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Introduction

Metal forming

Metallic materials are extensively used in the transport and energy industries among others.
These materials can be high-performance metal alloys, as in turbine engines of planes and ships.
Since these alloys have large production costs, metals of lower performance can be preferred,
such as iron and aluminum alloys. A last category of metallic materials, called metal matrix
composites, are composed of a main component called the matrix, which is a metal alloy, and
other microscopic components. These other components, called reinforcements, inclusions,
particles or fibers depending on their properties, are used to improve some specific characteristics
such as strength, resistance to corrosion etc., with respect to the matrix material alone.
For all those metallic materials, from composites to high-performance alloys, failure is an impor-
tant issue that has to be predicted and controlled. Indeed, a better prediction of failure would
enable more efficient forming processes, reducing both the cost and the environmental impact of
fabrication. Additionally, in many sectors such as the transport industry, a better understanding
and modeling of failure mechanisms would permit the use of advanced composite materials,
reducing the weight of the products and their energetic consumption.

The occurrence of failure is highly linked to the flawlessness of the material. Even in high-
performance alloys, defects can be found, as voids or inclusions may be trapped inside the
material during its forming, or may appear during heat treatments due to chemical reactions. For
alloys and composites, the defects are linked to the reinforcements themselves, or the different
components of the alloy. Indeed, the bond between the different components may fail, or the
difference of strength between the components may induce local stress increase and eventually
failure. This failure of some components of the microstructure or the bonds between these
components due to mechanical loading gives rise to microscopic voids that are at the origin of
materials’ damage.
Depending on several aspects of the microstructure, such as anisotropy, density of each compo-
nent, arrangement and shapes of the components, voids may nucleate and grow in very complex
patterns. This complexity will be strongly increased if loading itself is complex. Indeed, final
pieces are generally the product of several forming stages, each relying on various loading
modes (compression, tension, shear). These modes may be combined or applied consecutively
in different directions. Such a loading path is very frequent in metal forming and is referred to as
non proportional and complex loading path.
Last but not least, metal forming processes are based on irreversible and large deformations,
and hence plasticity. In general, plasticity and damage will develop concurrently in the whole
material, and will localize in some regions. This localization may be desired or not depending
on the forming process, hence it needs to be accurately predicted, controlled, and sometimes
avoided. In particular, simulations tools should determine accurately the local distributions of

9



10 METAL FORMING

plasticity and damage.
Both plasticity and damage will have an effect on the materials behavior, as plasticity will
generally lead to hardening, while damage will generally lead to softening. For realistic forming
simulations, both these effects have to be modeled. More complex aspects of plasticity and
damage could also have to be modeled depending on the material and the loading conditions:
anisotropy, competition between localization events at multiple scales, dependence on tempera-
ture and pressure, etc.

Recently, a global effort was initiated at the Center for Material forming - MINES ParisTech
(Cemef - MINES ParisTech) with the aim of developing innovative and efficient numerical
simulation tools for predicting and modeling the influence of forming processes on metals, and in
particular on their microstructure. This focus on the microscale is motivated by previous works at
Cemef - MINES ParisTech where these processes were addressed only at the macroscale, raising
important limitations, and experimental results showing the importance of the microstructure [1].
Ultimately, these simulation tools should account for all aspects that interest industrial partners,
based on appropriate numerical models for static and dynamic recrystallization [2, 3], crystal
plasticity [4], and ductile fracture [5, 6]. Virtual microstructures can be generated based on
statistical data [7], but real microstructures based on experimental observations are also targeted
[6]. In the case of damage and fracture, generalization of these developments to other materials,
such as polymer matrix composites, is not discarded, as these materials are also intensively
studied at Cemef - MINES ParisTech and are of great interest for industrial partners [8]. Finally,
in many applications, not only should the influence of macroscopic loading conditions on the
microstructure be modeled, but also the influence of this evolving microstructure on the macro-
scopic behavior of the material.

The micromechanisms of ductile fracture are briefly described hereafter, based on experimen-
tal approaches. Theoretical and numerical approaches are then considered, including existing
models to predict the occurrence and growth of damage. An emphasis is made on previous work
at Cemef - MINES ParisTech regarding micromechanical modeling and its limitations in order
to introduce the objectives of the present work.
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Ductile fracture: physics
The increasing use of metals and metal forming in the twentieth century has led researchers to
investigate ductile damage through the nucleation and growth of voids, using both experimental
and numerical means. With the development of advanced observation tools based on electrons
or X-rays, the microstructure of materials and the microscopic defects can be observed both in
two dimensions (2D) [9, 10, 11, 12, 13, 14] and three dimensions (3D) [15, 16, 17, 18, 19, 20].
These techniques enable to reconstruct the microstructure in 2D or 3D, including the crystal
structure of metals [15], with a high resolution (0.1 µm to 1 µm). With advanced loading devices,
the nucleation and growth of defects can be observed in-situ [17, 19, 20, 21, 22], which is
very important as the same microstructure is then observed throughout loading. As opposed to
destructive imaging techniques, these in-situ techniques avoid all issues linked to experiments
reproducibility, thus easing results interpretation and modeling.
Experimental images obtained using these advanced observation techniques are presented in
Figure 1.
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Figure 1 – Failure of a nodular cast iron specimen observed with Synchrotron Radiation Com-
puted Laminography (SRCL) during an in-situ tensile experiment. The distance between the two
holes is 1 mm. Courtesy of T. F. Morgeneyer.

These images correspond to a flat specimen of nodular cast iron, which at the microscale
features a ferritic steel matrix and graphite inclusions. In this material, damage nucleates under
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tension by debonding of the inclusions from the matrix. The nucleated voids then grow inde-
pendently from each other, until void growth starts to accelerate between neighboring voids.
This acceleration is the onset of void coalescence, which accumulates until the initiation of a
macroscopic crack. This crack will propagate until final failure of the specimen.

Ductile damage is defined by these void nucleation, growth and coalescence mechanisms,
that are highly dependent on the microstructure of the material. Due to the microscopic voids
that are present and growing in the material, its load carrying capacity will be progressively
affected, which will translate into softening of its mechanical response, as shown in Figure 2.
This softening may be more or less pronounced depending on the material and loading conditions.
While void nucleation and growth occur all along loading and lead to a progressive softening of
the mechanical response, void coalescence leads to an acceleration of this softening effect which
is significant only at large plastic strain.
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Figure 2 – Typical force/displacement curve of a ductile material under tensile loading. The
micromechanisms of void nucleation, growth and coalescence occur during the whole loading
path, but each mechanism is dominant at different loading steps. X-ray images are a courtesy of
T. F. Morgeneyer.

Finally, the initiation of the macroscopic crack, well-known as the damage to fracture transi-
tion, is the final step of ductile fracture. Modeling this step is only important for some forming
processes such as self-pierce riveting [23] or cutting [24], as in other processes macroscopic
cracks tend to be avoided.
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Ductile fracture: models

In this section, ductile fracture modeling is reviewed, with an emphasis on the limitations of
macroscopic models, and the necessity to look at the microscale. A first category of models,
known as uncoupled models, or damage indicators, can be found in the literature. These models
can have an empirical basis, such as the Latham & Cockcroft model, or a theoretical basis,
such as the McClintock [25] and Rice & Tracey [26] models. The application of these damage
indicators remains limited to situations where damage accumulates without influencing the
material’s load carrying capacity (softening is neglected).
In the second half of the twentieth century, a new theory, known as continuum damage models,
has been developed, enabling to predict the initiation and growth of damage and its impact on
the material’s elastic and plastic response, until fracture [27, 28]. Both damage indicators [24,
29, 30] and continuum damage models [23, 24, 31, 32] have been applied at Cemef - MINES
ParisTech to various metal forming processes where softening or ductile fracture had to be
predicted accurately. These studies have shown that in some loading conditions, these models
can be calibrated in order to obtain accurate predictions.
However, for complex loading conditions, some modifications are necessary. For instance, the
continuum damage model proposed initially by Lemaitre [28] is well-known to give poor predic-
tions when the material is locally subjected to compression. A modified version has hence be
used for some forming processes in recent works [23, 31]. Generalized versions of the Lemaitre
model have also been investigated [32]. These modifications are however phenomenological,
which makes difficult to link the notion of damage to the physical mechanisms of voids nucle-
ation, growth and coalescence in ductile materials.

Homogenization theory enables to overcome this specific difficulty. A study at the microscale
of the growth of a single void embedded in an infinite matrix was performed by Gurson [33],
inspired by previous works of McClintock [25] and Rice & Tracey [26]. An analytical solution
was derived thanks to quite restraining assumptions, and averaged in order to deduce a porous
plasticity load surface taking into account both plasticity and porosity. Among these assumptions,
the matrix was defined as rigid plastic, and the Representative Volume Element (RVE) used
for homogenization did not take into account neighboring voids. The widely used Gurson-
Tvergaard-Needleman (GTN) model introduces three phenomenological parameters in order to
adjust this load surface [34] and completes Gurson’s void growth model with two contributions
corresponding to void nucleation and coalescence [35]. The Gologanu-Leblond-Devaux model
[36] extends the GTN model to non-spherical voids, improving predictions under shear, where
voids do not grow but mainly rotate.
The GTN model has been used at Cemef - MINES ParisTech [32], and especially its extensions to
shear loading. These extensions typically introduce numerous parameters that require advanced
identification procedures [32]. Additionally, while the model proposed by Gurson is microme-
chanical and accounts for the physical mechanism of void growth, all extensions based on the
GTN model add phenomenological parameters to the model. Thus, while these extensions give
more realistic results regarding plasticity and softening, the link between model predictions and
the physical micromechanisms of ductile fracture is deteriorated. Another important limitation is
that because each extension of the Gurson model targets a specific loading configuration, and a
general model that could handle all possible loading conditions accurately is yet to be formulated,
applications to non proportional loading paths are limited.
As a conclusion, there is a need to understand the limitations of common damage models, and
develop damage models taking into account the microstructure and allowing for an accurate
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characterization of the microstructure and the potential defects.

In this aim, Finite Element (FE) analysis is often conducted at the microscale [37, 38]. These
investigations are performed in conditions close to the ones used by Gurson in his homogeniza-
tion methodology. The main advantage of numerical approaches is that they do not require too
restraining assumptions since solution is performed numerically and not analytically. However,
most works generally do not address the nucleation and coalescence of voids in the RVE. In
case of nucleation, FE analysis is performed on an RVE containing particles, and nucleation is
predicted after the simulation based on average stress measurements. In the same way, coales-
cence is studied with an RVE containing voids instead of particles. These works do not allow to
raise any conclusions regarding the possible interactions between void nucleation, growth and
coalescence, especially in the case of realistic microstructures where particles are distributed
randomly, and can have various shapes and sizes.
Based on these observations on existing works, an FE framework was developed at Cemef -
MINES ParisTech in order to perform simulations taking into account realistic microstructures
and modeling ductile fracture mechanisms at the microscale. The goal was to include microme-
chanical models accounting for the whole ductile fracture process, from void nucleation to final
failure of the RVE due to void coalescence.
This work was based on advanced numerical tools available in the laboratory FE code [5], which
were extended in order to model fracture events [6]. Promising results were obtained in 2D,
as real microstructures could be meshed and subjected to various loading conditions, proving
qualitatively the influence of loading path on ductile fracture. However, several limitations were
encountered, especially for 3D applications.
In particular, these developments relied on the LS method, which is described in details farther in
this work. This method helps the modeling of interfaces at large deformations and with complex
topological events such as voids coalescence. However, it has the main flaw of raising volume
conservation issues when it is combined with remeshing, which is necessary in order to reach
large plastic strains. Very fine FE meshes were used in previous developments to prevent the
geometry from being diffused. As the Level-Set (LS) method was also used to represent cracks,
sharp cracks could not be represented and were replaced by spherical nuclei, which were initially
given a quite large radius in order to avoid them being also diffused.
Then, the LS method does not include an interface modeling technique. The transition between
different material behaviors at interfaces was modeled using mixture laws, which are quite
complex to formulate for very different behaviors such as an elastic inclusion and a plastic matrix,
or a void and a solid.
Additionally, the remeshing technique relied on some specific properties of the LS method,
which require a reinitialization technique in order to be maintained during deformation. No
robust and efficient technique was available in the FE code to perform this operation.
Finally, some important aspects of solid mechanics such as contact were neglected, and the
fracture criteria used to model the micromechanisms of ductile fracture had yet to be extended to
3D.
Due to these limitations, very fine FE meshes and hence high computational resources were
necessary in order to reach large plastic strains in 2D. Consequently, applications to complex 3D
microstructures could not be considered. The latter are necessary not only to study the influence
of complex three-dimensional loading paths on ductile fracture micromechanisms, but also to
validate micromechanical models. Previous developments at Cemef - MINES ParisTech did not
address the challenging problem of validating micromechanical FE simulations with respect to
experiments since it was difficult to get reliable and accurate data all along loading history.



INTRODUCTION 15

Objectives and outline

The aim of the CORTEX Carnot Mines project was twofold: improving the FE method for
micromechanical modeling of ductile fracture, ideally to enable 3D simulations on real mi-
crostructures, and validating quantitatively the developments. The pursuit of the second objective
was largely aided by the start of the ANR COMINSIDE project during the second year of the
present study, which involved teams from the Centre des Matériaux (MINES ParisTech) and the
LMT Cachan (ENS Cachan). This manuscript details the contributions of the work done within
the Carnot CORTEX project and their use in the frame of the ANR COMINSIDE project.

• A literature review is first proposed in Chapter 1, with a more thorough description of
micromechanical modeling and homogenization theory. As micromechanical calculations
are often conducted with the FE method, a brief description of this method and the
numerical scheme used at Cemef - MINES ParisTech is given. The Gurson model and its
extensions are discussed, with an emphasis on studies relying on numerical calculations.

• Before introducing any material behavior law or fracture criteria, important numerical
issues have to be answered. Among them, an appropriate methodology has to be introduced
in order to represent the microstructure in an FE context. This methodology should be
compatible with the numerous and complex void nucleation, growth and coalescence
events that will occur during the simulation, as shown in Figure 1.
The numerical method presented in Chapter 2 and proposed in the present work to solve this
problem relies on two main tools, namely the LS method and mesh adaptation. In particular,
results are presented to prove that the proposed mesh adaptation technique improves
significantly a major defect of the LS method, which is volume conservation. However, it
is shown that the advantages of the LS method are preserved, with no significant increase
of the computational cost. The application of this method in the frame of computational
fracture mechanics and the meshing of sharp cracks during the simulation is also described.

• In the aim of addressing real microstructures, three important ingredients are added to the
numerical method in Chapter 3, and applied to real microstructure meshing, based on 3D
X-ray data.
The first ingredient is an error estimator, enabling to achieve better accuracy in the
representation of the microstructure’s geometry. This estimator has been found in the
literature and implemented in the FE library developed at Cemef - MINES ParisTech.
The two other ingredients are necessary in order to address void growth at large plastic
strain, and ductile fracture modeling. Indeed, a LS reinitialization procedure is needed to
maintain the regularity of the LS method, especially when large deformations occur. Such
procedure was already implemented in the FE code, but its robustness and computational
cost were quite limiting for 3D applications. A new procedure is proposed in the present
work, and its efficiency both in terms of accuracy and computational cost is compared to
existing approaches. This method is completed with a connected components identification
algorithm, which is necessary in order to assess fracture criteria individually for each
inclusion or void.
Finally, these three ingredients are used to mesh real microstructures based on 3D X-
ray data, where the geometry is accurately captured thanks to the error estimator. The
regularity of the LS method is enforced thanks to LS reinitialization, and the different
inclusions and voids of the microstructure are identified thanks to connected components
identification.
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• With the enhanced LS method and its additional ingredients detailed in Chapter 2 and
Chapter 3, simulations can be conducted with microstructures that undergo large defor-
mations and complex topological events such as fracture or coalescence. The remaining
open questions are linked to constitutive modeling. As the focus is on damage modeling,
a simple plasticity model is used for the matrix material, while a more thorough biblio-
graphic study is conducted to develop appropriate fracture criteria to predict and model
void nucleation. These models are presented in Chapter 4, and used in micromechanical
calculations conducted in the frame of homogenization theory. Convergence results are pre-
sented with respect to numerical parameters and RVE size, and the importance of modeling
simultaneously void nucleation, growth, and coalescence mechanisms is demonstrated.

• While void coalescence is assumed to be purely driven by plastic localization in Chapter
4, recent experimental observations suggest that this phenomenon may be more complex.
These experimental studies are reviewed in Chapter 5, and a micro-cracking criterion is
proposed to predict the initiation of micro-cracks in intervoid ligaments. This criterion is
used in 2D simulations and compared to experimental results found in the literature.

• Validation with respect to 3D data acquired during in-situ experiments is addressed in
Chapter 6. Thanks to the experimental-numerical framework presented in this chapter, 3D
numerical simulations taking into account real microstructures and measured boundary
conditions are conducted and compared locally with 3D observations during loading. To
the author’s best knowledge, this is the first time such simulations are conducted, and that
local error measurements with respect to experiments are considered in the case of ductile
fracture.

• Finally, Chapter 7 sums up the main developments and achievements of this work and
highlights several ideas of improvement related to the field of ductile fracture. Applica-
tions of the numerical tools developed in this work to other materials (e.g., polycrystals,
polymer matrix composites) and challenging research problems (e.g., static and dynamic
recrystallization, fluid-structure interaction, multiphase flow) are also considered.
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Résumé en français

Tout matériau métallique est hétérogène à l’échelle microscopique, que ce soit à cause de sa
structure cristalline, des renforts, ou encore des défauts. Ainsi, la microstructure de ces matériaux
est composée de plusieurs phases métalliques, souvent elles-mêmes séparées par des particules
non métalliques et des cavités. Les interfaces entre ces différentes composantes sont des sites
de concentration de contraintes pendant le chargement, ce qui mène à la germination de cavités.
Ce phénomène de germination peut se manifester par la décohésion, qui est due à la rupture
d’une interface entre deux composants, ou par la fragmentation, qui est due à la rupture d’un des
composants.
Les cavités ainsi germinées croissent indépendamment les unes des autres pendant le chargement,
jusqu’à un certain point critique où elles commencent à interagir entre elles. Ce point critique est
le début de la coalescence des cavités. Il est marqué par une accélération de la croissance des
cavités s’avoisinant, jusqu’à leur liaison totale, qui est parfois accompagnée de micro-fissures.
L’accumulation de ces liaisons entre paires de vides mène à la formation d’une macro-fissure, et
à la rupture ductile finale du matériau.
Ainsi, la rupture ductile est complexe par nature, car des fissures se développent à deux échelles.
Par ailleurs, de récentes études à la fois expérimentales et théoriques mentionnent que plus de
deux échelles pourraient être impliquées, de par l’existence de cavités de taille inférieure au
micromètre qui pourraient avoir une influence majeure sur la coalescence des cavités de taille
supérieure. Les études expérimentales ont un rôle clé et ont beaucoup aidé à la compréhension
de la rupture ductile, grâce notamment aux techniques d’imagerie par rayons X. Ces techniques
permettent aujourd’hui l’observation in situ de la rupture ductile, pour des éprouvettes jusque
quelques millimètres d’épaisseur et une résolution proche du micromètre.
Des algorithmes de suivi automatique de cavités ont été développés pour obtenir des mesures
locales de la croissance des cavités à partir de ces données tridimensionnelles (3D). Il y a un
fort besoin pour ces techniques de pointe à cause de la distribution aléatoire des cavités dans le
matériau, et de la distribution également aléatoire de leurs tailles. Afin d’éviter ces difficultés,
certains auteurs ont étudié la conception de matériaux modèles avec des trous percés au laser.
Ajouté à cette nature complexe et multiéchelle de l’endommagement, l’interaction de ce dernier
avec la plasticité représente un défi supplémentaire pour les scientifiques à la fois en expéri-
mentation et en modélisation numérique. L’extension récente des techniques de corrélation
d’image à la 3D est prometteuse car les mécanismes de localisation plastique peuvent maintenant
être mesurés localement. Ces résultats suggèrent que dans certains matériaux la plasticité se
développe de manière significative avant toute coalescence de cavité.

La modélisation de phénomènes multiéchelles requiert une théorie mathématique multi-
échelles. L’application analytique de la théorie de l’homogénéisation à la rupture ductile
représente une des pistes les plus prometteuses dans l’objectif d’obtenir des critères de plasticité
et d’endommagement inspirés de l’échelle microscopique, mais s’appliquant à l’échelle macro-
scopique. La revue bibliographique conduite dans ce chapitre à propos de ces calculs analytiques
se restreint au modèle de Gurson, qui ne prend en compte que la croissance de cavités. Les
aspects germination et coalescence sont abordés de manière plus détaillée dans les chapitres 4 et
5.
Le modèle de Gurson et ses extensions sont basés sur des hypothèses très contraignantes en ce
qui concerne la microstructure des matériaux considérés, les lois constitutives utilisées à l’échelle
microscopique, et les conditions de chargement. Afin de quantifier les erreurs produites par ces
modèles, et contribuer à leur amélioration, les approches multiéchelles numériques sont d’un
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grand intérêt.
Ces approches numériques empruntent la même théorie multiéchelles que celle utilisée pour
l’homogénéisation analytique. La différence principale réside dans le fait que la solution du
problème d’homogénéisation est calculée numériquement, le plus souvent en utilisant la méthode
des éléments finis, qui consiste à représenter toutes les inconnues à l’aide d’un maillage et de
variables discrètes portées par les nœuds de ce maillage. Ainsi, on peut s’atteler à la modélisation
de microstructures complexes, avec des lois constitutives avancées à l’échelle microscopique, et
des conditions de chargements arbitraires.
Cependant, la plupart des analyses éléments finis existantes dans la littérature se restreignent
à des microstructures idéales. Les volumes élémentaires représentatifs utilisés ne contiennent
en général qu’un seul vide, avec des conditions aux limites périodiques. Certaines études ont
également considéré les inclusions, mais les mécanismes de germination sont souvent idéalisés,
notamment en faisant l’hypothèse d’une décohésion initiale ou d’une inclusion pré-fragmentée.
En effet, des méthodes numériques et modèles micromécaniques avancés restent à dévelop-
per pour la prise en compte d’inclusions de formes, tailles et distributions arbitraires, et des
mécanismes de germination, croissance et coalescence complexes engendrés par de telles mi-
crostructures, pour de large déformations plastiques. Le développement de telles méthodes fait
partie des défis à relever dans cette thèse, ce qui est abordé dans les chapitres suivants.
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Introduction
This literature review is split into two main parts. The first one addresses ductile fracture as a
physical phenomenon that calls for advanced experimental means. Thanks to the latter, the voids
nucleation, growth and coalescence mechanisms can be observed in two dimensions (2D) and
three dimensions (3D) in various loading configurations. In the second part, the modeling of
these mechanisms is considered. As proposed in the fundamental works of McClintock [25] and
Rice & Tracey [26], ductile fracture calls for micromechanical modeling, because the influence
of macroscopic loading conditions on the microstructure has to be studied. Mathematically
sound principles have to be introduced in order to make this transition from macro to micro.
Additionally, in the work of Gurson [33], this mathematical reasoning was elaborated further
in order to also include an influence of the microstructure on the macroscopic behavior. These
different steps are described herein, including a review of previous works at the Center for
Material forming - MINES ParisTech (Cemef - MINES ParisTech).
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1.1 Experimental methods

In this section, the void nucleation, growth, and coalescence mechanisms are described based on
experimental observations. In particular, a focus is made on the physical phenomena that lead
to these damage events under various loading conditions, while their modeling is addressed in
Chapter 4 and Chapter 5.
As ductile fracture is still an open research topic, many questions are raised in this section and
multiple assumptions are proposed to explain the different phenomena. Thanks to the numerical
modeling tools and the experimental-numerical framework proposed in this work, the validity of
these assumptions can be studied for various conditions.

1.1.1 X-ray imaging

Since the ultimate objective of the present work is comparison with experiments in 3D at the
scale of a Region Of Interest (ROI) containing up to hundred inclusions and voids, it is important
to discuss the experimental means that permit the acquisition of 3D data. Although the present
work focuses solely on numerical modeling, a 3D description of the materials microstructures
is required to start calculations, and voids have to be observed during loading to compare with
experiments.
Most techniques used in recent experimental studies on ductile fracture are based on X-ray
imaging. As used for example in medicine, an X-ray Computed Tomography (CT) scan consists
in an X-ray source and X-ray sensors placed around an object (which is a part of the human body
in medicine) that needs to be scanned [9, 17, 19, 20, 21]. Since X-ray absorption is different
depending on the materials, the attenuation of the X-ray beam between the source and the sensors
will vary spatially, and the resulting 2D X-ray image will show this contrast. By rotating either
the object or the source and the sensors, multiple scans can be acquired. These multiple 2D
radiographs can be used to reconstruct a 3D view of the object, using a filtered back projection
algorithm [62].
Due to a significant X-ray absorption of some metallic materials, even using very high energy
beams, and the very small size of the features to observe (microscopic voids), even using high
resolution sensors, only small regions of ≈ 1 mm3 can be observed. Since the beam has to go
through all sections of the specimen in order to obtain projections during a whole rotation, the
thickness of the samples is also limited. Therefore, tomography is typically applied to round
tensile samples of radius up to ≈ 1 mm in the region crossed by X-rays, as illustrated in Figure
1.1(a). In fact, these very high energy X-ray beams can only be obtained thanks to specific X-ray
sources such as synchrotron radiation, which are difficult and expensive to access.

Even using Synchrotron Radiation Computed Tomography (SRCT), the restriction of round
samples is quite limiting. An alternative, known as Synchrotron Radiation Computed Laminog-
raphy (SRCL), has been proposed in order to overcome this limitation. Small sections are still
required, but only in one direction, hence enabling the use of flat specimens, that are interesting
in ductile fracture experiments as localization events at multiple scales are studied [16, 22, 63,
64, 65]. The use of these flat specimens is possible because the rotation of the material is no
more done around the tensile direction, as illustrated in Figure 1.1(b).

Apart from the developments of these imaging technologies, an important difficulty raised by
ductile fracture is the reproducibility of experiments. Since only a small region is observed, the
failure of this region will be significantly influenced by the local microstructure, and results such
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Figure 1.1 – Schematic drawing of: (a) a typical Synchrotron Radiation Computed Tomography
(SRCT) setup, (b) a typical Synchrotron Radiation Computed Laminography (SRCL) setup,
θ ≈ 60°. Figures reproduced respectively from [63] and [22].
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as crack propagation patterns will vary from one experiment to another. In order to understand
the progressive damage and failure phenomena that will occur, it is important to observe them at
different loading steps, for the same microstructure. This challenge has led to the development
of in situ experimental procedures that rely on advanced loading machines [17, 19, 20, 22]. In
the case of tomography and laminography experiments, the main difficulty in the development of
these machines is that they will be placed on a rotating stage, hence limiting their size and weight.

Results obtained during in situ tensile experiments and using X-ray imaging procedures
on various materials are presented in Figure 1.2. The microstructure is clearly distinguishable,
together with the subsequent void nucleation, growth and coalescence mechanisms. The influence
of each material’s X-ray absorption properties on the contrast of the final image also appears
in this figure. For instance, the distinction between the void phase and the particle fragments
in Figure 1.2(b) is not obvious. This issue is problematic for some materials, which therefore
cannot be studied with these X-ray techniques.

250 μm

(a)

void 
nucleation

particles

void coalescence

particle 
fragments particles

void nucleation 
and growth

(a)

(b) (c)

Figure 1.2 – X-ray images: (a) Computed Tomography (CT) images of aluminum alloys rein-
forced with zirconia/silica (ZrO2/SiO2) particles, figures reproduced from [66], (b) CT image of
a steel sample containing manganese sulfide (MnS) particles, figure reproduced from [67], (c)
Computed Laminography (CL) image of nodular cast iron, courtesy of T. F. Morgeneyer.

1.1.2 Void nucleation
In the following, experimental results obtained using the techniques described in the preceding
section are presented, with a focus on void nucleation. As stated in the introduction of this
manuscript, the microstructure of metal alloys is composed of a matrix, which is the main
component of the alloy, particles, that are the different components of the alloy, and voids, that
are the physical sign of damage. Void nucleation occurs either by particle fragmentation or
particles/matrix interfaces debonding [21, 37, 68, 69, 70, 71].
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In Figure 1.3, Scanning Electron Microscopy (SEM) images featuring both void nucleation
modes are shown. These pictures correspond to an aluminum alloy reinforced with aluminum
oxide (Al2O3) and silicon carbide (SiC) particles [72], meaning that particles can be of different
compositions. Additionally, it is clear from the SEM images that particles can also be of different
sizes, shapes, and arrangements. These properties of the microstructure have a large influence
on void nucleation, that has been studied in the literature. Other external conditions, such as
temperature and loading type have also been studied.

(a) (b)

Figure 1.3 – SEM images of: (a) particle/matrix interface decohesion, (b) particle fragmentation.
Loading was tension in the horizontal direction. Figures reproduced from [72].

1.1.2.1 Loading direction / particles orientation

Based on [73, 74], it is clear that under tensile loading particles elongated along the loading
direction tend to break whereas interface debonding is favored for particles elongated in the
transverse direction. However, there is no such conclusion for intermediate orientations or
complex loading paths. Though experiments on randomly oriented particles have already been
carried out [70, 71, 75, 76], there is a lack in Finite Element (FE) modeling of these situations
and comparisons with experiments.

1.1.2.2 Particles size and shape

The effect of particle size was observed in some studies [74, 77, 78]. It appears that bigger
particles tend to break earlier during loading than smaller ones. This can be explained statistically
as bigger particles contain more defects. Shape is related to the effect of particle orientation that
has already been described. Furthermore, it has been observed that the most elongated particles
are more prone to breaking than spherical ones [74, 78, 79]. This is also called the aspect ratio
effect.

1.1.2.3 Temperature

The influence of temperature was first observed in Reference [73]. A more precise study was
made in Reference [80] by in situ observation of void nucleation in a metal matrix composite
containing titanium carbide (TiC) inclusions. The experiments at different temperatures showed
that interface decohesion is the major mode of void nucleation at higher temperatures (> 800o C
for the considered material) whereas particle fragmentation is observed at lower temperatures.
Similar discussions can be found in Reference [70].
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1.1.2.4 Matrix/particles properties mismatch

The strong dependence between void nucleation modes and mechanical properties of both phases
(particle and matrix) has been mentioned above. In the case of an elastic-plastic matrix containing
elastic inclusions, the effect of matrix hardness has been studied by some authors [21, 68, 78,
79]. A qualitative conclusion is that a harder matrix favors particle fragmentation, while a
harder particle favors decohesion. The same conclusion was raised in Reference [81] for elastic
inclusions in an elastic matrix.

1.1.2.5 Particles volume fraction and distribution

This effect is somehow related to the effect of properties mismatch. Indeed, it is clear that if the
matrix contains more reinforcement, it can be modeled as a harder material when considering an
isolated particle. Then, the conclusion that a harder matrix favors particle fracture can be applied
[71, 78].
However, literature also mentions other effects, as the effect of stress relaxation caused by
void nucleation [69, 74]. In recent studies [75, 76], it has been observed by means of SEM
imaging of an aluminum alloy matrix containing SiC inclusions that void nucleation by particle
fragmentation or interface debonding favors void nucleation in neighboring reinforcements. This
effect was also studied in Reference [69].

1.1.3 Void growth and coalescence

While void nucleation is clearly defined as it occurs in two precise modes of fragmentation and
debonding, it is less obvious to distinguish the different modes of void growth and coalescence.
First, void growth is characterized by the fact that the void does not interact with any neighboring
voids. In particular, in the absence of coalescence, there is no acceleration or deformation of
the free surface that could indicate the presence of a neighboring void. On the contrary, void
coalescence is characterized by an acceleration of void growth, and in particular the accelerated
growth of a singularity on the free surface. This distinction is illustrated in Figure 1.4 for
cylindrical voids under tension or shear. The shape of the voids at the onset of void coalescence
may vary because the latter does not generally occur at the same instant in all materials. For
instance, the rotation of the voids may be more or less significant before void coalescence occurs
in the shear case in Figure 1.4(b). The distinction between void coalescence under tension and
shear, including the 3D aspects, are detailed in the following.

growth coalescence

(a)

(b)

Figure 1.4 – Schematic drawing of the distinction between void growth and coalescence for two
cylindrical voids under: (a) tension, (b) shear.
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The main challenges regarding void coalescence modeling are the prediction of the singularity
on the free surface and its location depending on void arrangements and loading type. In the
case of complex loading paths, loading history is also an important factor.
From an experimental point of view, voids are generally randomly distributed and hence difficult
to observe [22, 66, 82]. In Reference [83], the authors have proposed to manually insert holes in
test materials (an aluminum alloy, a copper alloy, and pure copper) by means of laser drilling.
Based on this technique, 2D experiments were carried out with two or more holes, where hole
spacing and positioning could be controlled, and void growth and coalescence were observed us-
ing SEM [83]. This procedure was also extended to 3D experiments [84], using CT observations
[10, 17, 85, 86]. These results have shown that there are at least two distinct void coalescence
mechanisms under tensile loading, depending on hole arrangements. When the holes are aligned
perpendicular to the tensile direction, voids grow towards a diamond shape, with a significant
necking of intervoid ligaments, until final failure of these ligaments. As shown in Figure 1.5,
this effect is observed both in 2D and 3D.

(a)

(b)

20 μm

10 μm

Figure 1.5 – Experimental observation of void coalescence by intervoid ligament necking: (a)
SEM images of a 2D test using an aluminum alloy, (b) CT reconstruction of a 3D test using a
copper alloy. Figures reproduced from [87].

When the holes are aligned at 45° with respect to the tensile direction, a localization mech-
anism takes place between neighboring holes aligned in bands at 45°. This localization in
shear bands leads to failure along these bands. Another main aspect of this shear coalescence
mechanism is that if coalescence occurs at sufficiently large plastic strain, especially if the void
spacing is large, the voids rotate and flatten in the direction of the shear band. This mechanism is
specific to shear-dominated loading, and raises the issue of modeling a major change in void
morphology, with no significant change in void volume. As shown in Figure 1.6, shear-band
coalescence is observed both in 2D and 3D, but the flattening of the voids can be more or less
pronounced, and the amount of growth the voids undergo before coalescing also varies.

Due to these two mechanisms of intervoid ligament necking and shear-band coalescence,
voids rarely coalesce along the tensile direction. However, this mechanism does exist, especially
if voids are very elongated along the tensile direction (for example if voids nucleated around
particles that were already very elongated in that direction). This mechanism, known as voids
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(a)

(b)

10 μm

20 μm

Figure 1.6 – Experimental observation of void coalescence by strain localization in shear bands:
(a) SEM images of a 2D test using an aluminum alloy, (b) CT reconstruction of a 3D test using a
copper alloy. Figures reproduced from [87].

collapse, or necklace coalescence [37, 88], is illustrated in Figure 1.7. Because this mechanism
is linked to pre-existing anisotropy of the microstructure in the initial material, it has been often
disregarded for void coalescence modeling.

Figure 1.7 – Experimental observation of necklace coalescence during tensile tests (in the vertical
direction) on a steel alloy. Figures reproduced from [88].

Recent works on void coalescence modeling focused on modeling void coalescence by
intervoid ligament necking and shear-band coalescence in the presence of plasticity, hardening,
and general loading conditions. A physical interpretation of these phenomena is that plasticity
localizes at least at two scales. The first scale leads to plastic localization bands that include
totally multiple voids, while the second scale is finer and leads to plastic localization bands be-
tween voids. This second category includes plastic localization due to necking or shear between
neighboring voids [38, 89].
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Going further with this interpretation, damage could also occur concurrently at these two scales.
The first population of voids would be totally included in the first category of localization bands,
while the second category of voids would be totally included in the second category of bands.
This second void population would hence be of submicron size for typical metal alloys. The
presence of these smaller voids would mean that intervoid ligament necking and shear-band
coalescence would not only be explained by plasticity, but also damage at a lower scale. An
attempt to classify these different ductile fracture modes is shown in Figure 1.8.

Figure 1.8 – Classification of ductile fracture modes depending on the balance between plasticity
and damage at multiple scales. Figure reproduced from [89].

To prove or discard these theories, yet more advanced experimental means are necessary. As
explained above, recent X-ray imaging techniques typically have a resolution of the micrometer.
In order to validate the presence of submicron sized voids, it would be necessary to apply
nanotomography or nanolaminography techniques to ductile fracture experiments. An additional
difficulty would be to simultaneously quantify plasticity together with damage [22].

1.1.4 Digital Volume Correlation
An interesting aspect offered by in situ experiments is that 3D images of the same microstructure
at consecutive loading steps are available. While most authors rely only on averaged information,
such as the total porosity over each image [1, 20, 21, 64], the possibility of considering inclu-
sions and voids individually based on manual [64] or automatic [20] procedures is now being
considered. The purpose of this approach is to study the participation of isolated voids in the
coalescence and failure process.
While these techniques are based on geometrical information, such as the volume of each void
and its change, a more global approach is offered by Digital Volume Correlation (DVC). This
technique is the 3D extension of Digital Image Correlation (DIC). The latter is now available
in multiple commercial codes and is used extensively to identify material properties, especially
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when damage models are involved [90, 91, 92].
DIC relies solely on 2D images of the surface of the specimen, where contrast is usually enhanced
by speckling the specimen. Consecutive images are compared and a least-squares problem is
solved, where the variable is the 2D displacement field u to go from the first image to the second
one, and the objective function to minimize is the gray level residual. This residual is defined as
the difference between the first image deformed by the given displacement field g(x + u(x)), and
reference image f (x). It is coined gray level residual because the colors of the two images are
directly subtracted and summed on the whole domain.

In most cases, this problem is ill-defined. For instance, if the speckle is too coarse with
respect to the mesh used to discretize the displacement field, the contrast may be insufficient and
poor compared to the number of unknowns to determine. This problem is drastically increased in
DVC [93, 94, 95, 96], as it is impossible to speckle inside the specimen. The method hence relies
directly on the microstructure in order to obtain contrast. It can work only for materials with a
significant density of particles and voids, and the mesh used to discretize the 3D displacement
field will generally be of size comparable to that of these features [65, 97, 98, 99]. Additionally,
the space of possible solutions can be reduced by adding continuity and mechanical admissibility
constraints [100].

The important aspects are that DVC yields 3D displacement fields between consecutive 3D
X-ray images, and that the resolution of these displacement fields is usually limited because
the formulation on which DVC is constructed is ill-defined in the absence of contrast. As
mentioned above, regularization methods have been proposed in order to help the solution of
this problem, by adding constraints to restrict the solution space, these constraints generally
being progressively relaxed during the solution [100, 101]. Additionally, while the accuracy of a
DVC result can be assessed by studying gray level residuals, the residuals themselves rely on the
presence of contrast.
With the obtained displacement fields, the formation of strain localization patterns can be studied
[22, 63]. These surprising results show that the correlation between plasticity and damage may
be more complex than what is usually assumed in the literature, and that ductile fracture may be
ruled mostly by plasticity for some materials, with negligible void growth [22, 89].
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1.2 Theoretical and numerical methods

Theoretically, a material’s mechanical response at the microscale could be studied using Di-
rect Numerical Simulation (DNS). This would mean meshing the microstructure of the whole
material, and then applying macroscopic boundary conditions directly on this mesh. It seems
obvious that such an approach would have a huge cost and could be applicable only in the case
of very small specimens. Hence, for larger specimens and industrial applications, researchers
have studied methods where micromechanics could be taken into account, without the huge
computational cost of DNS. These methods are based on the so-called homogenization theory,
that is detailed in this section, with an emphasis on its application to ductile fracture.
Added to the macroscopic domain, which is the industrial piece or ingot that is being studied,
homogenization theory introduces a microscopic domain, through a Representative Volume
Element (RVE). While the macroscopic domain is considered homogeneous, the RVE takes
into account explicitly the microstructure of the material. Most numerical studies address RVEs
containing only voids [102, 103, 104, 105, 106, 107], but computational approaches taking into
account the particles, their load-carrying capacity, and the subsequent void nucleation events
can also be found in the literature [108, 109, 110, 111, 112]. The strain and stress fields in the
macroscopic domain vary depending on loading and geometric conditions, but these variations
are small when considered at the scale of the RVE. Therefore, some macroscopic mechanical
variables can be approximated by a Taylor expansion (a polynomial) at the scale of the RVE.
This assumption is called scale-separability, and its validity depends on the ratio between the
characteristic length `M of the macroscopic domain, and the size `RVE of the RVE.

An added difficulty is that the RVE has to be representative of the real microstructure of the
material. It has to be large enough so that any mechanical variable averaged on the RVE does not
depend on the choice of RVE. This means that RVE size will be larger than the average size of
an inclusion or a void `m. As a conclusion, RVE size has to be large enough to enable a sufficient
number of realizations of the microstructure and void nucleation, growth and coalescence events,
but small compared to the structure

`M � `RVE � `m. (1.1)

In most metal forming applications, `M is of the order of the millimeter, while `m is of the order
of the micrometer. For small pieces and especially for the small specimens used in tomography,
scale-separability is questionable since the millimeter is the size of the structure.
Once these characteristic lengths have been defined, numerous possibilities are still open. Ho-
mogenization theory has led to a wide range of so-called homogenization schemes that all allow
for analytical or numerical solution. While all these schemes rely on similar mathematical princi-
ples, the validity of these principles depends on scale-separability, and the choice of boundary
conditions. For a detailed review of all these schemes, the reader is referred to [112]. In the
following, the FE code developed at Cemef - MINES ParisTech is described to understand how
continuum mechanics equations are formulated and numerically solved. Then, some classical
homogenization schemes are presented.

1.2.1 Finite Element scheme

In this part, the FE library developed at Cemef - MINES ParisTech is described in the case of
an homogeneous material. This code is the result of numerous works on the FE method and its
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application to continuum mechanics for solid materials undergoing plastic flow [23, 32, 113,
114, 115] and then Newtonian and non-Newtonian fluids [116, 117, 118].

1.2.1.1 Continuum mechanics

In continuum mechanics, the domain Ω ⊂ Rd (d = 2, 3) is a material or structure that moves or
deforms due to external forces. When d = 2, the continuum mechanics equations will still be
written in 3D, but strains will be assumed to remain planar. In the present work, Ω will generally
be the RVE. The unknown is hence the displacement u.
The FE code developed at Cemef - MINES ParisTech considers the so-called small deformation
theory, which is implemented within an updated Lagrangian formulation. Strains are measured
by a linear approximation ε, which is the symmetric part of the displacement gradient

ε =
1
2

(
∇u + ∇tu

)
.

This approximation ε is called strain tensor hereafter (though it is only an approximation of the
strain tensor). The relation between this strain tensor and external forces relies on the definition
of the Cauchy stress tensor σ, which is defined as the internal forces per unit area induced by the
deformation of the material. The balance equation in the static case is given by

∇.σ = 0. (1.2)

Defining the hydrostatic pressure p = −
1
3

tr(σ) and the deviatoric stress tensor s = σ+ pI, where

I is the identity matrix in Rd, this balance equation can be expressed as

∇.s − ∇p = 0. (1.3)

The link between σ and ε is material dependent, and coined constitutive model, or behavior law.
For instance, in the case of isotropic linear elasticity, it is given by Hooke’s law

σ = 2µε + λ tr(ε)I, (1.4)

where µ and λ are the Lamé coefficients, and are proper to each material. They are linked to
Young’s modulus E and Poisson’s coefficient ν through the relations

µ =
E

2(1 + ν)
, λ =

Eν
(1 − 2ν)(1 + ν)

,X = λ +
2
3
µ,

where X is the bulk modulus. Inserting these relations in Equation (1.4), the latter can be
expressed in terms of s and p  s = 2µ

(
ε −

1
3

tr(ε)I
)

p = −X tr(ε)
(1.5)

where tr(ε) = ∇.u. In the case of small deformation elasto-plasticity, an additive decomposition
of the strain tensor into an elastic part εel and a plastic part εpl is assumed

ε = εel + εpl.
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In the case of incompressible plasticity (non porous plasticity), tr(εpl) = 0, which leads to
tr(ε) = tr(εel). The constitutive equations regarding the elastic part are s = 2µ

(
εel −

1
3

tr(ε)
)

p = −X tr(ε)
(1.6)

while the plastic part depends on the definition of the yield surface f = f (σ, ε). Defining the
von Mises equivalent stress σ, the von Mises equivalent plastic strain rate ε̇

pl
, and the von Mises

equivalent plastic strain εpl

σ =

√
3
2

s : s, ε̇
pl

=

√
2
3
ε̇pl : ε̇pl, εpl

=

∫ t

0
ε̇

pl
,

the von Mises (or J2) yield surface is

f (σ, ε) = σ − σ0(εpl),

where σ0(εpl) is the yield stress of the material, which will depend also on ε̇
pl

in case of
viscoplasticity. The yield surface defines the condition for plasticity, hence three situations can
be met:

• purely elastic loading if f < 0,

• plastic flow if f = 0 and
∂ f
∂σ

> 0,

• elastic unloading if f = 0 and
∂ f
∂σ
≤ 0.

When the conditions for plastic flow are met, associative plasticity yields

ε̇pl = ε̇
pl ∂ f
∂σ

=
3
2
ε̇

pl s
σ0
,

where ε̇
pl

appears as the plastic multiplier. Inserting this last relation into Equation (1.6) requires
an objective time-derivative of the deviatoric stress tensor s. The Jaumann rate is implemented
in the FE code

∆
s = ṡ + s.ω̇ − ω̇.s, (1.7)

where ω =
1
2

(
∇u − ∇tu

)
. This objectivity is only applied explicitly, meaning that balance

equations are first solved as if
∆
s ≈ ṡ, and the deviatoric stress tensor is corrected afterwards

by using Equation (1.7). Thus, the constitutive equations in the case of elasto-plasticity can be
written as  ṡ = 2µ

(
ε̇ −

3
2
ε̇

pl s
σ0
−

1
3

tr(ε̇)
)

ṗ = −X tr(ε̇)
(1.8)

where both time derivatives ṡ and ṗ are discretized with an implicit Euler scheme. The balance
equations can then be formulated as{

∇.s(ε̇(v)) − ∇p = 0
ṗ + X tr(ε̇(v)) = 0 (1.9)

where s is given by a nonlinear relation in terms of ε̇ in Equation (1.8), which is itself a linear
function of v.
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1.2.1.2 First order Lagrange Finite Element method

The FE method, as described for example in Reference [119] or Reference [120], consists in a
discretization of unknown or known functions thanks to polynomial interpolation. With standard
Lagrange FE basis functions, the function ends up being uniquely represented by its values at
some particular locations. These locations, together with the basis functions, are carried by an
FE mesh.
Although the latter can be quite complex in a general FE setting, the FE code developed at Cemef
- MINES ParisTech relies solely on unstructured linear simplex meshes. A linear simplex is a
triangle in 2D, and a tetrahedron in 3D. The vertices of these simplexes are called nodes of the
mesh, while the simplexes themselves are called elements of the mesh.
For the mesh to be conform (i.e., compatible with the Lagrange FE method), the intersection of
any pair of elements (i.e., simplexes) must be a common node, edge or face to both elements.
If such mesh is built so as to cover the whole domain Ω, any continuous function such as the
pressure p can be approximated by its values at mesh nodes, and its value at any point of the
domain can be obtained by linear interpolation

p(x) ≈ ph(x) =
∑

i∈nodes

piNi(x), x ∈ Ω. (1.10)

The interpolation is linear because the basis functions Ni are linear. If the function is regular
enough (p ∈ H1(Ω)), its derivatives can also be approximated, simply by using the derivatives of
the basis functions

∇p(x) ≈ ∇h ph(x) =
∑

i∈nodes

pi∇Ni(x), x ∈ Ω. (1.11)

While ph is continuous, the derivatives ∇h ph are discontinuous across element boundaries. The
basis functions and their derivatives are known and implemented in the FE code for a reference
element (a triangle or tetrahedron aligned with the Cartesian frame), and they are computed
on each element of the mesh through a linear mapping (this mapping being linear because the
simplexes are linear). In case of vectors such as the velocity v, the interpolation can be defined
component-wise, and the same principles apply.
This interpolation technique is already very interesting for many scientific and computer graphics
applications where complex functions have to be approximated at random points. However, the
FE method shows its full potential when applied to the numerical solution of partial differential
equations.

1.2.1.3 Mixed Finite Element method

In the case described in Equation (1.9), the functions v and p are unknown, but they can still be
approximated directly in the partial differential equation by the approximations vh and ph. Then,
instead of being functions, the unknowns are vectors composed of the unknown values at mesh
nodes. This transition from continuous variables and equations to their discrete versions relies
on a weak form of the balance equations

∫
Ω

s(v) : ε̇(w) −
∫

Ω

p div w =

∫
∂Ω

w.(σn),∀w ∈ V,

−

∫
Ω

q div(v) −
∫

Ω

ṗ
X

q = 0,∀q ∈ P.
(1.12)

This weak form, coined mixed form due to the presence of two unknowns v and p, is obtained
by "testing" the strong form of the balance equations given in Equation (1.9) with test functions
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w and q, and integrating on Ω. Integration by parts can then be applied, which introduces the
outgoing normal vector n to the boundary of the domain ∂Ω. The solutions v and p are assumed
to belong respectively toV = H1(Ω)d and P = H1(Ω).
The variables and integrals in Equation (1.12) are approximated in discrete spacesVh and Ph so
that a discrete weak form is obtained. An important restriction is that the choice ofVh and Ph is
not open, as the discrete weak formulation is well-defined only for some adequate choices [121].
In particular, locking issues arise when the material is incompressible.
The FE code implements the so-called P1+ element, also called MINI element, or bubble element.
Each component of the velocity is approximated in this discrete space, while the pressure is
approximated in a standard P1 space, which is the space spanned by simplex-wise linear basis
functions. There are 3 basis functions per element in 2D, and 4 in 3D. Each of them is equal
to one at one of the nodes of the simplex, and zero at the others. The P1+ space is obtained by
adding a basis function (and an additional unknown) at the center of each simplex. This basis
function is equal to one at the center of the simplex, and zero on its boundary. The additional
unknown is eliminated by a static condensation process, therefore no additional unknown is
actually introduced in the formulation.

Once the domain Ω, the normal vector n, the continuous spacesV and P, and the unknowns
v and p have been replaced by their approximations, the discrete weak mixed formulation is
obtained 

∫
Ωh

sh(vh) : ε̇(wh) −
∫

Ωh

ph div wh =

∫
∂Ωh

wh.(σhnh),∀wh ∈ Vh,

−

∫
Ωh

qh div(vh) −
∫

Ωh

ṗh

X
qh = 0,∀qh ∈ Ph.

(1.13)

This system is nonlinear due to a nonlinearity in the expression sh in Equation (1.8). The Newton-
Raphson procedure used to solve this nonlinearity relies on a first order approximation of this
term. Given a current approximation of the velocity field v0

h, a better approximation vh = v0
h + δvh

is obtained by solving the following equations

∫
Ωh

(
∂sh

∂vh
(v0

h) : ε̇(vh)
)

: ε̇(wh)

−

∫
Ωh

ph div wh =

∫
Ωh

(
∂sh

∂vh
(v0

h) : ε(v0
h)
)

: ε̇(wh)

−

∫
Ωh

sh(v0
h) : ε̇(wh)

+

∫
∂Ωh

wh.(σhnh),∀wh ∈ Vh,

−

∫
Ωh

qh div(vh) −
∫

Ωh

ṗh

X
qh = 0,∀qh ∈ Ph.

(1.14)

where the nonlinear term has been approximated by sh(vh) ≈ sh(v0
h) +

∂sh

∂vh
(v0

h) : ε̇(δvh). Replacing

vh and ph in Equation (1.14) with their expressions based on Equation (1.10) and Equation (1.11)
(with bubble basis functions for vh), and applying numerical quadrature rules to evaluate the
integrals, a nonlinear system in terms of discrete variables is obtained. More information on
the P1+/P1 and the static condensation process implemented in the FE code can be found in
previous publications [122, 123]. These publications also detail the solution of the nonlinear
velocity-pressure system thanks to a Newton-Raphson procedure at the global level and also at
the local (element) level for the return mapping of an elastic trial stress onto the plastic yield
surface [124].
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1.2.1.4 Parallel computing

An important aspect of the FE code developed at Cemef - MINES ParisTech is that it is imple-
mented in a distributed computing context [125]. This means that the mesh of the domain is
divided into multiple partitions, each distributed to a different process. The processes are likely
to be executed on different machines and therefore a process can access information known by
another process only through network communications.
The partitioning of the mesh is done element-wise first, meaning that each element of the mesh
is agglomerated into distinct partitions. Each process knows the connectivity of its elements, and
all variables stored in these elements. Regarding the nodes, each process knows the coordinates
of all the nodes of its elements, and also of all variables stored at these nodes. However, if a node
is shared by multiple processes, it is associated to only one of them, and cannot be modified by
the others.
This partitioning strategy is illustrated in Figure 1.9. In this example, the colors for the two nodes
at the extremities are determined directly by the coloring of the elements, while the nodes on the
edge shared by the two triangles could have been arbitrarily colored in green or orange by the
partitioning algorithm. Though only green can modify the value stored on the green node of this
edge, orange can read data from this node. The same remark applies for the orange node of this
edge.

Figure 1.9 – Example of partitioning of a 2D mesh containing two triangles. The two partitions
both in terms of elements and nodes are distinguished in orange and green.

The FE code implements some functions in order to define new operations element-wise
or node-wise, and computes quantities such as derivatives element-wise. Note that with linear
elements and linear FE fields, there is only one quadrature point per element. Other operations
enable to sum values from all nodes or elements to a scalar variable, or to sum values to a node
from its neighboring elements. These operations can be a sum but also a minimum or maximum
computation.
Other operations must be implemented carefully as communications between multiple processes
may have to be considered if data located on different partitions have to be accessed. This is
systematic for all operations that require to access a node’s neighbors, an element’s neighbors,
and the elements containing a given node.
Regarding FE solvers, all numerical integration, static condensation, nonlinear and linear so-
lution operations are implemented element-wise in the FE code, with no difficulty linked to
distributed computing, while global assembly and linear solution and the subsequent network
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communications are handled by the PETSc library [126].

Although an FE code allowing only linear simplexes and linear interpolations may be quite
restricting, it has the main advantage that all communications can be prepared very efficiently, as
the length of each message is fixed. This will be illustrated for example in Section 3.2. However,
the implementation of several key algorithms becomes quite complex in a distributed computing
context (Section 2.5, Subsection 3.1.3 and Subsection 3.2.2). This remark also applies to the
implementation of boundary conditions for homogenization calculations.

1.2.2 Homogenization theory

Once the RVE V has been defined, homogenization theory can be used to study the influence of a
forming process on the microstructure, by transferring the macroscopic stress or strain state to the
boundaries of the RVE. This technique is referred to as hierarchical approach in the following.
However, the homogenization theory can also be used to identify material parameters for a
given macroscopic constitutive model based on RVE simulations. Indeed, damage models have
a limited applicability to complex and non proportional loading paths, and require a targeted
identification for each type of loading. If RVE simulations could be proved to be predictive
for multiple types of loading paths, with the same material parameters, one could use RVE
simulations to automatically correct a macroscale constitutive model. This second and more
advanced utilization of homogenization theory is referred to as concurrent approach in the
following.

In the homogenization approach used in previous works [5, 6], the boundary conditions and
the definition of the RVE corresponded to an embedded cell approach [127, 128, 129]. In this
approach, the RVE is embedded in a larger computational domain (V ⊂ Ω,V , Ω), and the
microscopic material behavior is considered only inside the RVE, while a homogeneous behavior
is defined outside. Some limitations were pointed out such as controlling the stress state inside
the RVE or defining the homogeneous behavior in the rest of the domain. Additionally, this
method led to perturbations and stress concentrations at the transition between the homogeneous
material and the RVE. As a consequence, only the core of the RVE could be considered for
homogenization, which made difficult the setting of the initial particle volume fraction or void
volume fraction inside the RVE.
The definition of the homogeneous constitutive law used in the rest of the domain could be highly
helped by extending the hierarchical embedded cell approach to a concurrent approach, thanks
to a self-consistent scheme [127, 128]. In this incremental scheme, the macroscale constitutive
model used for the out-of-RVE material is first set using an initial guess of material parameters.
After solving balance equations, a first guess of the RVE’s mechanical response is obtained and
averaged in order to be compared to the macroscale constitutive model. Based on this sensitivity
analysis, material parameters for the macroscale constitutive model are corrected and the whole
process is iterated until convergence. The last step of this incremental scheme contains not only
an RVE simulation in a given macroscopic strain or stress state, but also material parameters for
the macroscale constitutive model adapted to this strain or stress state.

In the following, other widely used boundary conditions are presented, with a restriction to
homogenization methods where the RVE is the whole computational domain (V = Ω), therefore
any relevant information such as stress state or void volume fraction can be easily computed.
The computational cost is also reduced because compared to an embedded cell approach only
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the RVE itself is meshed.
These methods are considered in this work for a hierarchical use, where local stress or strain
fields are extracted from a macroscale experimental or numerical experiment and applied on
the boundaries of the RVE. This could allow to follow and understand the consequences of
mechanical treatments performed by a metal forming process on the microstructure. Concurrent
schemes where these microscale simulations are used to correct macroscale constitutive models
are not considered yet.
The main focus of the present work is to validate RVE calculations directly at the microscale, and
then exploit these simulations in a hierarchical scheme. FE-FE schemes where the macroscale
simulation takes into account microscale physics are not considered in this work. These FE-FE
schemes have their own challenges, such as a huge computational cost, that has led for instance
to the use of model reduction techniques [130, 131, 132]. In the case of ductile fracture, plasticity
and damage localization also raise a number of issues that are being addressed for instance using
higher-order homogenization schemes [102, 103, 104, 106, 109, 133] and multiscale cohesive
zone models [107, 110, 111].
Some of the approaches mentioned in this section are illustrated in Figure 1.10. Green arrows
represent macroscopic variables that are transferred from macroscopic experimental measure-
ments or simulations to the RVE. Red arrows represent RVE-averaged variables that can be used
directly (FE-FE) in a macroscopic simulation, or indirectly by identifying material parameters
for a macroscopic constitutive model.
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Figure 1.10 – Heterogeneous material (a), and examples of multiscale methods: (b) periodic unit
cell, (c) windowing approaches, (d) embedded unit cell. Classification inspired from [112].

