively. Porosity and macroscopic
von Mises equivalent stress curves are presented in Figure 4.26 using the different RVE sizes for
the 2D simulations.

Convergence seems to be obtained in 2D for an RVE of reasonable size, as the RVE with
only 9 particles gives predictions regarding the porosity that are very close to those obtained with
78 particles (Figure 4.26(a)). The elongation for which the RVE reaches its maximum strength
also corresponds well between the two largest 2D RVEs, as well as the associated macroscopic
von Mises equivalent stress (Figure 4.26(b)).
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Figure 4.26 — Influence of RVE size in 2D plane strain.

This is surprising because the number of particles is very different between the two RVEs.
Thus, these results are verified by considering two alternative RVEs with the same particles,
but positioned differently. The two alternative RVEs (bis) are shown in Figure 4.25 and the
subsequent results are shown in Figure 4.27(a) and Figure 4.27(b).
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Figure 4.27 — Influence of RVE size in 2D plane strain with alternative RVEs (bis).

There is no significant sensitivity of the porosity to particle positioning (Figure 4.27(a)), even
for the RVE of size 240 um. The differences regarding the load carrying capacity are higher but
remain acceptable (Figure 4.27(b)). This convergence on RVE size with a small RVE could be
due to the fact that this material has a high particle volume fraction, and hence a low ductility. It
is promising as the computational time for the calculation with RVE size 240 um is only a few
minutes. However, the main interest of the present work is 3D simulations. Results for the 3D
simulations with varying RVE size are shown in Figure 4.28.

In 3D, convergence is only obtained regarding the slopes of the porosity change curves in
Figure 4.28(a). There is still a non negligible difference in ductility even with the two largest 3D
RVEs, especially regarding the mechanical response (Figure 4.28(b)). For instance, the largest
RVE is significantly more ductile than smaller ones. Its final porosity rate corresponds to the
final porosity rate of the RVE of size 165 um only after 20 % of RVE elongation. Hence, void
nucleation mechanisms are still occurring in this RVE at 15 % of RVE elongation, while the
other RVEs have already reached a state where void growth and coalescence are the dominating
damage mechanisms.

This difficulty to converge regarding RVE size in 3D but not in 2D may be linked to higher
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Figure 4.28 — Influence of RVE size in 3D.

clustering effects in 3D. Clusters of particles very close to each other are more likely to be present
in the initial microstructure in 3D. It will be important to improve the statistical RVE generation
tool in order to control the distribution of particles more closely. In fact, this distribution is only
fixed globally in the RVEs shown in Figure 4.25, hence locally distances between particles may
not be representative of the real material shown in Figure 4.7.

An additional difficulty is that the limits in computational resources are reached for the
largest RVEs. The computation time for the four 3D RVEs is reported in Table 4.4.

RVE size (um) CPUs total mechanical solution (%) mesh adaptation (%)

55 8 42 min 72 24
110 25 I1h 63 28
165 79 46h 49 46
220 148 61h 36 52

Table 4.4 — Computation time for the 3D calculations with different RVE sizes.

An important issue for the very large RVEs is that the number of elements increases severely
during the simulation due to the fracture events. Therefore, it is not possible to predict the
optimal number of Central Processing Units (CPUs) at the beginning of the simulation. Instead,
the computation is stopped and restarted when the number of elements per partition becomes too
large. The number of CPUs indicated in Table 4.4 corresponds only to the median (half or twice
this number of CPUs may have been used at some points of the simulation).

Another issue, also linked to distributed computing, is revealed in this table. When the number
of elements increases, the distribution of computation time changes. While for small RVEs
(and number of CPUs), mechanical solution costs more than mesh adaptation, this tendency
is progressively reversed when RVE size increases (and the number of CPUs). This might be
due to the parallel implementation of the interface meshing procedure in Section 2.5, or the
repartitioning/remeshing algorithm implemented in the FE library [125].

All other algorithms developed in this work do not appear in Table 4.4 because they have neg-
ligible cost. These include the computation of the error estimator thanks to Hessian matrix
recovery (Subsection 3.1.3), the reinitialization of LS functions (Section 3.2), the correction of
the transport of history variables (Subsection 2.3.2), and the identification of the inclusions for
the fragmentation criterion (Section 3.3).
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As a conclusion, convergence with respect to RVE size is reached even with small RVEs
in 2D, which is most probably helped by the use of PBCs. Thus, the implementation of these
conditions for more general loading configurations and microstructures would be interesting. In
3D however, the computational cost becomes too large before convergence is reached. While
the parallel efficiency of the mechanical solution relies mainly on the PETSc library [126], the
parallel remeshing technique should be revisited (Chapter 7). For the following simulations, an
RVE size of 240 um is chosen in 2D, and 165 um in 3D.

4.5.5 Importance of void nucleation modeling

In the following simulations, the reference numerical parameters chosen in Subsection 4.5.3
are used. It is reminded that using these numerical parameters, converged results are obtained
in terms of averaged quantities, but discussions regarding local phenomena such as the crack
propagation path can be only qualitative. Additionally, unless otherwise mentioned, the triaxiality
ratio 7 is fixed to 0.33.