In order to describe linear (first order) homogenization theory, some basic definitions are
reminded [112, 134, 135]. The mechanical response of the RVE, or unit cell, is split into a
slow contribution, which would be the exact response in the absence of heterogeneity, and a
fast contribution resulting from the perturbation due to heterogeneity. The volume average of a
variable f over the RVE V is defined as

< f >=
1
|V |

∫
V

f . (1.15)
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In an embedded cell approach, V , Ω, while in the other approaches presented in this section,
V = Ω. Two identities obtained using integration by parts have to be reminded regarding the
displacement field u and the stress field σ

< ∇u > =
1
|V |

∫
V
∇u =

1
|V |

∫
∂V

u ⊗ n,

< σ > =
1
|V |

∫
V
σ =

1
|V |

∫
∂V

x⊗(σ.n).
(1.16)

where n is the outgoing normal vector. The second identity uses the fact that the mechanical
problem to be solved is

∇.σ = 0 in V,

and hence the stress field is divergence-free. Boundary conditions are yet to be defined to
close this problem. The aim of these conditions is to fulfill Hill-Mandel’s lemma, which is the
fundamental basis of homogenization theory (not satisfied yet)

< σ : ε >=
1
|V |

∫
V
σ : ε =

1
|V |

∫
∂V

u.(σ.n) =< σ >:< ε > (1.17)

where integration by parts has been used once again. Boundary conditions that fulfill the
lemma in Equation (1.17) are described in the following. In the case of Taylor-Voigt Boundary
Conditions (TVBCs), Kinematic Uniform Boundary Conditions (KUBCs) and Periodic Boundary
Conditions (PBCs), loading is strain-controlled, while in the case of Hill-Reuss Boundary
Conditions (HRBCs) and Static Uniform Boundary Conditions (SUBCs), it is stress-controlled.
Mixed boundary conditions that are often used in the literature [112, 135] are not considered in
this work.

1.2.2.1 Taylor-Voigt Boundary Conditions

In the case of strain-controlled boundary conditions, the displacement and strain fields u and ε in
the RVE admit the following additive decomposition

u = E. x + u# in V
< ε > = E + < ε(u#) > (1.18)

where E is a prescribed homogeneous strain, usually equal to the strain field at a Gauss point of
a macroscopic simulation, and u# is coined fast part of the displacement field. The particularity
of TVBCs is that this fast part u# is assumed to be zero on the whole RVE

u# = 0 in V,
< ε > = E.

As a consequence, it is easy to prove that the lemma in Equation (1.17) is satisfied

< σ : ε > =
1
|V |

∫
∂V

u.(σ.n) =
1
|V |

∫
∂V

(E. x).(σ.n)

= E :
(

1
|V |

∫
∂V

x⊗(σ.n)
)

=< σ >: E =< σ >:< ε > .



CHAPTER 1. LITERATURE REVIEW 43

1.2.2.2 Kinematic Uniform Boundary Conditions

A less restrictive definition of strain-controlled boundary conditions with the additive decom-
position in Equation (1.18) is given by KUBCs, where the fast part of the displacement field is
assumed to be zero only on the boundary of the RVE

u# = 0 on ∂V,

< ∇u# >=
1
|V |

∫
∂V

u# ⊗ n = 0 ⇒< ε >= E.

The proof of the lemma in (1.17) is identical to the one for TVBCs, because the fast part vanishes
at boundaries

< σ : ε >=
1
|V |

∫
∂V

u.(σ.n) =
1
|V |

∫
∂V

(E. x).(σ.n) +
1
|V |

∫
∂V

u#.(σ.n) =< σ >:< ε > .

1.2.2.3 Periodic Boundary Conditions

PBCs are also based on the additive decomposition in Equation (1.18), with the restriction that
the fast part of the displacement field is assumed to be identical on opposite sides of the RVE,
while the normal stress is assumed to be opposite. This implies that the RVE has a particular
geometry, which is usually chosen to be a cube or a hexagon [136, 137]. Based on this restriction,
the boundary ∂V of the RVE can be split into two sets of faces S 1 and S 2

< ∇u# >=
1
|V |

∫
S 1

u# ⊗ n +
1
|V |

∫
S 2

u# ⊗ n = 0⇒< ε >= E

due to the fact that u# is equal on opposite faces, but the normal vectors n go in opposite directions.
This decomposition into two sets of faces also has the following consequence∫

∂V
u#.(σ.n) =

∫
S 1

u#.(σ.n) +

∫
S 2

u#.(σ.n) = 0.

This result extends the proof of Hill-Mandel’s lemma to all types of strain-controlled boundary
conditions.

1.2.2.4 Hill-Reuss Boundary Conditions

It can be shown that though both strain-controlled and stress-controlled calculations converge
to a unique mechanical response, the first type of boundary conditions yields upper bounds on
effective material properties while the second type yields lower bounds [112, 134, 135]. The
use of both strain-controlled and stress-controlled RVE calculations can hence be interesting to
check the validity of a result.
HRBCs are the stress-based equivalent of TVBCs, so that instead of assuming a homogeneous
strain in the RVE, a homogeneous stress Σ is assumed

σ = Σ in V,
< σ > = < Σ >= Σ.

Proof of the lemma in Equation (1.17) is easily obtained

< σ : ε > =
1
|V |

∫
V
σ : ε =

1
|V |

∫
V

Σ : ε

= Σ :
(

1
|V |

∫
V
ε

)
= Σ :< ε >=< σ >:< ε > .
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1.2.2.5 Static Uniform Boundary Conditions

SUBCs are the stress-based equivalent of KUBCs, so that instead of assuming a homogeneous
strain at RVE boundaries, a homogeneous normal tension Σ.n is assumed

σ.n = Σ.n on ∂V,

< σ > =
1
|V |

∫
∂V

x⊗(σ.n) =
1
|V |

∫
∂V

x⊗(Σ.n) =< Σ >= Σ.

Proof of the lemma in Equation (1.17) uses the same reasoning as above

< σ : ε > =
1
|V |

∫
∂V

u.(σ.n) =
1
|V |

∫
∂V

u.(Σ.n)

= Σ :
(

1
|V |

∫
∂V

u ⊗ n
)

= Σ :< ε >=< σ >:< ε > .

1.2.2.6 Numerical aspects

Because they are too restrictive and cannot take into account local events such as void growth
and coalescence, it can be assumed that TVBCs and HRBCs would give too loose lower and
upper bounds. This remark also applies to SUBCs and KUBCs, but only at RVE boundaries.
Thus, for large RVEs, these boundary effects decrease and a realistic mechanical response is
obtained.

Difficulties arise with PBCs because of multiple reasons.
First, the microstructure in the RVE has to be periodic, which requires specific digital microstruc-
ture generation tools. These tools are usually quite advanced in order to satisfy prescribed
particle distribution and size statistics corresponding to a given material [7, 138]. Adding a peri-
odicity constraint leads to a very complicated problem, which may not always have a satisfactory
solution for a given RVE size, especially for materials with high density [112, 139].
Then, mesh generation and adaptation, which plays a key role in the present developments, also
becomes quite troublesome when dealing with periodic meshes [140, 141].
Finally, parallel computing, which becomes necessary when using large RVEs, also raises techni-
cal difficulties because linear constraints between nodes on opposite faces have to be added to the
discrete balance equations. These constraints also have a negative effect on the sparsity pattern
of the matrices obtained by discretisation of balance equations [134], affecting the performance
of standard iterative linear solvers [126].

Though these technical difficulties may seem to penalize PBCs, they are actually widely used
because the mechanical response is known to converge more rapidly with increasing RVE size
[135]. Therefore, smaller RVEs can be used. Additionally, in some configurations, illustrated
in green in Figure 1.11, PBCs can be simplified thanks to symmetries. Indeed, if both the
microstructure and the loading are symmetric, only one fourth (or one eighth in 3D) of the
RVE can be simulated, with symmetry boundary conditions on two faces (three in 3D). Normal
displacements can then be applied on the remaining faces in order to constrain them to remain
planar, resulting in periodicity.
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Figure 1.11 – Simple periodic microstructure and different choices of PBCs. In green, boundary
conditions that can be implemented easily thanks to symmetries. In red, boundary conditions
that require to constrain displacements between nodes on opposite faces.

1.2.3 Homogenization in porous plasticity

1.2.3.1 Gurson model’s derivation

In this section, the homogenization theory described above is applied in the case of porous
plasticity, as done by Gurson [33]. This approach is similar to the micromechanical calculations
of McClintock [25] and Rice & Tracey [26], as it yields a void growth law, but it also uses
homogenization theory in order to deduce a macroscopic yield surface taking into account
the presence of a porosity. Opposed to numerical approaches, the RVE response is computed
analytically, with the advantage of resulting in a closed-form model, which can be implemented
and used directly at the macroscale in standard FE codes. Nevertheless, closed-form solutions
can only be obtained for simple RVEs, with very restrictive assumptions that may have a major
influence on the relevance of the final model.
In the sequel, the derivation of Gurson’s model is summarized, based on [37, 142, 143, 144], with
a particular care regarding the assumptions that it requires. First, Gurson considered a spherical
RVE of radius b with a spherical void of radius a at its center, as illustrated in Figure 1.12. The

porosity f is defined as the ratio between void volume and RVE volume, namely, f =
a3

b3 .

void

matrix

Figure 1.12 – RVE consisting of a single spherical void included in a spherical domain used by
Gurson [33]. Figure reproduced from [37].
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In Gurson’s work, KUBCs are considered as in Equation (1.18), but since these boundary
conditions are still too general to analytically derive a solution, a specific velocity field of the
following form is assumed

v = vA + vB, vA = Ėm
b3

r2 er, vB = Ė′ x in V (1.19)

where Ė is a prescribed homogeneous strain rate, Ėm =
tr(Ė)

3
and Ė′ = Ė − ĖmI are respectively

its mean and deviatoric parts, and er is the first vector of the spherical basis.
The procedure used by Gurson consists in expressing the microscopic trial plastic work and aver-
aging it on the whole RVE using Equation (1.15) and Equation (1.17). Though the computation
of this integral is eased by the fact that von Mises perfect plasticity is assumed, it remains quite
complex and relies on a Taylor series expansion of one of the terms to integrate (not detailed
here). In Reference [144], the authors showed that based on Cauchy-Schwartz’s inequality, it can
be proved that the first order approximation of this term used by Gurson is restrictive. Performing
a second order Taylor expansion, they proved that a closed-form solution can still be obtained,
with more accurate results. A third order expansion was also performed, but with no significant
improvements on the results.

The macroscopic trial plastic work obtained with this integration has then to be derived with
respect to the macroscopic strain rate in order to obtain the macroscopic Cauchy stress tensor Σ.
In the isotropic plasticity case, this is eased as both the macroscopic strain rate and stress tensors
are diagonal in the same basis. Derivation is hence carried out in that basis, and both the mean
part Σm of Σ and the macroscopic von Mises equivalent stress Σ can be expressed in function of
Ėm and Ė′. The combination of these two relations and the elimination of the dependence on Ėm

and Ė′ gives the final expression of the Gurson yield surface

Σ
2

σ2 + 2 f cosh
(
3
2

Σm

σ

)
− 1 − f 2 = 0. (1.20)

Several comments can be made on that result. First, the dependence on the macroscopic triaxiality

ratio η =
Σm

σ
is not artificially added such as in empirical or phenomenological models, but

emerges naturally from homogenization of the initial microscopic problem. This result already
appears in the Rice & Tracey void growth model [26].
In Reference [144], the authors proved that a better approximation during the computation of
the macroscopic trial plastic work enabled to naturally introduce the normalized Lode angle θ =

1−
2
π

arccos
(
27
2

det(Σ′)

σ3

)
in Equation (1.20). These results have not been validated experimentally

yet, but a clear advantage of this approach is that the dependence on both invariants of the Cauchy
stress tensor stems naturally from a micromechanical calculation, and not from macroscopic
considerations.

1.2.3.2 Restrictive assumptions

In the summarized derivation of the Gurson yield surface presented above, multiple points have
been highlighted in italic. These points are assumptions and potential sources of errors for
industrial applications where the Gurson model does not provide realistic solutions.
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• A first restrictive assumption is the choice of an RVE containing a single spherical void,
since real microstructures feature multiple voids and inclusions. Models accounting for
the presence of inclusions have been considered by some authors [145, 146]. These are
important for the modeling of void nucleation, which is discussed in more details in
Chapter 4.
The shape of the void is also restrictive, as it has been mentioned in this manuscript that
under shear voids may rotate and flatten. This influence of shape has been taken into
account for instance in the Gologanu-Leblond-Devaux model [36] and its extensions [146,
147, 148, 149]. Studies specifically targeting shear loading have also been carried out [89,
106, 148, 150, 151, 152]. Regarding the influence of neighboring inclusions and voids, it
has been the object of multiple void coalescence models proposed in the literature, which
are discussed in Chapter 5.

• Assuming von Mises perfect plasticity, and hence no elasticity and no hardening restricts
the applications for real materials where both these phenomena can be important [33, 147,
148, 153]. Other plasticity models have been investigated in the literature, as plasticity at
this scale could be influenced significantly by the crystal structure of the metal [154, 155,
156, 157], especially if the size of the grains is comparable to that of the voids. Anisotropic
plasticity models have also been considered [158, 159, 160]. Moreover, porous plasticity
models and higher-order approaches have been investigated in order to model the presence
of a secondary void population in the RVE and size effects due both to plasticity and
damage [106, 137, 161, 162, 163, 164].

A more complete review of the Gurson model and its extensions can be found in recent reviews
[37, 38].

1.2.3.3 Numerical approaches

The different limitations of the Gurson model have led researchers to rely extensively on numeri-
cal procedures. When a damage model gives incorrect results with respect to an experiment or
an industrial application, it is difficult to understand the differences and explain them. However,
the main advantage of the Gurson model and its extensions, is that the differences can be directly
compared at the microscale.

For instance, it is mentioned above that the derivation of Gurson’s model is based on a Taylor
series expansion. Indeed, Gurson used only a first order approximation of the microscopic
trial plastic work. In Reference [144], the authors considered second order and third order
approximations. A numerical solution however, does not require such approximations. Thus, the
error induced by Gurson’s approximation, and the improvements obtained using higher-order
approximations, can be quantified with respect to the numerical solution. In Reference [144],
the authors conducted FE simulations using the same RVE as Gurson (Figure 1.12) and the
same KUBCs (Equation (1.19)). Because Gurson’s model (Equation (1.20)) depends explicitly
on the macroscopic triaxiality ratio η, it is important to conduct computations where η is fixed.
As higher-order approximations depend on the Lode angle θ, the latter should also be fixed. A
relevant macroscopic variable such as the porosity rate ḟ can be used to assess the validity of an
analytic approximation, as in Figure 1.13. In this example, it can be seen that there is a nearly
20 % difference between the higher-order approximations and Gurson’s initial one. Additionally,
as Gurson’s model does not depend on the Lode angle θ, it is very sensitive to the latter and the
error becomes significant for some values.
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Figure 1.13 – Comparison between the porosity rate ḟ obtained using several analytic or numer-
ical methods and Gurson’s initial approximation ḟGurson. These comparisons consider various

stress states, represented by the angle arctan η and the Lode angle θ =
27
2

det(Σ′)

σ3 . Figure

reproduced from [144].

This comparison nevertheless considers the same spherical RVE with a spherical void as
Gurson, the same von Mises perfect plasticity model, and the same loading. Thanks to numerical
methods, more complex configurations have been considered in the literature [37].

• In Figure 1.14(a), the RVE with pre-fragmented inclusions and hence penny-shaped voids
used in Reference [145] is shown. In this study, the effect of particles on load carrying
capacity was investigated, as well as void shape. This study nevertheless considered only
periodic arrangements of particles or voids, while real materials feature complex particles
and voids arrangements, including particles and voids clusters.

• The same remark regarding periodic arrangements applies to the RVE considered in
Reference [164], as shown in Figure 1.14(b). However, this study included the effect of
a secondary void population, which may lead to matrix softening in intervoid ligaments.
Instead of representing explicitly the secondary voids, they were homogenized using a
Gurson model in the matrix.

• The same method was used in Reference [108], as shown in Figure 1.14(c). This study
considered RVEs of randomly positioned particles. A Gurson model was used in the
matrix to model a secondary void population. A debonding criterion was used to predict
and model the initiation and propagation of cracks at the interface between the matrix
and particles. However, fragmentation mechanisms were not modeled. The number of
particles was also quite small (up to 10), and no sensitivity analysis was conducted with
respect to RVE size.
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(a) (b) (c)

Figure 1.14 – RVEs used by various authors: (a) periodic arrangement of initially fragmented
particles, figure reproduced from [145], (b) periodic arrangement of voids with a secondary void
population in the matrix, figure reproduced from [164], (c) random arrangement of debonded
particles, figure reproduced from [108].

Other authors have considered more general loading conditions [148], or the instantaneous
fragmentation of some inclusions for small plastic strains [112].
These studies however do not consider several key micromechanical aspects of ductile fracture.
When random arrangements of voids or particles are used insead of periodic ones, no sensitivity
analysis regarding RVE size is conducted. Such analysis would be important to prove that the
chosen RVEs are indeed representative of the studied materials. It can be postulated that such
analysis would prove that the considered number of particles and voids is not sufficient.
Additionally, most works consider only voids. When particles are taken into account, both
particle fragmentation and debonding mechanisms are not considered simultaneously, while in
real materials and general loading conditions both phenomena may be observed (Subsection
1.1.2).
Finally, though some works taking into account the effect of a secondary void population can be
found, the damage to fracture transition in the matrix material is not modeled. In particular, void
linkage events between pairs of voids have been observed in the literature at large plastic strains
(Subsection 1.1.3). These phenomena are sometimes accompagnied by micro-cracks, which
would require a transition from a continuous damage model to a discontinuous fracture model.
As a conclusion, numerical methods taking into account large microstructures with complex
arrangements of particles and voids are yet to be developed. Particles of complex shapes should
be considered. There is also a need for numerical methods enabling the modeling of void
nucleation events with a competition between particle fragmentation and debonding. Conducting
such simulations at large plastic strains would require an advanced damage and fracture criterion
in the matrix in order to model the coalescence and linkage of voids.
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Conclusion

All metallic materials are heterogeneous at the microscale, due to their crystalline structure,
reinforcements, and defects. Hence, there are multiple metallic phases, sometimes separated by
non-metallic particles and voids. The interfaces between these different components are sites
of stress localization during loading, which leads to the nucleation of voids. This nucleation
phenomenon can occur either by debonding, which is the failure of an interface between two
components, or fragmentation, which is the failure of one of the components.
Voids grow independently from each other during loading, up to a certain critical point where
they start to interact. This critical point is called the onset of void coalescence. It is marked by
an acceleration of void growth between neighboring voids, up to linkage of these voids, which is
sometimes accompanied by micro-cracks. The accumulation of void linkage events leads to the
formation of a macro-crack, and the final ductile fracture of the material.
Ductile fracture is hence complex by nature, because cracks develop at two scales. Recent
experimental and theoretical studies mention that more than two scales could have to be consid-
ered, as submicron size voids may also develop and have a major influence on void coalescence.
Experimental studies are of great interest and have importantly helped the understanding of
ductile fracture, thanks to recent X-ray imaging techniques. These techniques now allow for an
in situ observation of ductile fracture for millimeter-thick specimens, with a resolution close to
the micrometer.
Automatic void tracking algorithms have been developed to obtain local measurements of void
growth based on these three-dimensional (3D) data. The need for these advanced procedures is
due to the random distribution of the voids, and their random sizes. Some studies have addressed
the manufacturing of model materials with laser drilled microscopic holes to avoid these issues.
Added to this multiscale and complex aspect of damage, its interaction with plasticity is also a
challenging problem for both experimental and numerical modeling scientists. The recent exten-
sion of image correlation techniques to 3D is promising as strain localization can be measured
locally. Results obtained using these techniques suggest that in some materials plasticity may
develop and localize significantly before void coalescence occurs.

The modeling of multiscale phenomena calls for multiscale mathematical frameworks. The
analytic application of homogenization theory to ductile fracture is of great interest to derive
microscale-based plasticity-damage constitutive models that can be used at the macroscale. The
literature review in this chapter regarding these analytic derivations was restricted to the Gurson
model, which only accounts for void growth. Discussions about void nucleation models are
presented in Chapter 4, while void coalescence modeling is considered in Chapter 5.
The Gurson model and its extensions are based on very limiting assumptions regarding the
microstructure of the studied materials, the constitutive models used at the microscale, and the
loading conditions. In order to quantify the errors produced by these models, and help their
improvement, numerical multiscale approaches are worth considering.
Numerical approaches follow the same multiscale framework that is used for analytic homoge-
nization. The main difference is that the solution is computed numerically, most often using the
Finite Element (FE) method, which relies on a representation of all unknowns by a mesh, and
discrete variables carried at the nodes of this mesh. Thus, complex microstructures, advanced
microscale constitutive models, and general loading conditions can be accessed.
However, most FE analysis studies found in the literature consider only simple microstructures.
The used Representative Volume Elements (RVEs) generally contain only a single void, with
Periodic Boundary Conditions (PBCs). Some works have also considered inclusions but the
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subsequent void nucleation mechanisms are often simplified, by assuming initial debonding or
a pre-fragmented inclusion for instance. Advanced numerical methods and micromechanical
models are yet to be developed in order to take into account randomly positioned and shaped
inclusions, and the subsequent complex void nucleation, growth and coalescence events up to
large plastic strains. Numerical tools developed in the present work to address such challenges
are presented in the following chapters.





Chapter 2

Mesh adaptation with enhanced volume
conservation

The fight is won or lost far away
from witnesses - behind the lines, in
the gym, and out there on the road,
long before I dance under those
lights.

Muhammad Ali
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Résumé en français

La modélisation de microstructures telles que celles étudiées dans cette thèse se fait généralement
dans un cadre Lagrangien. La méthode des fonctions de niveau est intéressante car elle permet
de modéliser très simplement des phénomènes topologiques complexes comme la liaison de
vides. Néanmoins, pour de grandes déformations, les opérations de remaillage, indispensables
dans un cadre Lagrangien, sont généralement perçues comme trop coûteuses numériquement.
Dans ce chapitre, en associant un algorithme de mouvement de maillage avec un critère de
qualité et de retournement d’élément, il est montré que la fréquence des opérations de remaillage
peut être réduite. Ainsi, une méthode Lagrangienne avec fonctions de niveau peut devenir plus
qu’intéressante vis-à-vis d’une méthode Eulérienne avec fonctions de niveau, aussi bien pour de
grandes déformations que pour des changements topologiques complexes.
Le principal défaut de la méthode Lagrangienne est alors une tendance à diffuser de manière
importante les interfaces et le volume de chaque phase lors des opérations de remaillage. La
nouvelle méthode de remaillage avec contrainte de conservation de volume présentée dans ce
chapitre permet de contrôler et réduire cette diffusion, menant ainsi à des résultats très promet-
teurs pour de grands déplacements. En comparaison avec les deux premières approches, cette
nouvelle méthode ajoute également le maillage explicite des interfaces, ce qui est connu pour
poser des difficultés lorsque de grandes déformations et des modifications topologiques doivent
être prises en compte. A l’aide de l’utilisation des fonctions de niveau comme intermédiaires,
il est montré que cette méthode est capable de prendre en compte de tels événements, sans
augmentation significative de l’erreur d’approximation ou du temps de calcul.
À la connaissance de l’auteur, ceci est la première fois que de tels résultats sont obtenus avec des
interfaces maillées explicitement, et en ayant recourt exclusivement à de l’adaptation de maillage.
Cela est d’un grand intérêt notamment d’un point de vue du coût numérique et de l’utilisation de
cet algorithme pour le calcul parallèle, car l’adaptation de maillage s’appuie uniquement sur des
opérations locales.
Il serait intéressant d’étudier l’application de cette méthode à d’autres phénomènes physiques,
comme les écoulements multiphasiques, où la tension de surface et les discontinuités fortes aux
interfaces sont difficiles à modéliser lorsque les interfaces ne sont pas maillées explicitement.
Cette difficulté a été notée également lors de la modélisation des phénomènes de recristallisation
statique et surtout dynamique, avec le défi supplémentaire lié aux joints multiples. Ces problèmes
sont discutés dans le chapitre 7.
Pour conclure, cette méthode adaptative avec fonctions de niveau et conservation de volume
améliorée est un outil robuste qui peut être utilisé pour le suivi d’interfaces dans des simulations
où tous types d’événements ont lieu (grands déplacement, grandes déformations, modifications
topologiques). Cette robustesse permet également d’utiliser des maillages moins raffinés ou
d’améliorer la conservation de toutes les échelles de variation d’une géométrie, incluant les
échelles les plus fines. Les développements réalisés dans ce chapitre s’étendent aisément au
calcul parallèle, bien que l’étape de génération du maillage explicite des interfaces nécessite
certaines précautions.

Combinées, ces méthodes parallèles de génération et adaptation de maillages peuvent être
utilisées pour générer des maillages explicites depuis des fonctions de niveau à la volée pendant
la simulation. Ainsi, des applications liées à la mécanique de la rupture sont accessibles. En
comparaison avec des travaux précédents, cette approche préserve la possibilité de modéliser et
propager des fissures de formes arbitraires, évitant ainsi toute dépendance pathologique envers la
discrétisation. Bien que cette méthode engendre une perte de masse, due au volume artificiel
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donné au germe inséré à chaque initiation ou propagation de fissure, cette perte de masse est
drastiquement réduite grâce au maillage explicite des interfaces. Par ailleurs, la pointe de fissure
peut être discrétisée avec précision sans raffinement excessif du maillage.
Un point important de cette méthode de mécanique numérique de la rupture est que la technique
d’adaptation de maillage mentionnée ci-dessus peut être appliquée à la phase vide, puisque
les fissures, et donc la phase vide, sont représentées par des fonctions de niveau et maillées
explicitement. En effet, une limitation connue de la méthode des éléments finis étendus (X-FEM)
est l’impossibilité de modifier arbitrairement les éléments portant la fissure, à cause de leur
enrichissement. En conséquence, l’application des techniques X-FEM aux grandes déformations
induites par la croissance des cavités et à leur coalescence est limitée. De telles difficultés ne
sont pas rencontrées avec la méthode proposée dans ce chapitre, qui permet d’adapter le maillage
automatiquement depuis l’amorçage des fissures jusqu’à leur coalescence, en passant par leur
croissance en vides sphériques (chapitres 4 et 5). Un problème intéressant lié à la présence de
fissures est le déclenchement de phénomènes de contact et de pénétration aux lèvres des fissures,
incluant des possibilités d’auto-contact. Ce problème est étudié dans l’annexe A.
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Introduction

Finite Element (FE) simulation in multiphase domains arises in many applications of compu-
tational solid and fluid mechanics. At a macroscopic scale, fluid-structure interaction involves
a heterogeneity that is due to the presence of a solid structure, usually in rigid body motion,
surrounded by a fluid, usually in turbulent flow [165, 166]. At a smaller scale, all materi-
als are heterogeneous. For example, one may cite the microstructure of dual-phase steels or
particle-reinforced composites, which contain a main phase, the matrix, second-phase particles,
and defects [6, 167]. Metal phases can themselves be decomposed into a heterogeneous grain
structure [43, 168].
Once the initial mesh is generated, a challenging problem arises in transient simulations: tracking
moving and deforming interfaces. Depending on the magnitude of these displacements and
deformations from one time increment to another, various methods may be used. Lagrangian
methods can be based on explicit meshes of interfaces or implicit representations [169], where
the interfaces are carried by FE fields stored at mesh nodes (Level-Set [170], Phase-Field [171,
172]), or at mesh elements (Volume Of Fluid [173]).
A focus is made in the following on the Level-Set (LS) method in particular, as the Phase-Field
and Volume Of Fluid methods are not suited for fracture mechanics applications where crack
tips have to be discretized (though the Phase-Field method is gaining an increasing interest
for computational damage mechanics applications [174, 175]). Advanced representations have
also been proposed in the literature, for example by coupling two of these methods [176], or
enhancing an Eulerian LS method with Lagrangian particles [177, 178], or with remeshing
techniques [168, 179, 180, 181].

Large displacements and deformations are difficult to handle using Lagrangian techniques
because of the risk of element flipping. While many commercial codes implement remeshing
techniques to prevent element flipping at domain boundaries, it is less common to remesh internal
boundaries. Even with implicit interfaces, remeshing is difficult because of the risk of diffusing
the FE fields carrying these interfaces.
When the interfaces move or deform too fast as in fluid mechanics, or when their topology
becomes too complex to be followed as in recrystallization [168], it is common to resort to fixed
mesh methods. In this last category of methods, convection is not solved by mesh motion as in
Lagrangian methods but through convection equations that involve the FE fields carrying the
interfaces. The solution of such equations with LS functions raises volume conservation and
stabilization issues. Although these issues are sometimes addressed using topological mesh
adaptation in order to improve the interfaces description [168, 180], the term "fixed mesh meth-
ods" will be used in this chapter to refer to all Eulerian methods, regardless of whether they are
coupled to topological mesh adaptation or not.
Finally, an interesting compromise between Lagrangian and Eulerian methods is offered by
Arbitrary Lagrangian-Eulerian methods. The aim of these methods is to avoid as much as
possible the volume conservation and stabilization issues raised by Eulerian LS methods, by
activating Eulerian convection only in areas where the deformations are too large to be followed
by pure mesh motion. Regarding interfaces, explicit representations require the interfaces to
remain purely Lagrangian throughout the simulation (otherwise the mesh of the interface would
be delayed with respect to the interface itself). This choice was made, for example, in Reference
[182] and also in Reference [183], with the major consequence that it restricted the range of
applications to simulations where no large stretching or topological change occurred.
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The particularity of the simulations targeted in this thesis is the presence of at least three
phases: the matrix, which is the main phase of the alloy, particles, and voids. The number of
phases may be larger if the crystalline structure of the matrix is taken into account, or if particles
of different nature (and therefore different behavior) are present. Since the aim is to address
forming processes, large plastic strains occur and deformations are significant, especially around
the void phase, due to void growth. Interfaces between each of the three or more phases do not
only deform significantly, but also appear and disappear due respectively to void nucleation and
linkage.
All possible events that have to be handled are illustrated in Figure 2.1. This list does not apply
only to ductile fracture but to a wide range of multiphase applications.

• From Figure 2.1(a) to Figure 2.1(b), two objects have merged, or linked, together. In
ductile fracture, this phenomenon takes place between voids due to necking or shear bands,
but in other applications such as multiphase flow, it takes place between gas and liquid
bubbles due to the flow, with the importance of surface tension.

• From Figure 2.1(a) to Figure 2.1(c), the motion was omitted and replaced by the propaga-
tion of a crack through the objects. This situation is not only linked to ductile fracture but
to material science and solid mechanics in general.

• Finally, from Figure 2.1(a) to Figure 2.1(d), an external motion pushed the two objects
towards each other, but the interface is still present. This situation is well described by
contact mechanics, which can take into account not only the reaction force preventing the
two objects from penetrating each other, but also friction forces.

(b)

(d)

(a)

(c)

Figure 2.1 – Complex topological events that need to be addressed in this chapter: (a) initial
topology of two spheres, (b) linkage, (c) crack propagation, (d) contact.

In a previous work [5], a Lagrangian LS method was chosen as it eased computations with
the linkage event in Figure 2.1(b), which is naturally handled by the LS method given that all
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phases, including the void phase, are embedded in a single mesh. However, this event cannot be
controlled in an LS framework, and any pair of objects of the same phase, including particles,
link the same way as voids [6]. As illustrated in Figure 2.2, this is not physical as particle
interfaces should behave as in the contact situation in Figure 2.1(d). Additionally, a special care
has to be taken when using the LS method to represent cracks [169].

Figure 2.2 – Example of a fragmented elliptic particle where contact between fragments (white
arrow) was not taken into account by the used Lagrangian LS method, and may have led to a non
physical closure and healing of the particle. Figure adapted from [6].

Computational fracture mechanics is a prolific research topic and multiple strategies have
been proposed to model the initiation and propagation of a crack in homogeneous or heteroge-
neous materials. These strategies can be distinguished into two categories, depending on whether
a loss of mass is induced or not.
On the one hand, the crack may be modeled by explicitly splitting faces and therefore inserting
a discontinuity in the mesh, or by inserting zero-thickness elements as in a Cohesive Zone
Model (CZM) [184]. Both techniques are well-known to produce mesh dependent results when
they are used between existing faces of the mesh. Indeed, the crack propagation path is then
highly influenced by the orientations of the faces of the mesh. Techniques based on remeshing
operations have been proposed in the literature to avoid this mesh dependency [114, 185, 186,
187], by aligning the mesh onto arbitrary directions. The latter ones are determined thanks to
appropriate crack propagation criteria. In the case of small deformations, one may prefer to
avoid remeshing by using the eXtended Finite Element Method (X-FEM) [169, 188], which can
also be enhanced with a CZM.
On the other hand, cracks may be modeled by removing a part of the mesh, instead of splitting it.
The kill-element method consists in removing elements along the crack direction. This technique
is well-known to produce mesh dependent results, as once again the crack propagation path is
determined by the shape of the elements of the mesh.
In a previous work [6], because all phases, including the void phase, were embedded in a single
mesh, cracks could be initiated and propagated simply by modifying the LS function to the void
phase. This was an important improvement over the kill element method, as the proposed method
enabled to remove arbitrary shapes, hence avoiding any mesh dependency.
Because voids were represented by a single LS function, very fine anisotropic meshes were used
to represent cracks and especially crack tips (Figure 2.2). These very fine meshes had important
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consequences on the computational cost.
Moreover, this method shared with the kill-element method the limitation of generating a loss of
mass at each initiation or propagation. To reduce this loss of mass, the nuclei of arbitrary shapes
that were used to modify the LS function to the void phase were defined as small as possible,
which required even finer meshes, and even higher computational requirements.

In this chapter, a mesh generation procedure is presented in order to obtain a conform FE
mesh (with explicit interfaces) from LS functions (Section 2.1).
Then, a new mesh adaptation technique that combines both explicit meshing of interfaces and
implicit LS representation is presented (Section 2.2). Compared with a standard LS method with
moving or fixed mesh, it is shown that this method reduces drastically the diffusion of interfaces
during convection and remeshing.
Although this approach relies on Lagrangian mesh motion (Section 2.3), it is proven that it
remains competitive for large displacements and deformations, especially regarding volume
conservation. An advantage of the whole procedure is that it is purely topological, and may
be applied in all dimensions, including space-time frameworks. To meet this requirement, the
method is restricted to first-order simplex meshes, a simplex being a line segment in one di-
mension (1D), a triangle in two dimensions (2D), a tetrahedron in three dimensions (3D), and a
pentachoron in four dimensions (4D).
Numerical experiments are proposed with interfaces that undergo large displacements or defor-
mations, and topological changes (Section 2.4).
The integration of these developments in the distributed computing framework developed at the
Center for Material forming - MINES ParisTech (Cemef - MINES ParisTech) is then considered
(Section 2.5).
Finally, a computational fracture mechanics methodology is built over these parallel mesh gener-
ation and adaptation methods (Section 2.6), with applications to crack insertion and propagation
in heterogeneous materials.
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2.1 Meshing internal interfaces

Choosing an appropriate interface discretization does not only have consequences on the dif-
ficulty of interface tracking. The numerical solution of equilibrium equations, constitutive
models, and other physical problems is also highly impacted by this choice, in terms of difficulty,
accuracy and computational cost. The most simple and straightforward approach is doubtlessly
explicit interface meshing. Having a conform FE mesh at interfaces does not require any specific
treatment during the solution, apart from the use of different constitutive models depending on
which phase an element belongs to. However, as stated above, most interface tracking methods
do not maintain conform FE meshes at interfaces.
In particular, the LS method only addresses interface tracking, and has to be coupled to mixture
laws or the X-FEM for interface modeling. In some fluid-structure interaction problems, the
deformation of the solid phase can be neglected as the focus is made on the flow or on thermal
exchanges. Hence, nullity of the solid’s deformation rate can be imposed by defining its behavior
as a fluid with penalized viscosity [189, 190]. Consequently, the elements that are crossed by
the LS function have their behavior defined by a mixture law taking into account both fluid and
solid behaviors. As both fluid and solid phases are modeled by a fluid behavior, this mixture law
simply consists in mixing the viscosities, yielding the same result as a Volume Of Fluid method.
When the deformation of the solid is of interest, this principle can also be applied for nonlinear
behavior such as visco-plasticity. When mechanical properties other than viscosity come into
play, such as in visco-elasticity [191] or crystal plasticity [4], homogenizing both fluid and solid
behavior becomes more complex. Additionally, this technique is known to decrease the order of
convergence at interfaces [169], which is often compensated by aggressive local mesh refinement
at interfaces [4, 166, 168, 189, 190, 191]. This strategy was used in previous work [5, 6] and
resulted in a large computational cost, limiting 3D applications.
As an alternative to mixture laws and explicit interface meshing, X-FEM is widely used in
computational solid mechanics. Compared to mixture laws, this method actually represents the
discontinuity in behavior at the interface and has been shown to improve the order of conver-
gence [169]. Indeed, the geometry of the interface, which is only carried by the LS functions, is
accurately taken into account through enriched basis function and quadrature rules.
However, applications of X-FEM to large deformations remain limited. Since the latter typically
require repetitive remeshing operations, a method such as X-FEM that is specifically designed to
avoid remeshing operations is not adapted. For the present applications with large plastic strains,
an explicit interface meshing methodology has been preferred. Hence, interface modeling is
quite easily achieved, while interface tracking requires advanced mesh adaptation techniques, as
described in the following sections.

For the generation of these conform FE meshes at an interface, standard tools based on
the Delaunay criterion or a frontal approach can be used [192]. However, if the geometry is
generated on-the-fly, for example during crack propagation, or if it is not based on a Computer
Assisted Design (CAD) file, as in image immersion, then alternatives are necessary. LS functions
are well-suited to play this role, as any analytic geometry can be represented by an LS function,
and images can be converted to signed distance functions using appropriate algorithms (Section
3.4).
Once these LS functions are defined, a procedure is necessary to generate a conform FE mesh
at the interfaces they represent. This operation, known as fitting, or cutting, is inspired from
the cut-cell method [193]. In the present case, the domain Ω of dimension d is the union of N
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subdomains Ωi corresponding to the N phases, each having its own LS function φi defined as

∀t,∀ x ∈ Ω(t), φi(x, t) =

{
+dist(x, ∂Ωi(t)), x ∈ Ωi(t),
−dist(x, ∂Ωi(t)), x < Ωi(t).

Fitting consists in browsing all edges of the mesh and splitting into two the edges where an LS
function φk takes two different signs. At such edges, the intersection S i j between the interface
and the edge (i, j) is obtained by means of linear interpolation based on its two vertices S i and S j

S i j = S i − (S i − S j)
φk(S i)

φk(S i) − φk(S j)
.

Applying this procedure to all edges and all LS functions results in a mesh that is conform to
internal interfaces, but is likely to be of very poor quality, and requires to be adapted.
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2.2 Volume-conserving mesh adaptation
Depending on the application, various definitions can be used to represent the interface in implicit
methods. LS functions are widely used in multiphase fluid dynamics, where they are discretized
on a fixed mesh, and convected through a convection equation. Although this allows to reduce
the dependence on mesh adaptation, it raises a major issue regarding volume conservation. In
solid mechanics, this issue may be circumvented by using a Lagrangian mesh, which naturally
convects interfaces through mesh motion. Because this process may deteriorate element quality,
it is usually combined with remeshing. Mesh adaptation may also be employed together with
appropriate error estimators, both in moving and fixed mesh methods.
The aim of the method proposed hereafter is to reduce volume loss and interface diffusion caused
by the remeshing process itself. Although it is presented in the case where the interface is carried
both by a LS function and by the mesh, it can easily be generalized to pure LS representations
(Subsection 2.2.4).

2.2.1 Anisotropic mesh adaptation
Mesh adaptation is an open research field that has motivated various approaches. Most techniques
consist in defining a certain set of operators, and applying them one by one in order to improve
mesh quality. In the present work, the quality is defined for any simplex T as [194]

Q(T ) = min
(
c0
|T |M
hd

M

, hd
M,

1
hd

M

)
, (2.1)

where

• c0 is a normalization factor so that a regular simplex would have a quality of 1, c0 =
d!
√

d + 1
2d/2,

• |T | is the volume of T and |T |M = |T |
√

det(M(T )),

• hM is the Euclidean norm of edge lengths hM =

√√√ 1
c1

∑
(i, j)∈N({T }),i< j

||S j − S i||2M(T )

, with

N({T }) being the set of the nodes of T ,

• c1 is the number of edges in a simplex, c1 =
d(d + 1)

2
,

• ||v||A =
√

vtAv, v ∈ Rd, A ∈ Rd × Rd.

In these formulae, M is a metric field defined at mesh nodes which drives anisotropic mesh
adaptation, and M(T ) is the interpolation of M at the center of T . Although the presented
algorithms enable anisotropic meshes, only isotropic meshes are used in this work, as stretched
elements are difficult to maintain in a Lagrangian framework, due to the risk of element flipping.

Thus the metric field is defined as M = diag(
1
h2 ), where h is a prescribed mesh size. For further

details on metric fields and how they can be used to adapt not only the size but also the shape of
mesh elements, the reader is referred to Section 3.1.
Summing up Equation (2.1), an over-sized, under-sized or ill-shaped element has a quality close
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to 0, and an appropriately sized and shaped element has a quality close to 1. Though this criterion
takes into account both element shape and size, it is possible in the implementation to define
different regions in the mesh so that the full expression in Equation (2.1) is considered for some
regions, while only the shape term (i.e., c0|T |M/hd

M) is considered in other regions.
Regarding the set of operators used to adapt the mesh, many propositions can be found [182,
195], for example: node smoothing, edge swapping, edge splitting, edge collapsing. As detailed
in Reference [196], edge swap itself can be declined into many different versions in 3D. Most
techniques consider local patches of elements in the mesh, and try to improve them with each
one of these operators. These techniques often distinguish the optimization of mesh size from
the optimization of element quality by first applying edge split and collapse to reach an optimal
size on every edge of the mesh, and then trying to improve element shape using node smoothing
and edge swap [182, 195].

In the present work, the technique introduced in Reference [194] is preferred. This technique
is presented in Algorithm 1. All nodes and edges of the mesh are considered one by one. Al-
though considering nodes and edges proves to be sufficient in practice, this method can also
deal with the faces of the mesh. The patch of elements to improve is defined as all elements that
contain the given node or edge (line 12). The external faces of this patch are extracted easily
by searching for the faces that belong to only one element of the patch. Then, for each node of
the patch, the generic operator consists in connecting all the external faces to this node (line 16).
The qualities of the elements built by this procedure are computed for each tested candidate, and
the winner is the one having its worst element with the highest quality (line 17).
This generic operator, named star-connection operator, has the advantage of considering all swap-
ping, splitting, and collapsing operations at once. Node insertion and smoothing are implemented
by adding the center of the patch to the list of candidates (line 15). Although no comparison has
ever been performed with classical approaches, a possible drawback of considering all operations
altogether is that some operations may be redundantly tested.

An example of patch for a nodal target is described in Figure 2.3(a). After extraction of the
external faces, as shown in Figure 2.3(b), several candidates are tested (Figure 2.3(c-h)), with
swapping operations that cover a larger set of topological possibilities than a simple edge swap.
Finally, the node smoothing candidate in Figure 2.3(h) seems to be preferable (in the isotropic
case).

A similar example is described in Figure 2.4, but with the target being an edge of the mesh.
While the candidate in Figure 2.4(e) is equivalent to an edge split, the candidates in Figure 2.4(c)
and Figure 2.4(d) are equivalent to a simple edge swap. Moreover, these two candidates consist
in the same topological modification, which is an example of the redundant operations performed
by Algorithm 1.

This algorithm has certain advantages compared to classical approaches.

• When edge length optimization is uncoupled from element shape optimization, there might
be a risk of infinite loop [182, 195], as element shape improvement may require to collapse
edges that were split during edge length optimization. Uncoupling edge coarsening and
refining also raises the same risk [182, 195].
In the proposed method, because the quality criterion takes simultaneously into account
both objectives, such issues are avoided, and convergence is obtained without restricting
the maximum number of iterations in any way.
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Algorithm 1 Quality maximization through local topological operations, lines 12 and 17 contain
key operations that are enhanced in the present work.

1: function MeshAdapt(Mesh mesh)
2: Node node
3: Element element, target
4: ElementList queue
5: Mesh patch, candidate, winner
6:
7: queue.addAll(mesh.nodes())
8: queue.addAll(mesh.edges())
9:

10: while queue.notEmpty() do
11: target← queue.poll()
12: patch←

⋂
node ∈ target.nodes()

{
node.neighbors()

}
13:
14: winner← patch
15: for node ∈ ({ patch.nodes() } ∪ { patch.barycenter() })\{ target.nodes() } do
16: candidate← patch.starConnect(node)
17: if candidate.isConform() and candidate > winner then
18: winner← candidate
19: end if
20: end for
21:
22: if winner , patch then
23: mesh← (mesh \ patch) ∪ winner
24: queue.addAll(winner.nodes())
25: queue.addAll(winner.edges())
26: end if
27: end while
28: return mesh
29: end function
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.3 – Example of patch at the neighboring of a node: (a) initial patch, (b) external faces
extraction, (c-h) candidates.
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(a) (b) (c)

(d) (e)

Figure 2.4 – Example of patch at the neighboring of an edge: (a) initial patch, (b) external faces
extraction, (c-e) candidates.

• The proposed method is purely topological. This point is essential for the implementation in
order to avoid classical programmer mistakes inherent to the implementation of geometric
procedures. In particular, Algorithm 1 is far easier to implement than classical remeshing
algorithms. Another major consequence of avoiding geometric operations is the extension
to space-time methods, and, in particular, to remeshing in four dimensions (see Appendix
A of [116]).

• Any other local remeshing operation can be introduced without significant programming
effort. The only modification to make in order to add new operations is to change the
patch definition at line 12 of Algorithm 1. The algorithm works for any patch of connected
elements. The latter means that the domain formed by the patch has to consist in one
Connected Component (CC).

Regarding implementation details, they are hidden behind the undefined structures and
functions used in Algorithm 1. In the C (as of [197]) implementation of this algorithm developed
in the present work, two arrays are used to store the mesh, one containing each node’s coordinates
and the other each element’s connectivity. The elements neighboring each node are stored in an
additional two-dimensional array, which enables to increase the number of neighbors for one
node without modifying the whole structure. The Mesh structure contains these three arrays.
Though using arrays may seem inappropriate for a problem like remeshing which implies
significant changes in the number of nodes and elements, they are preferred because they avoid
repetitive memory allocations. When at any point of the algorithm, it is tried to add a new item
to an array which has already reached maximum capacity, this array is reallocated with twice
its current capacity. This functioning is similar to the C++ class vector, and the number of
reallocations is proven to be negligible and independent from the number of nodes or elements.
The Node structure is just an integer referring to a node’s position in the coordinates array. The
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Element structure is a small connectivity array used to store an element. It can also be used to
store faces, edges, or nodes. This enables the ElementList structure used for queuing to contain
faces, edges or nodes. This structure itself is a linked list.
Based on these structures, the functions addAll() and nodes() at line 7 of Algorithm 1 are easy
to implement. The function edges() at line 8 consists in collecting all edges of the mesh and
eliminating duplicates. This last operation requires to sort the edges. Sorting is used repetitively
in Algorithm 1, and the quick-sort algorithm has been chosen to perform this task. Function
notEmpty() at line 10 is obvious, together with poll() at line 11, which removes the last item
from the queue and returns it. Operation neighbors() is solved directly by the neighbor array,
and the intersection at line 12 is based on sorting and dichotomic search. At the same line, patch
is not actually a complete mesh, since neighbors do not have to be computed.
The barycenter of the patch is computed by function barycenter() at line 15, and starConnect()
at line 16 has already been detailed. The external faces of the patch only have to be extracted
once for all candidates. At line 17, the comparison criterion has already been explained, and
the function isConform() is a key point of the proposed algorithm which is detailed in the next
subsection. Finally, line 23 implies replacing obsolete elements with new ones in the connectivity
array, and possibly inserting a new node in the coordinates array.

2.2.2 Mesh adaptation with internal interfaces

The extension of the previous algorithm to conserve preexisting internal boundaries is imple-
mented in the function isConform() at line 17 of Algorithm 1. In the standard definition, this
function only has to verify that the new candidate is a conform (in an FE sense) mesh of the
domain defined by the previous patch. By construction, this candidate is a well-defined topology:
it has same external faces as the previous patch, and none of its faces has more than two neighbors.
For this topology to be conform, two constraints have to be added: the new elements have to be
correctly oriented (i.e. positive volume), and the total volume of the candidate patch has to match
the volume of the previous patch. This constraint prevents element overlapping and flipping,
while element degeneration is prevented by the quality criterion.
In Figure 2.5, two variants of an initial 2D topology (Figure 2.5(a)) are presented. Both variants
have the same total volume as the initial patch, but they are not considered. Element 4 in Figure
2.5(b) has a negative volume (flipped element). Element 6 in Figure 2.5(c) corresponds to a
degenerated element and hence does not maximize the quality criterion.

(a) (b) (c)

1

2

3

4

1 8

2

3
6

4

Figure 2.5 – Initial patch (a) and forbidden remeshing operations: (b) element 4 has negative
volume, (c) the flat element 6 has a quality that is lower than the initial patch’s worst quality.
External faces of the patch are highlighted in light gray.
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To address the conservation of internal interfaces, LS functions come into play. Inside the
initial patch, an element is attributed to a phase if the associated LS function is positive or null at
its barycenter. If multiple LS functions are null for the same element (pathological case), this
element is attributed to the phase which has lower index. In Figure 2.6(a) and Figure 2.7(a), two
2D examples (respectively with 2 and 3 phases) are shown where the colors indicate which phase
an element belongs to. Based on this attribution, the interface faces corresponding to a phase
are the faces that separate an element of this phase from elements belonging to other phases.
In Figure 2.7(a), interface faces are pointed out by markers, but there is no marker for the blue
phase because it has no LS function.

(a) (b) (c) (d)

Figure 2.6 – Mesh adaptation with two phases: (a) initial patch, (b) illegal operation, (c) conform
operation, (d) relaxation of the phase volumes conservation constraint.

(a) (b) (c) (d)

Figure 2.7 – Mesh adaptation with three phases: (a) initial patch with the interface between
orange and other phases pointed out by white circles, and the interface between green and other
phases pointed out by white squares, (b) illegal operation, (c) conform operation, (d) relaxation
of the phase volumes conservation constraint.

The first constraint added to the operation isConform() is: if there are any interface faces
inside the patch, the candidate chosen at line 16 has to belong to all of them. For example, the
operation illustrated in Figure 2.6(b) does not conform with this new definition. The fact that
the candidate has to belong to all interfaces extends this constraint to any number of phases, as
illustrated in Figure 2.7(b).
For the 3D applications addressed in the present work, this constraint proves to be insufficient
because it authorizes aggressive interface remeshing, leading to significant diffusion. Therefore,
another constraint is added by comparing the distribution of phase volumes in the initial patch
and in the new patch. The tolerance on relative change εQ for the volume occupied by each phase
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inside the patch is given by a Gaussian law based on two parameters Qµ and Qσ

εQ(Qmin) =


exp

−1
2

(
Qmin − Qµ

Qσ

)2 , Qmin > Qµ,Qσ > 0

0, Qmin > Qµ,Qσ = 0
1, Qmin ≤ Qµ

(2.2)

where Qmin is the worst quality of the initial patch. This constraint is really restrictive and nearly
blocks interface remeshing for shapes with high curvature when element quality is acceptable,
while it is relaxed to prevent issues during FE solution when element quality is poor. For example,
the operations in Figure 2.6(c) and Figure 2.7(c) are always conform, while only relaxation can
enable the operations in Figure 2.6(d) and Figure 2.7(d).
In practice, both values Qµ and Qσ are chosen empirically as small as possible, to prevent
excessive diffusion, but high enough so that the influence on the conditioning of the FE problems
is negligible. Typical values are 0.05 ≤ Qµ ≤ 0.1, 0 ≤ Qσ ≤ 0.1. For higher values, relaxation
would be too important and volume conservation would be severely affected. For lower values,
convergence of the FE solvers would be affected, depending on whether metric anisotropy is
significant. Exceptions are presented in Appendix A, where a setting Qµ = Qσ = 0 is used (no
relaxation) because interfaces are not remeshed. These exceptions actually cover a wide range of
structural problems, including fluid-structure interaction problems where the boundary of the
structure does not deform significantly.

Both interface and volume conservation constraints do not actually require node-wise signed
distance functions, and only element-wise tags such as the colors in Figure 2.7 would have
been sufficient as interfaces are explicitly meshed. LS functions are only required in order to
build the initial mesh (Section 2.1) or initiate and propagate cracks (Section 2.6). However,
the proposed remeshing algorithm will often be coupled to error estimators based on distance
functions (Section 3.1). Thus, there is an interest for a remeshing algorithm that automatically
updates these distance functions when remeshing interfaces. This is also simpler for the user
who only has to keep track of these node-wise signed distance functions instead of alternatively
using LS functions and element-wise tags.

2.2.3 Robustness improvement
Ideally, thanks to the strategy defined in the preceding section, no element should have a quality
lower than Qµ after remeshing. In practice, numerical experiments with domains involving more
than two phases reveal that this situation can occur at intersections between multiple phases.
Improving the robustness of the method is essential to avoid the presence of very low quality
elements that may reduce the conditioning of the FE solution and hence increase computation
time. It is also essential to the remeshing strategy itself: if the remeshing algorithm is efficient
enough, relaxation of the volume preservation constraint should happen very rarely.
To achieve this aim, new operations are added to the remeshing process. As stated in Subsection
2.2.1, this is easily done by adding a new possibility, called wide gather, to the patch definition
at line 12 of Algorithm 1. This definition is activated only when the following conditions are
met at the end of an iteration of the remeshing loop: the target was an edge, no modification was
performed (the condition at line 22 was not verified), and the patch contains an element with
quality under Qµ. Under these conditions, at the next iteration, the target is kept to the same
edge, but the intersection operator

⋂
at line 12 is replaced by a union operator

⋃
.

This simple change adds a wide range of new topological modifications, including edge collapse.
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Since, by construction, the patch still consists in one CC, the FE conformity and volume
conservation criteria remain valid. An example of patch constructed using this new definition is
pictured in Figure 2.8(a) and Figure 2.8(b). Among all candidates, the patch pictured in Figure
2.8(i) is aesthetically interesting, but is not reachable directly using the standard patch definitions
of Figure 2.3 and Figure 2.4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.8 – Example of patch at the wide gathered neighboring of an edge: (a) initial patch, (b)
external faces extraction, (c-i) candidates.

2.2.4 Concluding remarks
After discussion of the limitations of previous developments [5, 6] and the state of the art, it is
chosen to use an FE method with conform interface meshing, as illustrated in Figure 2.6. This
is essential for the accuracy of the FE solution at the interface, especially at crack tips. For
small deformations, a comparable accuracy could also be obtained using X-FEM, as described
in Reference [169].
Though only explicit meshes are used in this work, it is important to precise that since the
volume conservation condition defined in Subsection 2.2.2 is purely based on the distribution
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of phase volumes, it is readily applicable to implicit methods. If interfaces were implicit, these
volumes could be accurately computed by subdividing the elements crossed by the interfaces, as
already required by X-FEM [169]. Because there would be no interface faces, only the volume
conservation constraint would apply, and the interface preservation constraint would be dropped.
In relaxation mode, all operations would be allowed. Hence, implicit methods would ease the
remeshing process, with the advantage of volume conservation.
Additionally, element subdivision can be performed by pure edge splitting, as defined in Section
2.1. Thus, it can be observed that the implementation of the volume conservation constraint is
purely topological, and in particular, the whole algorithm remains dimension-independent.
Such an approach with implicit interfaces would be interesting for other applications than ductile
fracture, such as multiphase flow or grain growth, where the computational cost of following
interfaces with explicit meshes may be too high. Explicit meshes should nevertheless not be
discarded too promptly, as they allow a better discretization of singularities, which are smoothed
with implicit methods. This is important for instance at multiple junctions in grain growth
modeling (Chapter 7).
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2.3 Mesh motion and transport
In this section, a simple iterative technique is described in order to move mesh nodes, based on
a given displacement field, without triggering element flipping. This technique is not different
from usual procedures implemented in commercial codes or used for example in Reference
[182]. However, its coupling with the relaxation method defined in the preceding section gives a
powerful tool that can handle large deformations and complex entanglements of interfaces. The
problem of transporting history variables after each remeshing process is also addressed in this
section.

2.3.1 Mesh motion
Since convection is modeled by mesh motion in Lagrangian methods, there is a risk of element
flipping locally if an element is misaligned with respect to the direction of the displacement
increment, or if an element is small with respect to the magnitude of the displacement increment.
This is illustrated in Figure 2.9(a) and Figure 2.9(b), where the displacement field is voluntarily
singular (only one node is moving). The best way to avoid such situation is to maintain every
element as close as possible to a regular simplex [196]. This is the reason why mesh anisotropy
is generally avoided in Lagrangian methods, or at least controlled carefully in the regions where
the displacement field is known a priori to be oscillatory.
In Algorithm 2, a method is proposed to operate mesh motion progressively, with a constant
checking of element flipping and quality decrease. This checking is based on the operations
coordinates(), volumes() and qualities(), which are directly solved from the coordinates and
connectivity arrays. Under the assumption that the initial mesh does not contain any flipped
element, the condition at line 15 of Algorithm 2 ensures that no element flipping occurs during
mesh motion. It is avoided by rolling back when it occurs, and starting again with a smaller
displacement increment, as shown respectively in Figure 2.9(c) and Figure 2.9(d).
Of course, the same problem would appear even if small increments are used, hence the mesh
has to be adapted at some point. This is triggered at line 17 if at least one of the two following
conditions were met during mesh motion: element flipping was detected, or the worst quality
of the mesh decreased too significantly. For example, the remeshing operation in Figure 2.9(e)
solves the problem in Figure 2.9(b), as shown in Figure 2.9(f). The procedure MeshTransport
at line 20 is a standard operation which consists in transporting all fields stored at nodes and
elements from the old mesh to the new mesh after remeshing. This operation includes the
correction for multiphase domains detailed in Subsection 2.3.2.

2.3.2 Transport of history variables
History variables are mainly present in solid mechanics, where updated Lagrangian formulations
require the knowledge of stress and strain states element-wise, throughout the simulation. To
describe the issue addressed in this subsection, the following element-wise Heaviside functions
are defined for each phase i

Hi(x) =

{
1 where φi(x) ≥ 0,
0 elsewhere.

These Hi functions are computed on the elements of the initial mesh, and are transported by a
basic transport method after remeshing: for each element of the new mesh, the value of any
element-wise field is taken from the closest element of the initial mesh (distance is computed
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Algorithm 2 Mesh motion with element flipping prevention, β is a user-defined tolerance on
quality decrease, Qold is a user-defined initial quality, or the quality obtained after the last
remeshing, the lines in bold contain key operations that are enhanced in the present work.

1: function MeshMove(Mesh mesh, NodeField Xob j, Real β, Real Qold)
2: Real α, Qnew

3: NodeField Xold, Xnew

4: Mesh meshold

5:
6: repeat
7: Xold ← mesh.nodes().coordinates()
8: Xnew ← Xob j

9: α← 2
10: repeat
11: mesh.nodes().coordinates()← Xnew

12: Xnew ←
Xold + Xnew

2
13: α←

α

2
14: until min (mesh.elements().volumes()) > 0
15: Qnew ← min

(
mesh.elements().qualities()

)
16: if α , 1 or Qnew < γQold then
17: meshold ← mesh
18: mesh←MeshAdapt(meshold)
19: MeshTransport(mesh, meshold)
20: Qold ← Qnew

21: end if
22: until α = 1
23: return mesh
24: end function

(a) (b) (c)

(d) (e) (f)

Figure 2.9 – Example of node motion (highlighted in light gray) provoking element flipping: (a)
initial mesh, (b) mesh after motion, (c) rollback, (d) new try with half motion, (e) remeshing by
edge swap, (f) final motion.
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from center to center). Although the present method has the aim of conserving internal interfaces,
some local optimizations of these interfaces may change their position, for example in the
aggressive case illustrated in Figure 2.7(d). Thus, for some elements, recomputing Heaviside
functions H̃i from the LS functions modified by the remeshing process may yield a result different
from Hi. As a consequence, an element may be attributed history variables from a phase it does
not belong to, which is wrong from a thermomechanical point of view. This is illustrated in
Figure 2.10, where an expected blue element of the new mesh has its barycenter (marked by a
white star in Figure 2.10(b)) located in an element of the initial green phase (highlighted in white
in Figure 2.10(b)), which makes it wrongfully considered as a green element.

To correct this mistake, two strategies seem possible: moving the interfaces in order to agree
with the transported history variables, or correct the transport method in order to agree with
the interfaces. In the present framework, it seems appropriate to leave interface tracking to the
mesh motion and adaptation algorithms, and modify the transport of history variables. To correct
this method, for each phase i, history variables of elements where transported Hi is different
from recomputed H̃i are corrected by projecting the history variable of the closest element which
has H̃i = Hi = 1. To perform this operation efficiently, the barycenters of all elements where
H̃i = Hi = 1 are stored in a specific structure described in Subsection 3.2.2. For each element
where H̃i is different from recomputed Hi, the cost of finding the closest element in this structure
is logarithmic on the number of elements in the structure. Consequently, the cost of the present
treatment is negligible. An example of corrected result is illustrated in Figure 2.10(c).

(a) (b) (c)

Figure 2.10 – Example of an incorrect transport of history variables: (a) initial mesh, (b) adapted
mesh, (c) corrected transport. The two phases are colored in green and blue according to the Hi

functions, and the interface is highlighted in red according to the φi functions.
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2.4 Results
In this section, the proposed method is applied to track interfaces in multiphase simulations.
Though these test cases are academic, they correspond to real and challenging computational
solid and fluid mechanics problems. The efficiency of the algorithms presented in this chapter
is investigated in terms of mesh quality and computation time. All computations are per-
formed on a 1.2 GHz Intel Xeon processor. The volume conservation parameters are fixed to
Qµ = 0.05,Qσ = 0.

In an attempt to establish a panel of applications where the method presented in Section 2.2
and Section 2.3 could be competitive and preferable compared to standard approaches, several
test cases are proposed. A particular attention is given to volume conservation and computation
time for small and large displacements and deformations. Topological changes such as linkage
of objects are also addressed. Unless otherwise mentioned, the domain Ω is the 3D box [0, 1]3,
an unstructured uniform isotropic mesh is used, and the time step is fixed to 0.01, all spatial and
temporal data being nondimensionalized.

• IEUL refers to an Eulerian LS method where all interfaces are implicitly described by LS
functions, the mesh remains fixed during the whole simulation, and convection is operated

by solving
∂φ

∂t
+ v∇φ = 0, with a first order implicit Euler scheme, a first order Lagrange

FE and SUPG stabilization. More advanced and recent stabilization methods, such as
[198], could be used, but it is reasonable to suppose that the chosen stabilization method
would not change the conclusions raised in this section.

• ILAG refers to a Lagrangian LS method where all interfaces are implicitly described by
LS functions, and convection is operated by mesh motion using Algorithm 2 with β = 0.5,
but regardless of the interfaces and their conservation.

• FLAGc refers to the method proposed in this chapter, which is the same as ILAG, but with
explicit interface meshing and enhanced volume conservation.

For the comparison to be fair, the initial mesh is the same for all methods, but in the case of
FLAGc an explicit interface is obtained using the interface fitting procedure described in Section
2.1. As mesh quality is likely to be deteriorated after this operation, it is followed by a mesh
adaptation step using Algorithm 1. This ensures that the initial interpolation error is the same for
all methods, though this initial adaptation step may induce some volume loss at the initial state
for the FLAGc method if relaxation occurs.
Computation time measurements consider only the solution of the convection equation in the
IEUL case, and the whole cost of Algorithm 2 in the ILAG and FLAGc cases, which includes
mesh motion, remeshing, and transport of FE fields. For comparisons between these last two
methods, the Number of Remeshing Operations (NRO) is also reported.

2.4.1 Large displacements: sphere rotation
Though in this chapter no material behavior is defined, this first problem has to be seen as a rigid
sphere rotating inside a fluid in turbulent flow. Hence, the displacements and the deformations
inside the fluid cannot be modeled by a Lagrangian mesh. However, an Arbitrary Lagrangian-
Eulerian method could be used to track the rotation of the sphere by mesh motion [182, 183].
The presently proposed method falls in this category. In this test, only the IEUL and the FLAGc
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methods are compared, and in the case of the FLAGc method mesh motion is applied only where
φ ≥ 0.
The set-up is directly inspired from [177], where an enhanced LS Method was proposed, which
consisted in adding Lagrangian markers on an Eulerian LS, also to reduce LS diffusion during
convection. The sphere is placed at (0.5, 0.75, 0.5), has a radius of 0.15, and its rotation is ruled
by the velocity field

v(x) = (−2π(0.5 − x2), 2π(0.5 − x1), 0) .

This case is illustrated in Figure 2.11.

Time

FLAGc
time step 

0.001

FLAGc
time step 

0.01

IEUL
time step 

0.01

0.00 0.25 0.50 0.75 1.00

Figure 2.11 – Sphere rotation with a mesh size of 0.025 using the FLAGc method with two
different time steps and the IEUL method.

It can already be observed in Figure 2.11 that diffusion is way more significant for the IEUL
method, while it is controlled using the FLAGc method. On the one hand, this poor performance
for the IEUL method was expected, as the meshes used in this section are not as fine as the finite
difference grids used in Reference [177] for example, or the structured 2D FE meshes used in
Reference [198]. On the other hand, the performance of the FLAGc method could be improved
by starting with an explicit mesh of the interface directly built from a proper meshing tool [192],
and fixing Qµ to 0 since there is no interface deformation. Volume conservation would then be
optimal, as demonstrated in Appendix A.
However, it seems obvious that other moving mesh techniques such as [182] or [183] would
certainly yield the same result with far less computation time. These techniques consist in
defining artificial velocity fields for the nodes inside the fluid phase, in order to maintain a good
quality as long as possible, and delay the use of computationally expensive algorithms such as
Algorithm 1.
Another possibility for rigid body motions would be embedded mesh techniques [199], where the
interfaces are implicit, and carried not by FE fields on the computational mesh, but by separate
surface meshes. Nevertheless, these approaches are restricted to rigid body motions or small
deformations, while the LS methods (FLAGc, ILAG and IEUL) considered in this section cover
a wider range of applications.
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(a) Mesh size 0.1. Time step 0.01. (b) Mesh size 0.05. Time step 0.01.

(c) Mesh size 0.025. Time step 0.01. (d) Time step 0.001.

Figure 2.12 – Evolution of sphere volume during a full rotation using the reference time step and
a mesh size of: (a) 0.1, (b) 0.05, (c) 0.025. (d) Evolution of sphere volume during a full rotation
using a time step of 0.001.

In Figure 2.12(b) and Figure 2.12(c), the IEUL method shows first order convergence, but
the results regarding the FLAGc method are surprising, as the volume goes increasing, and so
does the error. These startling results are due to the fact that between Figure 2.12(a) and Figure
2.12(b), there is a major change in the composition of the volume error: the temporal error
becomes dominant over the spatial one. This is confirmed by Figure 2.12(d), which is the same
numerical experiment, but with a time step 10 times smaller.
Additionally, in Figure 2.12(a), increments where remeshing was operated can be clearly rec-
ognized as the points where sphere volume drops abruptly. Indeed, a larger mesh size reduces
the number of calls to the remeshing procedure. On the contrary, in Figure 2.12(b) and Figure
2.12(c), the drops of the sphere volume are reduced both by the fact that the mesh is finer, and
that remeshing is more frequent, and are hence less visible.

More precise information is summarized in Table 2.1, which also reports the computation
time for each simulation. The relative error is computed based on the sphere volume, and the
measurements are performed after 20 increments (resp. 200 increments for the cases of Figure
2.12(d)). While the FLAGc method is approximately 10 times costlier, it is also more accurate.
In particular, it is robust and gives a satisfactory solution, even for the coarsest mesh size, while
the sphere did not survive 20 increments for the IEUL method. Using a mesh size of 0.1 for
the FLAGc method and 0.025 for the IEUL one, the computation time is inverted and the IEUL
method is approximately 10 times costlier, for an error that is more than 3 times bigger than the
one obtained with the FLAGc method.
Note that since in this case, there are no continuum mechanics equations to solve, the computation
time for the finer meshes is underestimated. In practice, if one had to use finer meshes to avoid
diffusion, the cost of all other operations (Navier-Stokes solution, output writing, etc.) would
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increase the advantage of the FLAGc method. Therefore, for coarse meshes, or when the
interfaces show multiple scales of variations, the FLAGc method would be significantly more
interesting than the IEUL one in preserving all variations during the simulation, including the
smallest ones.

Method Mesh size Time step Computation time (s) Error (%)
FLAGc 0.1 0.01 62 15.8

0.05 0.01 570 10.0
0.025 0.01 8935 15.3
0.05 0.001 580 6.5

0.025 0.001 6909 0.3
IEUL 0.1 0.01 9 100

0.05 0.01 98 93.6
0.025 0.01 808 57.8

Table 2.1 – Computation time and relative error on the volume of the sphere after 40% of rotation
for the two methods, the three used mesh sizes, and the two used time steps.

2.4.2 Large deformations: sphere stretching
This case is representative of an heterogeneous material with multiple phases that are likely to
deform at comparable rates. A sphere of radius 0.15 is placed at the center of the box, and an
incompressible vertical stretching is applied by defining the velocity field as

v(x) =

(
−

1
2

(x1 − 0.5), 1(x2 − 0.5),−
1
2

(x3 − 0.5)
)
.

With such stretching of the interface, pure moving mesh techniques such as [182] or [183] do
not apply anymore, since interfaces need to be remeshed. This case is illustrated in Figure 2.13.
The evolution of the volume of the sphere during stretching is presented in Figure 2.14 for
three different mesh sizes. There is a clear difference of accuracy between the IEUL method,
which diffuses at each increment, and the ILAG method, which diffuses only at remeshing. The
diffusion at remeshing is then drastically reduced with the FLAGc method (note that remeshing
is not triggered at the same increments for the ILAG and FLAGc methods).

Additionally, convergence can be observed on these graphs for the three methods, as diffusion
is reduced by mesh refinement. This is confirmed in Table 2.2, where the relative error is
computed based on the sphere volume after 100 increments. For the FLAGc and ILAG methods,
the gap between the error using the coarsest mesh size and the intermediary one is big due simply
to the fact that the first mesh size is too coarse for such stretching. Then, a first order convergence
is obtained. The same observation can be made for the IEUL method, with the difference that
the sphere is totally diffused using the coarsest mesh, as illustrated in Figure 2.14(a).

Finally, measurements of computation time in Table 2.2 must be considered carefully since
they highly depend on the number of remeshings triggered for the ILAG and FLAGc methods.
Though this number is low in the present case, it could be more significant depending on the
magnitude of the deformation the mesh undergoes at each time step. The main conclusion
that can be raised from these results is that the volume preservation constraint does not induce
a significant cost increase, as at equal NRO, the computation time of the FLAGc method is
comparable to the one of the ILAG method.
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Figure 2.13 – Sphere stretching with a mesh size of 0.025 using the three different methods.
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(a) Mesh size 0.1. (b) Mesh size 0.05.

(c) Mesh size 0.025.

Figure 2.14 – Evolution of the volume of the sphere during its stretching. After 100 increments,
the major diameter is doubled, while the other two are divided by

√
2. The mesh size is: (a) 0.1,

(b) 0.05, (c) 0.025.



80 2.4. RESULTS

Method Mesh size Computation time (s) Error (%) NRO
FLAGc 0.1 6 18.9 2

0.05 49 7.2 2
0.025 820 3.1 3

ILAG 0.1 10 45.7 3
0.05 46 8.3 2

0.025 422 2.7 2
IEUL 0.1 23 100

0.05 252 92.5
0.025 2101 43

Table 2.2 – Computation time and relative error on the volume of the sphere after full stretching
for the three methods and the three used mesh sizes.

2.4.3 Topological changes: sphere stacking

Applications where topological changes occur do not restrict to crack propagation, where crack
branching and merging are difficult to handle from a meshing point of view [114], but easily
modeled using an implicit interface. Other examples are recrystallization [168], where grains
may appear or disappear during the simulation, or polymer injection, where bubbles may nucleate
and link [191, 200]. Generally, in all these applications, explicit interface meshing becomes very
difficult and is generally avoided [191, 200].
The present test aims at showing that the present method can handle complex topological changes
and, more importantly, maintain a good element quality when they occur. It is designed to repro-
duce what happens during void linkage in ductile fracture.

The domain contains three spheres of identical radius 0.15 which are placed at (0.3, 0.2, 0.5),
(0.7, 0.2, 0.5) and (0.5, 0.5, 0.5), and the lower face of the box is of the same material as the
spheres (φ is zero on this face). In this test, a Stokes problem is solved using the mixed P1+/P1
FE method described in Subsection 1.2.1 at each time step, with homogeneous Dirichlet boundary
conditions for the velocity, and homogeneous Neumann boundary conditions for the pressure.
The parameters of this problem are the nondimensional viscosity and gravity, which are set
respectively to 1000 and (0,−1000, 0) inside the spheres, and 10 and (0,−10, 0) in the rest of the
domain. As illustrated in Figure 2.15, the spheres and the plane are expected to link altogether
(as in polymer injection for example). Due to the significant computational cost of the Stokes
solver (not reported here), the configuration with a mesh size of 0.025 is not considered for this
test.

For the coarsest mesh, the results in Figure 2.16(a) show a poor performance of the FLAGc
method. Maintaining a body-fitted mesh raises complicate issues when the spheres start to touch,
consequently the NRO is greater than with the ILAG method (Table 2.3), and volume relaxation
is omnipresent. Then, when the spheres have linked (after ≈ 500 increments), mesh quality seems
to have been restored, as volume is better conserved. The main difference between the FLAGc
method and the ILAG one is that the ILAG method diffuses approximately the same amount of
volume whatever the encountered deformation or topological change, while the FLAGc method
controls this diffusion.
In fact, if the FLAGc method was used with an implicit interface, one could assume that
remeshing would be less frequent, and a better performance could be recovered. Although
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Figure 2.15 – Spheres stacking with a mesh size of 0.05 using the three different methods.

such experiment is not performed in this section, the results in Figure 2.16(b) with a finer mesh
prove that the FLAGc method controls indeed volume diffusion, while the ILAG method keeps
releasing the same amount of volume at each remeshing.
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(a) Mesh size 0.1. (b) Mesh size 0.05.

Figure 2.16 – Evolution of the volume of the spheres during stacking for a mesh size of: (a) 0.1,
(b) 0.05.

Regarding the IEUL method, the conclusions are the same as in the preceding sections:
convergence is of first order, but the difference with the other methods is large. An interesting
point is that the IEUL method is way costlier in this case, as reported in Table 2.3. This is due to
the fact that the cost of the ILAG and FLAGc methods is mainly due to Algorithm 1. Decreasing
the time step has no reason to influence significantly the NRO and hence to change significantly
computation time. However, the IEUL method relies on the solution of a convection equation
at every time step. Although a preconditioned conjugate residual iterative method is used and
the number of iterations decreases with the time step, there is still an irreducible cost at each
solution.
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Method Mesh size Computation time (s) Error (%) NRO
FLAGc 0.1 103 40.6 16

0.05 889 5.0 22
ILAG 0.1 62 35.9 4

0.05 600 14.4 9
IEUL 0.1 251 100

0.05 2940 100

Table 2.3 – Sphere stacking test: computation time and relative error on the volume of the spheres
after 1000 increments for the three methods and the two used mesh sizes.

2.4.4 Robustness investigation
For all preceding numerical experiments, a particular attention was given to volume conserva-
tion and computation time. Because the method proposed in this chapter is based on a mesh
adaptation algorithm, it is also important to verify that this algorithm is efficient. In that purpose,
element quality, as defined in Equation (2.1), is computed at each increment and integrated over
time for all tests performed with the FLAGc method.
This quality distribution is expected to be concentrated around two peaks corresponding respec-
tively to the elements of the domain far from any interface, and the elements having their quality
deteriorated by the presence of a neighboring interface. As most histograms presented in Figure
2.17 feature only one peak, a first qualitative conclusion is that, in most cases, element quality is
not deteriorated significantly by the volume conservation constraint.
First, in the sphere rotation case in Figure 2.17(a), it can be seen that element quality is efficiently
restored after the passing of the sphere, as element quality is concentrated around 0.7 for all used
mesh sizes. Regarding the sphere stretching case in Figure 2.17(b), the histogram is slightly
shifted to the left because the whole domain is stretched and remeshing is not operated frequently
enough to maintain higher quality; hence, the quality of some elements is allowed to decrease.
The fact that there are very few ill-shaped elements is nevertheless satisfactory and remeshing
based on a quality decrease criterion seems appropriate.

Finally, element quality distribution for the spheres stacking case is the only distribution that
clearly exhibits two distinct concentration points: one around 0.3 and one around 0.7 (Figure
2.17(c)). This suggests that a whole part of the domain is represented with elements of inferior
quality and that these elements are kept in the mesh for a long time. This is most likely due to
the small space between the spheres that progressively narrows down and then disappears. The
numerous contact areas between the spheres and the plane and between the spheres themselves
could also explain this decrease of mesh quality.
A zoom on the sphere in the lower left corner is presented in Figure 2.18. It is important to point
out that the FLAGc method handles very well the linkage events between the different objects,
hence preserving the advantages of the LS method. While in the literature mesh regeneration
techniques have been used to address such problems in Lagrangian frameworks [114, 181],
to the author’s best knowledge, this is the first time that such results are obtained with body-
fitted interfaces, based purely on mesh adaptation. This is interesting in a point of view of
computational cost and parallel computing, as mesh adaptation relies only on local operations.
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Figure 2.17 – Distribution of element quality integrated on all increments for: (a) the sphere
rotation case, (b) the sphere stretching case, (c) the spheres stacking case.
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Figure 2.18 – Spheres stacking with a mesh size of 0.05 using the two Lagrangian methods,
zooming in on the lower left corner.
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2.5 Parallel implementation
As described in Subsection 1.2.1, the FE code in which all the present developments are integrated
is based on a distributed computing paradigm. Because the mesh is partitioned among multiple
processes, mesh modifications have to be undertaken carefully. In particular, it would be very
technical to implement mesh modification operations on patches containing nodes that are shared
among multiple partitions. Although it is stated in Subsection 1.2.1 that the FE code lacks
methods to ease the development of such operations, it is not true in the case of mesh adaptation,
which is at the core of this FE library [125].
The methodology implemented in this library for parallel remeshing consists in first remeshing
independently each partition, inter-partition boundaries being blocked. Then, repartitioning is
performed so that poor quality elements land far away from these inter-partition boundaries,
using the methodology introduced in Reference [125], and remeshing is applied independently
again. As illustrated in Figure 2.19, this cycle is repeated several times. Thus, all methods
presented in Section 2.1 and Section 2.2 can be implemented in a totally sequential manner, with
no regard with respect to the parallel aspects, apart from the fact that inter-partition boundaries
are tagged and blocked. All parallel aspects, mainly repartitioning, are handled by the existing
FE code.

However, in order to ensure that all edges of the mesh are actually reached by the fitting
procedure described in Section 2.1, the quality of the elements with edges that are not conform to
all interfaces is penalized. The repartitioning procedure will then move inter-partition boundaries
far from these elements, so that they can be remeshed. Additionally, the method proposed in
Reference [125] established a fixed number of remeshing/repartitioning cycles, which did not
necessarily allow for a global adaptation of the whole mesh. An additional iteration was hence
added so that these cycles are repeated until all nodes and elements of the mesh have been
actually reached by the algorithms presented in Section 2.1 and Section 2.2.



CHAPTER 2. MESH ADAPTATION WITH ENHANCED VOLUME CONSERVATION 85

Figure 2.19 – Application of the parallel remeshing procedure to a 2D mesh, arrows pointing
downward represent remeshing steps, while arrows pointing upward represent repartitioning
steps. Partitions are distinguished by the coloring. Figure reproduced from [201].
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2.6 Extension to computational fracture mechanics
Insertion of new interfaces during simulations with explicit representations is usually done either
by splitting existing faces of the mesh, or generating a new mesh carrying the new interfaces
[114, 185, 186]. In this section, a method requiring only mesh adaptation is proposed, hence
avoiding to modify the mesh in regions far from the crack.
To insert a crack, three LS functions are defined, as illustrated in Figure 2.20. Two of these
LS functions define the two faces of the crack, while the third one defines a filter enabling to
propagate the crack progressively instead of letting it cross the whole domain. These functions
are defined analytically using appropriate crack initiation or propagation criteria (Chapter 4 and
Chapter 5), then the interface fitting procedure is applied only in the regions selected by the filter
LS function.
For example, a small portion of the matrix/particle interface can be debonded as in Figure 2.20(b),
or a particle can be fragmented without affecting neighboring particles as in Figure 2.20(c). The
use of LS functions aims at simplifying fracture modeling, which does not need to implement
mesh modification operations, as these operations are already implemented in Algorithm 1.
These operations are only local, which enables to reduce drastically the computational cost with
respect to a global mesh generation procedure [114].

It would be tempting and more rigorous to define only two LS functions, namely one for the
filter and one for the crack, mesh the latter using the technique in Section 2.1, and then split the
faces carrying it to insert the free surface. However, a key aspect of the present developments is
the ability to handle void linkage, which requires to mesh the void phase, as in Subsection 2.4.3.
Hence, it is necessary to define two crack faces and have them slightly separated by a small (one
order below mesh size) numerical thickness εl so that the elements belonging to the intersection
between the three LS functions do not have a zero volume. These elements are added to the LS
function of the void phase, and removed from other LS functions, so that the mesh adaptation
algorithm can be applied.
An important issue raised by this approach is that these elements that are inserted between the
two crack faces are likely to be of very poor quality, due to the small numerical thickness εl.
Thus, the volume conservation constraint defined in Subsection 2.2.2 is likely to be relaxed in
these elements, leading to crack closure. To avoid this, the authorized relative change εQ for the
volume occupied by the void phase inside each patch during mesh adaptation, given by Equation
(2.2), is modified by replacing each quality parameter (Qµ, Qσ) and variable (Qmin) by volumes
(Vµ, Vσ, Vmin). For instance, the volume threshold Vµ under which the volume conservation
constraint is totally relaxed for the void phase will be � ε3

l . Numerical examples using this
computational fracture mechanics with LS-based crack modeling and remeshing are presented in
Chapter 4 and Chapter 5.
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Figure 2.20 – Insertion of a crack (in gray) using three LS functions: (a) crack initiation at a free
boundary, (b) debonding crack, (c) fragmentation crack. The numerical thickness separating the
two faces is exaggerated in these illustrations.
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Conclusion

Modeling microstructures such as those found in metal alloys is generally carried out in a
Lagrangian framework. The Level-Set (LS) method is an interesting numerical tool as it enables
to model easily complex topological changes, such as void linkage. However, for large deforma-
tions, remeshing operations, which are necessary in Lagrangian simulations, are usually pointed
out to be too computationally demanding. In this chapter, coupling a mesh motion algorithm
with a quality and element flipping criterion (Section 2.3), it is proved that remeshing can be
delayed enough so that a Lagrangian LS method becomes more than interesting compared with
an Eulerian LS method, even when large deformations and topological changes occur (Subsection
2.4.2 and Subsection 2.4.3).
The main defect of the Lagrangian method is the tendency of significantly diffusing the interfaces
and the volume at each remeshing operation. The new remeshing method with volume conser-
vation constraint presented in this chapter (Section 2.2) is then proved to control and reduce
this diffusion, and promising results are obtained for large displacements (Subsection 2.4.1).
Compared to the first two approaches, this new method also adds explicit interface meshing
(Section 2.1), which is well-known to raise difficulties when large deformations and topological
changes occur. Thanks to the intermediary use of LS functions, the method is proved to be able
to handle such events without a significant loss of accuracy or increase of computation time.
To the author’s best knowledge, this is the first time that such results are obtained with explicitly
meshed interfaces, based purely on mesh adaptation. This is interesting in a point of view of
computational cost and parallel computing, as mesh adaptation relies only on local operations.
It would be interesting to apply this method to other applications, such as multiphase flow, where
surface tension and high discontinuities at interfaces are difficult to capture when interfaces are
not explicitly meshed. This problem also appears in static and especially dynamic recrystal-
lization modeling, with the added difficulty that multiphase junctions have to be handled. Such
topics are considered in Chapter 7.
As a conclusion, this adaptive LS Method with enhanced volume conservation is a robust tool that
can be used to track interfaces in simulations where all types of events occur (large displacements,
large deformations, topological changes). This robustness also allows to use coarser meshes or
to improve the conservation of all scales of variations of the interfaces, including the smallest
ones. These features are easily extended to distributed computing, though some issues linked to
the mesh generation procedure have to be addressed (Section 2.5).

Coupled together, these parallel mesh generation and adaptation techniques can be used to
generate body-fitted meshes from LS functions, enabling fracture mechanics applications where
new interfaces can be captured on-the-fly during the simulation (Section 2.6). Compared to
previous work, this approach preserves the ability to initiate and propagate cracks of arbitrary
shapes, hence avoiding any mesh dependency. Although there is still a loss of mass, as the
inserted nuclei is given an artificial volume, this loss of mass is drastically reduced thanks to
body-fitted meshing. Additionally, crack tips are captured with no excessive mesh refinement.
An important aspect of this computational fracture mechanics approach is that, because the
cracks and hence the void phase are represented by LS functions and meshed, the adaptive LS
method discussed above can be applied to the void phase. For instance, a well-known issue with
eXtended Finite Element Method (X-FEM) techniques is that the elements carrying the crack
cannot be remeshed due to their enrichment. Thus, applications of these techniques to the large
deformations induced by void growth and coalescence are limited. Such issues are not encoun-
tered with the proposed method as remeshing operations are used to track the transformation of
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a sharp crack into a spherical void, and then its coalescence with neighboring voids (Chapter 4).
An interesting problem raised by the presence of cracks is the occurrence of contact and penetra-
tion problems, including self-contact. These issues are addressed in Appendix A.

Section 2.1 and Section 2.5 are highly inspired from results published in Reference [40],
while the remaining sections of this chapter, with the exception of Section 2.6, are highly inspired
from results published in Reference [41].
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Résumé en français

Dans ce chapitre, trois outils numériques supplémentaires sont ajoutés à la méthode éléments
finis. Parmi les objectifs figurent l’import de données acquises par imagerie à rayons X vers
le maillage éléments finis et la génération de maillages adaptés à ces données. La technique
d’import d’images décrite dans ce chapitre requiert des opérations de traitement d’image assez
coûteuses, mais qui ne sont appliquées qu’une fois pour chaque image. Afin de limiter ces
coûts à la fois en termes de consommation mémoire et temps de calcul, ces traitements sont
systématiquement exécutés à l’aide du code éléments finis lorsque cela est possible. Ainsi, les
algorithmes parallèles implémentés dans ce code sont exploités au maximum de leurs capacités.

L’adaptation du maillage aux géométries trouvées dans les images, et plus généralement à
la morphologie des microstructures, s’appuie sur un recouvrement de la matrice hessienne de
chaque fonction de niveau. Ce recouvrement est réalisé à l’aide d’une implémentation distribuée
d’une technique de recouvrement par patchs superconvergent de second ordre détaillée dans ce
chapitre. Certaines valeurs propres des matrices hessiennes des fonctions de niveau représentent
les courbures principales locales des interfaces et sont utilisées pour raffiner le maillage dans les
régions à haute courbure principale maximale.
Cet estimateur d’erreur est validé numériquement sur des cas tests où il est couplé avec
l’algorithme d’adaptation de maillage vu au chapitre précédent. Des ordres de convergence
proches de ceux prédits par la théorie sont obtenus. Pour des géométries singulières, ces ordres
de convergence sont amoindris, ce qui est également en accord avec la théorie.

Pour que l’estimateur d’erreur soit fiable, il est important que les fonctions de niveau restent
aussi proches que possible de leur définition initiale de fonctions distance signée à l’interface.
En effet, une irrégularité de ces fonctions mènerait à une mauvaise estimation des courbures
principales locales, et ensuite à un maillage trop fin ou trop grossier dans certaines régions. Afin
de maintenir cette propriété de distance signée, une procédure de réinitialisation des fonctions de
niveau est proposée dans ce chapitre.
En s’appuyant sur divers cas d’application, il est montré que cette méthode est très intéressante
en termes de temps de calcul et précision en comparaison avec d’autres approches proposées
dans la littérature. En particulier, des géométries correspondant à des matériaux du vivant et
des composites observés par imagerie à rayons X peuvent être immergées dans un maillage
éléments finis à l’aide de cette méthode de réinitialisation de fonctions de niveau. Le coût de
calcul est alors largement dominé par les opérations d’adaptation du maillage aux courbures
principales locales de la géométrie, tandis que la méthode de réinitialisation a un coût négligeable.

Avec les outils développés dans ce travail, l’import des images vers le maillage et l’adaptation
de ce dernier à la géométrie, à l’aide de fonctions de niveau réinitialisées, peuvent être suivis par
une étape de génération de maillage explicite aux interfaces. Un outil supplémentaire présenté
dans ce chapitre permet également de distinguer les différentes composantes connexes d’une
phase représentée par une unique fonction de niveau. Cette opération est complexe dans un
contexte de calcul distribué mais est indispensable pour effectuer certaines mesures statistiques
ou considérer des critères de rupture par vide ou par inclusion.

A l’aide des différents outils développés dans ce chapitre, des maillages éléments finis
conformes et de bonne qualité peuvent être générés et adaptés à toute géométrie. En particulier,
ces outils permettent d’accéder aux applications liées à la biologie et à la science des matériaux,
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où l’utilisation de l’imagerie par rayons X en trois dimensions (3D) est prépondérante. En outre,
la procédure de génération et adaptation de maillage proposée dans ce chapitre a un temps de
calcul raisonnable et peut être ajustée par l’utilisateur pour obtenir différents niveaux de précision
grâce à un estimateur d’erreur.
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Introduction
Though it is based on a conform Finite Element (FE) meshing of interfaces, the mesh generation
and adaptation methodology introduced in Chapter 2 still relies heavily on the Level-Set (LS)
method. Hence, some aspects of this method have to be addressed.

First, results obtained using the volume conservation constraint introduced in Chapter 2
show that some numerical diffusion remains, and converges to zero linearly with mesh size,
but it is drastically reduced. Thus, thanks to explicit interface meshing and enhanced volume
conservation, the very fine meshes used in previous works [5, 6] are no longer required, but local
mesh refinement could still be used. The accuracy of the mechanical solution at the interface
could be improved, as mechanical fields are more likely to vary there than in the rest of the
domain. The geometry of the interface and all its scales could also be better captured if the mesh
size depended on geometrical quantities such as the principal curvatures. Error estimators and
metric-based mesh adaptation strategies to refine the mesh depending on the principal curvatures
are detailed in Section 3.1.

Then, the robustness of any LS method depends importantly on a key operation, known as LS
reinitialization. Multiple approaches have been proposed in the literature to solve this operation,
but numerical experiments showed that not all of them guarantee the same level of accuracy. As
described in Section 3.2, these experiments and the literature on the topic motivated the study
of a novel approach to the problem, applicable to the case of unstructured meshes distributed
among several processes.

Since in most LS frameworks, multiple objects of the same phase are embedded in a single
LS function, it is no longer possible to identify how many components are represented by an LS
function. For example, in the present study, the number of particles and their distribution in size
and space are not so easy to obtain, because all particles are embedded in the same LS function.
The same remark applies to voids, which makes it difficult to consider void coalescence criteria
that usually apply between pairs of voids. In other applications, the number of grains, bubbles,
fibers, and other physical components has to be retrieved for statistical or modeling purposes.
In Section 3.3, an algorithm is introduced in order to solve this problem, by identifying each
Connected Component (CC) inside the same LS function with a unique tag. The difficulty of this
problem is mainly linked to its parallel implementation.

Finally, image immersion techniques are necessary in the present study as experimental vali-
dation on real three dimensional (3D) microstructures is targeted. Meshing real microstructures
from 3D images is a complex and challenging problem that is significantly simplified in the
present work thanks to the LS reinitialization and mesh generation and adaptation procedures
presented in Section 3.2 and Chapter 2. In Section 3.4, these tools are used to import geometries
by transforming a gray scale 3D image to an LS function on an FE mesh, the latter being adapted
thanks to curvature-based error estimators as in Section 3.1. The images used in these example
span over a wide range of materials including human bone, polycrystals and fiber-reinforced
polymers.
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3.1 Curvature-based mesh adaptation

3.1.1 Metric fields

Before defining any error estimator, it is necessary to give some details about metric fields and
metric-driven mesh adaptation, especially regarding how anisotropic meshes are obtained. The
reader is referred to Chapter 2 for details about the mesh adaptation algorithm. In particular,
in Subsection 2.2.1, an element-wise definition of mesh quality is given, with a reference to a
metric field M. This metric field is actually a second order tensor that is defined node-wise and
interpolated element-wise for quality computation, where it is used to distort the usual Euclidean
definitions of volume and length, hence defining a Riemannian space. Depending on M, the
remesher will see some edges longer or shorter than they are, and because the remesher is trying
to have the average edge length in each element as close as possible to 1, mesh anisotropy will
result.
An example is given in Figure 3.1 in the isotropic case. The initial mesh of a square domain
[0, 1]2 in Figure 3.1(a) is adapted with a metric field

M =


1

0.12 0

0
1

0.12

 .

(a) (b)

(c) (d)

Figure 3.1 – Metric-driven mesh adaptation applied to a two dimensional (2D) isotropic example:
(a) initial mesh, (b,c) progressive adaptation, (d) final mesh.
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The small topological changes performed by Algorithm 1 progressively refine the mesh so
that all edges have a length close to 0.1 without inducing poorly shaped elements.
An example with anisotropy is given in Figure 3.2, using the metric field

M = R



1
h2

1
. . .

1
h2

d


RT =

(
1 0
0 1

)  1 0

0
1

0.12

 ( 1 0
0 1

)

where R is a rotation matrix, and the values hi are the mesh sizes prescribed in the directions
defined by the column vectors of R. In this example, R is the identity hence the directions are the
Cartesian directions, and the mesh sizes are 1 in the x direction, and 0.1 in the y direction.

(a) (b)

(c) (d) (e)

Figure 3.2 – Metric-driven mesh adaptation applied to a 2D anisotropic example: (a) initial mesh,
(b,c) progressive adaptation, (d) final mesh, (e) final mesh as the remesher sees it.

The comparison between the result displayed in the Euclidean space in Figure 3.2(d) and its
representation in the Riemannian space defined by M in Figure 3.2(e) reveals the effect of the
metric field on the remesher.

3.1.2 Error estimators
The purpose of error estimators is two-fold, namely, obtaining an estimate of the error produced
by a numerical approximation, and then giving some insights into how this approximation could
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be improved in order to reduce the error. In an FE context, there are two ways of influencing the
error. The first way is to change the order of the FE method, and the second way is to change
mesh size. Both techniques can be applied locally. The former is known as p-adaptivity while
the latter as h-adaptivity. Both can of course be combined. In the present work, p-adaptivity was
discarded because it requires major changes in the FE code, while h-adaptivity only requires
appropriate error estimators and a mesh adaptation tool, the latter being already implemented in
Chapter 2.
Therefore, error estimators that could help predict locally the approximation error are investi-
gated. What is of interest in this section is the approximation error linked to the approximation of
a geometry by an LS function φ. The reader is referred to [119, 120] for a more thorough intro-
duction to numerical errors produced by the FE method and their estimation. As a consequence
of Céa’s lemma, the approximation error is bounded by the interpolation error, which is the error
between the exact LS function to the geometry, and its FE interpolation. Given that the geometry
is regular enough, the interpolation error can be related to the Hessian matrix of the exact LS
function to the geometry. Further details on this error estimator can be found in Reference [166].
Because the objective is to describe the geometry more accurately, this estimator is only used
in a small layer around the interface. While local mesh refinement would enable to improve
the accuracy only in this small layer, anisotropic mesh adaptation would enable to improve the
accuracy differently depending on prescribed directions.

The anisotropic error estimator introduced in Reference [166] aims at refining the mesh in
the normal direction to the interface in order to better capture material heterogeneity, while mesh
size in the tangential direction(s) to the interface will depend on local principal curvature(s).
The number of principal curvatures depends on the dimension d. In the normal direction n to
the interface, a linear transition is defined between a mesh size hmax at a distance εh from the
interface, and a mesh size hmin on the interface, with hmin ≤ hmax ≤ εh. The one (d = 2) or two
(d = 3) other directions are given by the eigenvectors of the Hessian matrix that are not colinear
with n, and mesh size in these directions is related to the corresponding eigenvalues. This
anisotropic error estimator has been applied to fluid-structure interaction problems in Reference
[166]. Anisotropic meshes are however not suited for the present Lagrangian simulations.
Hence, an isotropic error estimator is derived by considering only the maximum eigenvalue λmax

of the Hessian matrix of the exact LS function (i.e., the maximum principal curvature). Mesh
size is then defined as

h = max
(
min

(
hc

λmax
+

(
hmax −

hc

λmax

)
φ

εh
, hmax

)
, hmin

)
,M = diag

(
1
h2

)
. (3.1)

The role of bound hmin is to ensure that when the geometry is singular (at corners and sharp
edges of the interface), mesh size will not degenerate to a very low value. For a planar geometry
with λmax → 0, the role of bound hmax is to ensure that mesh size will not degenerate to a
very high value. Apart from these bounds, Equation (3.1) defines a linear transition from a
curvature-dependent mesh size at the interface, to a mesh size of hmax at a distance of εh from the
interface.
The curvature-dependent mesh size is a ratio between a meshing parameter hc and the maximum
eigenvalue λmax of the Hessian matrix of the exact LS function. All normalization coefficients
were voluntarily omitted in this formula, hence hc is a parameter that permits to refine the mesh
if it is decreased, and coarsen the mesh if it is increased. This effect is independent from the
principal curvatures, thus discretization should be scale-independent, apart from the influence of
parameters hmin and hmax.
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In the present work, because multiple LS functions φi are defined, Equation (3.1) is first
applied independently on each LS function to obtain a mesh size hi. Then the minimum of these
mesh sizes is taken as final value.
Additionally, because the geometry is evolving due to deformation and fracture, the exact LS
functions are not known. Therefore, a procedure is necessary in order to recover an accurate
estimate of the exact Hessian matrix of each LS function.

3.1.3 Gradient and Hessian recovery
Gradient recovery and Hessian recovery problems have both been discussed in the literature,
especially with the objective of building accurate error estimators. Hessian recovery is also
necessary to solve problems with curvature-driven interface motion such as grain growth (Para-
graph 3.2.3.2). The techniques proposed in the literature consist in first building a higher-order
approximation of the initial approximation thanks to a least squares formulation, and then using
this approximation to compute the desired Gradient or Hessian matrix [120].
For a given first order FE approximation, a higher-order approximation can be obtained using
a modified Superconvergent Patch Recovery (SPR) technique [202, 203]. For each node, this
technique consists in collecting the values of the given variable on every element containing this
node. Then, a second order Hermite interpolation of the variable is fitted on these values in a
least squares sense.
A common issue with a second order SPR technique is the significant number of unknowns,
namely, the value of the field, the d values for its gradient, and the d(d + 1)/2 values for its
Hessian matrix. In order to well-define the least squares problem, the patch must then contain
enough data (1 + d + d(d + 1)/2).
In the frame of the present work, a parallel algorithm was developed to reach this purpose. As
pictured in Figure 3.3(a), this algorithm consists in first collecting two sets at every node of
the mesh: the data, which contain the values of the field on the neighboring elements, and the
ghost, which contains the nodes connected to the considered node. Until data do not contain
1 + d + d(d + 1)/2 elements, the two sets are fed by collecting the data and the ghost of the nodes
already located in ghost, as shown in Figure 3.3(b).

(a) (b)

Figure 3.3 – Illustration of the patch, or data (light gray) and the ghost (green dots) for a
considered node (black dot) at the first (a) and second (b) iterations of the feeding algorithm.
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Once the least squares problem is solved, node-wise gradients and Hessian matrices can be
extracted directly from the node-wise second order Hermite polynomials. Equation (3.1) can
then be solved and mesh size defined in the whole domain.

3.1.4 Results
In this section, meshes are adapted to different geometries thanks to the error estimator presented
above, and the accuracy and convergence of this procedure is proved numerically. The goal is not
to validate the SPR technique, which has already been validated by other authors [202, 203, 204],
but to validate the use of this SPR technique to construct an isotropic error estimator and then a
metric field, which are used to adapt the mesh thanks to Algorithm 1. In particular, results will
be affected if the adaptation algorithm fails at producing meshes that answer the requirements
specified by arbitrary metric fields.
These tests are carried out in the case of a regular geometry and then a geometry incorporating a
singularity. For both geometries, the domain Ω is the 3D box [0, 1]3, discretized initially by an
unstructured mesh of uniform isotropic size 0.08, all data being nondimensionalized. There is
only one LS function, associated with a sphere of radius 0.3 centered with respect to the box
for the first geometry. It is replaced by a Zalesak sphere for the second geometry. The meshing
parameters are set to εh = 1, hmax = 0.16, hmin = 0.01, and hc is varied. The goal is to verify that
the error converges to zero with decreasing hc, and that the order of convergence in L2 norm is 2.
The exact interpolation error is measured by the L2(TΓ) norm of the difference between the exact
LS function φs and the interpolated LS function φs,h, this difference being directly computed at
Gauss points (it is zero at mesh nodes). The interface Γ is not explicitly meshed, and the set TΓ

contains all the elements of the mesh that are crossed by the interface (i.e., φs takes opposite
signs on one of their edges).

3.1.4.1 Sphere

The LS function φs associated with the sphere is given by

φs(x) = 0.3 −

√√
d∑

k=1

(xk − 0.5)2.

In order to verify that the remesher produces a mesh that satisfies the requirement specified by
the error estimator, it is necessary to have a converged error estimate. This is guaranteed by
performing 5 iterations of LS computation, error estimation, and remeshing. For the sphere test,
in the last two iterations, the number of elements does not vary significantly, so that the 5th mesh
can be considered as a converged result.
The results for this first geometry are presented in Table 3.1. An order of convergence slightly
higher than 2 is obtained, which means that the estimator may overestimate the error in some
cases. Since this overestimation is not significant, this is not a major issue.

hc Error in L2(TΓ) norm Order of convergence Number of elements
0.32 1.280 × 10−3 5940
0.16 2.015 × 10−4 2.67 27679
0.08 4.819 × 10−5 2.06 119467
0.04 9.015 × 10−6 2.42 496844

Table 3.1 – Convergence results for the error estimator based on LS functions. Sphere test.
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Because no parallel implementation of the SPR technique was available in the FE code, other
methods have been used in previous work at Cemef - MINES ParisTech for gradient and Hessian
recovery operations. The most widely used was through node-wise averaging. First, the gradient
was computed at Gauss points based on FE shape functions. Then, at each node, a node-wise
gradient was obtained by averaging the gradients of all elements containing this node. These two
steps were reiterated in order to obtain node-wise Hessian matrices. Results for the sphere test
using this node-wise averaging technique are reported in Table 3.2.

hc Error in L2(TΓ) norm Order of convergence Number of elements
0.32 1.631 × 10−3 4424
0.16 8.137 × 10−4 1.01 12665
0.08 2.828 × 10−4 1.53 43591
0.04 5.850 × 10−5 2.28 173658

Table 3.2 – Convergence results for the error estimator based on LS functions, using a node-wise
averaging gradient/Hessian recovery technique instead of SPR. Sphere test.

A more conventional approach that was available in the FE code is global least squares fitting.
This approach is similar to SPR, with the difference that only first order polynomials are used,
and the least squares problem is solved globally. Because linear polynomials are used, this
operation must be performed twice to obtain the Hessian matrices. Results for the sphere test
using this global least squares technique are reported in Table 3.3.

hc Error in L2(TΓ) norm Order of convergence Number of elements
0.32 1.209 × 10−3 5743
0.16 4.341 × 10−4 1.48 21729
0.08 1.160 × 10−4 1.91 86784
0.04 2.329 × 10−5 2.33 358566

Table 3.3 – Convergence results for the error estimator based on LS functions, using a global
least square gradient/Hessian recovery technique instead of SPR. Sphere test.

It is important to point out that these techniques are known to produce less accurate results.
The present tests aim at showing the influence of these inaccuracies on mesh adaptation. The
results show that the order of convergence is deteriorated, especially using coarse meshes, while
it should be optimal for this regular geometry. Thus, a second order SPR technique is not only
relevant for gradient and Hessian recovery, but also for obtaining optimal meshes.

3.1.4.2 Zalesak sphere

The LS function φz associated to the Zalesak sphere is given by

φs(x) = min

0.3 −
√√

d∑
k=1

(xk − 0.5)2,−min(x1 − 0.30, 0.55 − x2, x2 − 0.45)

 .
For this geometry, the presence of several singularities means that hmin will be reached in some re-
gions of the domain. Thus, more than 5 iterations are necessary to reach convergence of the error
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estimator. The results obtained at convergence (i.e., when the number of elements does not vary
significantly between two iterations of error estimation and remeshing) are presented in Table 3.4.

hc Error in L2(TΓ) norm Order of convergence Number of elements
0.32 5.539 × 10−4 113412
0.16 1.893 × 10−4 1.55 245052
0.08 5.071 × 10−5 1.90 375837
0.04 2.953 × 10−5 0.78 710522

Table 3.4 – Convergence results for the error estimator based on LS functions. Zalezak sphere
test.

There is a clear increase in the number of elements, when compared with Table 3.1, due to
a more complex geometry. The order of convergence is inferior because the mesh only varies
in the regions close to the spherical part of the geometry. This was theoretically expected and
confirms the role of the hmin and hmax bounds, which is summarized in Figure 3.4.

Figure 3.4 – Converged mesh for the Zalezak sphere test with hc = 0.32. The interface is colored
with respect to mesh size: regions in red have λmax → 0 (mesh size is hmax), regions in blue have
λmax → ∞ (mesh size is hmin), and remaining regions are regular (mesh size depends on hc and
the local λmax).

As a conclusion, an error estimator is presented in this section in order to adapt the mesh
close to interfaces based on the interpolation error on LS functions. This error is directly linked
to geometrically relevant information, namely, the maximum principal curvature λmax, which
is estimated thanks to an SPR technique. The implementation of the latter in a distributed
computing framework is addressed. An isotropic metric field is constructed based on this SPR
technique and the error estimator, and is used to drive mesh adaptation.
Results show that both the SPR technique and the mesh adaptation algorithm perform satisfacto-
rily, as an order of convergence close to the theoretical one is obtained. When the geometry is
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of low λmax, an upper bound on the mesh size prevents it from going to infinity, while for high
or infinite λmax, a lower bound on the mesh size guarantees the best discretization possible, as
defined by the user. The influence of these bounds and the geometrical error parameter hc is
verified numerically.
As a consequence to this influence of λmax, it is important that the LS function remains as close
as possible to a signed distance function. A loss of regularity would lead to undesired results
such as a very high local refinement in regions where it is not needed, or the opposite. This
regularity is maintained thanks to LS reinitialization, which is addressed in the next section.
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3.2 Level-Set reinitialization

3.2.1 Introduction
The LS method has been employed to simulate a wide variety of mechanical and metallurgical
phenomena [166, 169, 181, 205, 206]. A major drawback of this formulation lies in the fact
that after transport (in both Eulerian and Lagrangian cases), in general, the function is no
longer a distance function. This is particularly problematic when a specific remeshing technique
depending on the distance property is used at the interface (Section 3.1). In addition, some
phenomena, such as curvature-driven interface motions, require a distance function at least in
a thin layer around the interface in order to compute properly the corresponding velocity field
[207]. Finally, the conditioning of the transport problem solved in Eulerian methods also depends
on the regularity of the LS function [2].
For these reasons, the distance function needs to be reinitialized. Restoring the metric property is
equivalent to solving the following eikonal equation for a given LS function φ to an interface Γ

∀t
{
‖∇φ(x, t)‖ = 1, x ∈ Ω(t),
φ(x, t) = 0, x ∈ Γ(t). (3.2)

There exist different approaches to solve this equation including the well-known fast marching
method introduced by Sethian [208], which propagates a front from the interface and ensures
directly a gradient equal to unity. Though this approach has been later extended to unstructured
meshes [209], its implementation becomes extremely complicated when it comes to consider
anisotropic (i.e., obtuse) triangulations [210]. The latter relies on the insertion of numerical
supports for obtuse triangle and is mentioned as "cumbersome" in Reference [210].
Another major drawback of the fast marching method lies in the parallel implementation. More
specifically, the algorithm has to be performed several times on each partition to synchronize
the values between the processors, which requires significant implementation effort and poor
parallel efficiency.

In Reference [211], a Hamilton-Jacobi (H-J) formulation equivalent to Equation (3.2) was
proposed in order to correct iteratively the LS values around the interface by solving a partial
differential equation. This method thus requires the definition of a purely numerical parameter
known as the fictitious time step for reinitialization ∆τ. This quantity is generally of order of
the mesh size h in the direction normal to the interface. For convenience we assume in the
following that ∆τ = h. By noting εr the reinitialized thickness, εr/∆τ increments are then needed
to reinitialize completely the layer φ ∈ [−εr, εr].

More recently, coupled Convection-Reinitialization (CR) methods emerged wherein the LS
function is automatically reinitialized during the solution of the transport equation [2]. Their
main advantage lies in the fact that only one solution step is needed for the simulation instead of
two for the classical H-J technique.
The signed distance function can also be replaced by any smooth function that satisfies the metric
property, at least in a thin layer around the interface. In the following these two variants will
be mentioned: the former using a classical distance function (CR-DF) and the latter working
with a hyperbolic tangent distance function φ̃ = εt · tanh(φ/εt) (CR-HTDF). Since the hyperbolic
tangent function has a gradient close to one only in the neighborhood of zero, the truncation
thickness εt has to be chosen big enough to verify the metric property at least in a thin layer
around the interface.
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Finally, a natural way to reinitialize LS functions consists in using a brute force algorithm to
perform a complete reconstruction of the distance function. This technique works in two steps:
discretize the interface (zero-isovalue of the LS function) into a collection of simple elements
and, for every node, compute the distance to all elements of the collection and store the smallest
one that becomes the updated value of the distance function.
Though it guarantees optimal accuracy, this Direct Reinitialization (DR) technique is generally
mentioned as extremely greedy in terms of computational requirements in the literature [211,
212]. Hence it is carefully avoided in most implementations, with the exception of [181]. In
Reference [213], a review of various improvements to this method proposed in the literature
to overcome this difficulty can be found. These works generally address only regular grids or
hierarchical meshes [214].

In the following, the DR method is investigated and a new parallel and efficient implementa-
tion is proposed for unstructured and possibly anisotropic meshes. It is then compared to other
approaches in terms of accuracy and numerical performances. Applications addressed in this
section cover not only the topic of the present work but also full field grain growth modeling.
The algorithms and the examples do not use the explicit interface meshing technique presented
in Chapter 2 but rely on standard Eulerian and Lagrangian LS methods.

3.2.2 Algorithm

As stated above, the DR method that is a basis for the present work starts from a simple idea,
which is illustrated in Figure 3.5. In the frame of P1 (linear by element) interpolation, the LS
function is represented by its values at mesh nodes. On each element crossed by the interface, a
discrete representation of a portion of the interface is constructed giving in the end a mesh of the
whole interface. In 2D, this element-wise discrete representation is an edge, while in 3D it is one
or two triangles. For sake of clarity, the initial FE mesh is hereafter referred to as mesh, while
the 1D or 2D interfacial mesh is referred to as collection.
Hence, reinitialization of the signed distance function can be performed at any mesh node by
searching the closest edge or triangle in the collection. As the computation of the distance
to an edge or a triangle will be a critical operation in this part of the algorithm, the optimal
implementations detailed in Reference [215] are used. The sign of the reinitialized function can
then be taken as the one of the initial LS function.
It can be seen that opposed to H-J approaches mentioned above, the DR method is way more
accurate: given a P1 representation of an LS function, the DR method performs a geometric
solution. Nevertheless, this method, if used as is, has large costs.

In the following, n represents the number of nodes in the mesh, and e the number of elements
in the collection. Using these notations, collection construction is of complexity O(n), while
distance computation is of complexity O(n · e). Hence, this last operation is too costly and makes
the algorithm unsuitable for computations, especially in 3D. This is basically the reason why H-J
methods are usually preferred.

Based on techniques widely used in computer graphics, data mining, and other domains, a
new DR method can be proposed, where the cost of distance computation is significantly reduced.
This optimization is based on a space partitioning technique. Such technique consists in dividing
the space, i.e., the collection, in several parts, thanks to a suitable criterion. More precisely,
hierarchical space partitioning techniques consist in dividing the space into p parts, and applying
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Figure 3.5 – DR method on a P1 mesh: (a) collection construction, (b) distance computation.

the same procedure to these parts, and so on, until small parts are obtained where searching or
pruning can be performed at acceptable costs.
The number p is a constant inherent to the used methodology. For example, one may cite
quad-trees in 2D, with p = 4, where the whole space is placed in a bounding box, which is
divided in 4 boxes of identical dimensions, corresponding to the four quarters of the initial
box (these boxes are then divided again, and so on). Using such systematic division, one or
several boxes may be empty at some stage, and the division may not be optimal, especially in
the present case with unstructured and possibly anisotropic meshes. The same statement can be
made regarding oc-trees (p = 8), which are the 3D equivalent to quad-trees.
That is the reason why it is chosen to partition the space hierarchically using a k-dimensional
(k-d) tree, where the division is always made into p = 2 parts, using a criterion that depends
on the considered set of elements. This structure was first introduced in Reference [216], with
examples of potential applications. Among these applications, a focus is made in the following
on nearest neighbor searches: for each node of the mesh, the nearest element in the collection has
to be found. In the following a methodology, named Direct Reinitialization with Trees (DRT), is
explained, which reduces the complexity of distance computation to O(n log e).

Opposed to systematic methods, the chosen division criterion is based on an analysis of the
space that is to be divided. In the present case, this space is the initial collection, or a sub-set of it,
which can both be addressed as a set of elements, and division in 2 parts will be obtained using a
division plane. Optimally, this plane should divide the given set into 2 sub-sets containing the
same number of elements. To narrow such result without adding too large costs, it is chosen to
use planes normal to the Cartesian axis, and centered respectively to the set of elements. This
centering is obtained by computing the barycenter of each element, and choosing a plane that
goes through the barycenter of these points. The whole process of tree construction is given
below:

(b.1) Set the division plane (line in 2D) as the plane going through the barycenter of all elements
and having its direction alternatively defined by the x, y and z directions depending on the
depth in the tree.
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(b.2) Compute the signed distance from the vertices of all the elements in the collection to this
plane.

(b.3) Build a left child to the current tree by going back to (b.1) with all the elements having at
least a vertex with negative plane distance.

(b.4) Build a right child to the current tree by going back to (b.1) with all the elements having at
least a vertex with positive plane distance.

As illustrated in Figure 3.6, this process recursively builds a binary tree. As observed in Figure
3.6(c), it ends when at steps (b.3) and (b.4) one of the two subtrees contains the other. In such
situation, a leaf is created, and instead of containing a plane and two subtrees, this leaf contains
only the remaining elements of the collection.
Regarding the division plane, it is easy to find geometric configurations where the used simple
definition does not divide the elements in two balanced subtrees. However, such situations are
not met in practice, and tests have shown that this definition leads to a globally balanced tree.
Regarding costs, the computation of the barycenter is performed in linear time, and because at
each stage the number of considered elements should be divided by 2, the global tree construction
operation is of optimal complexity O(e log e).

Searches can then be performed for each node of the mesh using the following algorithm at
the root of the tree:

(b.5) Compute the signed distance from the node to the division plane.

(b.6) If it is negative, go back to (b.5) with the left subtree.

(b.7) If it is positive, go back to (b.5) with the right subtree.

This recursive process will reach a leaf, where distance computation will be performed by
considering one by one all the elements stored in this leaf. Then, it may appear at steps (b.6) or
(b.7) that the resulting distance is bigger than the distance to the division plane. In such case, it
is required to go back to (b.5) with the other subtree.
Though this operation is implemented to ensure consistency, it is not met often if the planes are
well defined, as in most applications. Moreover, due to all the divisions, the set of elements
stored in any leaf should be small enough to consider that distance computation is of optimal
complexity O(n log e).

In the examples shown in Figure 3.7 and Figure 3.8, the distance from a point x to the
interface needs to be computed. At each stage of the search, the notation dp is the distance to a
division plane, obtained at an intermediary node of the tree, the distance de is the distance to an
element, obtained at a leaf of the tree, and d+ is the final result.
In the first case (Figure 3.7), the point is optimally located since it is close enough to the interface.
Hence, browsing two levels of the tree in (a) and (b) leads directly to the correct leaf in (c), and
since when browsing back in (d) and (e), the obtained distance is smaller than the distance to any
of the division planes, this distance is the final result.
In the second case (Figure 3.8), a worst case scenario occurs. The point is located in a leaf (b)
which gives a distance greater than the distance to the first division plane (a). Hence, the other
part of the tree has to be browsed (c). In this part of the tree, an optimal situation is met as the
recursive browsing (d) and (e) gives the final result.
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Figure 3.6 – Example of recursive tree construction in 2D.
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Figure 3.7 – Example of recursive distance computation in 2D with the DRT method, best case
scenario.
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Figure 3.8 – Example of recursive distance computation in 2D with the DRT method, worst case
scenario.

In the introduction, it was mentioned that H-J approaches, because of prohibitive costs, are
usually applied only in a small thickness around the interface. Implementing the same optimiza-
tion to the DRT method can drastically reduce distance computation costs. The first step of the
implementation consists in executing searches only for the nodes located in the reinitialization
zone. Then, at steps (b.6) and (b.7), if the resulting distance raises a need to look in the other
subtree but the distance to the plane is bigger than the thickness used for reinitialization, this
operation can be skipped.
Because in practice the thickness is small enough to reduce the order of n to the same order as e,
the final complexity of the new DRT method is expected to be O(e log e). Moreover, using this
optimization it appears that the best case scenario illustrated in Figure 3.7 occurs more often
than the worst case, because the point x will always be located close to the interface.