4.5.5.1 Two-dimensional analysis

It has been discussed previously that most studies on ductile fracture often disregard the void
nucleation mechanism by considering an initial microstructure where particles are replaced by
voids, or by initially debonded and/or fragmented particles. For the material studied in this
subsection, the dominating void nucleation mechanism is particle fragmentation with fracture
planes that are orthogonal to the tensile direction (Figure 4.7). Comparisons are thus proposed
between:

e the nucleation simulation carried out in Subsection 4.5.4, with a 2D RVE of size 240 um
(9 particles), taking into account both void nucleation mechanisms;

e a fragmentation simulation with same RVE, but taking into account only the particle
fragmentation mechanism;

e a pre-fragmentation simulation with same RVE size, but initially fragmented particles
instead of modeling void nucleation during the simulation;

e avoid simulation with same RVE size, but voids instead of particles.

The four RVEs are shown in Figure 4.29 before and after 15 % of RVE elongation.

One of the voids is very close to the RVE boundary and the numerical treatment for void
linkage at RVE boundaries (Subsection 4.5.1) is already active in the initial state for the void
configuration. This is also the case for two of the fragmentation cracks in the pre-fragmentation
configuration, due to the crack extension length £”.

On the one hand, the load is nearly equivalently shared by all voids in the void and pre-
fragmentation simulations. As a consequence, void growth is nearly homogeneous in the whole
RVE for these two simulations, apart from some void coalescence and linkage events. Thus, the
stress and plasticity localization mechanisms that could take place in some regions of the RVE
before the onset of void coalescence are totally neglected.

On the other hand, plasticity is localized in the top region of the RVE in the pre-fragmentation
and nucleation simulations. The microstructure fails due to the three aligned particles at the top
of the RVE. The stress first decreases significantly due to the failure of the two big particles
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Figure 4.29 — Microstructures before and after 15 % of RVE elongation for the assessment of the
importance of void nucleation modeling in 2D plane strain. Particles are shown in red, and voids
in white.

(= 8 % of RVE elongation), and then later a minor decrease is noticed due to the third particle
(= 10 % of RVE elongation). In fact, nucleation due to debonding or fragmentation of a particle
leads to a stress localization phenomenon that is likely to trigger further nucleation events in
neighboring particles.

Results with a modeling of nucleation mechanisms (only fragmentation or both) during the
simulation are hence qualitatively very different from results with an initial population of voids
or pre-fragmented particles. A more quantitative idea is given by the porosity change and
macroscopic von Mises equivalent stress change curves in Figure 4.30.

From the point of view of damage (Figure 4.30(a)), the influence of void nucleation modeling
is concentrated in the first part of loading, for an RVE elongation less than 10 %. Void growth has
already started in the pre-fragmentation simulation, while no nucleation is predicted in the nucle-
ation and fragmentation simulations. After significant void growth, this difference decreases and
the nucleation and fragmentation curves progressively join with the pre-fragmentation one. The
void simulation shows a very different damage change as void growth is far lower with respect to
the two other simulations.

These differences are explained when looking at the stress curves in Figure 4.30(b). Due to
the presence of undamaged particles, the nucleation and fragmentation RVEs have an ultimate
strength twice higher than others. Therefore, a significant part of the strain energy is neglected in
simulations that do not consider void nucleation criteria.

The difference between the nucleation and fragmentation simulations is mainly concentrated in
the first nucleation event, which is debonding in the former while it is fragmentation in the latter.
As already mentioned in Paragraph 4.5.3.4, debonding has a less significant effect on the load
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Figure 4.30 — Importance of void nucleation modeling in 2D plane strain.

carrying capacity (at = 8 % of RVE elongation in Figure 4.30(b)). This difference does not seem
to have a significant effect after 20 % of RVE elongation, in the void growth and coalescence
stages.

An important aspect is that while the void and pre-fragmentation simulations show very different
void growth curves, with different slopes, the stress/strain curves correspond quite well. This re-
veals that the difference between penny-shaped voids and spherical voids is not significant under
tensile loading. It may nevertheless have a major influence under different loading conditions,
such as shear. The presence of particle fragments in the pre-fragmentation configuration may
also have a significant influence under such loading conditions.

Additionally, the numerical crack extension length parameter £/ may also reduce significantly
the influence of particle fragments in these simulations. This may also certainly explain why the
macroscopic von Mises equivalent stress in the pre-fragmentation result is lower than that in the
void result in Figure 4.30(b).

As a conclusion, this 2D FE analysis shows that while the particle debonding mechanism may
be neglected for the studied material and loading conditions, the fragmentation mechanism has
to be accounted for. In particular, a significant part of the strain energy is neglected if particles
are assumed to be already fragmented in the initial RVE, or if they are replaced by voids.

4.5.5.2 Three-dimensional analysis

This importance of void nucleation modeling is investigated further in 3D with an RVE of
size 165 um (33 particles), and varying macroscopic stress triaxiality ratio n. For these 3D
simulations, due to a large computational cost, only the two extreme cases are considered,
namely the nucleation and void configurations of Paragraph 4.5.5.1. Results are presented in
Figure 4.31 for the nucleation RVEs and Figure 4.32 for the void RVEs.

First, it can be observed that ductility decreases with higher triaxiality ratios, which is in good
agreement with the theory. Independently of whether particles and void nucleation mechanisms
are taken into account, larger voids and more numerous void coalescence and linkage events are
visible in the results corresponding to = 0.66. In particular, most voids in the results withp = 0
have regular and nearly spherical shapes, which shows that coalescence is not the dominating
mechanism yet, even at 50 % of RVE elongation.

Although this decrease of ductility is well captured by the void simulations, there are signif-
icant differences between the void and nucleation simulations. These differences seem to be
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