Massively multi-domain computations often require a significant computational power to
obtain a good accuracy. The same remark can be drawn for 3D computations. For this kind
of simulations, a classical choice is parallelization using the distributed memory paradigm.
Opposed to shared memory, distributed memory enables each parallel unit, called process, to
have a separate memory, and to be possibly located on a different machine. This last point
is essential for large scale computations, where the whole mesh cannot be stored on a single
machine.
This paradigm nevertheless raises an issue in our case: since each process will only have the
knowledge of a part of the mesh, it will only be able to build a part of the collection; hence it will
not be able to compute distances to the collection. To solve this issue, one could simply gather
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the full collection on each process, and then build the k-d tree on each process. Experiments
have showed that though this method has a good performance for a small number of processes
(up to 20), it has a poor parallel speed-up.

To retrieve parallel efficiency, a more advanced technique has been developed. In this method,
each process builds its own collection and its own tree, ignoring other processes. Then, a
bounding box system is used. Each process computes the minimal box aligned to the Cartesian
axis that can contain completely its collection. At the step of distance computation, each process
will compute first the distance using its tree, and then will interrogate one by one the processes
when they can improve this distance.
This parallel implementation is summarized in Figure 3.9. In this illustration, distance com-
putation to point A is local since it is shorter than the distance to the box associated to Beige.
Regarding point B, the distance to the box associated to Orange is shorter than the local distance
computation performed inside Beige. Hence, the distance from B to Orange’s collection is
computed and chosen as it is shorter than the previous one.
This parallel space partitioning technique is also extended to the case when reinitialization is
only performed in a small layer around the interface. In practice, this avoids interrogating other
processes when the distance to their box is larger than the reinitialization thickness.

It can already be seen on the example in Figure 3.9 that bounding boxes are not optimal, as
Orange’s box includes a wide area around the interface. It is however expected that for a large
number of processes and a good repartition of the interface, communications will be minimized
and optimal parallel efficiency reached.
This bounding box technique at the global level completes the k-d tree optimization used at the
local level, and the DRT method can now be applied to perform LS reinitialization in parallel.

A

B

Figure 3.9 – Bounding boxes (broken line) on a 2D example with 4 processes (identified by the
color code). The solid white line is the interface, and the arrows represent distance computation
steps.

3.2.3 Results
In this part, numerical results obtained with the new DRT method are provided. Both DR and
DRT methods were implemented within the parallel C++ library Cimlib [2]. Regarding the H-J,
CR and CR-HTDF methods that are used for comparison, parallel implementations were already
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provided by the library. All the following computations were performed on the same 1.2GHz
Intel Xeon Linux cluster.

3.2.3.1 Academic cases

The first test case proposed is a square (respectively a cube in 3D) centered in a 1×1 (respectively
1×1×1 in 3D) domain and subjected to a velocity field equal to the LS function gradient ~v = ∇φ,
all data being nondimensionalized for this test. The parameter εt for the CR-HTDF solver is
set to εt = 20h and εr = εt is kept for all methods in order to perform a fair comparison. The
theoretical values of the LS function φtheo(x, t) and the theoretical internal area (respectively
volume in 3D)Atheo are calculated through{

φtheo(x, t) = φ(x, 0) − t,
Atheo(t) = (l0 − 2t)d ,

with t ∈ [0, l0/2]. The term l0 corresponds to the initial edge length of the square/cube, which is
chosen equal to 0.5 both in two and three dimensions. The simulation time step is calibrated
separately so that the following global error on the internal area remains lower than 1 %

L2 =
‖Atheo(t) −A(t)‖t∈[0,0.25]

2

‖Atheo(t)‖t∈[0,0.25]
2

.

These first simulations are carried out within an Eulerian LS context (IEUL method in Chapter
2).

3.2.3.1.1 Shrinking square (Two Dimensions) In this two-dimensional test case, a fixed
unstructured and homogeneous mesh is used. The number of elements is equal to 150000, which
corresponds to an average mesh size h ≈ 0.004. The main results of this set of simulations are
summarized in Table 3.5.

Method H-J CR-DF CR-HTDF DRT
∆t 0.01 0.0001 0.0001 0.001
ttransport (s) 6.4

85.1 86.7
5.8

treinit (s) 133 0.4

Table 3.5 – Results of shrinking square simulations run on 4 Central Processing Units (CPUs).
For the CR solvers, the LS function is automatically reinitialized during the transport, so there is
only one time for these two steps.

The new algorithm appears to be clearly the most efficient among all methods and is up to
300 times faster than the H-J approach. The CR solvers are proving more effective than the
H-J method but require a very small time step to guarantee scheme stability. Let N be the set
of nodes belonging to the layer ±5h around the interface, the relative discretization error R(t)
between the exact and computed LS functions is calculated through

R(t) =
‖φtheo(x, t) − φ(x, t)‖N2
‖φtheo(x, t)‖N2

with ‖u(x, t)‖N2 =

√∑
n∈N

u(xn, t)2.

Such small layer is chosen because both CR methods are only valid close to the interface [2].
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Figure 3.10 – Shrinking square test case: (a) relative discretization error R(t) between the exact
and computed distance functions around the interface ±5h, (b) values of ‖∇φ‖ for each method
at t = 0.08.

Figure 3.10(b) illustrates the inability of the CR solvers to properly maintain the metric
property, especially in the corner vicinity. On the other hand, the DRT and H-J methods exhibit a
high level of accuracy. This first 2D test case thus demonstrates that the proposed algorithm is
both extremely fast (Table 3.5) and accurate (Figure 3.10).

3.2.3.1.2 Shrinking cube (Three Dimensions) A similar case is now investigated in 3D. In
order to limit the number of elements, a remeshing operation is performed at each time step using
the a posteriori error estimator and remeshing algorithms presented in Reference [217]. With
this estimator, elements located near the interface are stretched to form a refined and anisotropic
layer with thickness 2εr around the zero iso-level. Outside this zone, the mesh is kept coarse
(Figure 3.11).

For this set of simulations, the total number of elements in the domain is equal to 500000.
The local mesh size h in the refined layer thus constantly evolves during the simulation. The
parameters εr and ∆τ are therefore updated at each time step in order to maintain εr = εt = 20h
and ∆τ = h. The time steps for all methods are chosen identical to the ones calibrated for the
two-dimensional case (Table 3.5).

In addition to the use of an anisotropic mesh, this case is also critical for non-direct ap-
proaches because the gradient is poorly defined along bisecting planes and diagonals. Hence, the
linear problems built by the H-J solver also have a poor conditioning (on average 430 iterations
are performed by the used GMRES iterative solver in 3D compared to around 20 in 2D).
During the simulation, one observes furthermore the appearance of a parasitic phase outside the
cube because oscillations start polluting the FE solution of the convection solver (Figure 3.12).
It proves the function becomes too irregular to be properly reinitialized leading to a modification
of sign of the LS function. The interface of this parasitic phase is then automatically detected
and captured by the remesher which adapts the mesh around it. As the total number of elements
is fixed, the calculation accuracy then falls because fewer elements are used to represent the cube
interface.
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Figure 3.11 – Anisotropic mesh used for the shrinking cube test case. The red thick line indicates
the zero contour.
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Figure 3.12 – Evolution of the cube internal volume and appearance of a parasitic phase with the
H-J approach due to an unsatisfactory reinitialization of the LS function.

The CR solvers exhibit unstable behaviors although the simulation time step remains an
order of magnitude lower than the mesh size in the refined zone (no violation of the stability
condition). These approaches seem therefore to be less robust than the H-J and direct ones. In
addition they require a good knowledge of the parameters needed for the stabilization. Results
obtained with the direct and H-J approaches are summarized in Table 3.6.

Method H-J DRT
R(t) (%) 57 0.54
treinit (s) 263.6 52.8

Table 3.6 – Results of shrinking cube simulations run on 20 CPUs.

In 3D, the DRT algorithm appears to be around five times faster than the H-J approach, while
keeping a very high accuracy. The gain in terms of computational performances is smaller than
in 2D. Nevertheless, this configuration is particularly unfavorable to the proposed algorithm.
During the simulation, the cube rapidly shrinks and becomes very small compared to the size
of the domain. Considering the proposed partitioning strategy and the number of processors
involved (20 CPUs for the cube shrinking case), the whole interface is poorly distributed across
the CPUs. The parallel implementation described earlier thus becomes far less efficient. This is
no longer true for massively multiphasic systems such as discussed in the next section wherein
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interfaces are naturally spread in a balanced way across the processes.

As a conclusion, these simple academic test cases confirm the superiority of the proposed
algorithm and demonstrate its robustness. It appears to be also well-suited with particular
triangulations (anisotropic meshes) and does not require any calibration, contrary to other
classical methods that require at least one numerical parameter.

3.2.3.2 Ideal grain growth

The second test case is an extremely popular problem in material science, namely, ideal grain
growth. This problem is particularly interesting because it can involve a large number of LS
functions N f � 1. An efficient reinitialization of the LS functions is then essential when it
comes to reduce the computation time.
During grain growth, the normal velocity of the grain boundaries (i.e., interfaces delimiting the
grains) of all grains represented by the same LS function φi is proportional to their mean local
curvature κ that can be expressed as follow

~v = mγκ~n = −mγ∇ ·
(
∇φi

‖∇φi‖

)
∇φi

‖∇φi‖
,

with ~n the unit outward normal vector and mγ a material parameter set to 8.28 × 10−7mm2 s−1,
which is representative of a 304L austenitic steel at 1050 ◦C [207]. In a P1 framework such
as used in the present work, computing the mean curvature would rely on a Hessian recovery
technique that would induce unacceptable errors using the Hessian recovery methods already
available in the FE code [206]. It is thus impossible to use the CR solvers for this application.
Tests using the SPR method to compute the mean curvature have not been conducted yet and are
an interesting prospect (Chapter 7).
An alternative approach consists in reformulating the problem as a pure diffusion one solved
on a fixed mesh, by assuming each LS function satisfies ‖∇φi‖ = 1 around the interface. LS
reinitialization is therefore fundamental for this application. Further details can be found in
previous works [206, 207]. In order to remove kinematic incompatibilities a particular treatment
is performed on each LS function φi(x, t)

φ̃i(x, t) =
1
2

(
φi(x, t) −max

j,i

(
φ j(x, t)

))
.

This treatment removes vacuum regions at multiple junctions (with a precision equal to the local
mesh size) but also strongly alters the LS functions outside the grains, leading to catastrophic
results if LS functions are not reinitialized (second column in Table 3.7). Another strategy to
deal with these kinematic incompatibilities would be to rely on explicit meshing techniques such
as those developed in the present work (Chapter 7).
This set of simulations is performed on a 8 × 8mm2 domain with a fixed homogeneous mesh
composed of one million elements. The initial microstructure contains around 3600 grains
represented by only 27 LS functions thanks to a graph coloring technique (Figure 3.13). The
evolution of the mean grain size is tracked and the well-known Burke & Turnbull mean field
model [218] is used as reference solution (denoted Theo). The reinitialized thickness is fixed to
εr = 20 µm.
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Figure 3.13 – (a) 2D initial microstructure used for grain growth. The color scale corresponds to
the grain size; (b) evolution of the mean grain size and coarsening of the microstructure.

This benchmark is also used to compare the optimized (DRT) and non-optimized (DR)
versions of the proposed algorithm, which have respective complexity of O(n log e) and O(n · e).
The parallel implementations are challenged by running simulations on 4, 8 and 16 CPUs.

Method Without reinit H-J DR DRT
Comparison with Theo (%) 72 < 3

treinit (h)
4 CPUs 7.74 4.2 0.09
8 CPUs 5.02 3 0.07
16 CPUs 2.48 1.52 0.03

Speedup (4/16 CPUs) 3.12 2.76 3

Table 3.7 – Results of 2D grain growth simulations. The total duration of the heat treatment is
equal to 5h.

It appears both the direct and H-J methods are in good agreement with the Burke & Turnbull
model. The reinitialization times for the H-J and DR approaches are of the same order while the
DRT one is around 80 times faster than the H-J method between 4 and 16 CPUs. The interest
of using a k-d tree appears clearly in these results. The latter ones also validate the parallel
implementation of the proposed DRT algorithm, as it exhibits a speedup comparable to the H-J
solver.

3.2.3.3 Void growth

For this last test case, modeling of ductile damage at the scale of a Representative Volume
Element (RVE) is addressed using the numerical framework developed prior to the present thesis
[5]. An isotropic mesh refinement is used to progressively refine the mesh from the boundaries
of the RVE to its center, where a void arrangement is located. At the interfaces between matrix
and voids, an anisotropic mesh is built using the error estimator proposed in Reference [166].
Close to the interface, a small mesh size is fixed in the normal direction, and the refinement in
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the other directions depends on local principal curvatures.
To compute the normal vector to the interface and the principal curvatures, the gradient and the
Hessian matrix of the LS function representing the void phase are estimated thanks to the SPR
technique described in Subsection 3.1.3.
The particularity of this framework is that it is Lagrangian hence the LS function is convected
directly by mesh motion (ILAG method in Chapter 2). Since the voids grow and may even
change shape during simulation, no LS reinitialization may lead to improper mesh adaptation.

(a) (d)

(b) (e)

(c) (f)

Figure 3.14 – 2D example of void (in blue) coalescence without (a,b,c) and with (d,e,f) reinitial-
ization using the DRT method.

In the 2D example shown in Figure 3.14, a void coalescence simulation is performed without
(a,b,c) and with (d,e,f) LS reinitialization. In pictures (a) and (d), it can be seen that due to
the vertical tension applied on the RVE, necking appears at the intervoid ligament. Pictures (b)
and (e) show a zoom on this ligament. Without reinitialization, the mesh is tightened, while
with a proper distance function, the mesh can be adapted identically on the whole interface.
After coalescence, growth in the tensile direction is accelerated and leads to pictures (c) and (f).
Obviously, only LS reinitialization can enable for a correct tracking of interfaces.

Since the framework is Lagrangian, the CR method cannot be used. Hence, both the new DRT
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and the classical H-J approaches are applied to the 3D version of the configuration presented in
Figure 3.14. A 1 × 1 × 1mm3 RVE is subjected to vertical tension at a constant velocity with a
sticking boundary condition. On this 3D case, no coalescence is triggered, and the resulting void
shapes at 20% of elongation are shown in Figure 3.15.

To reach 20% of elongation of the RVE, which corresponds to 200 time steps and LS
reinitializations, the H-J method takes 127 minutes on 16 processors, while the new DRT method
takes 23 minutes in the same configuration. Though the efficiency of the DRT method compared
to the H-J method was already proven in previous simulations, this test case confirms the
superiority of the DRT approach when the reinitialization thickness becomes large.

(a) (b)

Figure 3.15 – Equivalent plastic strain and void shape after 20% of vertical elongation using the
DRT method.

3.2.4 Conclusion
Although indirect methods to reinitialize LS functions were historically developed to avoid
the computational costs required by direct methods, it is proved in this section that this idea
is questionable. For example, it is proved that simple DR through a brute force algorithm can
compete with an H-J approach in terms of performance for massively multiphasic problems such
as grain growth in polycrystalline aggregates.
Then, based on a k-d tree sorting of the interface discretization, a new DRT method is proposed
and applied to three different test cases arising from different contexts. The novelty of this method
relies in its parallel implementation, its capability to reinitialize efficiently the LS function only in
a small layer around the interface with a direct approach, and its compatibility with unstructured
anisotropic meshes.

This parallel and optimized DRT approach is proved to be as accurate as a classical DR
method, while being up to 20 times faster. Computation time reduction is also observed compared
to an H-J formulation, with speed-ups between 5 in 3D and 300 in 2D. Additionally, direct
methods, including the new DRT technique, reveal being the most accurate in theory as in
practice.
All tests are performed with unstructured 2D or 3D meshes, and anisotropic mesh adaptation for
the third one, to illustrate that the proposed method remains as efficient in all these configurations.



CHAPTER 3. COMPUTATION AND USE OF SIGNED DISTANCE FUNCTIONS 119

However, it is mentioned that the efficiency of the bounding boxes method used for the parallel
implementation highly depends on mesh partitioning. Taking the interface into account inside
the mesh partitioning algorithm should be considered in order to further improve the parallel
performance of the proposed algorithm for general applications.
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3.3 Connected Components identification

In this section, the problem at hand is to identify each CC of a given LS function φ. This is a
necessary step before computing any statistical data regarding the inclusions and voids and their
distribution. It also plays a key role in void nucleation and coalescence modeling, where each
inclusion or void has to be considered individually.
The approach chosen to solve this problem is based on a CC identification algorithm where
the FE mesh is considered as a graph, namely, mesh nodes are considered as graph vertices,
and mesh edges as graph edges. While this problem seems trivial, especially in the field of
graph theory, it becomes quite complex in a distributed computing context. Since the mesh, and
hence the graph, are distributed among several processes, a single CC may be partitioned among
multiple processes.

Before addressing these difficulties linked to the parallel implementation, the problem is first
formalized and then solved using a sequential algorithm. The objective is to create an FE field
at mesh nodes, noted I, in which each CC has a unique identifier (id). To achieve this goal,
Algorithm 3 is proposed.

Algorithm 3 Recursive tagging of the CCs.
function Tag(Mesh mesh, Field φ) : Field I

Node seed
Integer id
for seed ∈ mesh.nodes() do

if φ(seed) ≥ 0 then
I(seed)← -1

else
I(seed)← 0

end if
end for
id ← 1
for seed ∈ mesh.nodes() do

if I(seed) = −1 then
PropagateTag(I, seed, id)
id← id+1

end if
end for

end function
function PropagateTag(Field I, Node seed, Integer id)

Node new_seed
I(seed)← id
for new_seed ∈ seed.neighbor_nodes() do

if I(new_seed) = -1 then
PropagateTag(I, new_seed, id)

end if
end for

end function
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The notations are the same as in Algorithm 1, with the addition of the function neigh-
bor_nodes() that gives the set of the nodes connected to a given node by an edge. Unrolling this
algorithm, when a node located inside the LS function (i.e., φ ≥ 0) is found, it is assigned an
integer value id. Its neighbors are then recursively contaminated until the interface is reached (i.e.,
when φ becomes negative). The variable id is finally incremented and the procedure continues
with the remaining unlabeled nodes, as illustrated in Figure 3.16. This algorithm has a complexity
which is almost linear.

It is obvious the previous algorithm does not work in parallel because a process cannot
access the nodes located on another partition. This difficulty is detailed by the example in Figure
3.17(a).

In this worst case scenario, three partitions P0, P1 and P2 share two CCs. One is totally
located on P2 while the other is shared by the three partitions. Moreover the latter is seen as two
distinct components by P1. To solve this situation and any other situations that may occur with
more processes or components, the following divide and conquer procedure is proposed

1. each process performs Algorithm 3 independently, leading to independent tags, possibly
redundant,

2. in Algorithm 3, when an exterior (located on another partition) neighboring Node is met, it
is stored in a set,

3. this set is communicated between processes,

4. each process receives messages of type "Process X wanted to tag your Node N with tag
id"; if Node N already has a not null id, the conflict is communicated to the root process,

5. the root process solves the conflicts by applying Algorithm 3 on the tags instead of the
nodes,

6. the root process finally broadcasts the new global tags to the other processes.

Let Figure 3.17(b) be the result of the first step of this procedure on the proposed worst case
scenario. P0 has recognized one CC, tagged as "P0’s 1", while both P1 and P2 have a number 1
and a number 2 CC. During its tagging loop, P0 has seen that some of its nodes are connected (by
an edge) to nodes located on P1 and P2, and the same for the other two. To prevent redundancy,
a conflict is detected only if the identifier of the neighboring partition is higher than the one of
the current partition.
For example on partition 1 (corresponding to the process P1), if a Node of P0 is met, there is no
conflict because 1 > 0. If a Node of P2 is met, the conflict is detected and stored in the set. A
description of all possible situations can then be established (the item letters correspond to the
element edges represented in Figure 3.17(b))

(a) P1 has a Node with no tag that P0 sees as tag 1→ there is no conflict,

(b) P1 has a Node with tag 2 that P0 sees as tag 1→ the conflict "P0 1 means P1 2" is stored,

(c) P2 has a Node with no tag that P0 sees as tag 1→ there is no conflict,

(d) P2 has a Node with no tag that P1 sees as tag 1→ there is no conflict,

(e) P2 has a Node with tag 2 that P0 sees as tag 1→ the conflict "P0 1 means P2 2" is stored,



122 3.3. CONNECTED COMPONENTS IDENTIFICATION

Figure 3.16 – Tagging procedure. The recursive propagation stops when a node satisfactory
φ < 0 is met, which means that the interface has been crossed (green nodes in (c-d)).
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Figure 3.17 – Example presenting: (a) a worst case scenario for tagging in a distributed computing
context, (b) local tags after employing Algorithm 3 independently on each partition, (c) graph
giving the tag conflicts, (d) final global tags.

(f) P2 has a Node with tag 2 that P1 sees as tag 1→ the conflict "P1 1 means P2 2" is stored.

The next step of the algorithm is, for each process, to send its tags along with these conflicts
to the root process. All redundancies are then treated by applying Algorithm 3 on a specific
graph constructed by the root process in which the nodes are the local tags of each process and
there exists a connection between two nodes if there is a conflict between them, as illustrated in
Figure 3.17(c). After performing the algorithm on this graph, global tags that are unique for each
CC are obtained. The matching table between local and global tags is finally broadcast to all
processes, which then correct their numbering, as in Figure 3.17(d).
This step of the algorithm is thus critical because all the conflicts are treated by the root process.
Nevertheless, its complexity depends on the number of CC represented by the LS function, which
is several order of magnitude lower than the number of mesh nodes. Hence, the computational
cost of the algorithm is negligible with respect to other operations such as remeshing, or
mechanical solution.
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3.4 Image immersion and meshing

The numerical tools presented in the preceding sections and in Chapter 2 can be used to mesh
any geometry for which an LS function can be computed, and then adapt the mesh during
deformation. For most simple geometries (e.g., planes, spheres, triangles) analytic formulas can
be found. For more complex entities such as those found in Computer Assisted Design (CAD)
files, a preprocessing step may be used to transform the CAD file into a surface mesh, and then
compute LS functions based on this surface mesh.
For biology and materials science applications however, the use of CAD files is not possible
because the data are acquired using X-ray techniques. As the objectives of the present work
include comparisons with experimental data, a method has to be developed in order to mesh real
microstructures from X-ray data.

3.4.1 Method

Meshing heterogeneous domains is a difficult task that is however necessary for multiple applica-
tions. Although robust and fast solutions can be found for first order triangular or tetrahedral
mesh generation from CAD files [192, 219], their extension to arbitrary element types and orders
are still being developed [220]. Additionally, in many applications such as medicine or materials
science, the input is not a CAD file or a parametric description, but a 2D or 3D image of the
object. Mesh generation from this kind of data is an open and prolific research topic, for which
various approaches have been proposed [203, 221, 222].
A direct method would consist in first thresholding the image, applying a contour detection
algorithm to build a surface mesh of all interfaces and then building a volume mesh around
them [203]. The method presented in this section consists in first building a volume mesh
of the domain Ω, usually of a box for the present applications. This mesh will generally be
structured with a uniform isotropic mesh size equal to hmax if one wants to progressively refine
the mesh in some regions, as in Subsection 3.1.4, or hmin if one wants to capture directly all
details of the image, and then coarsen the mesh in some regions. The choice between these
two approaches will generally be based on the complexity of the geometry; for instance, a high
density of interfaces with significant tortuousity will favor the second method.

Standard image processing operations [223, 224] are applied on the image to smooth the
data, threshold a selected phase, and then convert these binary data to a signed distance function.
The latter is interpolated to the FE mesh using a trilinear FE interpolation procedure where the
image is considered as a hexahedral grid, voxels being nodes.
It may seem preferable to compute the signed distance function on the FE mesh rather than
on the image, using LS reinitialization. The algorithm applied on the image does not benefit
from the distributed computing capabilities of the FE code, and is highly memory-consuming.
However, poor results are obtained when gray levels or binary data are directly interpolated from
the image to the FE mesh [222]. In particular, oscillations are obtained at the interface, which is
a major issue not only for mechanical computations but also for the mesh adaptation procedure,
which depends on local principal curvatures. Therefore, the LS function is computed directly on
the image, which may be a limiting part of the procedure, though it is only applied once for each
image.
After this LS function is interpolated to the FE mesh, LS reinitialization is generally applied
in order to have a distance field that is relevant with respect to the interface that was actually
interpolated on the FE mesh (some regions may have vanished due to a coarse mesh size).
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This LS function is used as an intermediary to locate the interface and construct an explicit
representation (Section 2.1). This mesh generation step is combined with an adaptation step
taking into account the local maximum principal curvature of the interface (Section 3.1).
A similar procedure was used for example in Reference [222], but with an indirect LS reinitial-
ization method, and no conform meshing of the interface. The quality of the interpolation from
the image to the mesh is also improved. The whole procedure is summarized with an example in
Figure 3.18. For applications with multiple phases and LS functions, it is just repeated for each
phase. If it is chosen to progressively adapt the mesh, steps (b-d) are repeated from 5 to 10 times
until no significant change in the number of elements is noticed.

Compared to classical approaches [203, 221], the main difference in the proposed method
is that both LS reinitialization and conform mesh generation steps rely on contour extraction
algorithms applied on the FE mesh, and not on the image. Recent X-ray imaging techniques
produce high resolution images, which are generally several orders finer than the FE mesh that
will be used for computations. While classical approaches always start from a surface mesh as
fine as the image, and then coarsen it if the user prescribes a coarse mesh size, in the proposed
method only the coarse mesh is used, and all algorithms are applied only on this mesh, except
for the image processing operations mentioned above.
Reducing the number of operations performed on the image and implementing them in the FE
code also has the benefit of enabling the use of the distributed computing capabilities of this
code, especially regarding parallel LS reinitialization (Section 3.2) and mesh adaptation (Section
2.5). In order to increase even more the efficiency of this approach, it would be interesting to
study the issue mentioned above regarding interpolation of the data from the image to the FE
mesh, especially for applications to very large images.

3.4.2 Results
In this section, applications are proposed in order to illustrate the capabilities of the image
meshing procedure. The computations start with an initial structured mesh of the domain, with
a mesh size equal to hmin, so that the image importation procedure in Figure 3.18 is performed
as is. In particular, no iterative process consisting in importing the image several times to
progressively adapt the mesh before the construction of the final conform mesh is used. As a
consequence, computational cost and memory consumption could be reduced for the following
computations, because the initial mesh is very fine compared to the desired one. Volume
conservation parameters are set to Qµ = Qσ = 0.05. All computations were performed on the
same 1.2GHz Intel Xeon Linux cluster.

3.4.2.1 Stanford Bunny

The Stanford Bunny is a well-known geometry proposed by the Stanford University Computer
Graphics Laboratory and used extensively in the meshing and computer graphics communities to
illustrate their algorithms. A Computed Tomography (CT) scan of a Stanford terra-cotta bunny
provided by Marc Leroy of Stanford CS was performed by Terry Yoo of the National Library of
Medicine, using a scanner provided by Sandy Naper and Geoff Rubin of Stanford Radiology.
The data consists of 360 scans of 512 × 512 voxels, which is also the size of the domain. This
first test is purely illustrative, though real animals and insects are typical examples of "objects"
for which CAD files are not easy to find or construct, while CT scans are possible.
A first mesh obtained with adaptation parameters hcurv = 0.2, hmax = εh = 50, hmin = 10 is shown
in Figure 3.19(a). The discretization varies from a very fine mesh of size hmin (blue) in regions
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Figure 3.18 – Image immersion and meshing: (a) initial X-ray image, (b) signed distance function
computed thanks to image processing, (c) signed distance function interpolated and regularized
on the FE mesh, (d) conforming FE mesh generated and adapted to interfaces and the local
maximum principal curvature, (e) zoom on the FE mesh, (f) comparison between initial X-ray
image and interfaces in the final FE mesh (in white). Figure reproduced from Reference [42].
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with high principal curvatures such as the tail, while coarser elements (green) are obtained in
regions with lower principal curvatures such as the back. Far from the interface, a mesh size of
hmax (red) is retrieved.

(a)

(b)

Figure 3.19 – Mesh generation from the Stanford bunny CT scan: (a) coarse mesh, (b) fine mesh.

To show the flexibility of the technique and its ability to capture finer details by varying mesh
adaptation parameters, a finer setting hcurv = 0.1, hmax = εh = 25, hmin = 5 is used to obtain the
result in Figure 3.19(b). Comparing the two results, it can be seen that details are more accurately
represented with the fine mesh. This has a direct influence on computational cost, which is of
2 min for the coarse mesh of 84660 elements, and 34 min for the fine mesh of 550502 elements,
on 8 CPUs.
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3.4.2.2 Bone

At the intersection between medical science and materials science, the study of bone behavior
is important to understand the cause of bone fracture, and the impact of some illnesses such as
osteoporosis. In a recent work [225], CT scans were acquired from mandibular bone samples. As
illustrated in Figure 3.20(a) and Figure 3.20(b), this part of the human skeleton is heterogeneous
as it is composed of cortical bone and spongy cancellous bone. Because these two materials
have different material properties, it is complex to determine a homogenized Young’s modulus.
For accurate results, distribution and shapes of these pores should be taken into account, by
performing full field numerical simulations on RVEs and comparing them with homogenized
results.
As a first step towards such simulations, the image immersion method is applied to a volume
extracted from this 3D image. The size of the domain is set to 100 × 100 × 100 voxels, which is
the resolution of the extracted 3D volume. The mesh adaptation parameters are set to hcurv =

0.4, hmax = εh = 10, hmin = 2 for a first coarse setting, and hcurv = 0.2, hmax = εh = 5, hmin = 1 for
a second fine setting. The generated meshes are shown in Figure 3.20(c) and Figure 3.20(e).
Due to the high density of interfaces and their numerous variations, most portions of the interface
are discretized with hmin. Comparison between Figure 3.20(b), Figure 3.20(d) and Figure 3.20(f)
shows once again the effect of the meshing parameters. The importance of smoothing the data
in the images is also shown in these images, as the artifacts in Figure 3.20(b) do not appear in
Figure 3.20(f). The mesh obtained with the fine setting in Figure 3.20(e,f) seems to be both
accurate regarding the description of the interface and of good quality for FE computations.

This is confirmed in Figure 3.21, where mesh quality distribution is investigated. The
histogram is slightly shifted to the right with the fine mesh, as the proportion of elements close
to interfaces gets lower. The important observation that can be made on this graph is that
no element has a quality under Qµ = 0.05, which proves that the volume conserving mesh
adaptation algorithm is robust enough to recover from the ill shaped elements created by the
fitting procedure.

Regarding computation time, it is of 5 min for the coarse mesh of 360410 elements, and
24 min for the fine mesh of 2289614, on 32 CPUs. Approximately 85 − 90% of this cost is due
to the mesh adaptation algorithm, and less than 3% to LS reinitialization. Comparison between
the coarse and fine settings shows that computation time is nearly proportional to the number
of elements. This proves that Algorithm 1 converges rapidly, without browsing the mesh too
many times. Finally, computation time for both results is reasonable as the number of elements
is significant in both cases.

3.4.2.3 Fibers

The study of the microstructures of composites is of great interest in order to determine the
macroscopic mechanical behavior of these heterogeneous materials. As in the preceding case,
this requires computations on small RVEs, which can be either real or virtual (generated based
on statistics).
In this test, the RVE is a small volume extracted from Synchrotron Radiation Computed To-
mography (SRCT) images obtained at beamline ID16 of the European Synchrotron Radiation
Facility - Grenoble (ESRF - Grenoble) during a previous work [226]. The material is a polymer
reinforced by glass fibers, with a dominant orientation that can be seen in Figure 3.22(a). The
size of the domain is set to 100 × 100 × 200, which is the resolution of the extracted 3D volume.
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Figure 3.20 – Mesh generation from mandibular bone tomography images: (a) slice of the initial
image, courtesy of Y. Tillier [225], (b) middle slice of the volume extracted from the initial image
with cortical bone in black, (c) surface view of the cortical bone in the generated coarse mesh,
(d) middle slice of the coarse mesh with cortical bone in black, (e) surface view of the cortical
bone in the generated fine mesh, (f) middle slice of the fine mesh with cortical bone in black.



130 3.4. IMAGE IMMERSION AND MESHING

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

S
p

a
ti

a
l 

d
is

tr
ib

u
ti

o
n

 

Element quality 

Coarse mesh

Fine mesh

Figure 3.21 – Quality distribution in the meshes generated from mandibular bone CT scans.

The two sets of mesh adaptation parameters are the same as in the preceding section. The results
are presented in Figure 3.22(c-f). Because all reinforcements are of same shape and size, mesh
size at the interface is nearly constant, apart from some contact areas between neighboring fibers.
These contact areas cannot be modeled with the image meshing technique proposed in this
chapter. In fact, some fibers cannot be distinguished in the images due to the resolution of the
SRCT imaging technique (Figure 3.22(b)), and they cannot be distinguished in the meshes either
(Figure 3.22(d,f)). Modeling contact mechanisms between these fibers that are very close to each
other would require a different approach, for instance one based on digital microstructures and
CAD files [8].

Regarding quality distribution, the same trends as in Figure 3.21 are observed and the graphs
are hence not reported here. In particular, no element with a quality lower than Qµ = 0.05 is
present in the final meshes, and the histogram is slightly shifted to the right with the fine mesh,
due to a higher proportion of elements far from interfaces. For the same reason, computation
time is not reported either. It is observed to be proportional to the the number of elements, with a
significant mesh adaptation cost, and negligible costs for all other operations.
As a conclusion, this test shows the flexibility of the proposed method when the addressed
microstructure changes. Neither the quality of the result nor the cost of the method were severely
affected by the change of morphology. In particular, the present microstructure contains elongated
features, which have a simple geometrical shape (cylindrical) but with multiple contacts, while
the preceding microstructure featured a more tortuous and geometrically complex arrangement.

3.4.2.4 Nodules

As a last test case for the image importation procedure, Synchrotron Radiation Computed
Laminography (SRCL) images of nodular cast iron are used. As calculations and error measure-
ments with different meshes are carried out in Chapter 6 using these images, the present test only
focuses on illustrating the capabilities of the CCs identification procedure detailed in Section 3.3.
Due to the large number of nodules, the computation is run on 40 CPUs. Thus, the distributed
computing implementation of the CCs identification algorithm is used to its full extent. The
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Figure 3.22 – Mesh generation from composite SRCT images: (a) slice of the initial image,
courtesy of V. Fabre [226], (b) middle slice of the volume extracted from the initial image with
glass fiber reinforcements in black, (c) surface view of fibers in the generated coarse mesh, (d)
middle slice of the coarse mesh with glass fiber reinforcements in black, (e) surface view of
fibers in the generated fine mesh, (f) middle slice of the fine mesh with glass fiber reinforcements
in black.
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result is shown in Figure 3.23. The different CCs are identified with different colors.
The number of nodules is close to the hundred, but some nodules are in contact, leading to false
results. For instance, the arrow in Figure 3.23 points to three nodules that form as a single CC
and will hence be considered as a single nodule for the fragmentation criterion. If the nodules
are not in contact in the initial image, this issue could however be avoided using a finer mesh, in
order to have some nodes between the nodules. If the nodules are in contact in the initial image,
then it is quite difficult to distinguish them. Physically, the importance of such treatment would
depend on whether load is transferred totally or partially between the nodules. Such advanced
modeling is not addressed in the present work. Hence, for these "connected" nodules, sticking
contact is assumed, and fragmentation is considered for the whole CC.

Figure 3.23 – Mesh generation from nodular cast iron SRCL images, final mesh with CCs
identification. The nodules pointed out by the arrow are tagged with the same identifier because
they are very narrow and in contact at some points in the initial X-ray image.
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Conclusion
In this chapter, three numerical ingredients are added to the Finite Element (FE) framework
with the aim of importing X-ray data to the FE mesh and generating meshes that are adapted to
these data. The image importation procedure described in Section 3.4 is based on some image
processing operations, performed once for each image. Due to the cost both in terms of memory
consumption and computation time of these operations, treatments are systematically performed
using the FE code when possible. The distributed computing capabilities of this code are hence
exploited as much as possible.

The adaptation of the mesh to the geometry extracted from images, and microstructures in
general, relies on an Hessian recovery step. The latter is solved using a distributed computing
implementation of a second order Superconvergent Patch Recovery (SPR) technique, as detailed
in Section 3.1. The eigenvalues of the Hessian matrices of Level-Set (LS) functions are used to
estimate the local principal curvatures close to interfaces, and refine the mesh in regions with
high maximum principal curvature.
Numerical experiments prove that the coupling between this error estimator and the mesh adap-
tation algorithm yields convergence rates that are close to the theoretical ones. For geometries
with singularities, these convergence rates are deteriorated, as could be expected.

For the error estimator to be relevant, it is important that the LS functions remain as close as
possible to signed distance functions. An irregularity would lead to a wrong estimation of the
local principal curvatures, and then to a mesh that is locally too fine or too coarse. Hence, an LS
reinitialization procedure is proposed in Section 3.2.
Numerical experiments prove that this algorithm is very interesting in terms of computation time
and accuracy with respect to other methods proposed in the literature. Applications on X-ray
images of biological materials and composites show that the cost of this operation is negligible
with respect to mesh adaptation.

Once images are imported to the FE mesh and regularized with LS reinitialization, the mesh
is adapted to interfaces, with an implicit or explicit representation. Identifying the different
components of the microstructure, for statistical or modeling purposes, is carried out thanks to a
parallel Connected Components (CCs) identification algorithm presented in Section 3.3.

Thanks to these different ingredients, FE meshes that are both conform and of good quality
are generated and adapted to various geometries corresponding to a wide range of applications
where three-dimensional (3D) imaging techniques are used extensively. This procedure has
reasonable computation time, and can be tuned for different levels of accuracy thanks to an error
estimator.

Section 3.1 is partially inspired from [40]. Section 3.2 is highly inspired from [39]. Section
3.3 is highly inspired from [43]. Section 3.4 is partially inspired from [42, 44].
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Résumé en français

Ce chapitre s’appuie fortement sur les outils numériques développés dans les chapitres précédents
afin de traiter des simulations éléments finis de matériaux hétérogènes où la microstructure est
maillée explicitement.

Un matériau avec une microstructure initialement composée d’une matrice élasto-plastique
et de particules élastiques fragiles est étudié. A partir de la littérature, des critères de rupture sont
proposés afin de modéliser la décohésion et la fragmentation de ces particules lors de la phase
de germination. La décohésion est prédite à partir d’un critère local sur la contrainte normale
critique, tandis que la fragmentation est prédite à partir d’un critère moyenné par inclusion
sur la contrainte principale maximale. Ce dernier fait appel à l’algorithme d’identification de
composantes connexes développé dans ce travail pour distinguer chaque inclusion. La méthode
des fonctions de niveau aide grandement la modélisation des fissures, tandis que l’adaptation de
maillage et la réinitialisation des fonctions de niveau sont utilisées pour suivre la déformation
des surfaces libres ainsi créées. Cette déformation mène à l’apparition progressive de larges
cavités qui finissent par interagir et coalescer.
Les simulations rendues possibles par ces développements et modèles sont validées numérique-
ment en deux dimensions (2D) et trois dimensions (3D) à partir d’une analyse de sensibilité sur
des quantités moyennées. Les variables locales, comme le chemin de propagation de fissure,
sont moins évidentes à valider. L’énergie de rupture devrait être contrôlée à l’aide de modèles
plus avancés, comme les modèles de zone cohésive.

Néanmoins, l’homogénéisation et la comparaison avec des modèles à champ moyen ne
nécessite que des quantités moyennées. Dans la littérature, ces comparaisons considèrent en
général des volumes élémentaires représentatifs assez simples. En particulier, ceux-ci ne pren-
nent généralement pas en compte les formes, tailles et arrangements arbitraires que les particules
et les vides peuvent avoir dans une vraie microstructure. Dans les simulations présentées dans ce
chapitre, des microstructures avec des particules sphériques de tailles et positions aléatoires sont
utilisées. En imposant certaines restrictions quant à ces microstructures et aux types de charge-
ments qui leur sont appliqués, des conditions aux limites périodiques peuvent être implémentées
assez simplement. Les problèmes liés au positionnement et à la numérotation arbitraires des
nœuds dans le cadre éléments finis adaptatif et parallèle utilisé dans ce travail sont ainsi évités.
En outre, l’état de contrainte macroscopique dans le volume élémentaire représentatif peut être
contrôlé.
Ces calculs micromécaniques sur volumes élémentaires représentatifs statistiques révèlent des
phénomènes de rupture complexes, dus à la germination d’une multitude de cavités dans la
microstructure. En conséquence de certaines agglomérations de particules dans le volume élé-
mentaire représentatif, et de leur alignement particulier avec la direction de traction, la plasticité
se localise dans certaines régions. La croissance et la coalescence des cavités est favorisée dans
ces régions, y compris pour des déformations assez faibles. La capacité de charge du matériau
est sévèrement compromise par ces phénomènes de rupture locale de la microstructure.

Les simulations conduites dans ce chapitre ont un coût numérique assez élevé, surtout
en 3D. Celui-ci pourrait être réduit en simplifiant les conditions aux limites, ou en optimisant
l’implémentation parallèle de certains algorithmes, en particulier en ce qui concerne le remaillage.
Toutefois, il serait certainement augmenté drastiquement si des lois constitutives plus complexes
étaient utilisées pour modéliser la microstructure et sa rupture, comme des lois cohésives par



CHAPTER 4. MICROMECHANICAL MODELING OF VOID NUCLEATION 137

exemple.
Par conséquent, il est primordial de montrer que les résultats obtenus avec l’approche numérique
développée dans ce travail diffèrent significativement de ceux obtenus dans la littérature en util-
isant des outils moins avancés et donc moins coûteux. En effet, la plupart des études existantes
considèrent des particules pré-fragmentées, ou remplacent les particules par des vides dans la
microstructure initiale. Des comparaisons entre des simulations prenant en compte les particules
et leur rupture progressive par décohésion et fragmentation, et des simulations avec des particules
pré-fragmentées ou des vides sont effectuées dans ce chapitre. Ces comparaisons montrent que la
croissance des cavités est sous-estimée avec les approches conventionnelles. De plus, la capacité
de charge du matériau est sous-estimée dans la première partie du chemin de chargement, et
surestimée dans la seconde partie. Une propriété remarquable est que ces différences sont plus
ou moins importantes selon le rapport de triaxialité macroscopique.

Pour conclure, la prise en compte de la décohésion et de la fragmentation des particules pen-
dant le chargement est indispensable pour prédire de manière fiable l’influence des procédés de
mise en forme des métaux sur la microstructure de ces derniers. Ces calculs micromécaniques 3D
sont également indispensables pour prédire l’influence des micro-fissures et des cavités présentes
dans la microstructure sur le comportement macroscopique du matériau. Les outils numériques
et les modèles de germination de cavités développés dans ce travail sont très intéressants car
des microstructures complexes peuvent être modélisées, y compris les phénomènes de rupture
complexes en découlant. L’application de ces outils de simulation et modèles à des trajets de
chargement complexes est une piste à explorer.
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Introduction
The mixed weak form of continuum mechanics equations, taking into account all the constitutive
models discussed in previous chapters, is recalled
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Notations are detailed in Subsection 1.2.1. As discussed in Appendix A, this formulation includes
contact terms arising from penalization of the constraint Ph and its derivative Dh with respect to
the velocity field. Remeshing operations, especially at void linkage events, and the detection and
discretization of contact terms are helped by the fact that the void phase is meshed. However,
there is no constitutive model in these elements, apart from contact terms, and both the velocity
and the pressure unknowns are fixed using Dirichlet boundary conditions for nodes that are only
carried by void phase elements.

Regarding solid phases, Hooke’s law for linear isotropic elasticity is already mentioned in
Subsection 1.2.1, together with the additive decomposition between elasticity and plasticity
that is assumed for small deformations. Particles are generally considered as purely elastic and
brittle in the literature [69, 79, 108, 227], though dual phase steels and other materials with
multiple ductile phases have also been studied [71, 228, 229, 230]. Ductile fracture modeling of
these materials calls for crystal plasticity models and appropriate intragranular and intergranular
fracture criteria [231, 232, 233, 234]. The study of these materials and the application of the
mesh adaptation techniques proposed in this work to the discretization of grain boundaries will
be considered in a future work (Chapter 7).

In this chapter, it is assumed that particles debond from the matrix or fail before yielding can
occur [69, 79, 108, 227], and appropriate fracture criteria are investigated to model both phe-
nomena. Experimental results and observations presented in Subsection 1.1.2 indicate that void
nucleation occurs in the neighborhood of particles. They can debond locally and progressively
from the matrix, or experience internal failure [37, 68, 69, 70, 71]. Criteria are hence necessary
to model the initiation and propagation of cracks at the matrix/particle interface, and through the
particles.
These criteria should have the capability to predict that particle fragmentation is favored for
particles elongated in the tensile direction, or a hard matrix, while particle debonding is favored
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for particles elongated perpendicular to the tensile direction [73, 74, 78, 79], or a soft matrix [21,
68, 78, 79]. Particle size is affected by void nucleation in a similar manner, as in a microstructure
with particles of various sizes, larger particles tend to fragment, while smaller particles tend to
debond [74, 77, 78]. Clustering effects are also of interest in the present work as real microstruc-
tures and random particle arrangements will be considered [69, 74, 75, 76].

Regarding the matrix material, a simple von Mises plasticity model with isotropic hardening
is considered. As first applications, simulations performed in the frame of homogenization theory
using Periodic Boundary Conditions (PBCs) are considered.
Note that all constitutive models are discussed and used in the frame of cold forming (i.e., at
room temperature) and quasi-static loading conditions.
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4.1 Macroscopic criteria
It is important to point out that most studies found in the literature do not address crack initiation
and propagation in the Representative Volume Element (RVE). Calculations are hence conducted
with no fracture modeling. The averaged stress and strain fields are used to predict the amount of
failed particles. These criteria do not systematically make the distinction between debonding
and fragmentation. These works aim at improving macroscopic constitutive models, such as
Gurson-like models, by adding void nucleation laws. That is the reason why averaged quantities
are used instead of microscopic ones.
Although the aim of the present work is to model these phenomena in the RVE and pursue
simulations after the onset of void nucleation, the reasoning behind these criteria is of interest.
Therefore, a literature review is first conducted and then discussed in the frame of the present
developments.

4.1.1 Argon criterion
One of the first criteria found in the literature is the so-called Argon criterion, which aims at
predicting particle/matrix interface debonding [235]. An important remark made in this paper is
that a certain limit of elastic energy must be reached before interface debonding can occur, but
this condition is not sufficient [70, 71, 236]. This is the reason why a criterion was proposed to
predict when the interface strength is reached.
A spherical non-deformable particle included in an elastic-ideally plastic matrix and subjected
to pure shearing was considered. The strain and stress fields obtained by Finite Element (FE)
calculations were studied to formulate the following criterion that accounts for a possible
hydrostatic pressure by superposition

Σm + Σ = ΣA ≤ ΣA
c , (4.1)

where Σm and Σ are respectively the macroscopic mean stress and the macroscopic von Mises
equivalent stress. The term ΣA

c is the critical stress at which debonding is predicted. A modi-
fication of this criterion was proposed by the same authors to account for particle shape, it is
expressed as follows

Σm + kAΣ = ΣA ≤ ΣA
c ,

where kA is a coefficient depending on particle shape. This criterion has been used and discussed
by numerous authors [37, 71, 73, 77, 235, 236].

It was proved by experiments and post-mortem Scanning Electron Microscopy (SEM) ob-
servations that the Argon criterion can also be used as a particle fragmentation criterion [77].
The material used was a quenched and tempered steel containing manganese sulfide (MnS)
and titanium nitride (TiN) inclusions. Void nucleation was observed by interface debonding
or fragmentation of TiN inclusions in the case of notched specimens under uniaxial tension.
Empirical values were determined for kA and ΣA

c . Another important remark made in Reference
[37] is that the critical stress ΣA

c will not have the same value for predicting both phenomena.
This will be evidenced more clearly in the case of the Beremin criterion.

4.1.2 Beremin criterion
A few years after the Argon criterion was proposed, the Beremin team studied cavity formation
in an A508 steel containing elongated MnS inclusions during tensile tests [73]. They made post-
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mortem observations on notched specimens of different notch radii, under various temperatures
and loading directions. When the inclusions were elongated in the tensile direction, most
particles broke before interface debonding could occur, while when they were elongated in the
perpendicular direction nucleation occurred by interface debonding between particles and matrix.
Although they evidenced these two different mechanisms, they formulated a unique criterion for
void nucleation

Σ1 + kB
(
Σ − Σ0

)
= ΣB ≤ ΣB

c ,

where Σ1 is the maximum macroscopic principal stress (Σ1 ≥ Σ2 ≥ Σ3) and Σ0 is the macroscopic
yield stress. The coefficient kB depends on particle shape and loading direction. Calibration of
this coefficient is quite difficult, though closed-form expressions can be found for some special
cases in Reference [37].

Experiments at different temperatures led the Beremin team to remove the yield stress from
the equivalent stress to make their criterion temperature-independent. However, when omitting
this operation, it is proved in Reference [73] that the Beremin criterion is equal to the Argon one
in the case of uniaxial tension. Although this remark proves that these two criteria have a similar
nature, it is important to remind that the kB coefficient and the critical stress ΣB

c defined in the
Beremin criterion are different in definition as in observation from the ones defined in the Argon
criterion [37, 71].
Moreover, the Beremin team identified two different values of the critical stress ΣB

c for predicting
void nucleation depending on loading direction, namely one value corresponding to the onset
of interface debonding and the other one to particle fragmentation. This may be limiting for
applications to non proportional loading paths, where the loading direction can vary. Examples
of use of the Beremin criterion can be found in several studies [37, 70, 71, 73, 78, 236].

4.1.3 Landron criterion
In a recent study of the micromechanisms of damage in dual phase steels using advanced
observation technologies like X-ray Computed Tomography (CT) [71], a new criterion based
on the Argon one was proposed [228]. The experiments consisted in in situ tensile tests under
different stress triaxialities. This idea of using specimens with different notch radii already
appeared in the Beremin paper [73], which mentions that void nucleation is favored by higher
stress triaxiality ratio. The effect of triaxiality was also confirmed in other studies [26, 33, 79,
237].
The first step [71, 228] was to reveal explicitly the triaxiality in the Argon criterion

ΣA = Σm + Σ = Σ (1 + T ) ,

where T =
Σm

Σ
is the stress triaxiality and kA is chosen equal to 1 as in the original Argon

criterion. A work similar to [73] is then performed to include the effect of strain inhomogeneity
between particle and matrix in the criterion. Moreover, based on a study of titanium alloys
presented in Reference [236], this effect can be taken into account by using a local formula for
the stress triaxiality ratio, which accounts for the effect of kinematic hardening X. The latter was
included in the model because it was showed that it affects the local stress triaxiality ratio at the
interface between matrix and particles in dual phase steels [236]. The resulting Landron criterion
is [71, 228]

ΣL = Σ

1 + T
Σ

Σ − X

 ≤ ΣL
c .
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A direct identification with the Argon criterion (Equation (4.1)) leads to kA = kA(Σ, X) =
Σ − X

Σ
.

This reveals the phenomenological nature of the parameter kA, which reminds the parameters
added in the Gurson-Tvergaard-Needleman (GTN) model and its extensions, with respect to
the initial model of Gurson (Subsection 1.2.3). Hence, there is a need for models that take into
account all aspects of ductile fracture, including advanced plasticity and hardening phenomena.

4.1.4 Weibull formula
Another example of method that can be used to improve the previous criteria in order to take into
account important aspects of ductile fracture is the Weibull formula. This formula consists in
adding statistical considerations into a given macroscopic criteria. For instance, in Reference
[21], the authors considered the maximum average principal stress in each particle Σ1,p, and used
a Weibull formula to take into account the effect of particle size

PW(Vp,Σ1,p) = 1 − exp
(
−

Vp

Vu

(
Σ1,p

Σu

)m)
,

where Vp is the volume of the particle. The term Σu corresponds to the critical value of Σ1 for
which 1 − e−1 ≈ 63% of particles of reference size Vu would break. The Weibull modulus m
measures stress dispersion. For instance, a low modulus prevents an overestimation of stress
concentration in particles and an early prediction of fragmentation [68].
When this probability is close to 100%, particle fragmentation is predicted. An experimental
procedure to identify this criterion parameters is presented in Reference [78]. The Weibull
criterion was successfully applied to predict the fragmentation of silicon carbide (SiC) particles
included in a metal matrix composite in Reference [74]. Applications to aluminum and alu-
minum alloy matrix composites with ceramic particles can be found in other studies [21, 68, 238].

Similar Weibull criteria can also be found in the literature for the prediction of interface
debonding. This probabilistic approach is an attempt to avoid the difficulties that appear when
one tries to predict particle failure based on the averaged stress Σ. The difficulties lie in the
calibration of the Weibull modulus m, which actually accounts for size and shape effects on
void nucleation, and, implicitly, any other differences between particles. Hence, a more precise
study of void nucleation prediction considering the local stress field in and around the particle is
necessary.
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4.2 Microscopic criteria
A common aspect of all criteria presented above is that they are stress-based. These criteria
are based on the average stress Σ, and are not suited for the present developments where crack
initiation and propagation has to be predicted and modeled locally in the RVE. In the following,
a study of local stress fields around an inclusion is presented, and then used as a basis for the
development of microscopic void nucleation models.

4.2.1 Lee and Mear analysis
In Reference [79], the authors performed a study of stress concentration in an elastic spheroidal
particle subjected to tension along its three axes. They computed the following variables κI and
κp by FE calculations

κI =
1
S

max
Γp

σn,

κp =
1
S

max
Ωp

σ1,

where S is the stress applied along the z direction, which corresponds to the particle’s elongation
direction, Ωp the particle, and Γp = ∂Ωp. As shown in Figure 4.1, an inferior remote stress T is
applied along both other directions. The normal (microscopic) stress at the interface is noted σn

and the maximum (microscopic) principal stress σ1.

 

S 

T 

T 

C 

y 

z 

x 

Figure 4.1 – Spheroidal particle model used by Lee and Mear [79].

This study reveals that for an elastic-plastic matrix, the stress field is not uniform. Although
the critical value for κp is always reached at the outer edge C indicated in Figure 4.1, there is
no similar rule for κI. The interfacial normal stress reaches its maximum in different points
depending on particle aspect ratio (it will be at the pole for a very elongated particle, and in a
larger area around the pole for a spherical particle).
Moreover, calculations reveal that the stress field is more or less uniform in the disk corre-
sponding to the circle C. This result indicates that particle fragmentation is likely to occur
instantaneously for the whole particle. On the other hand, the significant variations of the stress
field on the interface justifies the progressive nature of interface debonding, the critical value
being met at one point at a given time.

As a conclusion, criteria based on the maximum principal stress averaged per particle seem
to be appropriate to model particle fragmentation, and this phenomenon can be considered as
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instantaneous. Regarding particle debonding, it has to be considered locally at each point of the
interface, as it is a progressive phenomenon. These conclusions apply only for particles of nearly
spheroidal shape, and more complex criteria will certainly have to be studied for materials with
more complex microstructure.

4.2.2 Local criteria
Simple criteria to model void nucleation can be deduced from those implicitly used by the
authors of Reference [79] in their study. To model particle fragmentation, they considered the
maximum principal stress σ1 and studied the points or areas where it reaches its critical values.
Regarding particle/matrix interface debonding, they considered the normal stress at the interface.
These two criteria have been used together to predict void nucleation in Reference [69], where
they were successfully compared with experimental results of a copper matrix containing tung-
sten (W) inclusions. In Reference [70], the first criterion was used to predict both modes of void
nucleation, but the calculations made in Reference [79] show that the point of critical maximum
principal stress is not generally located where interface debonding will start. In the case of
Reference [79], it would mean that debonding first occurs at the outer edge C (Figure 4.1), which
is not consistent with observations.

In Reference [239], an improved version of the debonding criterion was proposed. If a point
of the interface is submitted to a shear stress σt, then a negative normal stress σn (assuming the
normal is outgoing with respect to the particle) will make debonding difficult, whereas a positive
normal stress will favor it. This reasoning led to the following criterion

σn + kF |σt| = σF ≤ σF
c .

The choice of linear combination was verified on a fiber reinforced composite during uniaxial
tensile tests with various orientations. A description of the experimental procedure used to
identify the parameters kF and σF

c can be found in Reference [239]. An application of this
criterion to a polyester matrix composite with glass fibers and a metal matrix composite with
SiC inclusions can be found in Reference [74]. Both materials were observed by means of SEM
during tensile tests to verify the criterion’s efficiency.
Basing the criterion on the normal stress at the interface to predict debonding has already been
justified [69, 70, 79]. However, the superposition of the shear stress has yet to be investigated.

This superposition of the two stresses reminds what is known as Cohesive Zone Models
(CZMs) [184]. In these methods, a nodal force or normal stress criterion is used as a trigger to
insert so-called cohesive elements at the interface. These elements have zero volume initially,
and their opening is ruled by a traction-separation law, which takes into account both normal and
shear stress. Applications of these methods to particle debonding can be found in the literature
[37, 237, 238].
These approaches and the use of the shear stress have been implemented but are not considered
in the present work due to the difficulty of identifying the additional material properties at the
microscale. However, as discussed in Chapter 7, this problem could be revisited in the future
thanks to the procedure presented in Chapter 6.
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4.3 Proposed models
Based on the preceding literature review, two distinct criteria are proposed to predict particle
debonding and fragmentation. The debonding criterion is no other than the one proposed by Lee
and Mear [79]

σn ≤ σ
D
c , (4.2)

where the normal stress σn at the interface can be computed easily from the Level-Set (LS)
function φp associated with particles

n =
∇φp

||φp||2
, σn = ntσn.

When the critical value σD
c is reached, the numerical method presented in Section 2.6 is applied.

In particular, the geometry used for the filter LS function φ f is a sphere centered on the point
where σD

c was reached, and with radius the length `D. This criterion hence introduces one
additional material parameter σD

c and one numerical parameter `D.
As detailed in Section 2.6, the LS functions associated with the two crack faces φp and φp + εl are
meshed only in the region where φ f is positive. The LS functions and the numerical parameters
are illustrated in Figure 4.2(a). Then, the LS function φv associated to the void phase and the LS
function φm associated to the matrix are modified as follows

φv = max
(
φ̃v,min(−φp, φp + εl, φ f )

)
, φm = min(φ̃m,−φv), (4.3)

where φ̃v and φ̃m are the initial LS functions, before nucleation. Consequently, the small volume
(due to the artificial thickness εl) of the crack is added to the void phase, and removed from the
matrix phase, leading to a small loss of volume that will be investigated in Section 4.5. After this
modification of the LS functions, the mesh is adapted, and the microstructure is modified due to
the new crack geometry.

Particle fragmentation modeling requires a nonlocal criterion, because it is considered as
instantaneous. This criterion is based on the particle-wise average maximum principal stress

1∫
Ωpi
χ(σ1)

∫
Ωpi

σ1χ(σ1) = σ
pi
1 ≤ σ

F
c , (4.4)

where χ(x) =

{
1 , x > 0
0 , x ≤ 0 , and Ωpi the volume occupied by particle i. This distinction

between particles is obtained thanks to the Connected Components (CCs) identification algorithm
presented in Section 3.3. This fragmentation criterion is also inspired from the Lee and Mear
analysis, but the particularity is that the crack position and orientation remain to be defined. First,
the position of the crack is given by the point

Gpi =
1∫

Ωpi
σ1χ(σ1)

∫
Ωpi

σ1χ(σ1) x . (4.5)

In the present first order FE context, σ1 is computed by diagonalization of σ, which is defined
element-wise. The coordinates x in Equation (4.5) are hence the coordinates of the barycenter of
each element. The elements with zero or negative maximum principal stress are not considered
in order to ignore the parts of the inclusion that are under compression, and hence do not carry
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any tensile load. Fragmentation is not predicted if Gpi does not belong to an element of Ωpi with
positive σ1.
The first principal direction (the eigenvector associated to the eigenvalue σ1) is chosen as the
normal vector to the fracture plane. The LS function to this plane φpl defines the LS functions
associated with the two crack faces φpl −

εl

2
and φpl +

εl

2
, while the filter LS function is φpi .

The latter is constructed by combining the LS function to inclusions φp and the CC identifiers.
Thanks to these LS functions, particle fragmentation can be triggered by modifying the LS
functions to voids φ̃v and inclusions φ̃p

φv = max
(
φ̃v,min(−(φpl −

εl

2
), φpl +

εl

2
, φpi)

)
, φp = min(φ̃p,−φv). (4.6)

In practice, in order to make sure that the inclusion is totally broken in two, and that the inserted
crack is penny-shaped with sharp edges in three dimensions (3D), and two crack tips in two
dimensions (2D), the LS function φpi is corrected to φpi +`

F . This numerical parameter `F has the
consequence that the LS function to the matrix phase is also affected by particle fragmentation
(φm = min(φ̃m,−φv)).
This is illustrated in Figure 4.2(b). Thus, particle fragmentation leads to crack tips in the matrix
phase, which has been observed for some materials and loading configurations where cracks
propagate simultaneously in the matrix and the particles. However, in most situations, fragmen-
tation is restricted to the particle, hence a very small `F should be used. This raises numerical
difficulties since mesh size has to be inferior to `F . An improved crack insertion technique is
considered in Chapter 7.

(a) (b)

ϵl

ϵl

ϕf

ϕp + ϵl

ϕp

ϕpi + ϵpl

-(ϕpl + ϵl/2)

ϕpl - ϵl/2

lD

lF

void/crack

matrix

particle

Figure 4.2 – LS functions and numerical parameters used for void nucleation modeling by: (a)
particle debonding, (b) particle fragmentation.

As a conclusion, two fracture criteria based on microscopic stresses are formulated in this
section. Debonding is predicted based on the normal stress at the interface, and leads to a
crack at a portion of the matrix/particles interface. This model adds two parameters σD

c and
`D. Fragmentation is predicted based on the average maximum principal stress per particle, and
leads to a crack across a whole particle. This model also adds two parameters σF

c and `F . The
numerical method used to insert these cracks through LS functions and mesh adaptation requires
a numerical parameter εl.
All parameters are summarized in Table 4.1. Thanks to these models, the two modes of void
nucleation can be predicted and modeled during RVE simulations. This evaluation of the criteria
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and the subsequent modifications on LS functions and the mesh is performed at the beginning
of each time increment, based on stresses σn obtained at the preceding time increment. A
mechanical solution is then conducted to obtain the new stresses σn+1, resulting in a weak
coupling between the nucleation models and balance equations.

criterion material parameter(s) numerical parameter(s)
debonding σD

c (MPa) `D (µm), εl (µm)
fragmentation σF

c (MPa) `F (µm), εl (µm)

Table 4.1 – Numerical and material parameters for the void nucleation criteria.
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4.4 Boundary conditions and stress state control

4.4.1 Choice of boundary conditions

In Section 1.2, various possibilities were listed regarding boundary conditions for RVE calcu-
lations. In addition, the numerical validation framework based on Digital Volume Correlation
(DVC) measurements presented in Chapter 6 should also be considered. It is disregarded in this
section as it can only be applied to small specimens. Thus, it could be used to experimentally
validate and calibrate microscopic models, but an alternative is necessary to exploit these models
in industrial applications. Direct Numerical Simulation (DNS) is clearly too computationally
expensive and cannot be applied in the case of meter-scale metallic structures such as ingots or
industrial parts in general.
Homogenization schemes are an interesting possibility. An embedded cell technique would allow
to mesh the microstructure only in some Region Of Interest (ROI) of the structure, while using
a macroscopic constitutive model in the rest of the structure. Using a self-consistent scheme,
material properties for the latter would be identified as a result of the computation. Such scheme
would be really interesting for industrial applications, but some technical difficulties arise, such
as non physical localization phenomena at the transition zone between the homogeneous material
and the RVE.
Simpler approaches are hence considered. Taylor-Voigt Boundary Conditions (TVBCs) and
Hill-Reuss Boundary Conditions (HRBCs) are likely to lead to large errors regarding void
coalescence, as linear strain or stress fields are imposed in the RVE. The same remark applies for
Kinematic Uniform Boundary Conditions (KUBCs) and Static Uniform Boundary Conditions
(SUBCs), but only at RVE boundaries. It can be assumed that very large RVEs would be neces-
sary to reduce the influence of these boundary effects. Therefore, PBCs are considered.

The main difficulty raised by PBCs consists in applying constraints between unknowns
located on opposite faces of the RVE. In particular, the use of distributed computing and mesh
adaptation randomize the positioning and numbering of mesh nodes. However, as mentioned
in Subsection 1.2.2.6, under some assumptions, the implementation of PBCs can be simplified.
Restricting the 2D (resp. 3D) RVE to symmetric microstructures, only one fourth (resp. one
eighth) of the RVE has to be simulated, with symmetry boundary conditions on two (resp. three)
of the faces. The velocities of the two (resp. three) remaining faces are to be fixed to normal
velocities, so that all faces of the RVE are constrained to remain planar.
Opposed to KUBCs, the tangential velocities at RVE boundaries are not constrained, thus
localization and void coalescence are possible. Although the use of symmetric microstructures
may have an influence on results, this setting still allows to access any stress state. An example
of RVE with these geometrical restrictions is given in Figure 4.3. The whole RVE (in light color)
is not meshed, but only the highlighted part, thanks to symmetry boundary conditions. Loading
is not represented in this figure as it is described more thoroughly in the next paragraph.

4.4.2 Stress state control

Experimental evidence and existing damage models suggest that at fixed temperature and pressure
conditions, damage change is mainly driven by plastic strain and stress state [37, 38]. In order
to obtain relevant results for analysis, it is important to perform simulations at a constant stress
state, or at a stress state that corresponds to a targeted application, and then measure damage
change with respect to plastic strain. For instance, in the case of metal forming, the stress state
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Figure 4.3 – Example of periodic microstructure with symmetries that simplify the implementa-
tion of PBCs. Thanks to symmetry boundary conditions, the part in light color is not meshed
(loading must also feature these symmetries).

at a critical point could be measured during the whole loading path, and then RVE calculations
could provide quantitative information on how the experimentally observed macroscopic plastic
strains would affect the microstructure for this stress state.
To identify a stress state, definitions of the three invariants of the macroscopic stress tensor Σ

and its deviatoric part Σ′ have to be reminded (Subsection 1.2.3)

Σm =
tr (Σ)

3
,

Σ =

√
3
2

Σ′i jΣ
′
i j =

√
1
2

(
(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2),

J3 = det(Σ′),

(4.7)

where Σm is the macroscopic mean stress, Σ the macroscopic von Mises equivalent stress, Σi the
macroscopic principal stresses, and J3 the third invariant of the deviatoric stress tensor. The first
two invariants Σm and Σ appear in the definition of the macroscopic stress triaxiality ratio η

η =
Σm

Σ
, (4.8)

and the third invariant appears in the definition of the macroscopic normalized Lode angle θ

θ = 1 −
2
π

arccos
(
27
2

J3

Σ
3

)
. (4.9)
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A detailed presentation of η and θ and their values for some widely used specimen geometries
can be found in Reference [240]. In particular, axisymmetric compression is identified by θ = −1,
while axisymmetric tension is identified by θ = 1. A plane stress setting yields θ = 0. The stress
triaxiality ratio can then favor the situation already set by the normalized Lode angle. A triaxiality

ratio�
1
3

will favor tension with increasing tensile stresses in the directions perpendicular to

the loading direction, while a triaxiality ratio � −
1
3

will favor compression with increasing
compressive stresses in the directions perpendicular to the loading direction. The remaining

range between −
1
3

and
1
3

corresponds to combined compression-shear or tension-shear situations

if θ = ±1, and pure shear if θ = 0.
All these settings are interesting as they can be met locally in various material forming processes,
and no model existing in the literature succeeds in predicting damage change for any θ and any η
[240, 241]. RVE calculations with more and more accurate microscopic models are hoped to
give some clues on how to build such a model.

In the present framework, the degrees of freedom in 3D are the three normal velocities applied
to the three faces of the domain that are not subjected to symmetry conditions. As mentioned
above, the goal is to use these three degrees of freedom to reproduce loading conditions at a point
of an industrial part during a forming process. These conditions will generally be computed
using a macroscopic FE simulation at the scale of the part, or measured experimentally.
Because damage is mainly influenced by the plastic strain and the stress state, the quantities of
interest to be computed or measured are the macroscopic strain rate Eα in the loading direction,
and the stress state characterized by η. In order to simplify the problem, the normalized Lode
angle θ is not considered yet and will be assumed to be equal to ±1 (i.e., axisymmetric tension or
compression).
First, the velocity vα of the upper face of the domain is fixed in order to obtain constant elongation
rate Eα. Second, the two remaining velocities are fixed to the same value vβ in order to set the
normalized Lode angle θ to ±1. This velocity vβ is then the only remaining degree of freedom.
Note that there would be two degrees of freedom if an arbitrary θ was considered. This is
summarized in Figure 4.4, where the velocities in red are fixed to the same predefined value, and
the velocities in blue have the same unknown value.

This unknown value is found using a linear search algorithm where the objective is to yield
a desired η. This algorithm is quite costly as a significant number of iterations (up to 20)
is necessary to reach an acceptable approximation of η at the beginning of the simulations.
Although the obtained solution can be used as an initial guess for the following time increments,
requiring only up to 2 linear search iterations, any fracture event in the RVE induces major
changes that increase momentarily the number of iterations.
Improving this linear search algorithm to reduce this significant computational cost will be
considered in the future. Generalizing it to 2 degrees of freedom would certainly be also
interesting in order to address a wider range of stress states with varying θ (Chapter 7). Note that
in 2D, plane strains are assumed, so that θ is free and η is fixed using the linear search algorithm.
Table 4.2 sums up the two settings used in this work. In both settings, vα is a predefined constant
velocity, and vβ is computed by the line search procedure in order to reach a desired triaxiality
ratio. Note that vβ should never be higher than vα in magnitude.
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(a) (b)

vα

vβ

vα

vβ vβ

vβ
vβ

vβ

vα

vα

Figure 4.4 – RVE under axisymmetric tension in: (a) 2D, (b) 3D. Thanks to symmetry boundary
conditions, the part in light color is not meshed.

axisymmetric
tension
compression plane strain

tension
compression

Ė

 vβ 0 0
0 vα 0
0 0 vβ


 vβ 0 0

0 vα 0
0 0 0


θ

+1, vα > 0
−1, vα < 0 free

η user-defined user-defined

Table 4.2 – Macroscopic strain rate Ė and macroscopic normalized Lode angle θ for the two
stress states imposed in RVE calculations.

4.4.3 Consequences on the fracture criteria
The use of PBCs is not without consequences regarding fracture modeling. Because it is local,
the debonding criterion is not affected. However, due to its non local nature, the fragmentation
criterion should consider the fact that symmetry boundary conditions are used at some RVE
boundaries, while periodicity is applied at the remaining ones. This is quite complex to im-
plement, especially in a distributed computing framework (the implementation of both criteria
already being quite technical). To avoid this difficulty, particles are placed at a certain distance
from RVE boundaries. This ensures that the fragmentation criterion does not require any special
treatment due to the choice of boundary conditions.

Void coalescence may also lead to numerical difficulties due to these PBCs. Plasticity may
localize in the ligament between a void and the boundary of the RVE, leading to its necking.
This is illustrated in Figure 4.5. When elements in the intervoid ligament become degenerated,
the mesh adaptation technique diffuses the ligament, hence naturally modeling void linkage.
This is not possible at RVE boundaries, because the boundary of the domain does not belong to
the void phase. Thus, elements are significantly stretched, leading to a numerical issue. This is
solved by setting the LS function to the void phase to zero (φv = 0) for boundary nodes that are
neighboring a node of ∂Ωv. Since such situation can only arise when the topology of the mesh is
modified, this treatment is applied after each remeshing operation.
The result is shown in Figure 4.5. Because this treatment is applied across an edge of the mesh,
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it is likely to be mesh dependent. Its effect can however be assumed negligible, because for large
RVEs failure will be mainly driven by the nucleation and coalescence of voids inside the RVE.

without 
treatment

with 
treatment

Figure 4.5 – Mesh of a microstructure of voids with multiple purely plasticity-driven void
coalescence and linkage events. Remeshing diffuses well the intervoid ligament when it is
between voids, but a numerical issue (outlined in red) arises for ligaments between a void and
the boundary of the RVE. This is corrected with the numerical treatment.
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4.5 Results
In the following, the two void nucleation models presented in this section are first validated, and
then used to study various aspects of ductile fracture. This study focuses on the influence of
particles and the subsequent failure mechanisms. Regarding the matrix material, it is modeled
using a simple rate-independent isotropic hardening model, based on a power law [242]

σ0(εpl) = σy + K
(
εpl

)n
, (4.10)

where σy is the yield stress, K the plastic consistency and n the hardening exponent. This
hardening law is a parameter of the model and could be replaced by any other local plasticity
model, including rate-dependent plasticity. All material parameters E, ν, σy, K and n are defined
element-wise, and are discontinuous because multiple phases are present in the domain.
Simulations are also carried out to show the interest of using an advanced computational fracture
mechanics approach, especially at large plastic strain.

4.5.1 Numerical ingredients
Because multiple numerical tools were developed in the previous chapters, it is important to
point out which of them are used in this section, and how.
First, the microstructures used in this section are not extracted from X-ray images, thus no image
processing technique is used (Section 3.4). The LS functions associated with the particles and/or
voids of the initial microstructure are computed analytically.
However, the initial mesh is generated using the edge splitting algorithm presented in Section
2.1, and the volume-conserving mesh adaptation algorithm detailed in Section 2.2, coupled to the
curvature-based error estimator described in Section 3.1. In order to reach large plastic strains,
simulations rely extensively on the mesh motion and transport algorithms presented in Section
2.3, and the LS reinitialization procedure introduced in Section 3.2.
The fracture criteria described in this section require the identification of each particle with a
single identifier (Section 3.3) and the modeling of cracks (Section 2.6).
The computational contact mechanics methodology introduced in Appendix A is used, but due to
its limitations, it is not used to its full extent. In particular, the Lagrange multipliers are omitted,
so that only penalization terms with a coefficient ρc = 1 are accounted for. The mesh adaptation
step that should be triggered before each mechanical solution to ensure contact detection is also
omitted. Instead, it is assumed that because the mesh is regularly being adapted due to the mesh
motion algorithm, and the fracture criteria, the mesh in the void phase remains of good quality
throughout the simulation.

Thanks to all these numerical tools, simulations of complex microstructures with multiple
particle and void clusters are possible. Because the subsequent complex fracture events are
likely to localize, some parts of the microstructure may totally fail while other parts still have
a significant load carrying capacity. In particular, some parts of the microstructure may totally
relax before the end of the simulation, thus authorizing numerically problematic rigid body
modes (e.g., a fully debonded particle).
Due to the choice of boundary conditions, these abnormal solutions can be detected by tagging
CCs (Section 3.3) of the solid phase. At the beginning of the simulation, there will generally be
only one CC, but due to the nucleation of cracks some solid parts may separate totally. A CC
of the solid phase is said to be a rigid body if it does not have at least one node on each of the
following boundaries:
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• either the bottom or the top face of the RVE,

• either the left or the right face of the RVE,

• either the back or the front face of the RVE (only in 3D).

As illustrated in Figure 4.6, these phases are eliminated from the computation and considered as
voids during mechanical solution. However, their volume is not accounted for in the calculation
of the porosity f .

(a) (b)

Figure 4.6 – Elimination of CCs of the solid phase that could lead to rigid body modes during
mechanical solution: (a) initial microstructure with rigid body modes, (b) resulting microstructure
after the numerical treatment.

This treatment is problematic for some non proportional loading paths that could include
compression. To generalize the present numerical framework to such situations, a more robust
contact formulation should be investigated, including an alternative to this treatment of rigid
body modes.

4.5.2 Material
An interesting study on void nucleation can be found in Reference [66], where ductile fracture
of a particle reinforced aluminum alloy was investigated. This material is composed of an
aluminum matrix reinforced with 20% of Zirconia-Silica (ZS) particles. Particle fragmentation
is the dominating void nucleation mechanism, as shown in Figure 4.7. Some voids can be seen
in the initial microstructure in black in Figure 4.7(a) but are neglected in the present study.

In Reference [66], material parameters were identified for the matrix by carrying tensile tests
on purely matrix material specimens, and for the inclusions by using nanoindentation. Some
uncertainties may arise due to the limitations of these identification techniques. First, the forming
process is different for the purely matrix material and the reinforced one, so the behavior of the
matrix may also be different. Second, nanoindentation can only be applied to the inclusions at
the surface of the specimen, hence some differences may apply due to polishing for instance.
Nevertheless, such advanced identification is not commonly found in the literature. In particular,
the fracture properties of the inclusions were also determined and are given in Table 4.3. These
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100μm400
μm

(a) (b)

Figure 4.7 – Tomography images of the particle reinforced aluminum alloy: (a) 3D view of the
initial microstructure, (b) view of a section showing particle fragmentation mechanisms at 4 %
of true plastic strain. Figures reproduced from Reference [66].

properties were determined by comparing X-ray tomography data acquired in situ with RVE
calculations. The latter considered a single inclusion with periodic boundary conditions. The
equivalent plastic strain was identified by measuring the section reduction of the specimen, while
the triaxiality was determined using Bridgman’s formula.
The limitations of this identification methodology are discussed in Chapter 6, and a promising
alternative is proposed. Properties given in Table 4.3 may vary depending on heat treatments and
particle volume fraction [68], but they are assumed constant to allow for comparisons.

Material behavior
Phase E (MPa) ν σy (MPa) K (MPa) n
Matrix 72000 0.33 270 580 0.54
Particles 123000 0.23 ∞

Fracture criteria
Phase σD

c (MPa) `D (µm) σF
c (MPa) `F (µm)

Particles 1060 10 700 10

Table 4.3 – Material parameters for the Al2124 matrix and the ZS particles, including fracture
criteria parameters [66], to which are added the two numerical parameters `D and `F .

For the calculations in this section, statistical RVEs are used. Inclusions are considered as
spherical, with radii distributed according to a normal law of mean 20 µm and standard deviation
5 µm [68].
To generate virtual microstructures, a set of particle radii is first generated based on the given
normal law. The size of the RVE is a user-defined parameter. Particles are consecutively
placed randomly in this RVE, with a safety minimum distance of 8 µm between each other, and
between each of them and the boundary of the RVE. These constraints are important for the
CC identification algorithm on which the particle fragmentation criterion is based (Paragraph
3.4.2.4). When it is not possible to place inclusions anymore without having the volume fraction
exceed the prescribed one, the generation is stopped and the resulting RVE is returned. For 2D
calculations, a surface fraction is imposed, and plane strains are assumed.
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Unless otherwise mentioned, boundary conditions as defined in Section 4.4 are used and the
macroscopic stress triaxiality ratio η is maintained to 0.33.

4.5.3 Numerical validation
To begin with, numerical parameters such as meshing parameters and the time step are chosen
and validated. The time step is dimensionless because all calculations are performed in static
loading conditions, and material constitutive laws are rate-independent. The single-particle
RVE used for numerical validation has a size of 80 µm in 2D, and 55 µm in 3D. The reference
numerical parameters setting uses:

• remesher parameters Qµ = Qσ = 0.05, Vµ = Vσ = 10−3µm3 in 2D and Vµ = Vσ = 10−6µm3

in 3D (Subsection 2.2.2), a mesh motion parameter β = 0.5 (Subsection 2.3.1),

• meshing parameters εh = 12 µm, hcurv = 0.2 µm, hmax = 6 µm, hmin = 2 µm (Section 3.1),

• a crack thickness εl = 0.2 µm (Section 2.6),

• a contact thickness εc = 0.1 µm (Section A.2) (Section 4.3),

• a time step ∆t = 0.001, which is decreased by a factor of two every 20 iterations of the
Newton-Raphson algorithm if convergence was not reached.

The particle has a radius of 20 µm both in 2D and 3D. A sensitivity analysis is conducted by
varying numerical parameters and investigating the influence of this variation on relevant me-
chanical variables.
Remesher parameters only have an influence on volume conservation, which can be assessed by
considering the porosity and its increase during loading. A significant increase indicates that
volume diffusion is negligible, while a stagnation or a decrease is likely to be due to significant
numerical diffusion. Because the present framework relies extensively on remeshing operations,
all parameters that depend on mesh size are expected to have a significant influence.
Results may also be sensitive to the time step, because the discretization of the extra terms
resulting from the Jaumann derivative in Equation (1.7) and the fracture criteria are explicit. Ad-
ditionally, the uncertainty on macroscopic stress triaxiality ratio control is likely to be increased
with large time steps.

For comparisons with mean field models such as the GTN model, only averaged quantities
such as the porosity f and the macroscopic von Mises equivalent stress Σ are of interest. However,
for comparisons with experiments, convergence on local variables is also important. This is
verified based on the maximum normal stress at the matrix/particle interface σn (Equation (4.2))
and the particle-wise average maximum stress σp

1 (Equation (4.4)). The present sensitivity
analysis includes both averaged and local quantities. Sensitivity to mesh size is assessed using a
coarse mesh setting with εh, hcurv, hmax, hmin, εl and εc multiplied by a factor of 2, and a fine mesh
setting with a factor of 0.5. Sensitivity to the time step is assessed using time steps of 0.01 and
0.0001.

4.5.3.1 Particle fragmentation reference results

The results obtained using the reference numerical parameters in 2D and 3D are shown in Figure
4.8 and Figure 4.9.
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(a) Microstructure at different RVE elongations, with particle in red and voids in white.
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(b) Evolution of the particle debonding indicator σn (threshold at 1060 MPa), the particle fragmentation
indicator σp

1 (threshold at 700 MPa), the macroscopic von Mises equivalent stress Σ, and the porosity f .

Figure 4.8 – Reference result in 2D plane strain featuring only particle fragmentation.

As observed in these figures, using the material and fracture criteria parameters given in
Table 4.3, only particle fragmentation is predicted, both in 2D and 3D. This is in agreement with
experimental observations (Figure 4.7(b)). Both σn and σp

1 increase up to values that are close to
the critical thresholds, but the fragmentation threshold is reached first, at nearly 15 % of RVE
elongation in 2D, and at nearly 3 % in 3D.
Regarding the fragmentation crack, The 2D and 3D results are very similar, with a horizontal
fracture plane, which is also in agreement with experimental observations (Figure 4.7(b)). In
3D, because of a smaller RVE size, due to the fact that the particle volume fraction is initially
fixed to 20 %, the plane is already in contact with the RVE boundary at its nucleation. This
is not physical and is linked to the numerical parameter `F , whose influence is investigated in
Paragraph 4.5.3.3.
Additionally, fragmentation cracks could be accompanied with a debonding of the matrix/particle
interface close to the fragmentation crack tip (Figure 1.3(b)). Although this is not the case for
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(a) Microstructure at different RVE elongations, with particle in red and voids in white.
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(b) Evolution of the particle debonding indicator σn (threshold at 1060 MPa), the particle fragmentation
indicator σp

1 (threshold at 700 MPa), the macroscopic von Mises equivalent stress Σ, and the porosity f .

Figure 4.9 – Reference result in 3D featuring only particle fragmentation.

the present material (Figure 4.7(b)), the presence of a quite large part of the fragmentation crack
inside the matrix would prevent this phenomenon both in 2D and 3D. Thus, it will be important
in the future to improve the fragmentation criterion in order to avoid this numerical parameter `F

(Chapter 7).

Regarding the crack thickness parameter εl, its influence cannot be seen directly in Figure
4.8(b) and Figure 4.9(b). Since the fracture criteria are considered at the beginning of each time
increment, the porosity shown in these figures includes both the artificially inserted porosity due
to εl and the porosity due to crack opening.
In order to distinguish the two, the artificial porosity is computed separately during the simu-
lation. It is equal to 0.18 % in 2D and 0.30 % in 3D at the onset of particle fragmentation. It
then decreases because no additional artificial porosity is inserted, while the global void volume
increases due to void growth.
This is a major improvement over previous work at Cemef - MINES ParisTech, where a mesh
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size at least ten times finer was required to reduce the artificial porosity to similar values in 2D
[6]. Moreover, this artificial porosity is negligible when compared to the final porosity, which is
close to 10 % in 2D and 20 % in 3D.

The porosity curves in Figure 4.8(b) and Figure 4.9(b) show no oscillations after the onset
of particle fragmentation, which proves that void volume is well conserved. Hence, remesher
parameters Vµ and Vσ are small enough and well-suited for the present study.
While volume is very well conserved, it is not the case for history variables. This can be observed
by looking at the macroscopic von Mises equivalent stress in Figure 4.8(b) and Figure 4.9(b).
At the onset of particle fragmentation, the load carrying capacity is severely affected, but it is
partially preserved because the fragmentation crack does not entirely cut the RVE into two halves.
Even in 3D, the crack intersects lateral boundaries but not the corners. Due to void growth
and coalescence, the thickness of these regions is progressively reduced and the load carrying
capacity tends to zero. During this process, small jumps can be observed in the macroscopic von
Mises equivalent stress curve (e.g., slightly before 25 % and 30 % of RVE elongation in Figure
4.8(b)).
These are not caused by a fracture event or the treatment of rigid body modes described in
Subsection 4.5.1, as shown in Figure 4.8(a) where the only void is the fragmentation crack. Thus,
these jumps are due to remeshing operations and in particular to numerical diffusion during the
transfer of history variables. Although these jumps are not significant globally, they may have
an influence locally. It will be important to improve the field transfer method in future work
(Chapter 7).

4.5.3.2 Particle fragmentation criterion

Based on the reference result discussed in Paragraph 4.5.3.1, a sensitivity analysis is conducted
in the present paragraph regarding numerical parameters.
In Figure 4.10, it is verified that reference results are converged regarding the onset of particle
fragmentation.

The fact that σp
1 is null for the first loading step both in 2D and 3D is simply due to the fact

that the fragmentation criterion is computed at the beginning of each time increment. This also
explains why at the onset of particle fragmentation the load carrying capacity seems to be lost
progressively.
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Figure 4.10 – Sensitivity of the particle fragmentation indicator σp
1 during loading with respect

to the time step. Note that the scales of the graphs differ from 2D to 3D.
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However, the threshold for particle fragmentation is never reached in the 3D simulation using
the coarse time step. This means that this time step is too large to enable for the modeling of the
competition between the two void nucleation mechanisms. Particle debonding is predicted in
this simulation. It is hence discarded in the remaining of this analysis.
The differences between the curves using the reference and fine time steps are small, especially
in 3D. The measured absolute uncertainty of 1.5 % (2D) and 0.08 % (3D) of RVE elongation
regarding the prediction of particle fragmentation is nevertheless acceptable using the reference
time step.
In Figure 4.11, the influence of this uncertainty on porosity change is assessed (the result using
the coarse time step in 3D is not reported).
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Figure 4.11 – Sensitivity of the porosity during loading with respect to the time step.

No significant influence of the time step on void growth can be observed. The slopes of the
curves obtained using the reference time step correspond well to the slopes obtained using the
fine time step. The main differences are due to the delay regarding the prediction of the onset
of particle fragmentation. The corresponding absolute error on the porosity at 30 % of RVE
elongation is 1.1 % in 2D and 0.1 % in 3D. This is acceptable for the present material with high
porosity, but should be investigated further for industrial materials where the porosity is lower.
The influence of mesh size on the prediction of the onset of particle fragmentation is assessed in
Figure 4.12.

Opposed to simulations with varying time steps, particle fragmentation is predicted in all
these simulations. However, the onset of particle fragmentation is underestimated using coarse
meshing parameters both in 2D and 3D. The absolute uncertainties on RVE elongation at the
onset of particle fragmentation for the reference mesh remain small, namely 0.8 % in 2D and
1.0 % in 3D.
The influence of these uncertainties on void growth is shown in Figure 4.13.

The results are similar to those obtained in the time step sensitivity analysis. Particle frag-
mentation is delayed but this does not affect void growth, as the slopes of the curves correspond
well between the reference result and the result with fine mesh. The absolute uncertainties on the
porosity at 30 % are 0.02 % in 2D and 0.04 % in 3D. The reference results are hence well-suited
for the present material. Moreover, the fact that these uncertainties are very small indicates that
the crack thickness parameter εl has, in the end, a very low influence on the results.

As a conclusion, absolute errors regarding the prediction of the onset of particle fragmentation
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Figure 4.12 – Sensitivity of the particle fragmentation indicator σp
1 during loading with respect

to mesh size.
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Figure 4.13 – Sensitivity of the porosity during loading with respect to mesh size.

close to the percent are obtained using reference numerical parameters. These uncertainties
mainly delay void growth, but do not affect significantly the slope of the porosity change curves.
The absolute uncertainty on the final porosity is hence also close to the percent.
Although these results validate the particle fragmentation criterion, the fact that the onset of
particle fragmentation is systematically delayed with fine numerical parameters remains to be
investigated. With a coarse mesh or time step, an underestimation of stress localization in the
particle would be expected, instead of an overestimation. This is investigated in the case of
particle debonding in Paragraph 4.5.3.6.

4.5.3.3 Particle fragmentation crack extension length `F

As mentioned in Paragraph 4.5.3.1, the numerical implementation of the particle fragmentation
criterion includes a length `F that leads to non physical result. The fragmentation crack is
extended in the matrix material, which does not correspond to experimental observations in
Figure 4.7(b). In this paragraph, 2D and 3D simulations with the reference numerical parameters
but varying `F are conducted to study the influence of this parameter. Results are reported in
Figure 4.14 for the 2D case.
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(a) Microstructures at the onset of particle fragmentation, with particle in red and voids in white.
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(b) Evolution of the macroscopic von Mises equivalent stress Σ and the porosity f .

Figure 4.14 – Sensitivity of the results with respect to the fragmentation crack extension length
`F in 2D plane strain.

There is a significant influence for `F = 10 µm, which shows that with a too large crack
extension length the thickness of the intervoid ligament is severely reduced and void coalescence
is overestimated. This is corrected with smaller lengths both regarding the porosity and the load
carrying capacity of the intervoid ligament (the particle being broken).
This study is extended to 3D in Figure 4.15.
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(a) Microstructures at the onset of particle fragmentation, with particle in red and voids in white.
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Figure 4.15 – Sensitivity of the results with respect to the fragmentation crack extension length
`F in 3D.

In 3D, with the used mesh size, the numerical treatment for void linkage at RVE boundaries
described in Subsection 4.4.3 is triggered even with `F = 2.5 µm. Small void phase elements
are visible at the right boundary of the RVE for `F = 2.5 µm in Figure 4.15(a). This could be
avoided by using a smaller mesh size. However, the macroscopic von Mises equivalent stress
curve in Figure 4.15(b) for the result with `F = 2.5 µm shows that the load carrying capacity is
preserved. Hence, this activation of the numerical treatment for void linkage does not have a
dominant effect.
This is not true for the other two calculations, although void coalescence and linkage with RVE
boundaries is pronounced only after 20 % of RVE elongation with `F = 5 µm.
Therefore, due to a smaller intervoid ligament thickness, the sensitivity to `F is very high in
3D, both regarding the load carrying capacity and the porosity, due to an overestimation of
void coalescence. Although a converged result seems to be obtained in 2D with `F ≤ 5 µm, the
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pictures in Figure 4.14(a) show that plasticity localizes very early in the core of the intervoid
ligament. In particular, there is neither plasticity nor stress localization in the corners of the
particle fragments in these pictures, even using the smallest `F .
As a conclusion, the present sensitivity analysis indicates that the numerical parameter `F should
be exactly zero in order to obtain an accurate and physical modeling of particle fragmentation. It
will hence be necessary to improve the crack insertion method in the future in order to avoid the
use of this parameter (Chapter 7).

4.5.3.4 Particle debonding reference results

For particle debonding to be predicted instead of fragmentation, the particle fragmentation
criterion is deactivated. Debonding is then triggered both in 2D and 3D, but for larger strains, as
shown in Figure 4.16 and Figure 4.17.

While particle fragmentation in Paragraph 4.5.3.1 is predicted at an RVE elongation of nearly
15 % in 2D and 3 % in 3D, particle debonding does not occur until 25 % in 2D and 5 % in 3D.
Note that the competition between fragmentation and debonding is hence tighter in 3D, which
explains why debonding is predicted instead of fragmentation in Paragraph 4.5.3.2 using a too
large time step in 3D.
An important observation is that debonding occurs only in the bottom of the inclusion in the 2D
reference result, while it is observed both in the top and bottom parts in the 3D reference result.
Although this effect is revealed in these simulations only due to the fact that the debonding
criterion is local, the same result would have been obtained if particle fragmentation had been
considered for two particles in a symmetric microstructure. Depending on numerical errors, one
particle or the other would have fragmented (or both), with no possibility to obtain a converged
result. Such perfectly symmetric results cannot be found in nature, as residual stresses and
nanoscopic defects are likely to favor one crack propagation pattern or the other. An application
to a random microstructure is presented in Paragraph 4.5.3.7 to verify that convergence can be
obtained regarding the crack propagation path.

An interesting study is to compare the effect of particle debonding on the load carrying
capacity to the effect of particle fragmentation. For instance, in 3D, the macroscopic von Mises
equivalent stress curve in Figure 4.17(b) can be compared to that in Figure 4.15(b) using a
particle fragmentation crack extension length `F = 2.5 µm. The two curves are very similar,
regarding the beginning and the end.
However, particle fragmentation leads to a more severe and instantaneous drop of the load
carrying capacity (Σ ≈ 250 MPa at 3 % of RVE elongation) while this is less significant and more
progressive in the case of debonding (Σ ≈ 300 MPa at 5 % of RVE elongation). Void growth
is also slowed down in the case of debonding, as the porosity reaches 10 % at 50 % of RVE
elongation (Figure 4.17(b)), while this occurs at only 30 % of RVE elongation (Figure 4.15(b))
in the particle fragmentation case with `F = 2.5 µm. Thus, while particle fragmentation leads to
an instantaneous void nucleation mechanism, particle debonding is more progressive.
This effect is not necessarily due to the fact that debonding cracks may still be propagating at the
onset of void coalescence. This is the case in the 2D simulation, which can be seen for instance
between 30 % and 50 % of RVE elongation in Figure 4.16(a), where necking is clearly visible in
the ligament between the void and lateral boundaries, but debonding is still going on. Multiple
drops of the macroscopic von Mises equivalent stress curve are also visible in Figure 4.16(b).
However, it is not true for the 3D simulation, as only one void nucleation mechanism appears
clearly in Figure 4.17(b). Debonding cracks are propagating during the whole simulation (Figure
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(a) Microstructure at different RVE elongations, with particle in red and voids in white.
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Figure 4.16 – Reference result in 2D plane strain, featuring only particle debonding, the frag-
mentation criterion being deactivated.
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(a) Microstructure at different RVE elongations, with particle in red and voids in white.
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(b) Evolution of the particle debonding indicator σn (threshold at 1060 MPa), the macroscopic von Mises
equivalent stress Σ, and the porosity f .

Figure 4.17 – Reference result in 3D featuring only particle debonding, the fragmentation
criterion being deactivated.

4.17(a)), but only the first debonding event at 5 % of RVE elongation affects clearly the load
carrying capacity. Later debonding cracks propagate along the lateral boundaries of the particle.
Although these cracks do not affect the load carrying capacity in the present case, their effect
cannot be neglected as it would certainly be very important for non proportional loading paths
with varying loading direction.

4.5.3.5 Particle debonding criterion

Simulations with deactivated particle fragmentation criterion are numerically validated in this
paragraph. First, the time step is varied (Figure 4.18).

The absolute errors on the onset of particle debonding using the reference time step are 5.8 %
in 2D and 1.8 % in 3D. While the 3D result is acceptable, the error is quite high for the 2D one.
It is important to check the influence of this error on porosity change (Figure 4.19).
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Figure 4.18 – Sensitivity of the particle debonding indicator σn during loading with respect to
the time step.
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Figure 4.19 – Sensitivity of the porosity during loading with respect to the time step.

The same remarks as for particle fragmentation apply. In particular, the delay regarding
the onset of void nucleation does not seem to affect void growth, as the slopes of the porosity
change curves correspond for all used time steps. The absolute error on the porosity at 100 % of
RVE elongation in 2D using the reference time step is 1.7 %. It is 0.7 % in 3D at 50 % of RVE
elongation. These results validate the use of the reference time step for further FE analysis.
The dependence on mesh size is assessed in Figure 4.20.

The absolute uncertainties regarding the prediction of the onset of particle debonding using
the reference mesh are very low both in 2D (0.2 %) and 3D (0.01 %). However, porosity change
curves in Figure 4.21 show that the 3D results may be influenced by mesh size more significantly
than 2D ones.

A possible explanation is the sensitivity of the particle debonding site with respect to
numerical parameters. While a good convergence is obtained regarding the particle debonding
indicator, the latter reaches values very close to the critical threshold at multiple points of the
interface. The debonding of one of these points instead of the other is purely linked to numerical
errors. This effect is illustrated in Figure 4.22, and investigated further in Paragraph 4.5.3.7.

The results with coarse meshes either underestimate stress localization (2D), especially at
lateral boundaries of the particle, or overestimate void coalescence (3D) due to a small number
of elements between the particle and lateral RVE boundaries. This explains the quite large
difference between the results obtained using coarse meshes and the other results in Figure 4.21.
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Figure 4.20 – Sensitivity of the particle debonding indicator σn during loading with respect to
mesh size.
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Figure 4.21 – Sensitivity of the porosity during loading with respect to mesh size.

The small difference between the reference and fine results in 2D in Figure 4.21(a) is explained
by the fact that debonding occurs at only one side of the particle in both simulations. This is
not the case in 3D as debonding occurs at both sides using the reference meshing settings. This
explains the difference observed regarding porosity change in Figure 4.22. In Paragraph 4.5.3.7,
it is verified whether this has an effect on the prediction of the crack propagation path for random
microstructures.

4.5.3.6 Delay of void nucleation using fine numerical parameters

An important remark regarding the void nucleation prediction is that it is systematically delayed
using finer numerical parameters (time step and mesh size). This result is quite surprising be-
cause the use of explicit fracture criteria and remeshing operations with a diffusive field transfer
operator would theoretically imply an underestimation of plasticity and stress localization with
coarse meshes.
This surprising result hence suggests that the dominating error is not due to remeshing or the
explicit nature of the fracture criteria, but to the FE solution of balance equations. This is
investigated in Figure 4.23(a,b), where the plastic strain rate and the pressure are shown for the
2D simulation with the fine mesh at 0.5 % of RVE elongation.

It can be seen that because the initial mesh is generated using the fitting procedure followed
by mesh adaptation, some elements with poor quality remain at the matrix/particle interface.
These elements are voluntarily not eliminated in the present work because they do not affect
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Figure 4.22 – Microstructures in 2D plane strain and 3D using various meshing parameters, with
particles in red and voids in white.

severely the conditioning of the linear systems associated with the balance equations (Subsection
2.2.2), and plasticity does not seem to be affected (Figure 4.23(a)).
However, the pressure field (Figure 4.23(b)) seems to be affected by the presence of these
elements. This is verified by conducting FE simulations with an initial mesh of uniform size
2 µm where the particle is initially meshed more regularly using a mesh generation software
[192]. The result is shown in Figure 4.23(c) regarding the pressure field. Although oscillations
are still present, they are reduced.
Regarding the convergence rate, it is significantly improved as simulations with varying time
step predict an onset of particle fragmentation at 3.5 %, 3.59 %, and 3.594 %. The absolute
error is hence also significantly reduced compared to what is measured in Paragraph 4.5.3.5.
This improved convergence rate proves that the onset of particle fragmentation is delayed due
to oscillations of the pressure field at the matrix/particle interface, which seem caused by the
presence of elements of poor quality in this region of the mesh.

Although these oscillations are reduced with meshes of better quality, the fact that they
are still present incites to reconsider the used P1+/P1 scheme for the solution of the balance
equations (Subsection 1.2.1), and not the mesh adaptation method. The fact that oscillations of
the pressure field are still present even with meshes of very high quality (Figure 4.23(c)) will be
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problematic in the future as pressure-dependent plasticity models will be used.
The cause of these oscillations could be attributed to the use of the bubble element for the
velocity approximation. However, the concentration of these oscillations at the interface, and
the fact that neither the velocity field nor its gradient (shown through the plastic strain in Figure
4.23(a)) are affected by these oscillations indicates that the problem could be purely linked to the
approximation of the pressure.
Comparisons between the P1+/P1 element and elements with discontinuous pressure could be
interesting to validate these observations.
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Figure 4.23 – Simulation result in 2D plane strain at 0.5 % of RVE elongation: (a) equivalent
plastic strain rate using the fine meshing setting, (b) pressure field using the fine meshing setting,
(c) pressure field using an initial mesh of uniform size 2 µm where the particle is initially meshed
using a mesh generation software [192]. In (b,c), oscillations of the pressure at the matrix/particle
interface are evidenced by the graphs.

4.5.3.7 Crack propagation path

Using a 2D statistical RVE of size 240 µm, idealistic and symmetric configurations such as in
Figure 4.17 are avoided. Thus, it can be assumed that void nucleation will occur in the same
region of the RVE, and in the same mode, which will not depend on numerical parameters. In
Figure 4.24(a), this 2D microstructure is simulated using the reference time step and meshing pa-
rameters for the result in the top left corner (h2 dt0.001). Going to the right, a time step ten times
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(dt0.0001) and then a hundred times (dt0.00001) smaller is used. Going to the bottom, mesh-
ing parameters εh, hcurv, hmax, hmin, εl and εc twice (h1) and then four times (h0.5) smaller are used.

The changes of the fracture indicators are shown in Figure 4.24(b) for fragmentation (σp
1),

and in Figure 4.24(c) for debonding (σn). All curves are stopped at the first fragmentation or
debonding event, because then it is not possible to know to which particle the values correspond
to. In particular, all curves shown in these figures correspond to the particle in the top right
corner of the microstructure in Figure 4.24(a).
At fixed time step, refining the mesh can have opposite effects. For dt0.001 (in blue in Figure
4.24(b) and Figure 4.24(c)), refining excessively the mesh delays void nucleation (h0.5 dt0.001).
For dt0.0001 (in green in Figure 4.24(b) and Figure 4.24(c)), mesh refinement does not seem to
have a significant effect, so results can be assumed to be converged. For dt0.00001 (in orange
in Figure 4.24(b) and Figure 4.24(c)), mesh refinement leads to an earlier prediction of void
nucleation (h2 dt0.00001).
At fixed mesh size, varying the time step gives very different results. However, the gaps are
reduced with finer meshes. For instance, the gaps between the dotted lines are far smaller than
the gaps between the solid lines in Figure 4.24(b) and Figure 4.24(c).
An important remark is that the curves in Figure 4.24(b) and Figure 4.24(c) seem to be converging
towards the results obtained with time step dt0.0001. However, depending on mesh size, different
results are obtained with this time step. The particle at the top right corner of the microstructure
(Figure 4.24(a)) debonds in h2 dt0.0001, fragments and debonds in h1 dt0.0001, and solely
fragments in h0.5 dt0.0001. The same remark can be made regarding the results on the diagonal
in Figure 4.24(a) (h2 dt0.001, h1 dt0.0001, and h0.5 dt0.00001).
The computational cost increases significantly with finer time steps and mesh sizes. For instance,
the computation times up to 15 % of RVE elongation for the simulations on the diagonal in
Figure 4.24(a) are of 5 min for h2 dt0.001 (6000 elements), 42 min for h1 dt0.0001 (20000
elements), and 44 h for h0.5 dt0.00001 (70000 elements). At least 90 % of this time is devoted to
mechanical solution.

As a conclusion, the present analysis shows that convergence on nucleation modes and
crack propagation path could be obtained, but at the expense of an increased computational
cost. The latter is mainly due to the fact that both the time step and mesh size need to be refined
simultaneously to obtain relevant results. Some uncertainties remain regarding the prediction of
the void nucleation mode. These are not due to the mesh generation and adaptation methodology
used to model cracks, but could come from the oscillations due to the FE scheme mentioned in
Paragraph 4.5.3.6.
The absence of a control of the strain energy release after the first void nucleation event could
also lead to uncertainties regarding the following nucleation events.
The reference numerical parameters are kept in the following as only averaged quantities are
of interest in this section. For validation of the proposed void nucleation criteria using local
comparisons with experiments (Chapter 6), the limitations mentioned in this paragraph will have
to be investigated more thoroughly.

4.5.4 Representative Volume Element size

RVE size can also be considered as a numerical parameter, introduced by the homogenization
scheme. While a too large RVE is not an issue in this section because no macroscopic structure
is considered (though computational cost may be a limitation), a too small RVE will yield results
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Figure 4.24 – Influence of time step and mesh size on void nucleation criteria for a random 2D
microstructure.
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that are not representative of the material. Added to the two 2D RVEs of sizes 80 µm (1 particle,
Figure 4.8(a)) and 240 µm (9 particles, Figure 4.24(a)), and the 3D RVE of size 55 µm (1 particle,
Figure 4.9(a)) already used in previous calculations, additional RVEs are generated. All these
RVEs (except the single-particle RVEs) are shown in Figure 4.25. The bis 2D RVEs are used
further in this analysis.
It is reminded that due to symmetry boundary conditions, the dimensions and numbers of parti-
cles mentioned in Figure 4.25 should be multiplied by 4 in 2D and 8 in 3D. In this figure, only
the meshed region is represented, and abusively called RVE.

2D 720μm
78 particles

3D 110μm
10 particles

3D 165μm
33 particles

3D 220μm
76 particles

2D 720μm bis
78 particles

2D 240μm
9 particles

2D 240μm bis
9 particles

Figure 4.25 – Statistical RVEs used for the validation of RVE size. Particle volume fraction is
close to 20 %, and particle radii follow a normal law of mean 20 µm and standard deviation 5 µm.

Based on the remarks made in Paragraph 4.5.3.7, only averaged quantities are used for this
validation, though full field quantities can be considered qualitatively. Porosity and macroscopic
von Mises equivalent stress curves are presented in Figure 4.26 using the different RVE sizes for
the 2D simulations.

Convergence seems to be obtained in 2D for an RVE of reasonable size, as the RVE with
only 9 particles gives predictions regarding the porosity that are very close to those obtained with
78 particles (Figure 4.26(a)). The elongation for which the RVE reaches its maximum strength
also corresponds well between the two largest 2D RVEs, as well as the associated macroscopic
von Mises equivalent stress (Figure 4.26(b)).
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Figure 4.26 – Influence of RVE size in 2D plane strain.

This is surprising because the number of particles is very different between the two RVEs.
Thus, these results are verified by considering two alternative RVEs with the same particles,
but positioned differently. The two alternative RVEs (bis) are shown in Figure 4.25 and the
subsequent results are shown in Figure 4.27(a) and Figure 4.27(b).
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Figure 4.27 – Influence of RVE size in 2D plane strain with alternative RVEs (bis).

There is no significant sensitivity of the porosity to particle positioning (Figure 4.27(a)), even
for the RVE of size 240 µm. The differences regarding the load carrying capacity are higher but
remain acceptable (Figure 4.27(b)). This convergence on RVE size with a small RVE could be
due to the fact that this material has a high particle volume fraction, and hence a low ductility. It
is promising as the computational time for the calculation with RVE size 240 µm is only a few
minutes. However, the main interest of the present work is 3D simulations. Results for the 3D
simulations with varying RVE size are shown in Figure 4.28.

In 3D, convergence is only obtained regarding the slopes of the porosity change curves in
Figure 4.28(a). There is still a non negligible difference in ductility even with the two largest 3D
RVEs, especially regarding the mechanical response (Figure 4.28(b)). For instance, the largest
RVE is significantly more ductile than smaller ones. Its final porosity rate corresponds to the
final porosity rate of the RVE of size 165 µm only after 20 % of RVE elongation. Hence, void
nucleation mechanisms are still occurring in this RVE at 15 % of RVE elongation, while the
other RVEs have already reached a state where void growth and coalescence are the dominating
damage mechanisms.
This difficulty to converge regarding RVE size in 3D but not in 2D may be linked to higher
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Figure 4.28 – Influence of RVE size in 3D.

clustering effects in 3D. Clusters of particles very close to each other are more likely to be present
in the initial microstructure in 3D. It will be important to improve the statistical RVE generation
tool in order to control the distribution of particles more closely. In fact, this distribution is only
fixed globally in the RVEs shown in Figure 4.25, hence locally distances between particles may
not be representative of the real material shown in Figure 4.7.

An additional difficulty is that the limits in computational resources are reached for the
largest RVEs. The computation time for the four 3D RVEs is reported in Table 4.4.

RVE size (µm) CPUs total mechanical solution (%) mesh adaptation (%)
55 8 42 min 72 24

110 25 11 h 63 28
165 79 46 h 49 46
220 148 61 h 36 52

Table 4.4 – Computation time for the 3D calculations with different RVE sizes.

An important issue for the very large RVEs is that the number of elements increases severely
during the simulation due to the fracture events. Therefore, it is not possible to predict the
optimal number of Central Processing Units (CPUs) at the beginning of the simulation. Instead,
the computation is stopped and restarted when the number of elements per partition becomes too
large. The number of CPUs indicated in Table 4.4 corresponds only to the median (half or twice
this number of CPUs may have been used at some points of the simulation).
Another issue, also linked to distributed computing, is revealed in this table. When the number
of elements increases, the distribution of computation time changes. While for small RVEs
(and number of CPUs), mechanical solution costs more than mesh adaptation, this tendency
is progressively reversed when RVE size increases (and the number of CPUs). This might be
due to the parallel implementation of the interface meshing procedure in Section 2.5, or the
repartitioning/remeshing algorithm implemented in the FE library [125].
All other algorithms developed in this work do not appear in Table 4.4 because they have neg-
ligible cost. These include the computation of the error estimator thanks to Hessian matrix
recovery (Subsection 3.1.3), the reinitialization of LS functions (Section 3.2), the correction of
the transport of history variables (Subsection 2.3.2), and the identification of the inclusions for
the fragmentation criterion (Section 3.3).
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As a conclusion, convergence with respect to RVE size is reached even with small RVEs
in 2D, which is most probably helped by the use of PBCs. Thus, the implementation of these
conditions for more general loading configurations and microstructures would be interesting. In
3D however, the computational cost becomes too large before convergence is reached. While
the parallel efficiency of the mechanical solution relies mainly on the PETSc library [126], the
parallel remeshing technique should be revisited (Chapter 7). For the following simulations, an
RVE size of 240 µm is chosen in 2D, and 165 µm in 3D.

4.5.5 Importance of void nucleation modeling
In the following simulations, the reference numerical parameters chosen in Subsection 4.5.3
are used. It is reminded that using these numerical parameters, converged results are obtained
in terms of averaged quantities, but discussions regarding local phenomena such as the crack
propagation path can be only qualitative. Additionally, unless otherwise mentioned, the triaxiality
ratio η is fixed to 0.33.

4.5.5.1 Two-dimensional analysis

It has been discussed previously that most studies on ductile fracture often disregard the void
nucleation mechanism by considering an initial microstructure where particles are replaced by
voids, or by initially debonded and/or fragmented particles. For the material studied in this
subsection, the dominating void nucleation mechanism is particle fragmentation with fracture
planes that are orthogonal to the tensile direction (Figure 4.7). Comparisons are thus proposed
between:

• the nucleation simulation carried out in Subsection 4.5.4, with a 2D RVE of size 240 µm
(9 particles), taking into account both void nucleation mechanisms;

• a fragmentation simulation with same RVE, but taking into account only the particle
fragmentation mechanism;

• a pre-fragmentation simulation with same RVE size, but initially fragmented particles
instead of modeling void nucleation during the simulation;

• a void simulation with same RVE size, but voids instead of particles.

The four RVEs are shown in Figure 4.29 before and after 15 % of RVE elongation.

One of the voids is very close to the RVE boundary and the numerical treatment for void
linkage at RVE boundaries (Subsection 4.5.1) is already active in the initial state for the void
configuration. This is also the case for two of the fragmentation cracks in the pre-fragmentation
configuration, due to the crack extension length `F .
On the one hand, the load is nearly equivalently shared by all voids in the void and pre-
fragmentation simulations. As a consequence, void growth is nearly homogeneous in the whole
RVE for these two simulations, apart from some void coalescence and linkage events. Thus, the
stress and plasticity localization mechanisms that could take place in some regions of the RVE
before the onset of void coalescence are totally neglected.
On the other hand, plasticity is localized in the top region of the RVE in the pre-fragmentation
and nucleation simulations. The microstructure fails due to the three aligned particles at the top
of the RVE. The stress first decreases significantly due to the failure of the two big particles
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Figure 4.29 – Microstructures before and after 15 % of RVE elongation for the assessment of the
importance of void nucleation modeling in 2D plane strain. Particles are shown in red, and voids
in white.

(≈ 8 % of RVE elongation), and then later a minor decrease is noticed due to the third particle
(≈ 10 % of RVE elongation). In fact, nucleation due to debonding or fragmentation of a particle
leads to a stress localization phenomenon that is likely to trigger further nucleation events in
neighboring particles.
Results with a modeling of nucleation mechanisms (only fragmentation or both) during the
simulation are hence qualitatively very different from results with an initial population of voids
or pre-fragmented particles. A more quantitative idea is given by the porosity change and
macroscopic von Mises equivalent stress change curves in Figure 4.30.

From the point of view of damage (Figure 4.30(a)), the influence of void nucleation modeling
is concentrated in the first part of loading, for an RVE elongation less than 10 %. Void growth has
already started in the pre-fragmentation simulation, while no nucleation is predicted in the nucle-
ation and fragmentation simulations. After significant void growth, this difference decreases and
the nucleation and fragmentation curves progressively join with the pre-fragmentation one. The
void simulation shows a very different damage change as void growth is far lower with respect to
the two other simulations.
These differences are explained when looking at the stress curves in Figure 4.30(b). Due to
the presence of undamaged particles, the nucleation and fragmentation RVEs have an ultimate
strength twice higher than others. Therefore, a significant part of the strain energy is neglected in
simulations that do not consider void nucleation criteria.
The difference between the nucleation and fragmentation simulations is mainly concentrated in
the first nucleation event, which is debonding in the former while it is fragmentation in the latter.
As already mentioned in Paragraph 4.5.3.4, debonding has a less significant effect on the load
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Figure 4.30 – Importance of void nucleation modeling in 2D plane strain.

carrying capacity (at ≈ 8 % of RVE elongation in Figure 4.30(b)). This difference does not seem
to have a significant effect after 20 % of RVE elongation, in the void growth and coalescence
stages.
An important aspect is that while the void and pre-fragmentation simulations show very different
void growth curves, with different slopes, the stress/strain curves correspond quite well. This re-
veals that the difference between penny-shaped voids and spherical voids is not significant under
tensile loading. It may nevertheless have a major influence under different loading conditions,
such as shear. The presence of particle fragments in the pre-fragmentation configuration may
also have a significant influence under such loading conditions.
Additionally, the numerical crack extension length parameter `F may also reduce significantly
the influence of particle fragments in these simulations. This may also certainly explain why the
macroscopic von Mises equivalent stress in the pre-fragmentation result is lower than that in the
void result in Figure 4.30(b).

As a conclusion, this 2D FE analysis shows that while the particle debonding mechanism may
be neglected for the studied material and loading conditions, the fragmentation mechanism has
to be accounted for. In particular, a significant part of the strain energy is neglected if particles
are assumed to be already fragmented in the initial RVE, or if they are replaced by voids.

4.5.5.2 Three-dimensional analysis

This importance of void nucleation modeling is investigated further in 3D with an RVE of
size 165 µm (33 particles), and varying macroscopic stress triaxiality ratio η. For these 3D
simulations, due to a large computational cost, only the two extreme cases are considered,
namely the nucleation and void configurations of Paragraph 4.5.5.1. Results are presented in
Figure 4.31 for the nucleation RVEs and Figure 4.32 for the void RVEs.

First, it can be observed that ductility decreases with higher triaxiality ratios, which is in good
agreement with the theory. Independently of whether particles and void nucleation mechanisms
are taken into account, larger voids and more numerous void coalescence and linkage events are
visible in the results corresponding to η = 0.66. In particular, most voids in the results with η = 0
have regular and nearly spherical shapes, which shows that coalescence is not the dominating
mechanism yet, even at 50 % of RVE elongation.
Although this decrease of ductility is well captured by the void simulations, there are signif-
icant differences between the void and nucleation simulations. These differences seem to be
increased at lower triaxiality ratios. With η = 0.66, void coalescence and linkage have led



CHAPTER 4. MICROMECHANICAL MODELING OF VOID NUCLEATION 179

0%

25%

50%

η=0.00 η=0.33 η=0.66

Figure 4.31 – Particles (red) and voids (white) at different RVE elongations for the 3D nucleation
computations at varying macroscopic stress triaxiality ratio η.
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Figure 4.32 – Voids at different RVE elongations for the 3D void computations at varying
macroscopic stress triaxiality ratio η.
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to the localization of damage in a region of the RVE, while void growth out of this region is
moderate (Figure 4.32). This is not true for the simulation with η = 0, where all voids seem to
have flattened homogeneously in Figure 4.32, while some undamaged particles are still visible
in Figure 4.31 at 50 % of RVE elongation. As a conclusion, these results confirm that early
stress and plasticity localization phenomena due to void nucleation are neglected in the void
simulations. Additionally, the effect of this assumption is increased at low triaxiality ratios.
These effects are investigated further in terms of global porosity and load carrying capacity in
Figure 4.33.
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Figure 4.33 – Importance of void nucleation modeling in 3D.

A remarkable result is that for η = 0, no void growth is observed in the void simulation
(Figure 4.33(a)). Voids only flatten for η = 0 in Figure 4.32, but the overall void volume does
not vary. This effect is a well-known limitation of the Gurson model (Subsection 1.2.3). This
absence of void growth explains that the macroscopic von Mises equivalent stress for η = 0 does
not decrease during the simulation in Figure 4.33(b). However, void flattening in a direction
could have an influence if the loading direction varied.
Moreover, the void growth curves for η = 0 reveal the major influence of the void nucleation
mechanisms. Void growth is observed in the nucleation simulation (Figure 4.33(a)), with a
small loss of load carrying capacity (Figure 4.33(b)). The ultimate strength is also higher due to
the presence of particles, hence a significant part of the strain energy is neglected in the void
configuration.
Note that flattening occurs in the tensile direction, hence no void rotation is observed. This may
not be intuitive for comparisons with experiments. It will be important in the future to study a
more general implementation of PBCs, in order to access and control extra-diagonal components
of the macroscopic strain rate tensor.

At higher triaxiality ratios (Figure 4.33(a)), the differences between the nucleation and void
simulations regarding porosity curves are reduced, as the slope of these curves are similar at large
plastic strain. The macroscopic von Mises equivalent stress curves also show similar changes for
large plastic strain (Figure 4.33(b)).
This is however not true in the first part of loading, before 10 % of RVE elongation. In these
first 10 %, a significant part of the strain energy is still neglected, although this error seems to
decrease when the triaxiality ratio increases. This is explained by the fact that void coalescence
is the dominant damage mechanism at high triaxiality ratio, and not void nucleation. Small drops
in the macroscopic von mises equivalent stress curve in Figure 4.33(b) are only visible for an
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RVE elongation below 15 % when η = 0.66. After 15 % of RVE elongation, the smoothness of
the curve indicates that void nucleation is negligible.

It is important to underline that in all Gurson-type models, void nucleation is considered
based on the porosity, which considers only void volume (and sometimes also particle volume).
Thus, cracks that nucleate but do not open and grow significantly cannot be described with a
Gurson-type model, while their influence on the load carrying capacity may not be negligible. In
fact, even if this influence was negligible for a given monotonic loading, this would most certainly
not be true if the loading direction was then modified, as in most metal forming processes.
The plastic localization zone appears more clearly in Figure 4.34, where plastic strain for the
uniaxial tension configuration is shown.

(a) (b)

Figure 4.34 – Equivalent plastic strain for the 3D computation taking into account nucleation
mechanisms at macroscopic stress triaxiality ratio η = 0.33 and RVE elongation of: (a) 25 %, (b)
50 %.

This figure reveals several fragmentation and debonding cracks at the top of the microstruc-
ture which have merely grown, and are located in a zone with moderate plasticity (in green/blue).
While these voids do not participate in the final fracture of the microstructure, they would most
certainly have an influence if loading was stopped for instance at Figure 4.34(a), and restarted
with a different loading direction. Such calculation is not carried out in the present section due to
the numerical uncertainty on the crack propagation path reported in Paragraph 4.5.3.7. It can
nevertheless be assumed that the load carrying capacity of the material, and its final mechanical
properties, would also be affected by the presence of these microscopic cracks.

Finally, these 3D calculations taking into account the void nucleation mechanisms are
interesting for studying macroscopic yield criteria for ductile materials. For instance, looking at
the nucleation curve for η = 0.33 in Figure 4.33(b), void nucleation is marked by a progressive
loss of load carrying capacity until approximately 10 % of RVE elongation. The macroscopic
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von Mises stress then stays at approximately 300 MPa, until severe plastic localization dominates
in the RVE, marking the onset of void coalescence and the last decrease of load carrying capacity,
up to failure.
The range of RVE elongation between the first failure step (due to nucleation) and the second
one (due to coalescence) is larger for low triaxiality ratios, and smaller for high triaxiality ratios.
While in classical Gurson-type models, the nucleation and coalescence stages are modeled
separately, these results indicate that for high triaxiality ratios this assumption is not valid
anymore, and both phenomena should be accounted for simultaneously in a unified criterion.

4.5.6 Conclusion
The numerical validation carried out in this section has revealed some limitations of the numerical
methods proposed in the present work. In particular, the numerical particle fragmentation crack
extension length should be eliminated, and an alternative to the P1+/P1 scheme used for the
solution of the balance equations should be studied.
Micromechanical models should also be improved, mainly regarding the constitutive model
used for the matrix material, and the modeling of strain energy release at the onset of particle
fragmentation and debonding.
Apart from these limitations, very promising results are obtained. The numerical methods
proposed in the present work enable for simulations after the onset of void coalescence (Figure
4.34). Applications to large and complex 3D RVEs with particles of random size and position
are possible. Multiple void linkage events occur in these RVEs and are captured by the mesh
adaptation procedure (Figure 4.31 and Figure 4.32). The initiation of multiple cracks during
simulations due to particle debonding and fragmentation is also modeled. To the author’s best
knowledge, this is the first time that simulations taking into account all these micromechanisms
at large plastic strains are conducted.

When compared to less advanced approaches where particles and/or nucleation mechanisms
are neglected, significant differences are observed, hence showing the importance of modeling
particles and the subsequent void nucleation mechanisms. It is obvious that these simulation tools
are too costly to be applied directly to model plasticity and mechanical behavior at industrial
scale. For these applications, classical Gurson-type models are now well accepted to be the
most promising approaches. However, these models usually consider the three aspects of void
nucleation, growth, and coalescence mechanisms separately, based on micromechanical or
phenomenological considerations. In order to improve predictions, these assumptions should be
reconsidered.
It is very difficult to engineer materials with given microstructures, for instance with a given
initial arrangement of particles or voids. In numerical methods, however, this is greatly simplified.
Computational approaches also allow to compute accurately relevant mechanical variables and
study relations between them. In the future, the present numerical framework should be used to
assess the capabilities of classical Gurson-type models (Chapter 7), especially regarding non
proportional loading paths. Such comparisons between full field and mean field models should
give insights into the limitations of mean field models, and how they could be improved.



184 CONCLUSION

Conclusion

The present chapter relies extensively on the numerical tools developed in previous chapters
in order to conduct Finite Element (FE) simulations of heterogeneous materials where the mi-
crostructure is meshed explicitly.

A material with a microstructure initially composed of an elastic-plastic matrix and brittle
elastic particles is considered. Based on the literature, fracture criteria are proposed to model the
debonding and fragmentation of these particles. Debonding is predicted based on a local critical
normal stress criterion, while fragmentation is predicted based on a maximum principal stress
criterion averaged by inclusion. The latter uses the Connected Component (CC) identification
algorithm to distinguish each inclusion. The Level-Set (LS) method helps the modeling of cracks,
and mesh adaptation and LS reinitialization are used to track the deformation of the subsequent
free surfaces until they change into large voids that start interacting, coalescing, and finally
linking.
These simulations are validated numerically both in two dimensions (2D) and three dimensions
(3D) regarding averaged quantities, thanks to a sensitivity analysis on numerical parameters.
Local variables, such as the crack propagation path, are more complicated to validate. Strain
energy release should be controlled more carefully, for instance using Cohesive Zone Models
(CZMs).

Nevertheless, only averaged quantities are of interest for homogenization and comparison
with mean field models. In the literature, these comparisons usually consider simple Repre-
sentative Volume Elements (RVEs) that do not account for the arbitrary shapes, sizes, and
arrangements of particles and voids in a real microstructure. In the simulations presented in this
chapter, spherical particles of random sizes and positions are used. With some restrictions on
this microstructure and the loading conditions, Periodic Boundary Conditions (PBCs) can be
implemented very simply, even in a parallel and adaptive numerical framework. The macroscopic
stress state in the RVE can also be controlled.
These micromechanical calculations with statistically generated microstructures feature complex
fracture events, as voids nucleate at multiple critical points in the RVE. Due to local arrange-
ments (clusters) of particles with respect to the tensile direction, plasticity localizes in some
regions and the voids in these regions grow and coalesce early during loading. Consequently, the
microstructure fails, compromising the load carrying capacity of the material.

These computations have a very high cost, especially in 3D. Although this could be reduced
using simpler boundary conditions, and optimizing the parallel implementations, especially
regarding remeshing, it would certainly be increased with more advanced constitutive models
(e.g., CZMs). Thus, it is important to show that the results obtained using the computational
fracture mechanics approach developed in this work differ significantly from what is obtained
using more conventional approaches.
In particular, most studies found in the literature have considered initially pre-fragmented parti-
cles, or initial microstructures with voids instead of particles. Comparisons between simulations
accounting for the particles and their progressive failure during loading and simulations with
pre-fragmented particles, or initial voids, are conducted. These comparisons reveal that void
growth is underestimated with conventional approaches. Moreover, the load carrying capacity of
the material is underestimated at small plastic strains, while it is overestimated at large plastic
strains. An interesting aspect is that these differences are more or less significant depending on
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the macroscopic stress triaxiality ratio.

As a conclusion, 3D micromechanical calculations accounting for particle fragmentation and
debonding during loading are important to predict accurately the influence of metal forming
processes on the microstructure. They are also important in order to predict the influence of
micro-cracks and voids in the microstructure on the macroscopic behavior of the material. The
numerical tools and void nucleation models developed in the present work are very interesting as
complex microstructures and the subsequent fracture events can be accounted for. Applications
to non proportional loading paths are of great interest for future work.
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Micromechanical modeling of void
coalescence

Le savant n’étudie pas la nature
parce que cela est utile ; il l’étudie
parce qu’il y prend plaisir et il y
prend plaisir parce qu’elle est belle.
Si la nature n’était pas belle, elle ne
vaudrait pas la peine d’être connue,
la vie ne vaudrait pas la peine d’être
vécue.

Henri Poincaré

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1 Plasticity driven void coalescence . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2 Plasticity and damage driven void coalescence . . . . . . . . . . . . . . . . . . 192
5.3 Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.4.1 Identification of damage parameters . . . . . . . . . . . . . . . . . . . 197
5.4.2 Effect of intervoid ligament length . . . . . . . . . . . . . . . . . . . . 199
5.4.3 Effect of number of holes . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.4.4 Effect of holes orientation . . . . . . . . . . . . . . . . . . . . . . . . 204
5.4.5 Random arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

187



188 RÉSUMÉ EN FRANÇAIS

Résumé en français

Dans ce chapitre, un matériau modèle avec des trous percés au laser est considéré. La plupart des
modèles analytiques font l’hypothèse d’une coalescence purement causée par une localisation
de la plasticité. Cette hypothèse est également faite dans le chapitre 4. Cependant, de plus
en plus d’auteurs considèrent maintenant des analyses par éléments finis prenant en compte
l’endommagement de la matrice entre les cavités. L’hypothèse sur laquelle ces analyses sont
basées est celle de la présence de cavités de taille inférieure au micromètre, qui germent, croissent
et coalescent dans la matrice entre les cavités, et complexifient ainsi grandement la modélisation
du phénomène de coalescence de cavités.
Par comparaisons entre simulations et expériences de la littérature, il est montré dans ce chapitre
que la croissance des cavités est assez bien décrite avec un simple critère de plasticité de von
Mises pour la matrice. Cela n’est néanmoins vrai que jusqu’à une certaine limite dans le chemin
de chargement, où la matrice rompt quasi-instantanément entre les cavités. Suite à ces compara-
isons, un critère de rupture de la matrice entre cavités est proposé. Un modèle d’endommagement
de Lemaitre est utilisé pour prédire l’initiation de la micro-fissure, et un critère géométrique est
proposé pour prédire son chemin de propagation.
Les résultats obtenus montrent que le critère proposé peut prédire la rupture de la matrice en-
tre cavités à la fois par striction et par cisaillement. Bien que les simulations conduites sous
l’hypothèse de déformations planes diffèrent des expériences, qui elles correspondent à des
contraintes planes, certaines propriétés remarquées dans les expériences sont bien prédites par ce
critère. Par exemple, une perte de ductilité est observée lorsque la distance entre les trous est
diminuée, et lorsque de nombreux trous sont présents dans le matériau, des fissures s’amorcent à
plusieurs endroits. Une propriété remarquable observée dans les simulations est que ces fissures
se propagent d’abord indépendamment, puis coalescent ensemble, menant à une fissure finale en
zig-zag.
De plus, des simulations avec des arrangements aléatoires de trous montrent que la ductilité
est significativement réduite lorsque des arrangements non périodiques sont considérés. Cette
perte de ductilité est causée par une localisation de la plasticité et de l’endommagement au
voisinage d’agglomérations de trous très proches initialement les uns des autres. Par conséquent,
des micro-fissures s’amorcent plus tôt dans ces agglomérations en comparaison avec les cas
périodiques. Cette analyse est d’une importance capitale car la plupart des modèles théoriques
de coalescence de vides ne considèrent que des arrangements périodiques.

Pour poursuivre et valider quantitativement cette étude, il sera important dans le futur de
développer une implémentation en contraintes planes dans le code éléments finis. Alternative-
ment, ces simulations pourraient être conduites en trois dimensions (3D), mais les coûts de
calcul seraient alors très importants, en particulier pour les arrangements avec de nombreux
trous. De telles comparaisons seront néanmoins nécessaires afin de vérifier la validité du critère
d’endommagement de Lemaitre utilisé dans ce chapitre. Afin de modéliser tous les phénomènes
observés dans les expériences, un critère de plasticité plus avancé sera très probablement néces-
saire, en particulier pour des ligaments entre trous très fins où un modèle de plasticité cristalline
d’ordre supérieur devrait être considéré. Un tel modèle s’ajouterait alors à celui de plasticité
poreuse d’ordre supérieur, indispensable pour modéliser l’adoucissement des ligaments entre
trous, non considéré dans ce chapitre.

Pour finir, le modèle de coalescence de cavités discuté dans ce chapitre soulève de grands
défis en ce qui concerne les procédures d’identification des propriétés du matériau à l’échelle
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microscopique. Cela concerne également les critères de germination proposés dans le chapitre
4. En effet, les paramètres des critères de germination ont été extraits d’une étude issue de la
littérature, où ils ont été identifiés à l’aide de calculs sur un volume élémentaire représentatif
avec une seule particule et des conditions aux limites périodiques. L’état de contrainte et de
déformation appliqué à ce volume élémentaire représentatif a été mesuré expérimentalement à
l’échelle macroscopique.
Ainsi, bien que les simulations sur volume élémentaire représentatif proposées dans le chapitre 4
sont plus réalistes, les incertitudes liées aux propriétés matériaux utilisées sont assez grandes.
Pour ce qui est du critère de rupture de la matrice entre cavités, les comparaisons avec des
résultats expérimentaux ont été fortement aidées par le fait que la totalité des éprouvettes utilisées
a pu être maillée, grâce à l’aspect artificiel de la microstructure (trous percés au laser).
Pour des applications 3D, une approche plus générale reste à établir pour la validation des
simulations numériques par rapport aux observations expérimentales. Une telle approche devrait
permettre de ne mailler qu’une petite région des éprouvettes, et inclure une méthodologie pour
déduire les conditions aux limites à appliquer aux bords de cette région maillée. La mesure
automatique des erreurs entre simulations et expériences devrait également être rendue possible.
Ceci fait l’objet du chapitre 6.
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Introduction
Using a simple von Mises plasticity model, void coalescence is observed in the simulations of
Chapter 4, not only at large strains but also at small strains for voids that nucleate early around
particles that are very close to each other. This mechanism is caused by a localization of plasticity,
and a subsequent acceleration of void growth between pairs of voids. These localization and
acceleration mechanisms will mainly be influenced by the initial distance between voids, and the
used hardening law for the matrix material.
At the last stage, when the intervoid ligament has a thickness close to zero, the remesher removes
it from the simulation, due to the relaxation of the volume conservation constraint introduced in
Chapter 2. As detailed in Section 5.1, this coalescence mechanism could be qualified as purely
plasticity-driven.

However, as mentioned in Subsection 1.1.3, recent experimental evidence suggests that coa-
lescence could also be driven by damage at smaller scales. In Section 5.2, a particular attention
is given to recent experimental results suggesting that the last stage of void coalescence, namely
void linkage, can be the result of the nucleation and propagation of micro-cracks across intervoid
ligaments.

A criterion is hence formulated in Section 5.3 to model these micro-cracks. Simulations
are then carried out in Section 5.3 with varying hole arrangements and spacing. Comparisons
between periodic arrangements and random arrangements are conducted to show the errors that
are made when the microstructure is idealized.
Note that all constitutive models are discussed and used in the frame of cold forming (i.e., at
room temperature), and quasi-static loading conditions.
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5.1 Plasticity driven void coalescence
The local von Mises plasticity model used in the present work is close to the one used by
Gurson [33], with the addition of isotropic hardening. However, it is questionable, especially
for use at the microscale. As discussed in Subsection 1.1.3, void growth is characterized by a
low interaction between voids, leading to spherical shapes, while void coalescence is due to
important interactions between neighboring voids, leading to singular shapes.
In particular, void coalescence occurs in two main plastic localization modes that are intervoid
ligaments necking and shear bands [38, 85, 86, 89]. The former leads to a diamond shape, while
the latter leads to void rotation and flattening. A less common void coalescence mode, known as
void collapse or necklace coalescence, has also been observed by some authors for voids that are
very elongated along the tensile direction [37, 88].

Most theoretical studies on void coalescence focus on applying homogenization theory, as
in Gurson’s seminal work (Section 1.2.3). However, instead of considering a single void, the
RVE is a regular array of cylindrical (2D) or spherical (3D) voids aligned at 90°, and plastic
deformation is assumed to be localized in intervoid ligaments (no plastic deformation in the rest
of the domain).
The first example of a result obtained using this approach is the Thomason criterion for coales-
cence by intervoid necking [243]. The matrix is considered as a von Mises material, hardening
and elasticity being neglected as in Gurson’s work. However, the two approaches lead to two
distinct results due to a different choice of RVE. Thomason’s RVE features a cylindrical void
with square basis and a zone with localized plasticity sandwiched between two rigid zones.
Similarly as for the Gurson model, generalizations of the Thomason model to shear band coa-
lescence and more realistic materials both in terms of behavior and geometry (especially void
shape) have been studied in the literature [89, 145, 147, 148, 244, 245]. Attempts to unify the
plasticity criteria of Gurson and Thomason into a single flow rule have been studied recently
[246].

While in the GTN model a phenomenological criterion based on a critical porosity is
used to predict the onset of void coalescence, and the subsequent change in the yield surface,
generalizations of the Thomason criterion introduce criteria for the onset of void coalescence
that are based on microscopic calculations. Plastic flow and porosity change after this onset are
also ruled by microscopically-based criteria. Nonetheless, these models introduce additional
parameters, increasing the complexity of Gurson-like models that already feature significant
numbers of parameters.
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5.2 Plasticity and damage driven void coalescence

Recent experimental evidence suggests that interaction between voids does not only traduce
into plastic localization, but also into the nucleation, growth, and coalescence of a minor void
population [86, 87, 164]. This is illustrated in Figure 5.1.

primary void secondary voids

Figure 5.1 – (a) Voids nucleation, growth and coalescence at the neighborhood of primary and
secondary particles. (b) Fractography of an aluminum alloy showing these two voids populations.
Figure reproduced from Reference [164].

This has led authors to consider micromechanical calculations with RVEs containing a
primary population of voids modeled in the FE mesh of the RVE, and a secondary population
of voids of minor size that are taken into account by using a Gurson-like model for the matrix
material [89, 164, 247, 248]. This requires to introduce a characteristic length scale, in order to
define the scale separation between the two populations and the subsequent size effects.
This length scale is also necessary in order to regularize damage models when they are coupled
to constitutive equations. It is well known that damage localization leads to non-physical and
mesh-dependent solutions, and various regularization methods have been proposed in the litera-
ture [249, 250, 251, 252].

These discussions are also closely linked to the modeling of the damage to fracture transition,
which is the transition from diffuse damage, to localized damage, and then initiation and
propagation of a crack. The transition from diffuse plasticity to localized plasticity is also well
known to lead to a loss of regularity, and higher-order plasticity theories have been proposed in
order to model these size effects [253, 254, 255, 256, 257].
These theories generally introduce additional degrees of freedom associated with the plastic
strain, yielding a quite complex FE scheme where a special care has to be given to boundary
conditions. In particular, boundary conditions are to be set at the elastic-plastic boundary, which
is usually unknown. Non linear boundary conditions hence arise for some of these higher-order
theories.
As a conclusion, void coalescence should be considered as the result of a phenomenon that is as
complex as ductile fracture itself. It is driven by a competition between plasticity and damage at
the microscale, between neighboring voids. This calls for plasticity and damage models that take
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into accounts size effects.
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5.3 Proposed model
Following the previous discussion, void coalescence can be decomposed into two distinct phases.
In the first phase, void growth accelerates and voids develop singular shapes. In the second phase,
pairs of voids start linking, by failure of the matrix ligament separating these voids. This failure
may be due to the nucleation of a micro-crack between the two voids, or simply by the growth of
the two voids towards each other, until the thickness of the ligament continuously tends to zero.
Both modes have been observed experimentally, and the occurrence of one or the other depends
mainly on the material and the initial distance between the voids [83, 85].
In the model used in Chapter 4, the second void linkage phase is naturally taken into account if it
does not include micro-cracks. If micro-cracks initiate in the intervoid ligament before it reaches
a thickness close to zero, void coalescence will be underestimated. To predict this void linkage
by micro-cracks, a local damage indicator D = D(σ, ε) and a critical damage threshold Dc are
defined.
Although this criterion could be based solely on plasticity, for instance by defining D = ε, a more
advanced damage indicator is preferred. The chosen criterion should take into account the effect
not only of plasticity but also of damage in the intervoid ligaments. The uncoupled Lemaitre
damage model is used in this section [28] as an example. In the future, different damage criteria
could be used and compared, thanks to the numerical validation framework described in Chapter
6.
The first phase of void coalescence is modeled by the simple von Mises plasticity model with
the hardening rule given in Equation (4.10) for the matrix. This may be extended by coupling
the Lemaitre damage model to the constitutive equations in order to account for softening in
the intervoid ligaments. The latter is not considered here, but softening modeling in intervoid
ligaments is definitely of interest and will be studied in the future (Chapter 7).

The implementation of the uncoupled Lemaitre damage model used in this section is based
on earlier developments at the Center for Material forming - MINES ParisTech (Cemef - MINES
ParisTech) [115]. The equation ruling the change of the damage indicator D ∈ [0, 1] is based on
thermodynamics, with a potential explicitly accounting for the triaxiality ratio, which is known
to be a factor of major influence on damage [26, 33, 240, 241]. As detailed in Reference [28],
the constitutive equation for damage evolution is

Ḋ =

(
−

Y
S 0

)s0

ε̇
pl
, (5.1)

where the damage strain energy release rate Y is defined as

Y(σ,D) = −
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[
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(
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σ

)2
]
.

Two material parameters S 0 and s0 are introduced. Regarding the discretization, this damage
indicator is defined element-wise, and it is updated at the end of each time increment using an
explicit scheme

Dn+1 = Dn + ∆t
(
−

Y(σn+1,Dn)
S 0

)s0

ε̇
pl
n+1.

In this scheme, D is used only as a damage indicator. In particular, it is not coupled to the
constitutive equations for elasto-plasticity, and does not require any regularization. Regarding the
damage to fracture transition, it is modeled by considering each pair of voids in the microstruc-
ture. The CC identification algorithm described in Section 3.3 is used to identify distinct voids
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with a node-wise tag Iv.
For all pairs of mesh nodes (nA, nB) with non zero and different void tags (Iv(nA),Iv(nB) ,
0,Iv(nA) , Iv(nB)), the closest pair is considered. This means that it is assumed that the coales-
cence micro-cracks always follow the shortest path between voids.
If the damage indicator D has reached a certain threshold Dc on the whole line segment linking
the two closest nodes, a crack is initiated along this line segment. This is sufficient to define the
micro-crack in 2D (no 3D simulation is carried out in this section).
In order to represent this line segment, multiple LS functions are used, as in Chapter 4. The LS
function φpl associated to the line is completed by a filter LS function φ f to a sphere with center
the middle of the two nodes, and with diameter the distance between the two nodes. These LS
functions are shown in Figure 5.2.

ϵl

ϕf

-(ϕpl + ϵl/2)

ϕpl - ϵl/2

first void

second void

void/crack

matrix

Figure 5.2 – LS functions and numerical parameters used in the void coalescence by micro-
cracking model.

As in void nucleation modeling, these LS functions are used to modify the LS functions
associated to the void and matrix phases

φv = max
(
φ̃v,min(−(φpl −

εl

2
), φpl +

εl

2
, φ f )

)
, φm = min(φ̃m,−φv), (5.2)

and mesh adaptation is then triggered to adapt the mesh to the new interfaces. The application
of this coalescence by micro-cracking criterion to intervoid ligament necking and shear band
coalescence is illustrated in Figure 5.3. In this figure, it is not specified whether localization
is due to plasticity or damage or both. This will depend on materials and loading conditions.
In particular, voids may link without the formation of a micro-crack, or with a very late micro-
cracking.

As a conclusion, the void coalescence by micro-cracking model relies on a damage indicator,
which is given by the Lemaitre damage model. The latter introduces two material parameters S 0

and s0. This uncoupled damage model is used as an indicator for the prediction of the damage to
fracture transition.
When damage reaches a certain threshold Dc on a whole region between neighboring voids, a
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(a)

(b)

Figure 5.3 – Void coalescence by micro-cracking between two distinct voids under vertical
tension progressively forming a single localization region, which leads to a micro-crack: (a)
voids aligned at 90° with respect to the tensile direction, (b) voids aligned at 45°.

micro-crack is inserted in the simulation by modifying LS functions and adapting the mesh.
This verification of the void coalescence by micro-cracking criterion is carried out alongside
void nucleation models, at the beginning of each time increment, while the damage indicator is
updated at the end of each time increment.
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5.4 Results
While in Chapter 4, a focus is made on the importance of void nucleation modeling, the objective
of the present chapter is to show that coalescence of voids is not necessarily purely driven by
plastic localization. In particular, for the material and loading configuration studied in this
section, void coalescence cannot be modeled without appropriate damage and fracture criteria.

An experimental investigation of void coalescence mechanisms was carried out by Weck
et al. [87]. Holes were drilled in metallic sheets using an advanced laser drilling technique
[84], in order to perform tensile tests with varying hole spacing and arrangement [83]. Different
materials were also considered to study the influence of hardening and plastic behavior.
This technique was extended to 3D experiments where holes were drilled in a first sheet, which
was then sandwiched between two parts [85]. The resulting holes were nearly spherical. SEM
was used for 2D observations, and SRCT for 3D observations.
The 2D experiments are revisited in the following by means of numerical simulation using the
coalescence by micro-cracking criterion proposed in the present work. Apart from the holes,
which are embedded in the mesh, the material is assumed homogeneous. In particular, no parti-
cles and no void nucleation mechanisms are explicitly modeled, as opposed to the simulations in
Chapter 4. Calculations are performed at specimen scale under uniaxial tension, hence lateral
boundaries are free and no stress state control algorithm is used.
The 2D experiments on an aluminum alloy (AA5052) are used as a basis for the simulations in
this section [83, 87]. Because the used aluminum sheets had a small thickness, plane stresses can
be assumed. However, the FE code developed at Cemef - MINES ParisTech only includes a plane
strain implementation. Thus, although the simulations conducted in this section use the same
material and specimen geometries as those proposed in Reference [87], a quantitative match
between simulation results and experimental observations is not expected. Damage localizes
differently in plane stress and plane strain loading conditions, leading to two different failure
modes.
The material parameters are taken from Reference [258] for elasticity, and identified from a true
stress/true strain curve given in Reference [87] for plasticity. The resulting parameters are listed
in Table 5.1.

E (MPa) ν σy (MPa) K (MPa) n
Matrix 70000 0.33 150 583 0.696

Table 5.1 – Material parameters for AA5052 [87, 258].

The numerical parameters are inspired from Chapter 4, considering the fact that the diameter
of the holes is 10 µm, while the average diameter of the particles for the material studied in
Chapter 4 is 40 µm. Remesher parameters Qµ,Qσ,Vµ,Vσ, the time step ∆t, and the contact
penalization coefficient ρc are unchanged, while the other parameters are divided by 4. Hence,
meshing parameters are set to εh = 3 µm, hcurv = 0.05 µm, hmax = 1.5 µm, and hmin = 0.5 µm, the
crack thickness to εl = 0.05 µm, and the contact thickness to εc = 0.025 µm.

5.4.1 Identification of damage parameters
Because the Lemaitre damage model is not coupled to the constitutive equations, the identifica-
tion of material parameters S 0, s0, and Dc for this model consists in ensuring that the onset of
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micro-cracking is well captured. This means conducting simulations with no damage model, and
identifying the instant where void growth is not well tracked anymore by the plasticity model.
Experiments of Reference [83] are well-suited for such analysis, especially those with only
two holes. The major diameter (along the tensile direction) of the holes was measured during
loading, and SEM images are available close to the onset of micro-cracking. The setup for these
simulations is summarized in Figure 5.4, with two holes aligned at 90° with respect to the tensile
direction and then 45°, the initial intervoid ligament thickness `lig being identical (27 µm).

10μm 27μm

10μm

27
μm

(a) (b) (c)

40
00
μm

2000μm

Figure 5.4 – Specimen geometry (b) and microstructure for the simulations with two holes: (a)
aligned at 90°, (c) aligned at 45°. Geometry based on specimens used in Reference [83].

Simulation results without any fracture model are shown in Figure 5.5 at the last stages
of void coalescence. The shape of the voids in the simulations seems to be qualitatively in
accordance with experimental observations in the first images on the left. In the remaining
images, micro-cracks nucleate in the experiments and accelerate severely void growth, which is
not modeled in the simulations.
The fact that there is no clearly visible mismatch regarding void morphology between experiments
and simulations up to the nucleation of these micro-cracks proves that softening in the intervoid
ligament is negligible. Thus, it can be assumed that only a micro-cracking criterion would be
necessary in order to model the observed coalescence mechanisms.

From this figure, it can be seen that plasticity first localizes at the void/matrix interface, and
this localization region then extends into the matrix. At some critical point in the loading path,
localization regions from different voids start interacting.
Because the numerical model assumes plane strains, plastic localization bands in an X pattern
are observed in the simulation results for holes aligned at 90° with respect to the tensile direction.
This does not seem to be the case in the experiments, where the micro-crack propagates per-
pendicularly to the tensile direction. Despite this difference, it is assumed that the micro-crack
would go through the shortest path between holes also in plane strains.
In the following, material parameters for the Lemaitre damage model are set to S 0 = 0.55 MPa,
s0 = 0.90, and Dc = 0.43. With these parameters, the engineering strains at ligament failure in the
simulations are close to experimental ones for an intervoid ligament thickness `lig = 30 − 40µm.
Although quantitative comparisons between experiments and simulations are not possible, this
choice ensures that plasticity develops and localizes sufficienty in simulations before the predic-
tion of micro-cracking.
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Figure 5.5 – Comparisons between computational results with no micro-cracking modeling
and experimental observations at the last stages of void coalescence. Mentioned strains are
engineering strains. Experimental images reproduced from Reference [83].

5.4.2 Effect of intervoid ligament length

The engineering strain at ligament failure in the simulation is 0.258 for `lig = 40 µm, 0.235 for
`lig = 30 µm, 0.113 for `lig = 15 µm, and 0.015 for `lig = 5 µm. Thus, micro-cracking is delayed
when hole spacing is increased. This has also been observed in experiments in the plane stress
case [87].
An important and very interesting result is that even when no micro-cracking criterion is used,
void linkage occurs very early in the simulation for `lig = 5 µm. This is illustrated in Figure 5.6,
where results are shown with and without micro-cracking modeling for the three configurations
with small intervoid ligament length.

This figure shows that there are two damage localization regions in plane strains. Although
damage localizes in an X pattern, there is an additional localization region at lateral boundaries
of the holes. Opposed to the X pattern that is already visible far from the holes already in green
in Figure 5.6(a) and Figure 5.6(e), the second localization region in red in Figure 5.6(a) and
Figure 5.6(e) only develops close to hole boundaries. These two localization regions are also
visible for plasticity in Figure 5.5.
Therefore, when holes are very close to each other, ligament failure is driven by an interaction
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Figure 5.6 – Computational results with two holes aligned at 90°, `lig = 5 µm and no micro-
cracking modeling at an engineering strain of: (a) 0.050, (b) 0.100, (c) 0.125, (d) 0.150. Compu-
tational results with two holes aligned at 90°, `lig = 15 µm and micro-cracking modeling at an
engineering strain of: (e) 0.100, (f) 0.113, (g) 0.114, (h) 0.150. Computational results with two
holes aligned at 90°, `lig = 30 µm and micro-cracking modeling at an engineering strain of: (i)
0.120, (j) 0.160, (k) 0.200, (l) 0.240.

between holes due to the second localization region. The modeling of this interaction with very
large and very localized plastic strains at small scales may require a more advanced plasticity
model than that used in the present work. While recent literature focuses on the modeling of
softening in intervoid ligaments to avoid an overestimation of the strain at ligament failure, these
results imply that more physical plasticity and hardening models are also of interest.
Crystal plasticity models could be considered. The size and the scales at which the different
localization regions develop may also be ruled by length scales associated to a minor void
population in the matrix, or its crystalline structure. These should be taken into account in
the constitutive models. The determination of the length scales would require advanced strain
measurement techniques such as those used in Chapter 6.

5.4.3 Effect of number of holes

With holes aligned at 90° and `lig = 30 µm, experiments were conducted by varying the number
of holes. First by replacing the two holes by a line of 13 holes, and then by multiplying the
number of lines. Failure was systematically observed along the lines, with coalescence micro-
cracks oriented perpendicular to the tensile direction.
Simulation results in plane strains are shown in Figure 5.7 for 1 and 3 lines of holes. The roman
numbers indicate the order in which the ligaments failed.
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The first ligament fractures at an engineering strain of 0.217 for the 1 line configuration (I in
Figure 5.7(a)). It is reminded that with only two holes, the engineering strain at ligament failure
is 0.235. Thus, plasticity and damage localization are favored with a higher number of holes in
the line in plane strain.
Additionally, failure does not start at the extremities of the line, hence void growth and coales-
cence is more pronounced for holes that are surrounded by two neighboring holes instead of one.
This was also observed in the plane stress case in Reference [87].
With 3 lines, results in plane stress and plane strain differ. Weck et al. observed an increase
of ductility with additional lines. In the plane stress case, failure is due to the localization of
plasticity and damage in a single line. When multiple lines are present the load is shared between
these lines and localized necking phenomena in some intervoid ligaments are delayed. In the
plane strain case, because plasticity and damage localize in an X pattern, the presence of multiple
lines activates failure mechanisms at 45° with respect to the tensile direction. As mentioned in
Subsection 5.4.2, although plasticity and damage are higher in the lateral directions close to the
holes, the 45° localization bands develop earlier and propagate farther from the holes. Thus,
failure is more likely to occur earlier along these 45° bands than in the perpendicular direction.

Although plasticity localizes earlier in bands aligned at 45° with respect to the tensile
direction, failure does not systematically occur along these bands. In the 3 line configuration,
the secondary ligament fracture events occur in the perpendicular direction (II in Figure 5.7(b)).
This is due to a change in plasticity and damage localization once the first fracture event has
occurred. This first event induces a higher localization of damage and plasticity in a certain
region of the hole arrangement, and limits the propagation of micro-cracks far from this region.
Void growth is also favored close to micro-cracks.
Results with 7 and 13 lines of holes are shown in Figure 5.8. The same effects are observed,
namely the first void linkage phenomena occur along shear bands (I in Figure 5.8), but failure by
intervoid ligament necking is also observed at larger plastic strains (II and III in Figure 5.8).

An interesting mechanism, which is favored with a higher number of lines, is that independent
micro-cracks can nucleate in the hole arrangement. These micro-cracks will then tend to coalesce
together in order to propagate as a single final crack. This mechanism has the consequence that
the final crack features a zig-zag pattern. This pattern is hence not caused by the propagation of
a single crack in an unstable manner, but by the nucleation and coalescence of multiple initially
independent cracks oriented in different directions.
Moreover, most studies in the literature have focused on modeling only the first step of this
failure mechanism, which is the interaction between cylindrical or spherical voids. Due to the
failure of intervoid ligaments, new elongated voids are formed and different void interaction
mechanisms have to be modeled.

Finally, for these two simulations with 7 and 13 lines, the influence of the number of lines
on ductility seems to be less significant. This may be due to the fact that failure occurs in shear
bands in simulations, and hence the bottom of the hole arrangement is reached by cracks at
higher strains when the number of lines is increased. The effect of the number of lines may
hence be reduced and even reversed for large numbers.
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Figure 5.7 – Computational results for 1 and 3 lines of 13 holes at an engineering strain of: (a)
0.219, (b) 0.190.
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Figure 5.8 – Computational results for 7 and 13 lines of 13 holes at an engineering strain of: (a)
0.175, (b) 0.185.
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5.4.4 Effect of holes orientation
Due to the presence of failure mechanisms along shear bands for holes aligned at 90° with respect
to the tensile direction, the study of the configuration with holes aligned at 45° is of particular
interest. The intervoid ligament length is fixed to `lig = 27 µm and holes alignment is varied. As
expected based on previous results, ductility is significantly reduced with voids aligned at 45°,
as shown in Figure 5.9.

100μm 100μm

(a) (b)

Figure 5.9 – Computational results for different hole orientations at an engineering strain of: (a)
0.218, (b) 0.142.

A comparison between the computational result (Figure 5.9(b)) and the experimental ob-
servation (Figure 5.5) with only two holes at 45° shows that the position and orientation of the
micro-crack is well captured by the model. The micro-crack is not perfectly centered inside the
shear band, but is slightly shifted because it follows the shortest path (Figure 5.9(b)). This is in
agreement with the experiment (Figure 5.5), although this should be validated with plane stress
simulations.
This analysis of the effect of hole orientation is pursued further with hole arrays (`lig = 38 µm),
as illustrated in Figure 5.10.

Once again, a zig-zag pattern is observed, especially in Figure 5.10(b). As mentioned in
Subsection 5.4.3, this is due to the fact that the first micro-cracks initiate independently from
each other, in regions of the holes arrangements that may be far from each other. An additional
consequence of these independent crack initiation mechanisms is that the coalescence of these
micro-cracks may require the formation of micro-cracks aligned along the tensile direction.
This is observed in both hole arrays. This mechanism is however still a shear band coalescence
mechanism, and not to be confused with necklace coalescence. These shear bands are caused by
particular crack geometries and orientations with respect to the tensile direction.

5.4.5 Random arrangements
As discussed in Chapter 1 and Section 5.1, most theoretical studies on void coalescence mod-
eling have considered periodic arrangements of voids. Although the laser drilling technique
proposed by Weck et al. [83] is very interesting as such idealistic arrangements can be studied
experimentally, real materials feature random arrangements [38]. These random arrangements
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Figure 5.10 – Computational results for arrays of holes with different orientations at an engineer-
ing strain of: (a) 0.210, (b) 0.190.
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have been studied in Chapter 4 regarding void nucleation.

In the following, random arrangements are considered and their influence of ductility is
assessed. These arrangements contain 167 holes of diameter 10 µm packed in a square of di-
mensions 620 × 620µm2 (vs 169 holes in Figure 5.10(a) and 175 holes in Figure 5.10(b)). The
intervoid ligament length `lig is greater than or equal to 27 µm. Hence, while the overall porosity
and the average intervoid distance are comparable to the periodic configurations, holes might
be locally closer in the random configurations (`lig = 38 µm in the periodic configurations). All
arrangements are shown in Figure 5.11.

200μm

Array 90° Array 45°

Random 0 Random 1 Random 2

Figure 5.11 – Periodic and random arrangements used in simulations with large number of holes.

Results are first shown in terms of porosity change and engineering stress/strain curves in
Figure 5.12. The engineering stress is the stress at the top of the specimens (Figure 5.4) divided
by the initial section.
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Figure 5.12 – Computational results for random hole arrangements (initial global porosity similar
to hole arrays).

These curves show two phases. First, the engineering stress increases up to the ultimate
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tensile strength (Figure 5.12(b)), with a moderate void growth (Figure 5.12(a)). Then, the
activation of micro-cracking mechanisms leads to a progressive loss of load carrying capacity
and a significant acceleration of void growth. In a third phase, not shown in these curves, the
engineering stress would start to increase again, because micro-cracking is only detected between
pairs of voids. Thus, no failure criterion is used for the regions between the hole arrangements
and the lateral boundaries of the specimen. All curves are stopped at the lowest point in the
stress/strain curve, after the activation of micro-cracking mechanisms, hence the third phase does
not appear in Figure 5.12.

The reduction of ductility with holes aligned at 45° with respect to the tensile direction
instead of 90° is shown by these curves, both regarding the porosity and the engineering stress.
Ductility is further decreased with random arrangements. Results with these arrangements are
shown in Figure 5.13.

For all arrangements, micro-cracking initiates in multiple regions due to voids that are closer
to each other than the average intervoid distance, and aligned at 45° with respect to the tensile
direction. These early micro-cracks may not necessarily participate in the final crack. For
instance, in the Random 1 arrangement, there is a first micro-cracking event at an engineering
strain of 0.125 that does not participate in the final crack, which can be distinguished at an
engineering strain of 0.135.
The final crack develops in preferential regions where not only two holes but multiple holes are
located close to each other. The alignment of these holes with respect to the tensile direction
also plays a role, as shown by the blue regions in Figure 5.13 where cracks cannot propagate.
Once micro-cracks accumulate in certain regions of the holes arrangements due to void clusters,
plastic localization has the consequence that void growth and coalescence also localize in these
regions. Therefore, micro-cracking out of these regions rarefies.
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Figure 5.13 – Computational results for random hole arrangements at different engineering
strains.
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Conclusion

In this chapter, a model material with laser drilled holes is considered. Most analytic models
assume that void coalescence is purely driven by plastic localization, as in the calculations
conducted in Chapter 4. However, Finite Element (FE) approaches accounting for damage in
the intervoid ligaments have been conducted by multiple authors. Submicron size voids may
nucleate, grow, and coalesce in intervoid ligaments, hence increasing greatly the complexity of
void coalescence modeling.
Based on comparisons between simulation results and experimental observations from the litera-
ture, it is shown that void growth is well captured with a simple von Mises plasticity model for
the matrix when the initial distance between the voids is sufficiently larger than their diameter.
However, at large plastic strain, the intervoid ligaments fail nearly instantaneously. Based on
these comparisons, the fracture of the intervoid ligament is predicted and modeled during the
simulation, using a Lemaitre damage indicator to predict its onset, and a geometrical criterion to
predict its position and orientation.
Applications of this micro-cracking criterion to various hole arrangements prove that it can model
the two modes of micro-cracking by intervoid ligament necking and along shear bands between
holes. Although simulations differ from experiments because plane strains are assumed instead
of plane stresses, some properties observed in experiments are well captured in simulations. For
instance, ductility is decreased when holes are placed closer to each other, and when numerous
holes are present in the material cracks initiate at multiple points of the hole arrangement. A
remarkable property observed in simulations is that these cracks then grow independently, before
coalescing together, leading to a zig-zag pattern.
Additionally, simulations with random hole arrangements show that ductility is significantly
reduced when the arrangements are no longer periodic. This loss of ductility is caused by a local-
ization of plasticity and damage at the neighborhood of void clusters. Consequently, micro-cracks
initiate earlier in these clusters than with periodic arrangements. This is of major importance
because most theoretical studies on void coalescence only address periodic arrangements.

In future work, it will be important to develop a plane stress implementation in the FE code
in order to allow for quantitative comparisons. An alternative would be to perform these simula-
tions in three dimensions (3D), but the computational cost would then be very high, especially
with numerous holes. Such comparison would however be important to check the validity of
the Lemaitre damage indicator used in this chapter. For a correct quantitative match between
experiments and simulations, an advanced modeling of plasticity may be necessary, especially
for small intervoid ligament thicknesses, for instance using higher-order crystal plasticity models.
This requirement is independent from the modeling of damage and micro-cracking, which may
require to couple the damage model to constitutive equations, for instance using higher-order
porous plasticity models.

Finally, the coalescence model discussed in this chapter as well as the nucleation criteria
discussed in Chapter 4 raise important challenges regarding identification procedures. In Chapter
4, material properties for the nucleation models are taken from the literature, where they were
identified using Representative Volume Element (RVE) simulations with Periodic Boundary Con-
ditions (PBCs) and a single particle. The stress state and the applied strain in these calculations
were measured experimentally at the macroscale.
Thus, even if the RVE simulations conducted in Chapter 4 are more realistic, uncertainties on
the material parameters used at the microscale are quite high. Regarding the coalescence model,
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comparisons with experiments are helped by the fact that the whole specimens are meshed, and
the microstructure of the material is artificial.
For 3D applications, a more systematic numerical validation framework is necessary. This frame-
work should enable to mesh only a small region of the specimen, and hence define boundary
conditions to apply at the boundaries of this meshed region. An automatic procedure should also
be available to quantify errors between simulation results and experimental observations. This is
the objective of Chapter 6.

This chapter is partially inspired from [40].
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A numerical validation framework for
micromechanical simulations based on
synchrotron 3D imaging

You hear about how many fourth
quarter comebacks that a guy has
and I think it means a guy screwed
up in the first three quarters.

Peyton Manning
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Résumé en français

Les techniques expérimentales permettant d’acquérir in situ des images tridimensionnelles (3D)
des micromécanismes de germination, croissance et coalescence de cavités qui définissent la
rupture ductile sont de plus en plus couramment utilisées. Dans le chapitre précédent, il a
été montré que les outils numériques et modèles développés dans ce travail permettent des
simulations à champ complet de ces mêmes micromécanismes, à l’échelle de microstructures 3D
de tailles importantes. Dans le présent chapitre, une méthodologie est développée pour comparer
expériences et simulations en champ complet et en 3D.

La méthodologie proposée s’appuie fortement sur la corrélation d’images volumiques. Des
données 3D acquises par imagerie à rayons X à différentes étapes du chargement peuvent être
corrélées afin de mesurer les déplacements subis par chaque point de la microstructure au cours
du chargement. Une analyse d’incertitudes appliquée à deux expériences différentes sur le même
matériau confirme la validité de ces mesures et la robustesse de la méthode de corrélation. Le
matériau utilisé est de la fonte à graphite sphéroïdal. La microstructure de ce matériau comporte
une matrice d’acier ferritique, et des nodules de graphite qui se décollent assez facilement de
la matrice en traction. De plus, il a été établi par plusieurs auteurs dans la littérature que ces
nodules ont une faible capacité de charge. Ainsi, ils sont considérés comme des vides dans ce
chapitre et les mécanismes de germination ne sont donc pas modélisés.

Une fois la microstructure initiale maillée, à l’échelle d’une petite région d’intérêt, les
déplacements mesurés par corrélation d’images volumiques sont utilisés comme conditions
aux limites de Dirichlet sur toute la frontière de cette région d’intérêt. Ainsi, la corrélation
d’images volumiques pilote les simulations éléments finis. Cette méthode permet de reproduire
avec grande fidélité le chargement que subit localement la microstructure dans la réalité. Par
ailleurs, les déplacements calculés à l’intérieur de la région d’intérêt dans la simulation éléments
finis peuvent être comparés avec les mesures obtenues par corrélation d’images volumiques.
Cette comparaison permet de quantifier l’erreur commise par les modèles micromécaniques à
l’intérieur de la région d’intérêt. Alternativement, la validation de la solution éléments finis peut
se faire directement par rapport aux images 3D acquises pendant le chargement par imagerie à
rayons X. L’intérêt de la méthodologie proposée consiste donc aussi en la possibilité de quantifier
les erreurs localement et avec précision. Cette méthodologie s’appuie fortement sur les outils
numériques de maillage et de suivi d’interface développés dans ce travail. En effet, des simula-
tions sur microstructures réelles et dans des conditions de chargement réalistes nécessitent des
méthodes numériques avancées permettant de mailler des microstructures de formes arbitraires
et de suivre leur déformation.

Ensuite, l’intérêt de la méthodologie proposée dans ce chapitre est démontré à l’aide de
comparaisons avec les approches conventionnelles. Cette discussion inclut le problème du choix
des conditions aux limites, et des mesures d’erreurs locales. En effet, la plupart des travaux
existants utilisent des méthodes multi-échelles pour déduire des conditions aux limites pour les
calculs micromécaniques. Indépendamment de la méthodologie utilisée pour coupler simulations
macromécaniques et micromécaniques, il est montré dans ce chapitre que la fiabilité de ces
méthodes multi-échelles est limitée. En particulier, les résultats indiquent que ces méthodes ne
permettent pas de capter les phénomènes de localisation plastique et de coalescence de cavités
complexes se déroulant dans la région d’intérêt.
Ces conclusions ne peuvent pas être obtenues à l’aide de mesures d’erreurs globales, qui sont
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couramment utilisées dans la littérature. Seuls des indicateurs d’erreur locaux, tels ceux basés
sur la corrélation d’images volumiques, permettent des mesures précises des erreurs. Ainsi, il
est montré que la croissance des cavités est bien prédite en volume mais non en forme avec les
méthodes conventionnelles, et que les prédictions sont plus fidèles à la réalité avec la méthodolo-
gie proposée dans ce chapitre.

Etant donné qu’un critère de plasticité simple a été utilisé dans ce chapitre pour modéliser
la matrice, et que le comportement des nodules a été négligé, les prédictions obtenues avec la
méthodologie proposée dans ce chapitre sont parfois éloignées de la réalité. Cela est d’autant
plus vrai pour de grandes déformations plastiques, où la coalescence de cavités est prépondérante.
Pour améliorer ces prédictions, la piste principale semble être la modélisation des cavités de
taille inférieure au micromètre, à l’aide d’un modèle tel que celui discuté au chapitre 5, ou d’un
modèle de plasticité poreuse.
Pour d’autres matériaux ou conditions de chargement, le comportement des nodules devrait
également être pris en compte, et les critères de décohésion et fragmentation développés dans
le chapitre 4 devraient être utilisés. En outre, la méthodologie proposée dans ce chapitre
s’appliquerait certainement à d’autres matériaux où la modélisation micromécanique est de plus
en plus populaire, comme les mousses métalliques et les composites à matrice de polymère par
exemple.

En dernier lieu, les résultats présentés dans ce chapitre sont très prometteurs non seulement
pour la modélisation micromécanique, mais également pour l’identification de lois constitutives
à l’échelle microscopique. La méthodologie proposée permet dans ce cadre de fournir des
conditions aux limites pour des calculs micromécaniques, et ensuite de mesurer les erreurs
commises par les modèles micromécaniques utilisés. Par conséquent, la sensibilité des erreurs
mesurées par rapport aux paramètres du matériau peut aisément être quantifiée et utilisée pour
l’analyse inverse et l’identification de ces paramètres à l’échelle microscopique.
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Introduction

In the present work, numerical tools have been developed to access realistic Finite Element
(FE) simulations of ductile fracture at the microscale. Several difficulties have been handled,
including large plastic strains, void coalescence, nucleation of cracks and contact between crack
faces. The goal is not only to perform more realistic micromechanical calculations as presented
in Chapter 4, but to reproduce as accurately as possible what is observed in experiments.
This last point calls for a methodology to observe in three dimensions (3D) the void nucleation,
growth and coalescence mechanisms, and then conduct FE simulations at the microscale in the
same conditions as those of the experiments. The difficulty lies in the fact that these conditions
have to be identified at the microscale, and in 3D.

The experiments on which this chapter is based were carried out at the European Synchrotron
Radiation Facility - Grenoble (ESRF - Grenoble) by T. F. Morgeneyer1 and A. Buljac2,1, with
the help of L. Helfen3,4. In order to allow for two scales of localization mechanisms, at the
macroscale and at the microscale, laminography was used. As mentioned in Section 1.1, this
X-ray imaging technique permits the use of flat specimens that can be several millimeters wide,
while the thickness is limited depending on the X-ray absorption properties of the material.
The presence of iron in the constituents of the materials studied in this chapter restricts this
thickness to the millimeter range. An in situ tensile loading machine is used to acquire 3D
Synchrotron Radiation Computed Laminography (SRCL) scans during loading. The resolution
of these images is typically ≈ 1 µm, for an observed Region Of Interest (ROI) of ≈ 1 mm3. More
details on SRCL and the loading machine can be found in previous publications [16, 22, 64, 65].
In order to reproduce what is observed in these 3D X-ray images acquired at different loading
steps during the experiment, it is necessary to mesh the ROI and its microstructure observed
in the initial state, and identify loading conditions to be applied at the boundaries of this ROI.
The first part has been covered by the image meshing procedure presented in Section 3.4. The
second part is often solved in the literature based on specimen geometry and other macroscopic
measurements.

In many works [66, 67, 83, 259, 260], because the ROI is often located close to a notch, the
macroscopic stress state is deduced from approximations such as Bridgman’s formula, while
the macroscopic equivalent plastic strain is deduced from the section reduction of the specimen.
These formulas are used both to apply analytical void growth and coalescence models [25, 26,
243], and conduct FE analysis. In both cases, significant errors can be made, because neither the
macroscopic stress state nor the macroscopic equivalent plastic strain can generally be considered
as uniform in the ROI [240, 261], due to its significant size relative to that of the specimen (both
being of millimeter scale).
This difficulty is directly related to the fact that scale separability cannot be assumed for the
specimens used for X-ray imaging. Alternatives that are based on FE simulations at specimen
scale raise the same issue. In these techniques [18, 82, 262], macroscopic mechanical fields

1MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry,
France

2Laboratoire de Mécanique et Technologie (LMT), ENS Cachan/CNRS/Université Paris-Saclay, 61 avenue du
Président Wilson, 94235 Cachan, France

3ANKA/Institute for Photon Science and Synchrotron Radiation Karlsruhe Institute of Technology (KIT),
D-76131 Karlsruhe, Germany

4European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble, France
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computed during a first calculation at specimen scale are used as Static Uniform Boundary Con-
ditions (SUBCs) or Kinematic Uniform Boundary Conditions (KUBCs) for a second calculation
at the microscale.
Non homogeneous boundary conditions should hence be considered, for instance the embedded
unit cell approach, where the ROI with meshed microstructure is embedded directly in the mesh
of the specimen, and a single FE simulation is performed using this combined mesh [17, 248, 258,
263, 264, 265]. Microscale constitutive models are used inside the ROI, while a homogenized
macroscale constitutive model is used for the out-of-ROI material.
The main difficulty then lies in the choice of macroscale constitutive model. This difficulty can
be avoided by using a self-consistent scheme where the constitutive model for the out-of-ROI
material is corrected incrementally during the simulation by homogenizing the mechanical
response of the ROI [127, 128], but at the sacrifice of a significant additional computational cost.

In this chapter, a new numerical validation framework linking in situ 3D X-ray images
directly to FE simulations at the ROI scale is presented. This framework relies extensively
on Digital Volume Correlation (DVC) measurements performed by A. Buljac2,1, J. Neggers2

and F. Hild2. These measured displacement fields between consecutive 3D scans are used as
Dirichlet boundary conditions for the FE simulations. Added to the fact that this framework
avoids any assumption on the macroscopic behavior of the material, and any dependence on
macroscopic measurements or simulations, it provides a very promising mean for validating
microscale constitutive models.
First, while the displacements at the boundaries of the ROI are controlled by DVC, the kinematic
FE solutions inside the ROI can be compared to DVC measurements, giving local error indicators.
In fact, most studies only consider global indicators, such as the ROI-averaged porosity [9, 19,
21, 67, 228, 259].
Second, gray level residuals can be computed for FE simulations, in order to have a quantitative
indication of the error committed by FE models and its local distribution. Opposed to global
indicators, these two local error measurement techniques are extremely relevant when void
growth is well predicted in volume, but not in shape. As a consequence, they are promising
candidates for inverse analysis, and identification of microscale material parameters, including
those associated to the fracture criteria presented in Chapter 4 and Chapter 5.

The studied material is a commercial nodular graphite cast iron (EN-GJS-400), and spec-
imens were supplied by M. Kuna5, L. Zybell5 and M. Horn5. At the microscale, this material
features a ferritic steel matrix and graphite nodules, with no significant porosity in the initial
state. Then, under tensile loading, ductile fracture is mainly driven by a very early debonding
of the nodules from the matrix, and coalescence of the subsequent nucleated voids [266, 267].
Evidence in the literature [266, 267, 268, 269] suggests to model the nodules as voids, as their
load carrying capacity is very low under tensile loading. This assumption is made in this chapter
and at the microscale the material is considered as a two-phase microstructure with a ferritic
matrix and voids.

The proposed numerical validation framework is described in details in Section 6.1 and
applied to a test on a flat specimen of nodular cast iron with a central hole. The material and the
in situ SRCL imaging technique are presented, and DVC measurements are performed on the
resulting 3D data. Validation of both the DVC measurements and the FE simulations carried out

5TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, Lampadiusstr. 4, 09596 Freiberg,
Germany
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based on these measurements is assessed thanks to gray level residuals computation and mutual
comparison.
Once this method is validated on this first experiment, where nodule debonding, void growth
and coalescence are observed, its interest with respect to other approaches found in the literature
remains to be shown. This is the object of Section 6.2, where the proposed methodology is
applied to a test on a flat specimen of nodular cast iron with two holes aligned at 45° with respect
to the loading direction, and compared with classical approaches found in the literature.
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6.1 Method

6.1.1 Introduction
As summarized in Figure 6.1, the methodology proposed to obtain local comparisons between
experimental analyses and numerical simulations is based on the following steps:

• X-ray laminography to get 3D pictures of an in situ test in a synchrotron facility [270, 271,
272, 273, 274].

• Global DVC to measure displacement fields whose kinematic basis is made of the shape
functions of 8-noded elements [97, 98, 99].

• FE simulations at the microscale explicitly accounting for the morphology of the studied
two-phase material.

• Comparisons between experimental measurements and numerical simulations based on
displacement fields and correlation residuals.

The SRCL setup is based on previous work [270, 271, 272, 273, 274]. The ability to use
flat specimens is of particular interest in the field of mechanics of materials since sheet-like
samples allow for a wide range of engineering relevant boundary conditions. However, due to
the inclination angle with respect to the beam direction, incomplete sampling of the 3D Fourier
domain of the specimen is performed and additional artifacts are present [275].

The DVC registration technique used to measure 3D displacement fields in the bulk of
samples is based on a recently developed global approach [97, 98, 99]. The gray level residual
described in Subsection 1.1.4 is minimized on the whole ROI, using kinematic fields based on
FE discretizations.

Most aspects related to FE simulations have already been detailed in previous chapters. In
particular, the X-ray image acquired in the undeformed state is discretized with an adapted and
conform mesh using the procedure detailed in Chapter 3. Continuum mechanics equations are
solved using the parallel FE code described in Subsection 1.2.1, and the hardening law given in
Equation (4.10). During loading, the void/matrix interface undergoes large deformations and
complex void linkage phenomena that require the use of the mesh adaptation procedure presented
in Chapter 2.

In the past, 3D meshes stemming from X-ray tomography data have been created for fatigue
loading cases e.g. to assess the stress intensity factors ahead of a crack [98]. In Reference [276]
the 3D grain structure and orientation has been assessed via diffraction contrast tomography and
subsequently been meshed in 3D to assess the effect of crystallographic orientation on fatigue
crack propagation numerically and experimentally. However, to the author’s best knowledge,
there are no studies that explicitly mesh real microstructures and model microscopic fracture
mechanisms for the case of ductile damage.

Three ROIs are illustrated in Figure 6.1. Starting from the laminography data (initial ROI),
FE mesh generation (FE ROI) and DVC measurements (DVC ROI) are carried out independently.
Then, DVC measurements uDVC are interpolated on the boundaries of the FE mesh, and material
parameters {p0} are added to conduct FE simulations. The latter yield FE displacement fields uFE

that can be compared to DVC measurements uDVC, resulting in a first error measurement udi f f .
Uncertainties can also be assessed by direct comparisons with the laminography data through
the computation of gray level residuals. The latter can be computed both for DVC measurements
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Figure 6.1 – Schematic representation of the methods used in the present chapter for validating
numerical simulations at the microscale. Trilinear hexahedral meshes are used for DVC, and
linear tetrahedral meshes for FE simulations.
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(ρDVC) and for FE displacement fields (ρFE). All these operations are described in this section.
First, the experimental setup and the laminography imaging technique are introduced. The basic
principles of DVC incorporating uncertainty quantification and DVC results are then presented.
FE simulation tools including the microstructure meshing procedure and the strategy for applying
DVC measured boundary conditions are described next. Last, the results from both methods
are compared relatively via kinematic field subtractions and absolutely by computing gray level
residuals.
Since the present work focused exclusively on FE simulations and micromechanical modeling,
all details regarding the experiments and DVC can be found in the published version of this
section [44].

6.1.2 Experimental analyses

6.1.2.1 Synchrotron test

The geometry of the flat specimen with a central hole is shown in Figure 6.2(a). The specimen
geometry yields stress triaxialities within the range 0.4-0.5 in the vicinity of the central hole
[277]. A stepwise loading procedure resulted in the force-displacement curve shown in Figure
6.2(b).

The 3D images used in this work were obtained at beamline ID15A (ESRF - Grenoble,
experiment MA 1932), and have a final size of 1600 × 1600 × 1600 voxels. The physical size
(length) of 1 cubic voxel is equal to 1.095 µm.

Figure 6.3 shows microstructure sections for the unloaded state and after the first five loading
steps. From the reconstructed raw images early nodule debonding from the matrix is noted.
Softening becomes significant after the sixth loading step, as shown in the macroscopic load-
displacement curve in Figure 6.2(b). Indeed, the final crack has started propagating through the
scanned region in Figure 6.3(f). Therefore, results after the sixth loading step, although available,
are of less interest for the present numerical modeling procedure. Conversely, the measured
kinematic fields for the initial steps are of special interest.

6.1.2.2 Digital Volume Correlation

A correlation procedure applied to the whole volume size would be computationally too demand-
ing. Therefore an extracted ROI (i.e., DVC ROI) of size 532 × 532 × 532 voxels is used for DVC
analyses. The position of the ROI in the global coordinate system is shown in Figure 6.2(a) while
in the z direction the ROI and sample mid-thickness planes coincide.

6.1.2.2.1 Basic principles DVC used herein is an extension of global two dimensional (2D)
Digital Image Correlation (DIC) [278, 279]. The reconstructed volume is represented by a
discrete scalar matrix of spatial coordinate x of (in this case 8-bit deep) gray levels determined
by the microstructure absorption of X-rays (Figure 6.4). The image contrast is mainly due to
graphite nodules of micrometer size.
Due to acquisition noise, reconstruction artifacts [275] and the correlation procedure itself [101],
the global minimization of gray level residuals may be numerically difficult. It is helped by
using a mechanical regularization procedure [100, 280, 281], where a mechanical admissibility
constraint is enforced on the solution. This constraint is successively relaxed so that the final
solution is only constrained to be continuous. This last constraint stems from the fact that the
displacement field is discretized globally [97] using a FE method with trilinear shape functions
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Figure 6.2 – (a) Schematic view of the sample with the scanned region (i.e., laminography ROI)
close to the central hole and the ROI (i.e., DVC ROI). Section of the reconstructed volume with
the position of the region of interest. (b) Macroscale force-displacement curve.
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Figure 6.3 – Through thickness section showing nodules embedded in the matrix for the
undeformed state (a) and after the first five loading steps (b)-(f).
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Figure 6.4 – Reconstructed volume as a spatial discrete matrix of gray level values.



222 6.1. METHOD

[98].
All the results reported hereafter have required the DVC analyses to converge based on the
variation of the solution between two iterations of the least squares solver. An additional check
is related to the gray level residuals ρ that will be shown in the sequel.

6.1.2.2.2 Link between DVC and numerical simulations The measured displacements are
expressed on a regular undeformed mesh made of hexahedral elements. Full-field results written
node-wise are provided as .txt output files of DVC and will be used as boundary conditions for
the FE micromechanical calculations. Hence, for the first incremental loading step (0)-(1) the
results are written on the undeformed frame (0), for the second (1)-(2) on the mesh associated
with the microstructure at state (1), and so on. An example is shown in Figure 6.5.

State (0) State (1) State (n-1) State (n)

    (....)
FE ROI

DVC ROI

Udirect (0-n)

Uincremental Uincremental

h0

b0

h0 h0 h0

b0
b0

b0

x
y

F

F

Figure 6.5 – DVC (blue) and FE (red) ROIs at different loading steps. The FE ROI has to remain
inside the DVC ROI throughout loading.

Since undeformed meshes (blue DVC ROI) with constant (initial) size are considered at
the microstructure state (n − 1) for loading step (n), with its positions defined relatively to the
followed microstructure features, some of the material points present in the DVC ROI at the
beginning are lost during the loading history. These regions are depicted with green dashed
rectangles in the figure.
Since the material points used for FE computations need to possess a complete kinematic
information through the loading history, just an inner part of the original DVC ROI has been
utilized for communication between DVC and FE simulations (red FE ROI), where the ROI size
reduction is the most significant in the loading direction (y) for which the displacements are the
largest.
Once defined, boundaries of the domain are used to extract the corresponding part of the DVC
displacement solutions. These displacements are interpolated on the unstructured tetrahedral
mesh used in numerical simulations, where they are imposed as Dirichlet boundary conditions.
Additionally, because the underlying experiment and consequently DVC calculations are obtained
with a small number of loading steps, linear interpolation in time may be necessary to properly
prepare boundary conditions for FE computations.

6.1.2.2.3 Uncertainty quantification Uncertainties can be assessed using two methods.
These methods rely on two consecutive scans of the unloaded and loaded sample without
applying any additional load (0 mm bis) or prescribing rigid body motions between the two
acquisitions (0.744 mm bis). The measured displacement fields account for the cumulated effects
of laminography and DVC on the measurement uncertainty.
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The first analysis considers directly the two displacement fields obtained in these two situations.
The first displacement field should be zero, while the second one should have a zero gradient (i.e.,
strain). This analysis (not reported here) indicates a displacement and strain resolution below the
voxel for the present measurements.
The second analysis considers gray level residuals (defined in Subsection 1.1.4). These residuals
do not only serve as correlation quality inspector, but they also provide useful tools for sensitive
(precise) detection of damage occurrence [282]. In the present case they will also provide an
objective way of comparing measured and simulated displacement fields.
The kinematic basis used in the DVC discrete formulation prescribes continuity to the measured
displacement field. Any deviation from this requirement (e.g., void nucleation and growth)
cannot be properly captured by the underlying kinematics and will be reflected in a local residual
increase. Hence, a significant amount of damage growth may deteriorate gray level conservation
and possibly DVC convergence. A particular care will be given to the evolution of these residuals
during loading. The results regarding gray level residuals are reported in Subsection 6.1.4.

6.1.3 Finite Element simulations

6.1.3.1 Definition of a computational domain

For each experiment, 3D X-ray images are reconstructed at various loading steps. For obvious
reasons, it is impossible to systematically capture the same part of the specimen, and some
features may go in and out of the images.
Regarding DVC, this is dependent on whether computations are conducted with a direct or
incremental scheme (Figure 6.5). The ROI may be different depending on the used method as for
example more material points of intermediary images are taken into account by the incremental
method.
However, this is not possible for mechanical simulations, namely, the chosen initial FE domain
has to remain inside all DVC ROIs throughout the simulation. This is independent of the DVC
method (direct or incremental).
In practice, the DVC ROI is chosen as large as possible (ideally, the full X-ray images minus the
regions with missing information), and the FE domain for mechanical computations is manually
chosen in order to be contained inside all DVC ROIs.

6.1.3.2 Application of boundary conditions

Once an appropriate domain has been chosen and meshed according to the initial image, boundary
conditions have to be applied to follow experimental images through each loading step. This
problem is split into two operations that are time and spatial interpolations. Neither the time step
nor the FE mesh used for mechanical computations will generally match the loading steps used
in experiments and the mesh used for DVC.
In practice, a loading step will be split into several time steps, especially at crack initiation.
Regarding the FE mesh, it will be fitted to the features of the microstructure, and refined
close to interfaces. It is worth noting that such fine meshes are not compatible with standard
DVC approaches [280], the reason for that being the fact that the number of voxels per nodal
displacement cannot be arbitrarily reduced without additional regularization [101, 280].

The application of boundary conditions is presented in the following for time t, which is
not necessarily a time at which a scan was acquired, and for boundary nodes of the FE mesh,
which are not necessarily nodes of the DVC mesh. Note that t is an artificial and dimensionless
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time linked to the loading steps (i.e., the material behavior is rate-independent). The automatic
procedure implemented in the FE code reads:

1. find the two loading steps taken at instants ta and tb such that ta ≤ t < tb, with no loading
step between ta and tb,

2. read the undeformed DVC mesh and the DVC displacement field at ta,

3. perform linear time-interpolation,

4. perform linear (resp. trilinear) space-interpolation by finding for each boundary node of
the FE mesh the element of the DVC mesh containing it, and apply linear (resp. trilinear)
interpolation inside this element depending on its type.

Operation 1 has linear complexity and negligible cost as the number of loading steps is
small. The same remark applies to operations 2 and 3 as the DVC mesh is at least one order of
magnitude coarser than the FE mesh (in terms of number of elements). Operation 4, however,
requires to localize each node of the FE mesh inside the DVC mesh. Optimized algorithms
can be found in the literature to perform such operation in logarithmic time (e.g., by using
space partitioning techniques [216]) but were not implemented due to the small size of the DVC
mesh compared to the FE mesh. Hence, this operation has a cost proportional to the number
of elements in the DVC mesh, and quadratic cost considering it has to be run for all boundary
nodes of the FE mesh. This cost would have to be optimized if finer DVC meshes were to be
used, especially if those meshes were to have an order comparable to that of the FE mesh.

Last, the displacement field interpolated at the boundary nodes of the FE mesh is prescribed
by means of Dirichlet boundary conditions on the whole boundary of the FE domain. Therefore,
apart from small differences due to interpolation and remeshing, the boundary of the FE mesh is
expected to follow exactly the measured displacement field at each loading steps. The errors that
will be measured inside the domain are expected to be mainly due to the mechanical modeling.

6.1.3.3 Constitutive law

As stated in the introduction, graphite nodules are considered as voids in the present computations
[266, 267, 268, 269]. These voids are modeled using an isotropic linear elasticity law with very
low Young’s modulus. With a sufficiently low value, the behavior of a void is obtained. The
influence of such penalization technique on void growth was investigated in 2D in previous work
at Cemef - MINES ParisTech [5]. This investigation is again carried out for the present 3D
computations.

The power law for isotropic hardening of the ferritic matrix was fitted against a stress/strain
curve for a purely ferritic material [268]. The obtained values are σy = 290 MPa, K = 382 MPa,
n = 0.35; the Young’s modulus E = 210 GPa, and Poisson’s ratio ν = 0.3.

6.1.3.4 Simulation results

The DVC ROI for which boundary conditions are available is of dimensions up to 5323 voxels.
Finding the largest 3D box included in this ROI and in all ROIs through each loading step
was performed manually by launching simulations without meshing any microstructure. Box
dimensions were reduced progressively until reaching the above condition. The chosen FE
domain is of dimensions [−245, 200] × [−17, 200] × [−245, 245] voxels, due to necking in the
x-direction and crack opening in the y-direction.
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In the following, FE simulation results are presented using this initial domain and, unless
otherwise mentioned, DVC boundary conditions using element size 32 voxels and no mechanical
regularization. This element size means that each hexahedral element of the DVC mesh is a
cube containing 32 × 32 × 32 voxels. Qualitative comparisons with experiments are presented
based on 2D slices of the microstructure. Particular interest is given to void volume change
(nodules being already replaced by voids in the initial mesh) in order to enable for quantitative
comparisons. More precise error measurements are presented in Subsection 6.1.4.

6.1.3.4.1 Mesh generation To show how different meshing parameters can be used in order
to capture different scales of the microstructure, three different sets are tested. In the refer-
ence configuration h2, mesh adaptation parameters are fixed to hmin = 10 µm, hmax = 50 µm,
εh = 100 µm, and hc = 0.1 µm. A coarser mesh h4 is then obtained by multiplying all these
parameters by 2, while a finer mesh h1 is based on a division of these parameters by 2. The
resulting meshes have 69, 010 elements for the coarsest one, 1, 857, 466 for the finest one, and
387, 473 for the reference one.
A sensitivity analysis similar to those presented in Section 3.4 is conducted to check that finer
scales are better captured with the finest setting, in the case of nodular cast iron. Therefore, the
middle slice of the image is compared to the midsection slice for each obtained mesh in Figure
6.6.
The coarsest result in Figure 6.6(c) gives a rough approximation of the microstructure, while
an acceptable description is obtained in the reference mesh (Figure 6.6(b)). Last, no significant
difference is observed between the initial image and the finest mesh in Figure 6.6(a) and Figure
6.6(d).

(a) (b)

(c) (d)

F

F

x
y

Figure 6.6 – Matrix and nodules at midsection of: (a) the image, (b) the reference mesh h2, (c)
the coarse mesh h4, (d) the fine mesh h1.
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For FE simulations, mesh quality is of major importance and should be investigated. The
quality distribution is presented in Figure 6.7 for the three settings, following the definition
in Equation (2.1). Finer meshes induce more elements far from interfaces and render mesh
adaptation easier. Therefore, the histogram for the finest mesh is slightly shifted to the right.
However, the proportion of elements in the first half of the histogram remains negligible for the
three configurations, which proves that accuracy is improved with finer meshes but not at the
sacrifice of mesh quality. Though this qualitative comparison suggests to use very fine meshes, it
is important to see the influence of these parameters on quantities of interest such as void volume
change for example.
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Figure 6.7 – Distribution of element quality at the initial state for the three tested FE mesh
settings.

6.1.3.4.2 Choice of numerical parameters To choose appropriate meshing parameters, time
step and void penalization coefficient, a sensitivity analysis is conducted.
Meshing parameters are tested using the three meshes defined in the previous section.
Regarding the time step, the reference is identical to that of the reconstructed images, i.e., there
are 7 scans, so 6 DVC displacement fields are available and 6 time increments are performed in
the FE simulation. Note that scans were not acquired at equidistributed displacement increments
as smaller loading steps were performed at the onset of void coalescence (Figure 6.2(b)). A
configuration with a time step 10 times smaller is tested (i.e., 60 time increments) to investigate
time step influence.
Last, the reference configuration uses a Young’s modulus for voids 1, 000 times smaller than that
of the matrix. A simulation is performed with a penalization of 10, 000 to check the influence of
this penalization coefficient.

The results are presented in Figure 6.8 in terms of relative void volume change, which is
expressed as the void volume divided by the volume of the FE ROI. While the penalization
parameter and the time step do not seem to have a significant influence on the results, the mesh
size plays a key role. The image import and mesh adaptation methodology introduced in Chapter
3 enable all scales of the initial image to be captured with a finer mesh, and preserve them more
efficiently throughout the simulation. Hence, both the initial void volume and its changes during
loading are under-estimated with a coarser mesh.
These results suggest that the reference penalization parameter and time step are appropriate for
the FE simulations, hence they are used in all following results. However, more accurate error
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measurements are necessary to investigate locally the influence of mesh size (Subsection 6.1.4).
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Figure 6.8 – Change of void volume (wrt. total ROI volume) with applied macroscopic displace-
ment for various numerical parameters.

6.1.3.4.3 Discussion To show the interest of the present method linking synchrotron experi-
ments and FE simulations through the use of DVC, it is important to compare the void volume
change curves in Figure 6.8 to experimental observations. This is illustrated qualitatively in
Figure 6.9, where void growth in the FE simulation using mesh h1 is compared with experimental
images, while quantitative comparisons are presented in Subsection 6.1.4.

Results in Figure 6.9 suggest that void coalescence is not only due to plasticity, as significant
errors can be observed for the last loading steps. Indeed, it is reminded that only a simple von
Mises plasticity model with power law hardening is used for the matrix material. It seems that
there is either significant matrix softening between neighboring voids, which would imply the
presence of a minor void population [137, 248] not captured by X-ray images, or a transition
from strained bands to localized fracture of these ligaments.

Inter-void plastic strained bands are clearly visible in Figure 6.10. Comparison with the
final crack propagation path in Figure 6.9 reveals the importance of studying more closely the
behavior of the matrix in these bands. Crystal plasticity modeling [4] may be important, as grain
size in the matrix material is comparable to nodule size [267]. Such discussions are only possible
thanks to simulations with real microstructures and measured boundary conditions.

6.1.4 Quantitative comparisons
The whole methodology presented in the previous sections focuses on expressing experiments
and FE simulations in the same kinematic space. On the one hand, experimental images are
directly exploited by the FE code in order to mesh the initial domain. On the other hand, they
are also exploited by DVC in order to compute displacement fields that are then used to drive the
FE simulations. In order to check the validity and accuracy of all the computations, these links
need to be reversed, as shown in Figure 6.1. The FE simulation results should be compared both
against experimental images obtained during loading and measured displacement fields as well.
Regarding the validation of DVC measurements, it is common practice to study correlation
residuals (Paragraph 6.1.2.2.3), namely, the deformed experimental volumes are corrected using
the measured displacement field and compared to the actual reference volume. This operation can
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Figure 6.9 – Comparison between the void/matrix interface obtained by the FE simulation (thin
white line) and the experimental images at a macroscopic displacement of: (a) 0 µm, (b) 330 µm,
(c) 578 µm, (d) 744 µm, (e) 868 µm, (f) 910 µm, (g) 950 µm.
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Figure 6.10 – Equivalent plastic strain obtained by the FE simulation superimposed with experi-
mental images at a macroscopic displacement of: (a) 578 µm, (b) 910 µm.
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also be applied to the displacement fields obtained by the FE simulation, i.e., compute gray level
residuals for the FE kinematic fields by correcting reconstructed volumes. The corresponding
DVC and FE gray level residual fields can then be compared.
DVC displacement fields are applied to the boundaries of the FE domain, but they are also
available inside the domain. Hence, DVC and FE kinematic fields can also be interpolated on the
same mesh and directly compared.

In the following, displacement fields obtained by DVC are interpolated on the corresponding
FE mesh (i.e., unstructured tetrahedral mesh). The meshes are shown in Figure 6.11. The FE
domain, which needed to be reduced compared with the DVC ROI for the reasons outlined in
Paragraph 6.1.2.2.2 and Paragraph 6.1.3.1, contains the fine mesh h2 adjusted to the microstruc-
ture details as opposed to the structured and coarse DVC mesh.

(a) isometric view (b) X section

(c) Y section (d) Z section

Figure 6.11 – (a) DVC (blue) and FE (red) meshes plotted over the corresponding cast iron
microstructure in (a) isometric view and (b-d) sections normal to X, Y and Z axes.

The original FE and DVC interpolated displacement fields are then subtracted yielding the
displacement difference field. The displacement fields and their difference are shown in Figure
6.12 for the third loading step on the section normal to the y-direction. The displacement field
magnitude shows good match between the two solutions, which is to be expected since measured
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boundary conditions are prescribed. The field differences mainly occur in areas close to the
nodules (Figure 6.12(c)).
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Figure 6.12 – Section normal to y-direction: (a) DVC displacement field magnitude, (b) FE
displacement field magnitude, (c) absolute difference between them and (d) DVC and FE meshes
for the third loading step. All reported values are expressed in voxels (1voxel↔ 1.095 µm) and
correspond to the FE mesh h2.

The displacement difference is characterized by the mean and standard deviation values for the
three directions. They are shown in Figure 6.13. It is interesting to normalize standard deviations
with the corresponding DVC displacement uncertainty (Figure 6.13(b)). The displacement
differences deviate more than the measurement uncertainty meaning the current DVC and FE
results are not fully consistent. However, it is worth noting that for the first four steps the
differences remain rather small (i.e., less than 5 times the standard displacement resolutions).
Conversely, for the last loading step, the agreement is less good. This is due to the fact that
significant void growth has occurred (Figure 6.9) and is not fully captured either by DVC or FE
simulations.

The influence of the mesh size used in the FE computations is reported in Figure 6.14
using the three settings defined in Paragraph 6.1.3.4.1. The diagrams are showing (a) mean and
(b) standard deviation of the displacement differences between measured (via DVC) and FE
simulations. The results show there is no significant influence of the mesh size when compared
to DVC results. Interestingly, for the last two loading steps, the difference between the three FE
simulations increases. This is a further indication that localized phenomena occur and that the
FE discretization becomes sensitive to such events.
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Figure 6.13 – (a) Mean values and (b) standard deviations (in %) of the difference between the
measured simulated displacement fields for the FE mesh h2. Standard deviations are normalized
by the corresponding DVC uncertainties.
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Figure 6.14 – (a) Mean values and (b) standard deviations (in %) of the difference between the
measured and simulated displacement fields for different FE mesh sizes. Standard deviations are
normalized by the corresponding DVC uncertainties.

Although assessing displacement differences is an interesting piece of information, it is not
an objective way of validating FE simulations since the meshes are different in DVC calculations
and FE simulations (Figure 6.11). In the following it is proposed to use gray level residuals to
compare all results even though the experimental solution is unknown. To validate DVC results,
corrected deformed volumes ĝ are computed by resorting to measured displacement fields. The
same procedure is followed by computing gray level residuals with FE computed displacement
fields. The tetrahedral mesh together with the computed displacement values are imported
into a newly developed tetrahedral-DVC code [283, 284]. By using the linear shape functions
the displacement results are interpolated voxel-wise and the corresponding deformed volume
g(x) is corrected by the computed displacement field uFE(x). The gray level residuals, namely,
differences between the reference volume f (x) and corrected deformed volume g(x + u(x)) can
then be compared for DVC and FE computations.

This procedure is illustrated in Figure 6.15 for the third loading step. The microstructure
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section in the reference and deformed states is shown in addition to their raw difference. The
latter shows that the motion of the nodules is not accounted for. Figure 6.15(d-e) shows the gray
level residual after correcting with the displacement fields measured via DVC and computed
with the FE simulation with h2 mesh. When compared with Figure 6.15(c) it is concluded that
DVC and FE results are close to the experiment.
There still are some very small areas close to the nodules interface that are not properly captured
by the measured and simulated fields. On the DVC side, this is an indication that debonding has
occurred and the displacement continuity associated with the DVC mesh is violated. On the FE
side, the hypothesis that the nodules can be approximated by voids may be a possible cause for
this difference. The constitutive model chosen for the matrix at this scale and the corresponding
material parameters could be additional reasons.
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Figure 6.15 – Microstructure section in the (a) reference and (b) deformed states. Absolute gray
level differences between the two initial states (c) and after correction with DVC (d) and FE (e)
displacements (obtained on h2 mesh) for third loading step.

The results of Figure 6.15 indicate that DVC and FE results are very close in terms of
gray level residuals. This is confirmed by reporting the standard deviations of the residual
fields for all the analyzed loading steps (Figure 6.16). These curves are plotted together with
the corresponding residuals from the uncertainty analyses of the first and fourth loading steps.
First, the DVC and FE residuals have very similar levels for the whole history even though
the discretizations are very different. This is mainly due to the fact that measured boundary
conditions have been applied to the numerical model. As the screw displacement is increased,
the two residuals depart from those observed for the uncertainty analysis. This is an indication
that the measured and computed displacements are no longer able to capture all the complex
phenomena taking place. Model errors are therefore to be expected. On the DVC side it is related
to the coarse and continuous hexahedral discretization.

The influence of the FE mesh is evaluated in Figure 6.17. There is no significant influence of
the mesh size on the gray level residuals. The three meshes can be used in the present analyses
since they lead to virtually identical global residuals. This last result shows that on the FE side
the origin of higher residual is due to the constitutive model that is no longer able to fully capture
all the strained bands preceding coalescence mechanisms.
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Figure 6.16 – Standard deviation for the dimensionless gray level residual fields for all loading
steps (FE results obtained with h2 mesh). The standard deviations obtained for the repeti-
tion scans (0 mm bis) and rigid body motion scans (0.744 mm bis) are given for comparison
(Paragraph 6.1.2.2.3).
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Figure 6.17 – Standard deviation gray level residuals for all loading steps with three different
FE discretizations.

From the previous results (Figure 6.16) it is concluded that the FE solution driven by the
DVC boundary conditions is close to the DVC measurements, i.e., both yield similar gray
level residuals. This result validates the whole numerical procedure. However, it does not
necessarily validate the constitutive model since up to now only kinematic fields were probed.
Error measurements based purely on kinematic data may not be sufficient because all 6 faces
of the FE ROI are constrained. Hence, static data should also be involved in the analysis.
This procedure requires the knowledge of stress profiles along the sample ligament to be able
to compare experimentaly measured macro-forces and calculated static responses from FE
simulations on microscopic level (FE ROI scale). A sensitivity analysis regarding FE ROI size
should also be considered, because a larger FE ROI would reduce the influence of DVC boundary
conditions and may increase errors in FE simulations (Section 6.2).

6.1.5 Conclusion

In this section an innovative validation procedure combining synchrotron laminography, digital
volume correlation and FE simulations on the microscale level has been presented (Figure 6.1).
Experimental data, namely, reconstructed volumes are collected via laminography and load levels
while performing a tensile test on a flat specimen of nodular cast iron with a central hole. Bulk
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kinematic fields in the region close to the central hole are measured via DVC. Since high strain
levels occur between subsequent scans regularized approaches to DVC are to be used to converge.
A stepwise relaxation procedure has been followed ending with unregularized solutions.
The FE mesh is adapted to the real microstructure under the assumption that graphite nodules
are considered as voids thanks to the developments presented in Chapter 2 and Chapter 3. The
FE simulations are driven by Dirichlet boundary conditions extracted from DVC measurements
on all 6 surfaces of the analyzed domain. The results obtained from DVC registrations and FE
simulations are then mutually and separately compared with respect to the available experimental
information.

DVC results are validated based on correlation residuals, and gray level residuals. The areas
of higher residuals correspond to the position of the debonding zones that appear very early
on. This is expected as the hexahedral mesh used for DVC computations enforces a continuity
constraint on kinematic solutions, which is violated when debonding occurs.

Once validated, DVC measurements are used to drive FE simulations. Added to the fact that
the real microstructure is discretized in the FE mesh, heterogeneous displacements prescribed
by DVC rely extensively on the robustness of the mesh adaptation methodology developed in
the present work (Chapter 2). The latter enables simulations to be performed with significant
void growth up to coalescence. While microstructures are often idealized in the literature, these
promising results confirm the new possibilities opened by the present developments for numerical
modeling of complex 3D microstructures having a complex morphology and undergoing large
deformations and complex topological events such as those observed in reality.

DVC and FE results are then compared by direct comparison of the full-field solutions and
computation of the gray level residuals. The first method, giving a relative comparison, provides
the gap between DVC and FE kinematic fields. It is shown that differences between the two
methods are mainly concentrated in the bulk of the inspected region around the nodules, while
boundary zones have mostly zero differences because the boundary conditions are measured via
DVC.
However, just observing the displacement difference between the two methods does not yield
an absolute error. Conversely, the gray level residuals can be computed independently for both
approaches. The kinematic fields are probed by computing the deformed volume corrected by
the measured or simulated displacement fields. There are, on average, no significant differences
between DVC and FE residual fields. Most of them are concentrated around graphite nodules.
The small magnitude of the differences between DVC and FE residual fields may be influenced
by FE ROI size, which has not been varied in the present section. A larger FE ROI is considered
in the following section.

To the authors’ best knowledge this is the first time 3D calculations are performed on a
real microstructure and by using measured boundary conditions up to large plastic strain. This
approach will enable better understanding and modeling of fracture mechanisms at microscale
levels. Its interest with respect to other approaches is emphasized in the following section.
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6.2 Comparison with other methods

6.2.1 Introduction
As mentioned in the introduction of this chapter, other approaches have been used in the literature
to validate ductile fracture models with respect to 3D full field experimental data.

• The most straightforward approach is Direct Numerical Simulation (DNS), where the
microstructure of the whole specimen has to be meshed, hence taking into account only mi-
croscale constitutive models. Since the whole specimen is simulated, boundary conditions
are applied directly at pins, as in the experiment. However, for the specimen considered
herein, DNS would have a huge cost regarding both experiments and simulations. Scanning
the whole specimen would require multiple scans at each loading step, and this large set of
3D data would then have to be meshed.

• To avoid this huge computational cost, full specimen FE simulations taking into account
the microstructure only partially have been considered [86, 248, 258, 263, 264, 265]. In
these embedded cell methods (Subsection 1.2.2), microscale constitutive models are used
in the ROI where the microstructure is meshed, while homogeneity is assumed in the
remainder of the specimen. Thus, an appropriate macroscale constitutive model has to be
defined and identified for this out-of-ROI homogeneous material. This approach will be
referred to as strong FE (sFE) in the following.

• Opposed to the previous approach, where the ROI mesh is directly embedded in the
specimen mesh, the two FE calculations can be weakly coupled. In this weak FE (wFE)
approach [18, 82, 262], the specimen scale simulation assumes a homogeneous material
in the whole domain. A relevant mechanical field is then transferred from this first
simulation to a second simulation at the ROI scale, where the microstructure is meshed.
This mechanical field defines the boundary conditions for the micromechanical simulation.
As detailed in Subsection 1.2.2, these can be static, kinematic, or a combination of both.

• The method introduced in Section 6.1, referred to as DVC-FE in this section, which has the
main advantage that no macroscale constitutive model is required, thus the computational
cost remains reasonable as only the ROI is meshed.

The present section aims at showing the interest of the DVC-FE approach by comparisons with
standard methods. This investigation is conducted with new experimental results using nodular
cast iron specimens with a geometry inspired from Ref. [85]. A first test (A) was performed
using small loading steps in order to obtain accurate force measurements and 2D surface images
to be exploited thanks to global DIC. The second test (B) was performed using larger loading
steps since it was conducted in a synchrotron facility. For this second test, both 3D X-ray scans
of the ROI and 2D surface images were acquired (Figure 6.18).

While the DVC-FE methodology presented above uses directly and solely the 3D X-ray data,
the two alternatives to obtain boundary conditions for ROI calculations considered in this section
(i.e., wFE and sFE) rely on force measurements and 2D surface images. Force measurements
are used to identify the behavior of the material at the specimen scale, as well as 2D surface
images thanks to a recent Integrated-DIC technique [91]. In the wFE method, an FE simulation
of the experiment at the specimen scale is conducted, and calculated displacement fields are
used to drive a second FE calculation at the ROI scale. In the sFE method, the ROI is embedded
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Figure 6.18 – Schematic view of the sample with zoomed region between the holes showing on the
right: DVC (blue) and FE (cyan) meshes plotted over the corresponding cast iron microstructure
in isometric view. On the left: surface image with speckle pattern and DIC mesh from test (B).

and meshed directly inside the specimen mesh and only one FE simulation is conducted. In this
second method, the material behavior is modeled using microscale constitutive models in the
ROI, while macroscale constitutive models are used in the rest of the domain.
The studied material is the same as in Section 6.1, only specimen geometry is changed (Figure
6.19). Similarly, graphite nodules are considered as voids in the initial microstructure, so that no
void nucleation models are necessary in this section.
The aforementioned approaches with weak (wFE) and strong (sFE) couplings between specimen
and ROI calculations are applied to a real 3D microstructure observed thanks to 3D in-situ SRCL
experiments. The results are then compared to those obtained using the DVC-FE approach
[44], showing the interest of this methodology. Details regarding the new experiments are
presented in Subsection 6.2.2, while the technical implementation of each approach for boundary
conditions is described in Subsection 6.2.3. The results are presented and compared based on
error measurements with respect to experimental images in Subsection 6.2.4.
Since the present work focused exclusively on FE simulations and micromechanical modeling,
all details regarding the experiments and DVC can be found in the published version of this
section [42].

6.2.2 Experiments
The specimen geometry, inspired by the work of Weck et al. [85] is shown in Figure 6.19.
Test (A) was conducted as a pre-test for test (B) to study in detail the particular sample behavior
(i.e., to assess the load levels for the scanning procedure). Therefore, identical sample geometry
and material were used for test (B). The load/displacement curve for test (A) is shown in Figure
6.21(b).
For test (B), the SRCL procedure was identical to that already described in Subsection 6.1.2,
though a recent GPU code helped accelerate significantly the 3D reconstruction step [285]. The
reconstructed volume has a size of 1600 × 1600 × 1600 voxels. The physical size (length) of 1
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cubic voxel is equal to 1.095 µm. After scanning the undeformed state (0), additional 12 scans
are acquired during the step-wise loading procedure, where the last scan corresponds to the fully
opened final crack.
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Figure 6.19 – (a) The sample geometry with the scanned region between the pin holes; (b) section
of the reconstructed volume with ROI position.
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Figure 6.20 – The midthickness section of the reconstructed volume for three different loading
steps.

The scanned region incorporates two holes while the ROI employed in DVC and FE cal-
culations is mainly concentrated in the ligament between the holes (Figure 6.18 and Figure
6.19). Since the two machined holes have diameters of 500 µm, the nodule population (treated
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as voids in the FE calculations) in the ligament area with the characteristic size of 60 µm can
be considered as a secondary void population. Hence, subsequent concurrent micro and macro
plasticity and damage localization phenomena can be observed.
In Reference [85], the authors used machined holes of micrometer size, which made impossible
the observation of the secondary void population (this limitation on the size of observable voids
is actually due to current imaging techniques [286]). In the present case, the larger size of the
holes, and the large size of the graphite nodules allow for such observations.
This is illustrated in Figure 6.20 where mid-thickness sections of the reconstructed volume
for the three different load stages are shown. As a consequence of the mentioned multiscale
flow conditions, classical void coalescence mechanisms are accompanied by sheet coalescence
between the two machined holes that is observed in the last loading step.

6.2.3 Boundary conditions

The first two procedures for boundary conditions presented in this section, namely DVC-FE
and wFE, consist in computing displacement fields and then applying these displacement fields
as Dirichlet boundary conditions on the whole boundary of the FE mesh of the ROI. The third
procedure, namely sFE, consists in a single step where the ROI is already being computed.
The three approaches and their implementation are detailed hereafter. Regarding the numerical
methods, micromechanical models, and material properties for the matrix that are used inside
the ROI, they are the same as those used in Section 6.1.

6.2.3.1 Digital Volume Correlation - Finite Element technique

The DVC method does not differ from that described in Paragraph 6.1.2.2. However, because
a larger DVC ROI is used in this section (Figure 6.19), original reconstructed volumes are a
priori coarsened, i.e., each 8 neighboring voxels are averaged to form one supervoxel. By doing
this, file sizes are decreased by a factor of 8 and the overall gradient of gray level fields is more
favorable since the ferritic matrix itself is a low contrast material where DVC registration is
difficult.
The same DVC uncertainty assessment carried out in Paragraph 6.1.2.2 yields a standard dis-
placement resolution of 0.25 supervoxel for a DVC element size of 16 supervoxels (i.e., 32
voxels) for all three directions.

6.2.3.2 Identification of macroscale material parameters

Both wFE and sFE methods require the identification of material parameters {p} based on experi-
mental measurements acquired during test (A). In the case of wFE, these material parameters
are used in the whole domain for the calculation at the specimen scale of test (B). In the case of
sFE, these parameters are only used for the homogenized out-of-ROI material, while microscale
material parameters are used inside the ROI.
The identification of material parameters can be performed only using force measurements,
or using both force measurements and 2D surface images. The two approaches are detailed
hereafter.

6.2.3.2.1 Static data A first identification is conducted using standard global optimization
methods [90, 287], where the objective function is defined as [92]
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E(F(u)) =

√∫ U
0

(F(u) − Fexp(u))2 du√∫ U
0

Fexp(u)2du
(6.1)

where the forces obtained in an FE simulation F are compared with the sum of reaction forces
measured during the experiment Fexp, with an integral on the loading path [0,U]. Therefore, only
static data acquired during test (A) are taken into account. Note that the displacement u, and all
displacements mentioned in this section, are measured via 2D DIC [278, 279, 288]. These values
were determined directly at the upper and lower parts of the mesh presented in Figure 6.21(a).
The force/displacement curve based on measurements and simulations is shown in Figure 6.21(b).
The experimental data were acquired up to final failure, but the last loading steps of test (B)
were discarded for this inverse analysis because no micromechanical simulation is carried out
up to final failure in Subsection 6.2.4. The force/displacement curves show that the numerical
approximation is very good, but only the macroscopic force is compared. Local measurements
are considered in the sequel.
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Figure 6.21 – Identification of macroscopic material parameters based on static data of test
(A): (a) mesh used for specimen scale calculations, (b) comparison between the simulated
force/displacement curve and experimental data.

6.2.3.2.2 Static and kinematic data In order to obtain more realistic material properties
more advanced identification techniques can be considered. In Integrated-DIC or DVC [91,
284, 289], both kinematic (i.e., 2D surface images from test (A)) and static (i.e., force measure-
ments from test (A)) data are taken into account. This technique (not detailed here) requires
displacement fields to be fully mechanically admissible, i.e., satisfy equilibrium for the chosen
constitutive law.
The Integrated-DIC code used herein is a Matlab implementation with C++ kernel (Correli
3.0 [283]) while the accompanying FE simulations are performed using the commercial package
Abaqus/Standard. More details about mechanical correlation can be found in Reference [284].
Due to very low sensitivity the Poisson’s ratio had to be fixed in Integrated-DIC to its initial
value of 0.28 while the other elasto plastic parameters have been identified.
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Material parameters obtained using both identification procedures are given in Table 6.1.
Though these parameters may seem to differ notably, the influence of this difference is significant
only at low (< 0.2) and very large (> 1) equivalent plastic strain, the latter not being experienced
herein. Note that elastic strains are not significant. Hence, the results are not expected to strongly
depend on the choice of identification procedure, apart from the first loading steps.

Method E (GPa) ν σy (MPa) K (MPa) n
Static data 187 0.28 64.4 524 0.19

Integrated-DIC 136 0.28 216 408 0.331
Matrix 210 0.3 290 382 0.35

Table 6.1 – Elasto plastic properties of nodular cast iron obtained using inverse analysis on test
(A), first based only on static data, and then also on kinematic data thanks to Integrated-DIC.
Material parameters used for the matrix material in micromechanical simulations are reminded
in the third line.

6.2.3.3 Weak Finite Element technique

In the wFE technique, a first macroscopic simulation of test (B) has to be conducted at the
specimen scale. The material is considered as homogeneous and modeled using the same
elasto-plastic model with the power law hardening defined in Equation (4.10) and the two
sets of material parameters given in Table 6.1. Since specimens used in tests (A) and (B) had
identical geometries, the same mesh as in Figure 6.21(a) is used. The displacement field between
each consecutive loading step where 3D X-ray scans were acquired is stored in the reference
configuration. These displacements are then interpolated at the boundaries of the ROI during
a second FE simulation at the microscale by means of linear interpolation (both meshes being
exclusively composed of tetrahedra).

6.2.3.4 Strong Finite Element technique

In the sFE method, a single FE simulation is carried out. This simulation uses a mesh similar
to that shown in Figure 6.21(a), with the difference that this time the mesh incorporates the
ROI with its microstructure. In the ROI, the material properties correspond to a two-phase
matrix/voids material (third line of Table 6.1), while in the rest of the specimen the two sets
of material properties given in the first lines of Table 6.1 are considered. Compared to other
approaches, this method adds significant computation time, as illustrated by the used mesh of
≈ 1.5 million elements in Figure 6.22. However, it has the advantage that ductile fracture can be
studied simultaneously at two scales.

6.2.4 Results
In this subsection, results using the DVC-FE approach are first presented and discussed, as
comparisons with experiments are qualitatively and quantitatively possible. Then, comparisons
with other approaches are proposed.

6.2.4.1 Digital Volume Correlation - Finite Element coupling

The results using the DVC-FE approach are shown in Figure 6.23, where both void growth
and plastic strain are observed. This computation included 100 voids meshed with ≈ 1 million



CHAPTER 6. A NUMERICAL VALIDATION FRAMEWORK FOR MICROMECHANICAL
SIMULATIONS BASED ON SYNCHROTRON 3D IMAGING 241

(a) (b)

Figure 6.22 – Inside view of the mesh used in sFE calculations: (a) full specimen, (b) zoom on
the ROI. The three shades of blue represent, from lighter to darker, the homogenized out-of-ROI
material, the matrix, and the graphite nodules (idealized as voids).

elements. The simulation was performed in less than 3 h using 40 Central Processing Units
(CPUs). This quite low computation time is very promising in the prospect of applying inverse
analyses at the microscale to identify micromechanical properties, especially regarding coales-
cence modeling.
This is helped by the fact that DVC avoids the requirement of meshing the whole specimen, as in
a DNS. In the present case, considering the ratio between the volume of the out-of-ROI material
and the volume of the ROI in Figure 6.22, the number of elements that a DNS calculation
would require can be estimated at ≈ 100 million elements. Although such calculation is not
conducted herein, the aforementioned computation time shows that it could be conducted in
the very near future, at least regarding the numerical part, thanks to the numerical methods and
parallel computing capabilities demonstrated in this work. However, the DVC-FE approach is,
by far, more efficient, as only the DVC ROI has to be modeled in the FE simulation.

Regarding the results obtained with the DVC-FE method, errors can be assessed first qual-
itatively, for example by comparing the Z midsection of the ROI with experimental images,
as shown in Figure 6.24. Since the DVC boundary conditions are expected to follow the ex-
perimental images, the matrix/void interfaces in the simulation (in white in the figure) can be
superimposed on these images and compared. This figure reveals that interfaces are overall very
accurately meshed and tracked during the simulation, up to the last loading step. However, there
is an irregularity in the material, namely a non spherical void in the top left region of Figure 6.24.
In the undeformed state, this defect is already poorly captured by the meshing technique due to
its very small size, and this error accumulates during loading. This figure shows that void growth
in the simulations compares well with what is observed in X-ray images.

As presented in Subsection 6.1.4, thanks to the present framework, local comparisons are
possible. This is shown in Figure 6.25 as standard deviation of residual fields (normalized by
dynamic range of the volume, i.e., 256 gray levels) for DVC and DVC-FE calculations.

It is reminded that theoretically, the DVC-FE curve is not expected to be below the DVC
one, since the latter is used to drive the former. The error produced by micromechanical models
inside the DVC-FE domain is low and it slightly increases at late loading steps (from ≈ 15%
initially to ≈ 20% in late loading steps). A look at the Z midsection in Figure 6.26(a-b) reveals
that these differences between simulations (DVC-FE) and experiments (DVC) are concentrated
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Figure 6.23 – ROI calculation results using the DVC-FE approach showing the 3D meshed voids
and the equivalent plastic strain on sections when: (a) u = 0 (undeformed state), (b) u = 83 µm,
(c) u = 192 µm, (d) u = 321 µm.
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Figure 6.24 – ROI (blue line) calculation results using the DVC-FE approach comparing the
numerical matrix/void interface (white line) with experimental images for the X midsection
when: (a) u = 0 (undeformed state), (b) u = 83 µm, (c) u = 192 µm, (d) u = 321 µm.

Figure 6.25 – Standard deviation for the dimensionless gray level residual fields for all loading
steps. For comparison purposes, the dashed line corresponds to the resolution analysis for the
so-called “bis” case (Paragraph 6.2.3.1).
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around interfaces. This is expected due to plastic localization.
The growth of a minor void population and damage at a lower scale are certainly also an explana-
tion. These minor voids cannot be observed due to the resolution of the synchrotron imaging
technique used herein. The development and application of higher resolution techniques, such as
nanolaminography, would be interesting in order to check these assumptions. However, these
error measurements will be the basis for modeling and identification of more advanced plasticity
and damage models in future work.
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Figure 6.26 – Absolute gray level differences at the Z midsection after correction with DVC (a),
DVC-FE (b), wFE (c) and sFE (d) displacements for the ninth loading step. Note that due to
different rigid body motions for each simulation, the Z midsections slightly differ.

Once the absolute errors in terms of gray level residuals are estimated, relative comparisons
can be shown. DVC and FE kinematic fields are interpolated on the same mesh and directly
compared in Figure 6.27(a). Again, it is confirmed that the main differences are concentrated in
the debonding zones, while the differences close to the boundaries are mostly zero.

6.2.4.2 Comparisons with other approaches

For quantitative comparisons between the DVC-FE method and its two alternatives used in
this section, two approaches are proposed. In the first approach, as commonly carried out by
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Figure 6.27 – Mid-section normal to z-direction showing absolute difference between: (a) DVC
and DVC-FE displacement fields, (b) DVC and wFE displacement fields for the ninth loading
step. The black area at the top of sub-figure (b) represents a zone out of the DVC ROI. The color
bar range is set according to the data set from sub-figure (a) in order to have more convenient
visual comparison. The displacement difference is expressed in supervoxels (1 supervoxel
←→ 2.2 µm).

most authors, void growth curves are compared, giving only average quantities and global error
measurements [19, 21, 67, 228, 259, 290]. The second approach aims at studying which method
is closer to experimental observations based on local differences. These local errors are computed
by reducing the kinematic data for each simulation back to gray level residuals. This requires to
extend the procedure already applied to DVC and DVC-FE kinematic data to the wFE and sFE
methods.

6.2.4.2.1 Global error indicators Void growth is defined by the following relationships

f =
void volume
ROI volume

, void growth =
f
f0
. (6.2)

where f0 denotes the initial void volume fraction. Void growth curves are shown in Figure
6.28. The EXP curve is obtained by computing void growth in processed laminography images
(i.e., images with smooth signed distance functions as in Figure 3.18(b)). The 3D box where
this experimental void growth is computed remains fixed to the initial ROI. The wFE and sFE
curves correspond to simulations using material properties based only on static data (first line of
Table 6.1), while the wFE I-DIC and sFE I-DIC curves correspond to simulations using material
properties based also on kinematic data thanks to Integrated-DIC (second line of Table 6.1).
All numerical results show a significant decrease of the porosity f at the first loading step,
which is not observed for the experimental curve. This is due to the fact that the first loading
step corresponds to a more significant macroscopic displacement than others, and remeshing is
extensively used for all simulations. This remeshing has the consequence that interfaces can be
slightly smoothened, and void volume can be diffused.
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Apart from this numerical issue, the curves reveal significant void growth with increasing load
for DVC-FE and sFE results, while nearly no void growth occurs in the wFE simulation. This
effect can be explained by the fact that the computation used to obtain displacement boundary
conditions for the wFE simulation does not take into account damage and the subsequent volume
change in the ROI. Hence, the displacement fields that are transferred to the ROI in this case
are incompressible in the plastic regime, and neither the void volume nor the ROI volume can
evolve.
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Figure 6.28 – Void volume change curves for all the approaches investigated in this section.

Regarding comparisons with the experimental curve, void growth seems to be overestimated
with the DVC-FE method. This can be explained by the fact that nodules are considered as voids
in the simulations, while in reality only the voids nucleated after debonding of nodule/matrix
interfaces grow (Figure 6.24). Thus, it can be assumed that all curves would have a slightly lower
slope if nodules were taken into account. The DVC-FE method is the only one that shows a void
growth similar to that observed in the experiment.
The comparison between DVC-FE and sFE results using the proposed procedure shows that
although void growth and the compressibility effects induced by the presence of voids are taken
into account in the sFE method, this void growth is not as significant as with the DVC-FE method.
In particular, the slopes of the wFE and sFE curves are clearly lower than what is observed
experimentally. Both results are not improved when using Integrated-DIC material parameters.
The influence of material parameters seems to be negligible. This observation remains to be
confirmed with local error measurements.

6.2.4.2.2 Local error indicators In order to compare wFE and sFE kinematic fields with
X-ray images, the method used to measure gray level residuals associated to DVC-FE results has
to be extended to other methods. This is difficult because wFE and sFE meshes do not follow
X-ray images. Hence, a methodology has to be defined in order to remove rigid body motions
from wFE/sFE calculated displacement fields and allow for a superimposition of wFE/sFE
meshes on X-ray images.
First, mean deformation gradients over the ROI for DVC and wFE/sFE displacement fields are
calculated. By employing a polar decomposition on the latter, wFE/sFE and DVC rotations are
evaluated while the mean values of kinematic fields represent the corresponding translations.
Mean wFE/sFE translations and rotations are subtracted from wFE/sFE displacement fields, and
replaced by mean translations and rotations associated to the DVC solution.
Hence, from the wFE/sFE displacements fields, rigid body motions originating from the FE
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simulations are first eliminated, and then rigid body motions associated with the experiment
(i.e., measured with DVC) are applied. This is performed in order to have equal conditions for
all presented methods when reducing them to gray level residual images. The resulting errors
are shown in Figure 6.29 and Figure 6.26(c-d) while the displacement difference between DVC
measurements and wFE calculated fields is shown in Figure 6.27(b).
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Figure 6.29 – Standard deviation for the dimensionless gray level residual fields for all loading
steps and investigated cases.

Surprisingly, although sFE yields slightly better results than wFE, independently of the mate-
rial parameters, this difference is negligible. This means that although the sFE method predicts
a void growth that is globally closer to experimental data, the shape of these voids is inexact.
Therefore, errors that do not appear in global measurements are revealed by local measurements,
thereby underlining the interest of the present methodology. The small difference between wFE
and sFE results could mean that the constitutive model used at the macroscale corresponds well
to the homogenized mechanical response obtained in the ROI, where microscale constitutive
models are used.
Regarding the comparison between sFE/wFE and DVC-FE, the gap is increasing during the load
history, ending with a deviation that is twice higher with the sFE/wFE methods than with the
DVC-FE one. This confirms the tendency that was observed based on void growth curves. To
have a more precise idea of this gap, the cumulative gray level residuals distribution is shown
in Figure 6.30(a) for the last loading step. This difference does not seem significant because
it takes into account a large number of supervoxels belonging to the matrix, where contrast is
small. This observation is illustrated in Figure 6.30(b), where only gray level residuals higher
than 40 are shown, hence discarding most supervoxels of the matrix. The cumulative distribution
taking into account only the remaining supervoxels (i.e., close to voids or nodules) is shown in
Figure 6.30(c). It reveals a significant difference between the DVC-FE results and those obtained
with the sFE/wFE methods. The error is doubled with the latter.
This underlines the inability of macro simulations to precisely describe all the micro localization
phenomena occurring in the ROI both between the machined holes and the nodules, and between
the nodules themselves. Figure 6.27(b) reveals nearly zero difference in the ligament area, mean-
ing that the macroshear band position (i.e., between the machined holes) and the corresponding
kinematics are properly captured with wFE simulations while the out of ligament area contains
more significant displacement differences compared with DVC-FE simulations.
Overall, the use of Integrated-DIC material parameters for wFE and sFE methods improves the
results. As expected in Paragraph 6.2.3.2, this gain is concentrated at lower strains while at
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higher strains the influence of these material parameters is negligible. Paint cracking and subse-
quent DIC convergence issues from 2D images (test (A)) could be responsible for decreasing
Integrated-DIC performance at late loading steps. This observation adds to the interest for the
DVC method, which relies directly on the contrast of the material.
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Figure 6.30 – Cumulative distribution of gray level residuals at the last incremental loading step
considering: (a) all supervoxels, (c) only supervoxels with gray level residuals higher than 40.
In (b), the absolute gray level differences for the sFE method with residuals higher than 40 are
shown for the same Z midsection as in Figure 6.26(d).

Therefore, the way the material parameters are identified herein improves the results but
only slightly. Using more complex macroscale constitutive models would certainly improve
the results obtained using the wFE and sFE methods. This would also increase the need for
identification methods such as Integrated-DIC that take into account field measurements. For
instance, the inability of both wFE and sFE methods to correctly predict plastic localization
could be linked to an anisotropy of the yield surface at the macroscale, due to the presence of the
nodules. Damage and the subsequent volume changes of the homogenized material should also
be considered, due to debonding of the nodules from the matrix. These remarks stress out the
importance of understanding the influence of the microstructure on the mechanical response of
the homogenized material. Therefore, a numerical validation procedure for micromechanical
simulations that does not rely on any macroscopic constitutive model, such as the DVC-FE
method, is of great interest.
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6.2.5 Conclusion
The present section compares numerical validation frameworks for micromechanical FE simula-
tions based on synchrotron 3D imaging data. Given a 3D microstructure meshing technique, the
aim is to conduct FE simulations in conditions as close as possible to the experiments, and then
validate micromechanical models with local error indicators. As DNS is too costly and would
require meshes with more than 100 million elements, multiscale methods have been proposed in
the literature to avoid meshing the microstructure in the whole specimen.
The method denoted strong FE (sFE) in this section is an embedded cell approach consisting in
meshing the microstructure only in a small ROI, and embedding this ROI mesh in a specimen
mesh. Macroscale constitutive models are used for the out-of-ROI material, while microscale
constitutive models are used inside the ROI. Another method, referred to as weak FE (wFE) in
this section, consists in separating the macroscale and microscale problems, by first conducting
an FE simulation at the specimen scale, considering a totally homogeneous material, and then us-
ing the displacement fields from this first simulation to drive a second simulation at the ROI scale.

A common disadvantage of both sFE and wFE methods is that they depend on a macroscale
constitutive model, which is not obvious to choose and then identify, especially when large plastic
strains and complex damage phenomena are observed locally. In the experiments presented in
this section, the nodular graphite cast iron specimens with a geometry inspired by the work of
Weck et al. [85] feature two machined holes (Figure 6.19). Ductile fracture due to the nucleation,
growth and coalescence of microscopic voids between the machined holes is observed. Due to
the multiscale flow conditions, classical void coalescence mechanisms are accompanied by the
sheet coalescence mechanism that is observed in the last loading stage (Figure 6.20). Hence, the
proposed experiment enables to observe micro and macro plasticity and damage localization
phenomena that remain challenging for micromechanical modeling, especially when multiscale
methods are involved.

The DVC-FE method introduced in Section 6.1 is applied in this section and compared with
the sFE and wFE methods. The latter two rely on an identification of material parameters at the
macroscale, which is performed by either only using force measurements or combining static
and kinematic data via Integrated-DIC.
Standard deviations of the gray level residual fields show that the DVC-FE method yields better
results than both wFE and sFE methods (Figure 6.29), the gap being increased significantly
at later stages of the experiment. The same conclusions are drawn from Figure 6.28 where
void growth is shown for the different approaches. While these global measurements indicate
a significantly improved prediction of void growth with the sFE method compared to wFE,
local measurements based on standard deviation of the gray level residuals prove that this
improvement is negligible with both sets of material parameters. This result underlines the
importance of considering local error measurements for validating micromechanical simulations,
and the interest for experimental-numerical frameworks that allow for such measurements.

Based on these local error indicators, it has been shown that using more sophisticated
identification methods such as Integrated-DIC only marginally enhances the results. However,
the measured errors remain significant compared to the DVC-FE method, which outlines the
inability of Dirichlet conditions calculated by macro-simulations to describe precisely the micro
localization effects occurring in the heterogeneous ROI.
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Conclusion

Experimental techniques enabling to acquire in situ three-dimensional (3D) full field observations
of the ductile fracture micromechanisms of voids nucleation, growth and coalescence are now
commonly used by multiple authors. In Chapter 4, full field simulations taking into account
these mechanisms for large 3D microstructures have been presented. In the present chapter, an
experimental-numerical framework has been developed in order to compare experiments and
simulations based on 3D full field data.

The proposed technique relies on a key technique, namely Digital Volume Correlation (DVC).
3D X-ray images acquired at consecutive loading steps can be correlated in order to measure
3D full field kinematic data, indicating the displacement fields between these consecutive scans.
Uncertainty assessments for two different experiments on the same material confirm the validity
of these measurements, and the robustness of the DVC registration method.
The material is nodular cast iron, which at the microscale features a ferritic steel matrix, and
graphite nodules that debond very early under tensile loading. Additionally, these nodules are
known to have a very low load carrying capacity. Thus, they were considered as voids in this
chapter, and no nucleation mechanism was modeled.

Once the initial microstructure in a small Region of Interest (ROI) is meshed, DVC mea-
surements are used as Dirichlet boundary conditions on the whole boundary of this ROI, hence
driving the Finite Element (FE) simulations. This method enables to reproduce very accurately
the actual loading to which the microstructure is locally subjected. Furthermore, the FE kine-
matic solution inside the ROI can be compared to DVC measurements, giving a quantitative
indicator of the error made by micromechanical models. The FE kinematic solution can also be
directly compared to consecutive X-ray images, giving accurate and local error measurements.
These FE simulations with complex 3D microstructures and large plastic strains, due to realistic
loading conditions, show the potential and robustness of the Level-Set (LS) and mesh adaptation
techniques developed in the present work.

Then, comparisons are proposed in this chapter between this new DVC-FE methodology,
and conventional methods, both regarding boundary conditions and error measurements. In
fact, most previous works have relied on multiscale methods to deduce boundary conditions for
micromechanical calculations. Independently on the choice of coupling between macroscale
and microscale mechanics, it is shown in this chapter that multiscale schemes cannot capture
accurately the complex plastic localization and voids coalescence phenomena occurring in the
ROI.
In particular, while most previous works have only considered global error measurements (i.e.,
with respect to averaged variables), the local error indicators based on DVC can also be applied to
micromechanical simulations that are not necessarily driven by DVC. Thus, the errors produced
by multiscale schemes can be measured more precisely, revealing that void morphology is not
well described locally with these schemes. This is not the case for the DVC-FE method, which
yields better predictions, both globally and locally.

Because a simple plasticity model has been used for the matrix material, and nodule behavior
has been neglected, there still is a significant gap between DVC-FE and DVC results. Thus, more
advanced microscale constitutive models should be studied in the future, especially regarding
the modeling of a minor void population. These could be based on the void coalescence models
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developed in this work (Chapter 5), or porous plasticity models.
For other materials or loading configurations, the behavior of the nodules should be considered,
including debonding or fragmentation mechanisms, as done in Chapter 4. In fact, this DVC-FE
approach is likely to be applicable to other materials where micromechanical modeling is gaining
an increasing interest, such as metallic foams and composites for instance.

The results presented in this chapter are very promising not only for micromechanical model-
ing, but also for identification of microscale constitutive models. The latter would rely extensively
on the DVC-FE method and its ability to provide experimentally measured boundary conditions
for micromechanical simulations, and then compute local and relevant error estimators to assess
the validity of these simulations. Integrated 4D analyses [284] will be considered in the future to
conduct inverse analyses based on these error measurements and identify material parameters at
the microscale.

Section 6.1 is highly inspired from [44]. Section 6.2 is highly inspired from [42].





Chapter 7

Conclusions and outlook

We can only see a short distance
ahead, but we can see plenty there
that needs to be done.

Alan Turing
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The main objective of this work was to develop advanced numerical tools in order to model
ductile fracture at the microscale. In many forming processes studied at the Center for Material
forming - MINES ParisTech (Cemef - MINES ParisTech), metal alloys fail due to the nucleation,
growth and coalescence of microscopic cracks and voids.
It has been emphasized in the introduction that it is necessary to better understand and predict
the influence of metal forming processes on the microstructure of metallic materials. Addition-
ally, the understanding of the influence of microscopic failure mechanisms on the macroscopic
mechanical response of these materials is also of interest.
To reach such ends, the literature review presented in Chapter 1 has shown that recent efforts
from the community focus on the microscale aspects of ductile fracture, both regarding experi-
mentation and modeling.
Recent developments in the fields of loading devices and X-ray imaging techniques have enabled
the in situ three-dimensional (3D) observation of ductile fracture mechanisms at the microscale,
for a wide range of metallic materials.
Inspired by the work of Gurson, theoretical approaches have focused on the development of
multiscale methods in order to link the macroscopic mechanical response of materials to the
microstructure. Because these approaches are based on analytical calculations, they assume very
restrictive microstructures and loading conditions. The results obtained using these methods are
however very promising.
Therefore, numerical methods that would use the same multiscale framework, but extend the
results to arbitrary microstructures and loading conditions are of great interest.
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7.1 Achievements
Based on the literature review and the emergent need for more realistic micromechanical simula-
tion tools, the main breakthroughs achieved within this work were the following:

• Discretizing complex three-dimensional (3D) microstructures featuring arbitrary shapes,
sizes, and arrangements. Thanks to an innovative coupling between the Level-Set (LS)
method and body-fitted Finite Element (FE) meshing techniques, such microstructures
can be easily discretized using LS functions, and then meshed explicitly in a single mesh,
including voids.

• Developing interface tracking methods to capture the interfaces between the different
components of these microstructures and model their deformation, up to large plastic
strains. The LS method has been enhanced in the present work by adding a volume
conservation constraint to an existing mesh adaptation algorithm. Completed by a mesh
motion procedure and an LS reinitialization technique, this methodology can be used in a
wide range of applications where large displacements and deformations occur, including
complex topological modifications such as void coalescence. This technique is particularly
interesting compared to what is existing in the literature as it preserves the advantages of
the LS method regarding the modeling of complex topological events, but adds explicitly
meshed interfaces and improves volume conservation.

• Capturing and modeling cracks on-the-fly during the simulation. The method proposed in
this work consists in representing cracks by LS functions that are then explicitly meshed.
The interesting point of this technique is that the subsequent free surfaces can deform until
cracks change into voids that start interacting and coalescing. This is helped by the fact
that voids are directly embedded in the FE mesh. An innovative computational contact
mechanics has also been proposed in order to detect contact events between crack faces,
including self-contact.

• Meshing microstructures from 3D X-ray data. Thanks to the developments carried out in
the present work, not only can X-ray data be converted into LS functions in order to mesh
microstructures from X-ray images, but the mesh size can also be adapted to the multiple
scales of the geometry.

• Study micromechanical models for void nucleation and coalescence. Based on the lit-
erature, local criteria have been proposed in order to predict particle fragmentation and
debonding. Void coalescence has first been assumed to be purely driven by plasticity,
and then comparisons with experiments have been used to define a fracture criterion for
the intervoid ligament. Results obtained with these models are a major breakthrough
with respect to the literature, especially regarding 3D simulations taking into account
void nucleation and coalescence at large plastic strains. Comparisons with conventional
approaches reveal the importance of considering more advanced micromechanical models
and computational methods such as those developed in the present work.

• Comparisons with experiments. The work achieved jointly with the Centre des Matériaux
- MINES ParisTech and the Laboratoire de Mécanique et Technologie - ENS Cachan
enables for the application of measured boundary conditions to the boundaries of a small
Region Of Interest (ROI). Thanks to in situ laminography experiments, the latter is
observed initially in 3D in order to be meshed with the tools developed in the present
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work, and then during loading in order to measure boundary conditions with a Digital
Volume Correlation (DVC) method. The robust numerical tools developed in the present
work handle accurately the arbitrary shapes arising from X-ray images, and the arbitrary
loading conditions given by DVC measurements. This accuracy is validated thanks to
local comparisons with experiments. Because FE simulations track the local loading
conditions observed in experiments, it is possible to superimpose simulation results and
experimental observations, and quantify errors between the two. This powerful procedure
is of great interest for identification of material parameters directly at the microscale.
Its main advantage with respect to the existing literature is that it does not require any
macroscopic measurements or simulations.

This project was particularly important to develop all the necessary numerical tools for modeling
failure at the microscale in an accurate way and with acceptable computational cost. It should be
noticed that the present work gave rise to several papers in peer-reviewed international journals
(2 submitted and 5 already published) and conferences (5 national and 12 international). As
illustrated by the fact that the author of the present work was not systematically the lead author
or presenter for all these papers and conferences, the present work also led to partnerships.
In particular, some numerical methods developed in this work have been and are currently
being applied by colleagues to ductile fracture and other applications of materials science and
computational thermomechanics in general.
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7.2 Suggestions for future work

Multiple points should be studied to improve further the numerical methods and especially the
micromechanical models developed in this work. Applications of the present developments to
other challenging applications should also be considered. Some of these research topics have
been or are being investigated by colleagues at Cemef - MINES ParisTech.

7.2.1 Mesh generation and adaptation
First, the new mesh generation and adaptation methods developed in the present work have been
successfully applied to capture new interfaces on-the-fly during simulations, and adapt the mesh
up to large plastic strains. These algorithms have been used by colleagues to track interfaces in
other applications, namely homogenization of the behavior of the polymer composite meshed
in Paragraph 3.4.2.3 [8], and modeling of globularization mechanisms in α/β titanium alloys
[56]. The application of these algorithms to fluid-structure interaction would raise no particular
difficulty, even with a moving and deforming structure. This has been demonstrated in Appendix
A, although the air was not modeled in these simulations and considered as void.

Second, an interesting prospect to the present work, which has actually already been implemented
by the present author and tested in 2D, is the meshing of multiple junctions. Thus, applications
of the body-fitted meshing and remeshing techniques developed in the present work to crystal
plasticity and recrystallization could be addressed in a very near future. Existing techniques
based on other meshing tools can be found in [181, 291].
The reader is referred to Paragraph 3.2.3.2 for details on the Eulerian LS method used currently
at Cemef - MINES ParisTech for grain growth modeling, and the numerical treatment used to
eliminate vacuum regions that are produced due to numerical errors at each transport step. As
mentioned in Paragraph 3.2.3.2, this numerical treatment only removes vacuums across edges
of the mesh, hence vacuums generally still remain across elements (and faces in 3D). This is
illustrated in Figure 7.1(a,b). Using the interface fitting algorithm described in Section 2.1,
these vacuums are not eliminated, as shown in Figure 7.1(c,d). Therefore, an interface joining
algorithm is necessary.
The main aspect of the interface joining technique proposed in the following to remove these
vacuums is that it is purely topological:

1. Each element of the mesh is considered one by one. All intersections between an interface
and edges of this element are computed. The barycenter of these intersections is inserted
in the mesh, thus splitting this element (e.g., into 3 triangles in 2D, and 4 tetrahedra in 3D).
The LS functions to all interfaces that had intersections on edges of this element are set to
zero on the inserted node.

2. Each face of the mesh is considered one by one. All intersections between an interface
and edges of this face are computed. The barycenter of these intersections is inserted in
the mesh, thus splitting this face. The LS functions to all interfaces that had intersections
on edges of this face are set to zero on the inserted node.

3. Each edge of the mesh is considered one by one. All intersections between an interface
and this edge are computed. The barycenter of these intersections is inserted in the mesh,
thus splitting this edge. The LS functions to all interfaces that had intersections on this
edge are set to zero on the inserted node.
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Note that in 1D, steps 2 and 3 are not necessary as elements are edges, in 2D step 3 is not
necessary as faces are edges and in 4D an additional step would be necessary. Each topology
is hence considered one by one, starting with the topology of higher dimension. An example
of result obtained with this interface joining technique in 2D is shown in Figure 7.1(e,f). All
elements of the mesh are colored, hence there is no vacuum. In order to obtain this result, the
interface joining step was followed by a mesh adaptation step, which is possible because the
mesh adaptation algorithm with volume conservation constraint is compatible as is with multiple
junctions.
As suggestions for future work, mesh quality should be investigated and in particular it should
be verified that the quality of the mesh can be preserved during deformation. The presence of
multiple junctions may have a negative influence on mesh quality. This should especially be
validated in 3D. Furthermore, while applying a Lagrangian method to crystal plasticity modeling
is conventional, it is more common to use Eulerian methods for recrystallization modeling.
However, it has been proved that the remeshing techniques developed in this work could handle
complex topological events such as grain nucleation or disappearance.
Recrystallization modeling would additionally rely on the definition of a velocity field at grain
boundaries, which would require a robust computation of the local mean curvature of these
boundaries. The latter could be performed using geometrical operations, or the Superconvergent
Patch Recovery (SPR) technique (Subsection 3.1.3). The same remark would hold in the case of
multiphase flows and surface tension modeling. As first tests regarding recrystallization modeling,
only contributions due to stored energy could be taken into account, as this approximation avoids
the computation of the local mean curvature [2].

Last, as mentioned in Paragraph 4.5.3.7, finer meshes and time steps are necessary to accurately
predict fracture instants. Local mesh refinement based once again on the SPR technique could
be used, but this time applied to a relevant mechanical field such as the equivalent plastic strain,
or a damage indicator.
Using such technique, remeshing would be more frequent, and conservation of history variables
would be an issue. The remeshing method developed in the present work helps the conservation
of the volume of each phase, but the conservation of other relevant FE fields such as history
variables is not accounted for. Adding such constraints to the remesher may render mesh
adaptation too difficult. Existing approaches in the literature often rely on the SPR technique
described in Subsection 3.1.3 to reduce this diffusion by improving the transport of history
variables [292, 293]. Similar techniques have been studied at Cemef - MINES ParisTech in
different contexts [294, 295] and have been tested in the present work. An important limitation
is that while diffusion is reduced, mechanical variables tend to drift away from equilibrium. This
tendency was not investigated further by the present author. Other approaches to this problem
consist in using mesh intersection techniques during the transport step [296], or relying on
higher-order elements.

7.2.2 Level-Set reinitialization

On the one hand, the new LS reinitialization algorithm presented in Section 3.2 is an interesting
improvement over the tools used previously at Cemef - MINES ParisTech because it computes
directly the projection of any point onto the interface discretized by the LS method. This has the
advantage that the signed distance function to the interface can be computed more accurately,
but not at the sacrifice of efficiency thanks to a space partitioning technique.
This algorithm has already been applied successfully to a panel of problems that goes beyond
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1 – Example of a 2D polycrystal of 25 grains represented by 4 LS functions (blue, cyan,
yellow, green). In (a,b), interfaces (white) are implicitly meshed and go across mesh elements,
with vacuum regions (red) at some multiple junctions. In (c,d), interfaces are explicitly meshed
using the fitting procedure but multiple junctions are not treated, thus vacuum regions remain. In
(e,f), interfaces are explicitly meshed using the joining procedure, no vacuum regions remain in
the final mesh.
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ductile fracture and micromechanics. As detailed in Paragraph 3.2.3.2, the microstructure of
polycrystals can be represented in a full field FE simulation using LS functions, that need to be
reinitialized when the microstructure evolves due to heat treatments for instance [43]. When these
heat treatments are combined with mechanical loading, complex recrystallization phenomena
have to be modeled, with the use of crystal plasticity constitutive models [3]. For some materials
such as dual phase alloys, globularization or phase transformations may have to be accounted for
[56]. Other thermomechanical phenomena, such as phase change and in particular solidification
during welding or additive manufacturing processes, have also been modeled by colleagues using
the LS method [297, 298, 299]. The LS reinitialization method proposed in this work has been
used in all these developments, hence proving its robustness and capabilities in a larger context.

Another interesting possibility offered by this algorithm is that because the projection of each
point is available, the gradient of the LS functions can be computed at any point, and in particular
at mesh nodes. This operation, which usually requires gradient recovery techniques (Subsection
3.1.3), can hence be solved with the same geometrical accuracy as LS reinitialization, as shown in
Figure 7.2. This is very interesting in applications where interface motion is driven by the normal
vector to the interface, or other geometrical variables. FE variables can also be transported from
the interface to the rest of the domain, by associating these variables to the projections. These
extensions of the LS reinitialization algorithm have already been implemented and successfully
applied by colleagues to the full field modeling of static recrystallization [3].

φ(x) = 0

d 1

d 2

d3

d4

A

P

∇φ(A) =
−→
AP

‖
−→
AP ‖

Figure 7.2 – Geometric computation of the gradient of a LS function φ at a mesh node A based
on its projection P onto the interface. Figure reproduced from [3].

On the other hand, the generalization of this LS reinitialization method to higher-order LS
functions could be interesting. The space partitioning technique would still be applied, but
the computation of the projection of a given point onto the interface would not result in a
linear problem any more. The solution of the subsequent nonlinear problem may raise some



260 7.2. SUGGESTIONS FOR FUTURE WORK

difficulties, but is worth considering to reduce the diffusion induced by the LS method in Eulerian
simulations.

7.2.3 Computational contact mechanics
The new contact detection algorithm described in Appendix A is very interesting for a wider
range of applications than those discussed in the present work. In particular, the fact that the
algorithm is based on local mesh adaptation operations instead of global searches is of great
interest in explicit dynamics. When very small time steps are used, algorithms such as the LS
reinitialization algorithm discussed above are to be avoided, because their computational cost is
insensitive to the time step. The contact detection algorithm proposed in the present work has
the advantage that its computational cost decreases with the time step, as mesh nodes move with
smaller amplitudes, but not at the sacrifice of robustness.
To illustrate the capabilities of the contact detection algorithm to capture all sorts of contact
events, including self-contact, recent results are shown in Figure 7.3. The fall of a spring on rigid
stairs is modeled. The result in Figure 7.3(a) features multiple contact and self-contact events,
that become even more complex to detect and model when the spring is softer, as in Figure
7.3(b). In these simulations, the mesh is coarsened in the air (considered as void) to reduce the
computational cost. Error estimators should be studied in order to refine or coarsen the mesh in
preferential directions and help contact detection.

(a) (b)

Figure 7.3 – Numerical simulation of the fall of a hard (a) or soft (b) spring on stairs, using the
contact detection algorithm proposed in the present work.

Moreover, these results could be improved in many aspects as multiple questions are still open,
especially regarding the formulation that has been chosen. This formulation does not take into
account large deformations and friction terms, and is known to be over-constrained. All these
points should be studied to improve the prediction of contact surfaces and their deformation, and
generalize these developments to other applications.

7.2.4 Micromechanical models and computational fracture mechanics
In the first place, micromechanical modeling is a very wide research topic, even when restricted
to ductile fracture. Many approaches have been proposed in the literature, but only a few of
them take into account the particles and the subsequent particle fragmentation and debonding
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phenomena. Large plastic strains and the complex void linkage mechanisms that they imply
are also rarely addressed. Thus, the results obtained in the present work are an interesting
scientific contribution. Nevertheless, because the focus was on numerical methods for interface
modeling and tracking, using the LS method and mesh adaptation to handle large plastic strains
and complex fracture events, simple constitutive models were used at the microscale.
Assuming particles as elastic and brittle is well accepted, as they are known to fail before yielding
in most metal alloys. However, the use of a von Mises plasticity model for the matrix material
should be reconsidered. For many industrial materials, plasticity at the microscale could be more
complex, and highly influenced by grain boundaries and local slip directions. Results presented
in Chapter 6 also suggest that submicron size voids may be present in some materials, and have
a major influence on void coalescence.
In the frame of the present work, crystal plasticity modeling will highly depend on the possibility
to reconstruct 3D images of the crystal structure of a material [15, 276]. Such images may
also have to be acquired during deformation in order to identify material parameters for crystal
plasticity constitutive laws. Otherwise, comparisons with experiments as done in Chapter 6 may
not be possible. Computational cost may also be of major influence, as crystal plasticity solvers
are known to be very greedy in terms of computational resources [3].
The priority may hence not be crystal plasticity, but porous plasticity. Damage modeling seems
to be necessary for the matrix material, as plastic localization does not solely explain the complex
intervoid ligament failure mechanisms that were observed in Chapter 6. The easiest manner
would be to couple the Lemaitre model used in Chapter 5 to constitutive equations. In order to
avoid any mesh dependency, a regularization method would then be necessary [249, 250].
Different levels of couplings between the Lemaitre model and constitutive equations have been
implemented in the FE code during previous work at Cemef - MINES ParisTech [115]. An
implicit gradient model was used for regularization. These developments could be used and
completed with the fracture model proposed in Chapter 5 for the damage-to-fracture transition in
intervoid ligaments. However, the use of a Lemaitre damage model at the microscale may be
questionable, as it would then be impossible to know the porosity in the material. A regularized
Gurson-Tvergaard-Needleman (GTN) model is currently being developed to avoid such issues
[55, 61]. Although this model increases significantly the number of material parameters, the
numerical validation framework developed in Chapter 6 could provide a powerful tool for the
identification of these parameters.
These developments on a regularized GTN model could be an opportunity to consider a large
deformation implementation. In fact, the small strain framework used in the present work may
lead to significant errors when used with loading conditions experienced in real metal forming
processes.

In the second place, in all fracture models, independently on whether fracture was occurring
inside particles, at the matrix/particles interface, or inside the matrix, the strain energy release
rate was not taken into account. There has been an increasing interest for numerical methods and
models that could take into account strain energy release. In particular, Cohesive Zone Models
(CZMs) have been widely used. An implementation of these CZMs has been conducted recently
by colleagues [54].
As discussed in Chapter 2, these models are to be coupled to advanced computational fracture
mechanics tools such as those developed in the present work in order to avoid any mesh
dependency. Results obtained by coupling CZMs to the numerical tools developed in the present
work are very promising, as arbitrary crack paths can be meshed and then faces along these
cracks can be split in order to insert cohesive elements.
This is illustrated in Figure 7.4. As shown in this figure, although fracture was assumed to occur
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instantaneously in the present work, there is nothing preventing the use of the proposed numerical
methods to model the progressive propagation of a crack across an FE mesh, now accounting
for the strain energy release rate. The numerical crack extension length `F (Chapter 4) is also
eliminated. Future work includes the extension of this approach to 3D and large deformations.

(a) (b)

(c) (d)

Figure 7.4 – Propagation of a crack with cohesive elements: (a) initial material with existing
cohesive elements (green), filter LS function (solid blue line), and new crack LS function defined
using fracture or damage-based criteria (dashed blue line), (b) fitting of the mesh to the crack
inside the filter, (c) insertion and opening of cohesive elements, (d) next propagation step. Figure
reproduced from [54].

7.2.5 Multiscale methods
As mentioned in the introduction of this work, the long term objective of the project in which
the present work is included is to improve the prediction of ductile damage and fracture during
metal forming processes, especially in the frame of non proportional loading paths. This requires
a better understanding of the micromechanics of ductile fracture, thanks to the help of advanced
numerical methods such as those developed in Chapter 2, Chapter 3 and Appendix A, and
micromechanical models such as those developed in Chapter 4 and Chapter 5. Comparisons
with experiments will also play a major role in validating predictions, hence the interest for the
methodology introduced in Chapter 6.

Once results are validated at the microscale, the question of applying the acquired knowledge
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on ductile fracture mechanisms at the industrial scale will have to be answered. This transfer
between microscale and macroscale will also be interesting for materials scientists, who may
compare their mean field models to full field numerical simulations. Such comparisons require
an accurate measurement of the porosity and the macroscopic stress and strain tensors during
deformation. This is easily done by averaging full field numerical results as in Chapter 4, while
uncertainties are significantly increased with experimental approaches, especially regarding the
porosity [286]. This is exemplified in the following, with a distinction between two objectives,
namely the prediction of microstructure evolution, and the prediction of material behavior.

7.2.5.1 Predicting microstructure evolution

On the one hand, the goal could be to predict microstructure evolution, for given macroscopic
loading conditions (macro to micro transition). Material parameters for mean field void nu-
cleation, growth, and coalescence models would have to be identified against full field results
averaged on the Representative Volume Element (RVE). These models (e.g., the Rice & Tracey
void growth model [26]) typically depend on the applied strain and the stress state, that were
controlled in RVE calculations using the stress state control algorithm (Section 4.4).
Such an identification has already been carried out at Cemef - MINES ParisTech for void closure
under compressive loading [300]. Based on a wide range of RVE simulations results, a new
model was proposed, and was proved to give better estimates than those found in the literature
for these loading conditions. This framework has been extended recently with an automatic
procedure designed to correct material parameters for mean field models thanks to a database of
full field simulation results obtained for various loading conditions [301]. The presence of void
nucleation and coalescence phenomena does not prevent the application of the same approach to
the present case. Thus, it is not discussed further.

7.2.5.2 Predicting material behavior

On the other hand, the goal could be to predict microstructure evolution, and then the effect of
this evolution on the macroscopic behavior of the material (macro to micro, and then micro to
macro transitions). Material parameters for a mean field porous plasticity model would have
to be identified against full field results averaged on the RVE. This is more complex than just
an estimation of the porosity, as the objective function that has to be minimized during the
identification has to be clarified, as well as the variables for this minimization. Additionally,
three mean field models are now necessary.

• A porosity model should be defined. The definition and identification of mean field
porosity models based on full field simulations would be conducted separately, as already
discussed in Paragraph 7.2.5.1. Thus, in the present paragraph, no approximation is carried
out regarding the porosity f RVE, which is taken directly from an RVE simulation.

• A porous plasticity model has to be defined. In the present paragraph, the GTN model is
used [35]

ψGT N =

 Σ

Σ0

2

+ 2qGT N
1 f RVEcosh

(
3
2

qGT N
2

Σm

Σ0

)
− 1 −

(
qGT N

1 f RVE
)2

= 0. (7.1)

Normally, this model would require the identification of numerous parameters due to void
nucleation, growth and coalescence models. Because the porosity f RVE in Equation (7.1) is
taken directly from RVE simulation results, only two material parameters remain, namely
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qGT N
1 and qGT N

2 . The mean stress Σm, the equivalent stress Σ, and the yield stress Σ0 are
associated to the GTN model, and not to be confused with RVE simulation results.

• Elasticity and plasticity remain to be defined. Hooke’s law for linear isotropic elasticity is
used (Equation (1.4)), which adds two material parameters Eel and νel. Once again, only
isotropic hardening is taken into account, using a power law (Equation (4.10)), which adds
three material parameters Σpl

y , K pl, and npl.

RVE simulation results consist of inputs {I} =
{
∆ERVE, f RVE

}
and outputs {O} =

{
ΣRVE

m ,Σ
RVE

}
,

where ∆ERVE is a list of strain increments, and f RVE,ΣRVE
m ,Σ

RVE
are the RVE-averaged results

of a full field simulation for these strain increments. A GTN solver has been implemented in
a Scilab code [302] based on previous work [32]. Given an initial guess for the set of material
parameters {p} =

{
Eel, νel,Σpl

y ,K
pl, npl, qGT N

1 , qGT N
2

}
, this solver computes the GTN prediction

{G} =
{
Σm,Σ

}
for the inputs {I}. The squared difference between the GTN prediction Σ and RVE

simulation outputs Σ
RVE

is the objective function to minimize, while the material parameters {p}
are the variables for this minimization problem.
If the RVE simulation did not take into account particles, then Eel, νel,Σpl

y ,K
pl, npl would be

known as they would correspond to the matrix material. As in this paragraph RVE simulation
results from Chapter 4 are considered, the microstructure features particles. Elastic properties
Eel, νel and plastic properties Σpl

y ,K
pl, npl could be identified separately by conducting RVE

simulations with no fracture criteria and no plasticity in the matrix material. This is one added
advantage of simulations, because ensuring that the yield stress is not reached in experiments
is not as simple [303]. In order to avoid any additional simulations, this multi-step method is
not used in the present work and all parameters are identified simultaneously using Scilab’s
optim_ga routine.
Only the macroscopic von Mises equivalent stress is used for error measurements because large
differences were observed between RVE and GTN predictions regarding the mean stress. This
may be due to the assumption that damage does not affect the elastic part of the constitutive
model for the homogeneous material. Additionally, the GTN solver did not converge up to the
last loading step for all simulations. This may be due to the high porosity and early coalescence
mechanisms observed for the material studied in Chapter 4. Both limitations will be investigated
further in the future.

Material parameters computed by the inverse analysis are

{p∗} =


Eel = 80 754 MPa, νel = 0.30,
Σpl

y = 158 MPa,K pl = 567 MPa, npl = 0.22,
qGT N

1 = 0.74, qGT N
2 = 1.40

 .
The simulation results {I} and {O} used for this analysis correspond to the simulation with
macroscopic triaxiality ratio η = 0.33. Computed parameters {p∗} are then used to assess GTN
predictions at η = 0 and η = 0.66, as shown in Figure 7.5. The curves for the GTN predictions
go only up to the last loading step for which the GTN solver converged.

These results show that, with material parameters {p∗}, the GTN model overestimates material
strength. This error increases with the macroscopic stress triaxiality ratio. Additionally, the GTN
model predicts a sudden loss of load carrying capacity, while this is more progressive in RVE
simulations.



CHAPTER 7. CONCLUSIONS AND OUTLOOK 265

0

100

200

300

400

500

600

0% 5% 10% 15% 20% 25%

M
a
cr

o
sc

o
p

ic
 v

o
n

 M
is

es
 e

q
u

iv
a
le

n
t 

st
re

ss
 (

M
P

a
) 

True strain 

GTN η=0,00 RVE η=0,00 

GTN η=0,33 RVE η=0,33 

GTN η=0,66 RVE η=0,66 

Figure 7.5 – Comparison between the macroscopic von Mises equivalent stress predicted by the
GTN model and that averaged during RVE calculations at various macroscopic stress triaxiality
ratios η.

While several authors have focused on improving the prediction of the porosity for general
stress states, these results seem to indicate that the yield surface could also be improved. Recent
extensions of the GTN model will be studied in the future, such as the Gologanu-Leblond-Devaux
model [36]. Voids in the RVE simulations may also be distinguished between penny-shaped
voids (i.e., fragmentation micro-cracks) and spherical voids (i.e., debonded particles). These
two void populations certainly have a different influence on the load carrying capacity of the
microstructure.

Finally, in order to reach a wider range of loading conditions than those studied in Chapter 4, it
will be important to generalize the stress state control algorithm to two variables (i.e., triaxiality
ratio and Lode parameter). An attempt has been made in the present work using a recent non
linear optimization library [304]. However, the macroscopic triaxiality ratio and Lode parameter
for a given macroscopic strain rate tensor depend highly on the used time step, which is adaptive
in the present framework. Consequently, the triaxiality ratio and the Lode parameter oscillate
and conventional methods such as the Nelder-Mead algorithm tend to fail. Other approaches
should be studied. This may also require to consider an implementation of periodicity constraints
for nodes on opposite faces, which was avoided in the present work thanks to assumptions on the
microstructure and loading conditions.
A generalization of the stress state control algorithm is also required for an application of the
full field simulation tools developed in the present work to industrial processes, which will be
considered by colleagues in an upcoming project [305].
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Résumé en français

Dans cette annexe, une nouvelle méthode de détection de contact est proposée. Cette méthode
s’inscrit dans un cadre monolithique, où tous les objets à simuler sont immergés dans un unique
maillage éléments finis. Les éléments de ce maillage occupés par aucun objet sont appelés
éléments de la phase vide, et sont perpétuellement adaptés au cours de la simulation. Ainsi, on
s’assure que ces éléments restent aussi réguliers que possible. Lorsque ces éléments prennent
une topologie particulière, la notion d’élément de contact est introduite.
Ces éléments de contact sont utilisés pour discrétiser un problème de lagrangien augmenté
implicite qui est résolu à l’aide d’un algorithme de Newton-Raphson. Ce dernier est lui-même
inclus dans un algorithme itératif d’Uzawa. L’avantage principal de cette méthode est qu’aucune
pénétration n’est possible entre les objets, car la méthode peut mesurer ses propres erreurs et
automatiquement réduire le pas de temps pour les corriger. Des résultats très prometteurs sont
obtenus pour des cas d’application de contact en statique et d’impact en dynamique.
Cette nouvelle méthode de détection de contact est basée sur l’adaptation de maillage, qui est
une opération coûteuse et qui requiert de maintenir une certaine distance entre les objets. Ainsi,
les éléments de contact ne peuvent pas dégénérer. Cette méthode est néanmoins très intéressante
en comparaison avec les approches conventionnelles globales, car l’adaptation de maillage est
une opération locale. En particulier, son coût est fortement réduit lorsque les surfaces de contact
ne se déplacent ou se déforment que localement et par de très petites amplitudes. En outre,
le maillage dans la phase vide est ignoré dans la plupart des opérations coûteuses comme le
transfert de champ, puisqu’aucune variable d’histoire ne prend de valeurs dans les éléments de la
phase vide.

Bien que les cas d’application présentés dans cette annexe montrent le potentiel de l’approche
proposée pour la détection de contact ou d’impact par adaptation de maillage, plusieurs développe-
ments sont encore nécessaires. En particulier, sa robustesse est limitée, ce qui empêche de la
comparer aux méthodes conventionnelles de détection de contact dans un cadre plus général.
Pour commencer, le coût de l’adaptation de maillage pourrait être réduit en utilisant un maillage
plus grossier dans la phase vide, ou en étudiant des estimateurs d’erreur pour adapter le maillage
de manière anisotrope dans des directions préférentielles et ainsi aider la détection de contact.
Ensuite, l’implémentation parallèle de cette méthode de détection de contact s’appuie forte-
ment sur l’implémentation parallèle de l’algorithme d’adaptation de maillage, qui ne permet
pas d’atteindre des accélérations optimales. Cette implémentation devrait être améliorée afin
d’assurer l’optimalité et la performance à la fois de l’adaptation de maillage et de la détec-
tion de contact lors d’exécutions sur grands nombres de processeurs. De par la nature locale
de l’algorithme d’adaptation de maillage utilisé dans ce travail, ces résultats devraient être
très prometteurs en comparaison avec les approches conventionnelles qui s’appuient sur des
recherches globales.
Par ailleurs, la discrétisation face-nœud utilisée dans cette annexe mène à une formulation
sur-contrainte. Lorsque viennent s’ajouter les contributions dues à la discrétisation arête-arête
supplémentaire en 3D, ce problème ne peut que s’aggraver. Les pistes pour éviter ces difficultés
consisteraient à utiliser des éléments quadrangulaires et hexaédriques dans la phase vide, ce
qui nécessiterait de généraliser l’algorithme d’adaptation de maillage à ce type d’éléments.
L’avantage de ces derniers est qu’ils mènent à une discrétisation face-face qui permet un assem-
blage plus régulier des termes de contact et une meilleure approximation des surfaces de contact.
Une autre possibilité serait de garder des éléments triangulaires et tétraédriques dans la phase
vide, mais de les combiner localement pour construire une discrétisation face-face.
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Pour finir, le critère utilisé pour automatiquement corriger la détection de contact en réduisant
le pas de temps consiste à calculer le volume des éléments déformés. Paradoxalement, cette
technique prend naturellement en compte les grandes déformations, ce qui n’est pas le cas de
la formulation de lagrangien augmenté utilisée dans cette annexe. Cette formulation devrait
donc être améliorée, ce qui pourrait également être une opportunité pour y ajouter les termes de
frottement et ainsi s’intéresser à d’autres applications.
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Introduction
With the computational fracture mechanics methodology introduced in the present work, a new
problem appears, namely contact. In previous work at the Center for Material forming - MINES
ParisTech (Cemef - MINES ParisTech) [5, 6], the volume conservation issue raised by the used
Level-Set (LS) framework led to diffusion of crack faces whenever they came back into contact.
More precisely, when the distance between two interfaces was smaller than mesh size, the phase
between these two interfaces ended up being diffused. Physically, this defect led to complete
crack closure and healing.
Thanks to the methodology introduced in Chapter 2, diffusion of the void phase is controlled by
two parameters Vµ and Vσ. For instance, by fixing Vµ = 0 diffusion never occurs and crack faces
can penetrate each other, leading to non physical results and even failure of the mesh adaptation
process. Because the conformity criterion in Algorithm 1 is based on volume computations, it
cannot deal with zero volume or flipped elements.
An example of a 2D simulation with elements of the void phase about to be flipped is shown
in Figure A.1. This has the consequence that nodes of the void/matrix interface will penetrate
edges of the void/inclusion interface, and the opposite.
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Figure A.1 – Contact situation in a 2D simulation with cracks.

In the following, a short review of computational contact mechanics approaches is presented,
with a particular interest for robust methods to systematically prevent penetration. A major
difficulty in the present simulations is the occurrence of self-contact, which is contact between
two surfaces of the same phase. Friction is not considered in this appendix, but only a frictionless
unilateral contact. Hence, the mechanical model has to be improved in order to include a force
preventing penetration of crack faces (reaction force), but no force should resist to them sliding
against each other (frictional force), or separating from each other (cohesion force). For a wider
review of computational contact mechanics, the reader is referred to [306, 307].

As before, the domain is noted Ω, and the boundary of the void phase Γv. This boundary is
sub-divided into a penetrating contact surface Γ̂c ⊂ Γv and a penetrated contact surface Γc ⊂ Γv

that are not known a priori, and that are not necessarily exclusive. Standard computational
contact mechanics approaches (called contact-impact mechanics in dynamics) are based on three
tools:

• contact detection, which usually consists in an O(n log n) algorithm similar to the one
presented in Section 3.2, where for each element of Γc, all elements of Γ̂c that could
potentially come into contact have to be found,
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• contact formulation, which consists in assembling contact terms, in an explicit or implicit
manner, and with various coupling possibilities,

• contact solution, where the formulation assembled previously is solved using standard
solution techniques for constrained problems.

Contact formulation can take into account an implicit velocity field to better predict the actual
position of the penetrating and penetrated surfaces, but these surfaces are generally determined
explicitly during contact detection. Hence, each element K of Γc is associated with several
elements of Γ̂c and a penetration is calculated for each of them. However, the penetration of K
by an element of Γ̂c with which it was not associated is ignored. In a large deformation context,
which is not the case in the present framework, changes of orientation of the contact faces
can also be taken into account implicitly, but with the same limitation due to explicit contact
detection.
The word element is always written in italic in this appendix because different possibilities have
been proposed in the literature for the discretization of Γc and Γ̂c: node-to-node, face-to-node,
face-to-face. For historical reasons, the word segment is often preferred by the computational
contact mechanics community to refer to a face. The latter is used in this appendix to be consis-
tent with mesh topology vocabulary.

This choice of discretization and explicit or implicit scheme has to be completed with a
choice of coupling. The contact constraint can be enforced strongly in the velocity-pressure
formulation, by adding supplementary contributions on both left and right hand-sides of the
problem, or it can be enforced weakly by only adding terms in the right hand-side of the problem.
Intermediary coupling is also possible, with right hand-side terms that are updated with an outer
iterative solver.
In the present work, the main contribution regards the contact detection step, while standard
methods have been used for contact formulation and solution, highly inspired from previous
work [113, 308, 309, 310] and the literature [306, 307].
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A.1 Contact detection

A.1.1 Literature review

As stated above, the process of contact detection is explicit, as it is based on the current state
of the mesh. If the contact formulation did not enforce strictly contact constraints, it would be
necessary to detect elements of Γ̂c that have already penetrated Γc. Explicit time discretizations,
often used in dynamics, have led researchers to investigate suitable contact detection algorithms
for this case [311, 312, 313, 314, 315, 316]. In this work, since penetration has to be avoided
at all cost, contact constraints will be enforced strictly, hence it is necessary to detect, for each
element of Γc, all the elements of Γ̂c for which a reaction force would potentially have to be
computed.
A straightforward way of solving this problem would be to look for each element of Γ̂c, the
closest element of Γc. This method is known as a brute force algorithm and has a cost of O(n̂cnc),
n̂c being the number of elements in Γ̂c, while nc is the number of elements in Γc. Using space
partitioning techniques based on binary trees, this cost can be reduced to O(n̂c log nc) [306, 316,
317, 318, 319, 320]. Other researchers have developed techniques inspired from the bucket sort
algorithm (also known as bin sort) [306, 307, 313, 321, 322] and hash tables [323, 324, 325].

This straightforward approach, however, has several flaws, independently of the choice of
space partitioning technique. In the case illustrated in Figure A.2(a-c), the closest projection of
the green body on the orange body is highlighted in red. Since the motion of the green body is
oriented in the direction of the projection, contact is detected and the link between penetrating
and penetrated surfaces is always correctly predicted, even if the green body moves directly from
(a) to (c).
Now, in the case illustrated in Figure A.2(d-f), the closest projection does not give a correct
prediction a priori. This is a first flaw of this contact detection technique [316, 326, 327].
However, one could argue that this mistake can be corrected a posteriori by performing contact
detection again after deformation in Figure A.2(e), realizing that penetration occurred, and going
back to Figure A.2(d) with a smaller time step. However, this cannot be detected if the green
body moved directly from Figure A.2(d) to Figure A.2(f).

This problem is linked to the prediction of the instant of contact/impact and is very important
for thin structures or impact problems in general [316, 327]. Therefore, this contact detection
technique has to be used with a very small time step, which generally has to be determined by
the user.
An additional limitation of this technique is that, in order to achieve robustness and make sure
that contact surfaces are always correctly predicted, even in the case illustrated in Figure A.2(d-f),
contact detection has to be performed at each time increment, and even twice per time increment
if one wants to predict the issue in Figure A.2(e). Though adaptive strategies have been proposed
in the literature to avoid a global search at each time increment, they are known to not yield the
same robustness as a global search [307, 313, 314, 318, 321].

A.1.2 Proposed method

In the present work, a new contact detection method is proposed that offers a promising alter-
native to the straightforward technique described above. The main advantage of this method is
that it predicts when contact surfaces are not well predicted as in Figure A.2(d-f), and enables to
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(c)

(f)

(b)(a)

(e)(d)

Figure A.2 – Contact detection: (a-c) success, (d-f) failure.

automatically tune the time step. Though this method has costs that are not comparable to the
straightforward technique, it has the advantage of enabling local adaptation of contact surfaces,
with the same robustness as a global search.
The method originates from a discussion on cohesive elements. These elements are used in
computational fracture mechanics to model accurately the progressive loss of load bearing
capacity of interfaces [184]. In two dimensions (2D), quadrilateral elements with zero volume
are inserted in the initial mesh by splitting faces of each interface that could potentially crack.
Crack initiation is modeled by allowing these quadrilateral elements to open progressively with
the introduction of a load-displacement constitutive law (as opposed to usual stress-strain laws).
However, if compression occurs locally, these cohesive elements can also be used to model
contact, as cohesive elements will be flipped in case of penetration. This situation is illustrated
in Figure A.3.

(a) (b) (c)

Figure A.3 – Cohesive elements with correct contact prediction: (a) initial mesh with cohesive
element in red, (b) crack initiation, (c) inter-penetration of crack faces.

It is assumed that the cohesive element can be used as a contact element, and that the two
opposite faces of the contact element are both penetrating and penetrated surfaces, as in Figure
A.4(a,b). This is not true if the two opposite faces move or deform significantly and end up not
facing each other, as in Figure A.4(c). Additionally, the cohesive element could even be flipped
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without contact occurring, as in Figure A.4(d).

(a)

(b)

(c)

(d)

Figure A.4 – Cohesive elements with incorrect contact prediction: (a) initial mesh with cohesive
element in red, (b) crack initiation, (c) sliding, contact surfaces are not well predicted, (d) a
cohesive element has flipped without contact occurring.

Based on the remarks made above on cohesive elements, it is proposed to apply mesh
adaptation to these elements. In the present work, cohesive laws are not considered, but the
elements of the void phase are used to predict contact. Adapting these elements with a pure
shape criterion ensures that simplexes in the void phase are as regular as possible. For example,
in 2D, a regular simplex is an equilateral triangle, which is also a triangle where the orthogonal
projection of each node on the opposite face is the middle of this face. A well-shaped element
in the void phase is hence a perfect candidate for a contact element, given that one of its nodes
belongs to Γ̂c, while the face opposing this node belongs to Γc.
In 2D, several situations can be met inside each element of the void phase, as illustrated in Figure
A.5(a,b). In Figure A.5(b), the green node is potentially in contact with the opposite face, while
in Figure A.5(a) two nodes are potentially in contact with their respective opposite faces.
This principle can be extended to three dimensions (3D), as illustrated in Figure A.5(c-e). An
additional difficulty in 3D it that an edge-to-edge situation can be met because an edge may
penetrate another edge with no node penetrating any face, as shown in Figure A.5(f).

The new method introduced in this appendix enables for a prediction of this situation naturally
as these particular contact elements will be automatically generated during mesh adaptation. The
listing of these possibilities also naturally introduces the discretization of contact surfaces Γc and
Γ̂c used in this work, which is a face-to-node discretization, with the particular edge-to-edge case
in 3D. As a conclusion, each face of an element of the void phase is associated with the opposite
node if both the face and the node are shared with elements of a solid phase. In 3D, each edge of
an element of the void phase is associated with the opposite edge if both edges are shared with
elements of a solid phase.
The different configurations can be determined in O(nv) using only topological operations, by
going through all elements of the void phase, and considering the faces (and edges in 3D) of
these elements that are shared with a non-void element. The number of elements nv in the void
phase can be reduced by prescribing a coarse mesh size in the void phase, as there is no physical
data stored in these elements. Obviously, it is important to consider the cost of mesh adaptation
in the void phase. However, this operation does not ask for field transfer, which would require
O(n̂v log nv) operations, as there is no field to transfer in the void phase. Additionally, the cost of
mesh adaptation is O(nv) if no contact surface moved, and, more generally, it is of linear cost in
the parts of the mesh where no contact surface moved.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure A.5 – Contact element topology: (a) one 2D element with two nodes in Γ̂c and two faces
in Γc, (b) one 2D element with one node in Γ̂c and one face in Γc, (c) one 3D element with two
nodes in Γ̂c and two faces in Γc, (d) two 3D elements (their common face being highlighted in
red) with one node in Γ̂c each and one face in Γc each, (e) one 3D element with one node in Γ̂c

and one face in Γc, (f) one 3D element with two edges in Γ̂c and two edges in Γc.

As a conclusion, the proposed contact detection procedure consists in adapting the mesh in
the void phase before each mechanical solution, with no field transfer. Then, each element of the
void phase is tested against each configuration in Figure A.5. Finally, these configurations are
used to compute normal vectors and other quantities of interest for contact formulation, these
normal vectors being naturally oriented because the mesh adaptation process produces oriented
elements in the void phase.
After contact formulation and solution, the mesh is deformed. If any element of the void phase
ends up being flipped (based on a simple volume criterion), it means that penetration occurred
and was not detected, as in Figure A.2(d-f), hence the time step can be reduced and the time
increment can be restarted. This condition is necessary but not sufficient, as illustrated in Figure
A.4(d).
If the maximum displacement of contact surfaces at each time increment is less than the mesh
size in the void phase, it is possible to optimize this correction step by taking into account
only contact elements (i.e., only the elements of the void phase that participate in the contact
formulation). In this case, the mesh motion algorithm (Section 2.3) prevents the remaining
elements of the void phase from degenerating.
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A.2 Contact formulation and solution

A.2.1 Literature review
Based on the face-to-node and edge-to-edge contact discretization presented above, contact
formulation can be described [113, 306, 307, 308, 309, 310]. This formulation introduces a
unilateral contact condition in the velocity-pressure formulation corresponding to the mechanical
problem, which already accounts for material behavior, equilibrium, and (in)compressibility.
Defining dc as the initial distance between Γc and Γ̂c, and ∆t as the time step, the unilateral
contact condition expresses as

dc(x) + ∆t(v(x̂) − v(x)).n(x) ≤ 0, x ∈ Γc (A.1)

where x̂ is a point of Γ̂c suspected to penetrate the contact surface by the contact detection
algorithm, and x is its orthogonal projection on Γc. The vector n is normal to Γc and oriented
outwards with respect to the void phase. Opposed to contact formulations with a rigid body,
in the present case v(x̂) is unknown and x̂ will generally also belong to Γc. The expression in
Equation (A.1) is actually a first order approximation of the actual penetration [113], and the
condition can be equivalently expressed as

P(x) =
dc(x)
∆t

+ (v(x̂) − v(x)).n(x), P(x) ≤ 0, x ∈ Γc.

This constraint can be enforced through a positive Lagrange multiplier λ, leading to the following
Lagrangian formulation [306, 307, 328]

Lλ(v, p, λ) = Lvp(v, p) +

∫
Γc

λ [P]+ (A.2)

where [x]+ =

{
x, x > 0
0, x ≤ 0 and Lvp is the functional associated with the velocity-pressure formu-

lation presented in Subsection 1.2.1. Minimization of this functional is usually performed with
a Newton-Raphson procedure, where each nonlinear solution step uses a linear approximation.
This linear system solved at each nonlinear solution step includes the terms associated with λ and
is known to require specific preconditioning treatments. However, the solution that minimizes
Lλ(v, p, λ) does not allow any penetration and the constraint is exactly verified.

To reduce implementation and preconditioning issues, the constraint can be enforced through
penalization [113, 306, 307, 308, 309, 310], with a penalization constant ρc

Lρc(v, p, λ) = Lvp(v, p) +
ρc

2

∫
Γc

[P]+2
. (A.3)

This method relies heavily on the choice of ρc, as the accuracy of the formulation is bounded

by
1
ρc

. A high penalization coefficient is necessary for a good accuracy, but it will also increase

the stiffness of the functional and perturb the nonlinear and linear solvers used to minimize it.
Opposite to the previous method, this penalized formulation allows penetration and the constraint
is not exactly verified.

In an augmented Lagrangian formulation [306, 307, 329, 330, 331], the constraint is enforced
through a penalization part and Lagrange multipliers, hence combining Equation (A.3) and
Equation (A.2)

Lρcλ(v, p, λ) = Lvp(v, p) +
ρc

2

∫
Γc

[P]+2
+

∫
Γc

λ [P]+ . (A.4)
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The role of the penalization part is to accelerate the convergence of the algorithm, as it will
account globally for small penetrations. The role of the multiplier part is to account locally for
higher penetrations, and ensure that the constraint is exactly verified. Although they guarantee
a higher level of accuracy with no penetration, the computational cost of both Lagrangian and
augmented Lagrangian methods is far more significant than that of the penalization approach.
Opposed to the standard Lagrangian formulation, the augmented Lagrangian one does not modify
the number of degrees of freedom in the velocity-pressure problem, but an outer iterative process
is necessary to update the Lagrange multipliers.

A.2.2 Chosen method
Due to its easier implementation and the fact that it prevents penetration, the augmented Lagrange
formulation is a suitable candidate for the present developments. It is detailed hereafter in the
case of the face-to-node and edge-to-edge contact elements. The discretization Γc,h of the contact
surface Γc is composed of faces of the mesh, and also edges in 3D. These faces and edges do not
lie on ∂Ω because the void phase is meshed. For each of these faces and edges that are marked
by the contact detection algorithm, a contact element K is considered, with x̂, x ∈ K.
In the face-to-node case, x̂ is a node of K and x is its orthogonal projection on the opposite face
F, nh being the normal vector to F, oriented outwards with respect to the void phase. A Lagrange
multiplier is associated to the face F.

(a) (b)

Figure A.6 – Edge-to-edge contact: (a) configuration, (b) definition of contact surface and
projection points.

In the edge-to-edge case illustrated in Figure A.6, the normal vector nh is the normalized
cross product of the two edge vectors. The two points x̂ and x are then located respectively on
the penetrating edge and the penetrated one by solving a 2 × 2 linear system where the solutions
are such that (x̂− x).nh is minimal. A Lagrange multiplier is associated with the penetrated edge.
In both cases, the distance dc,h is equal to (x̂ − x).nh. The velocity is approximated by vh and
vh(x̂) is noted v̂h. Thus, integrals in Equation (A.4) can be discretized

ρc

2

∫
Γc,h

[Ph]+2
=

ρc

2

∫
Γc,h

[
dc,h

∆t
+ (v̂h − vh).nh

]+2

,∫
Γc,h

λ [Ph]+ =

∫
Γc,h

λh

[
dc,h

∆t
+ (v̂h − vh).nh

]+

.

The discrete Lagrange multiplier is a vector of size the number of penetrated faces (and edges
in 3D). It is not constant per contact element, as each contact element can carry multiple
configurations, as in Figure A.5(a). For the sake of completeness, the derivatives of the contact
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terms in Equation (A.4) are given below. Since all contact terms are vanishing if the condition in
Equation (A.1) is verified, the derivatives are only defined in Γ+

c,h = {x ∈ Γc,h, Ph(x) > 0}

∂

∂vh

ρc

2

∫
Γ+

c,h

(Ph)2

 (δwh) = ρc

∫
Γ+

c,h

(Ph(vh)) (Dh(δwh).nh) ,

∂

∂vh

∫
Γ+

c,h

λ (Ph)

 (δwh) =

∫
Γ+

c,h

λh (Dh(δwh).nh) ,

where Dh : δwh →
∂(v̂h − vh)

∂vh
(δwh). For implementation in a Newton-Raphson solver, the second

derivative of the penalty term also has to be computed

∂2

∂vh∂vh

ρc

2

∫
Γ+

c,h

(Ph)2

 (δwh, δuh) = ρc

∫
Γ+

c,h

(Dh(δuh).nh) (Dh(δwh).nh) .

These terms are added to the discrete mixed weak form in Equation (1.13)

∫
Ωh

(
∂sh

∂vh
(v0

h) : ε̇(vh)
)

: ε̇(wh)

−

∫
Ωh

ph div wh

+ρc

∫
Γ+

c,h

(Dh(vh).nh) (Dh(wh).nh) =

∫
Ωh

(
∂sh

∂vh
(v0

h) : ε̇(vh)
)

: ε̇(wh)

−

∫
Ωh

sh(v0
h) : ε̇(wh)

+

∫
∂Ωh

wh.(σhnh)

+ρc

∫
Γ+

c,h

(
Dh(v0

h).nh

)
(Dh(wh).nh)

−ρc

∫
Γ+

c,h

(
Ph(v0

h)
)

(Dh(wh).nh)

−

∫
Γ+

c,h

λh (Dh(wh).nh) ,∀wh ∈ Vh,

−

∫
Ωh

qh div(vh) −
∫

Ωh

ṗh

X
qh = 0,∀qh ∈ Ph.

(A.5)

The nonlinear penalization term is hence strongly coupled to the Newton-Raphson solver, while
the Lagrange multiplier part yields only a right hand-side term. The solution of this term is based
on an outer Uzawa iteration consisting in a projection onto the contact constraint

λh ← λh + ρcPh(vh), (A.6)

where vh is the solution obtained at convergence of the Newton-Raphson algorithm applied on
Equation (A.5). A certain number of remarks have to be made regarding this methodology.

First, this augmented Lagrangian formulation is standard, and is well-known to lead to an
over-constrained problem due to the choice of discretization [329, 332, 333, 334]. It can be
proved that the number of constraints (or, equivalently, the number of configurations), will
generally be greater than the number of degrees of freedom, leading to artificially rigid contact
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surfaces [309].
Strategies to avoid this problem include coloring algorithms which enable to discriminate contact
surfaces into masters and slaves, and assemble contact constraints only for one of the two cate-
gories. In order to obtain a symmetric formulation, this procedure can be applied in a two-pass
algorithm where the roles are then switched [311, 315, 321, 335].
A more robust solution with improved prediction of interface deformation, especially in case of
friction and other important physical phenomena at contact surfaces, is given by mortar elements,
which are based on a face-to-face discretization [306, 307, 319, 329]. Studying the compatibility
of this method with the contact detection algorithm introduced in this appendix will be considered
in future work (Chapter 7). For instance, quadrangular or hexahedral contact elements could be
used instead of triangles and tetrahedra, as mesh adaptation algorithms compatible with such
elements have been studied recently in the literature [336]. More simply, the discretization of the
contact surface with mortar elements could be built by considering the neighborhood of each
triangular and tetrahedral contact element.

Second, some particularities have to be taken into account due to the original contact
detection algorithm introduced in this appendix. First, the outer Uzawa iteration is also in charge
of reducing the time step if convergence is reached but a contact element is being flipped. Then,
the initial distance between contact surfaces dc,h is artificially increased with a small thickness εc

in order to detect penetration slightly before it actually occurs, and maintain a small thickness in
contact elements, preventing them from degenerating. Degenerated contact elements would lead
to a failure of the mesh adaptation algorithm. In practice, a value of εc at least one order smaller
than the mesh size is chosen.
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A.3 Results
In this section, numerical experiments are carried out to test the contact detection algorithm and
show its ability to predict self-contact and impact instants. All 2D calculations are carried out in
plane strain. The penalization coefficient ρc is fixed to 100, and the condition for convergence of
the Uzawa loop is that the predicted penetration should be less than 0.5εc. It is stopped after 20
iterations if this condition has not been met.
Because these simulations only feature small deformations, remeshing is only applied in the void
phase. This remeshing is applied at the beginning of each increment for contact detection, and at
the end of some increments depending on the mesh motion algorithm. The β coefficient for the
latter is set to 0.5.

A.3.1 Contact
The contact problem studied in this subsection features two incompressible elastic bodies with
different Young’s modulii. The geometry, shown in Figure A.7, is constructed so that body 2
will move towards body 1, until contact, and will then deform it until it comes into contact with
itself. Thus, a constant velocity VX = (−0.5, 0) is imposed at the right face of body 2, and another
constant velocity VY = (0,−0.5) is imposed at its top face. The (non-dimensional) time step is
fixed initially to 0.01 and then varies due to the contact solution algorithm.
A 3D configuration is also tested, by considering the same case with a thickness of 0.2 m. Both
contact instants, first of body 2 with body 1, and then of body 1 with itself, are to be captured.
The Young’s modulii of the two bodies are shown in Figure A.7. A uniform isotropic mesh size
of 80 mm is used in the whole domain. The contact thickness εc is fixed to 0.8 mm in 2D and
8 mm in 3D. It is higher in 3D because the volume of a regular tetrahedron is necessarily smaller
than the surface of a triangle of same size.
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Figure A.7 – Contact test case, with solids in gold and void phase in light gray. All distances are
in meters.

The 2D and 3D geometries after both contacts are shown in Figure A.8. Although no element
got flipped in both calculations, all steps of the 3D one did not converge in 20 iterations. Thus,
some elements reached a thickness lower than 0.5εc at some points of the simulation. This
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is an issue that is likely to be due to the presence of Lagrange multipliers at faces and edges.
These supplementary constraints at edges can only aggravate the over-constrained aspect of the
augmented Lagrange formulation.

2D 3D

Figure A.8 – Results in 2D and 3D at t = 0.7 for the contact test case, with solids in gold and
void phase in light gray.

The true stresses at all time steps are shown in Figure A.9 for the 2D calculation. It is defined
as the vertical force on the left and bottom faces of body 2, divided by the respective areas of
these faces. Each dot on this curve represents an increment of the simulation, which gives an
idea of time step change. While contact detection is directly correct for the first contact instant,
the time step has to be decreased for the second one.
This first experiment shows both interesting capabilities of the proposed contact detection
approach, and limitations. Improvements of the contact formulation will be necessary to solve
convergence issues in 3D.
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Figure A.9 – True stress measured at the left and bottom faces of body 1 for the 2D contact test
case.
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A.3.2 Impact

In the following tests, the static formulation in Equation (A.5) is extended to the dynamic case

by adding an inertia term
∫

Ωh

ρv̇hwh on the left-hand side, ρ being the density of the material.

This term is discretized with an implicit Euler scheme. A volume force term
∫

Ωh

ρgwh associated

with gravity is also added, with g = 10 m s−2.
The studied impact problem is the fall of a random arrangement of spherical balls with random
sizes on a rigid ground The balls are modeled as incompressible elastic solids with a Young’s
modulus of 100 GPa and a density of 1000 kg m−3. The Young’s modulus for the ground is fixed
to a very high value of 100 TPa in order to limit the deformation of the ground (its density is the
same as the one used for the balls).
Regarding numerical parameters, the time step is fixed initially to 0.01 s, and a uniform isotropic
mesh size of 4 mm is used in the whole domain. The contact thickness is set to 0.4 mm. The
simulation is stopped when one of the balls touches the boundary of the domain. The mesh at
different points of the simulation is shown in Figure A.10. The number of elements in this mesh
is around 200000 and does not vary significantly during the simulation.

t=0s t=0.05s

t=0.07s t=0.09s

Figure A.10 – Result of the impact test case. Balls are colored from blue to red depending on
stress intensity, red indicating higher stresses (in magnitude).

An important advantage of the present framework is that all balls are considered as a single
material and not independent bodies, so that in the implementation contact between the balls is
detected no differently than self-contact. Moreover, the use of a single mesh is very interesting
for distributed computations, as partitioning is easier with a single mesh than several ones.
In particular, the parallel implementation of contact detection is helped by the fact that mesh
adaptation only uses local operations, while global search algorithms used by standard contact
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detection techniques are quite complex to implement in parallel. The parallel efficiency of these
algorithms is also highly dependent on the partitioning strategy.
The performance of the present contact detection method in parallel is assessed by performing
the same simulation but using more than 1 Central Processing Unit (CPU). The speedup obtained
using 2 CPUs instead of 1 is 1.5, which means that there is an acceleration, but is poor (it should
be closer to 2). Increasing the number of CPUs to 4, a speedup of 3.1 is measured, and then
5.6 using 8 CPUs. These measurements show that using mesh adaptation to detect contact
is interesting from a parallel computing point of view, which is very promising for industrial
applications such as powder compaction, where contacts between a large number of grains have
to be modeled. The parallel implementation of the mesh adaptation algorithm should be revisited
in order to improve these results.

The proposed approach performs well on this 3D problem with multiple impacts, as all
increments converged in less than 20 iterations of the Uzawa algorithm, and most of them
required only a few iterations. The main difference between static and dynamic tests is that in
the latter the time step has a direct influence on contact solution, as the displacement of the two
bodies is directly reduced. In statics, the motion of one of the bodies is reduced, but due to
springback the displacement of the deformed body may be independent on the time step. As a
conclusion, while results in dynamic tests are promising, a more robust strategy than reducing
the time step should be studied to help contact detection in the static case.
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Conclusion
In this appendix, a new contact detection method has been proposed. This method requires
to immerse all bodies that could potentially enter into contact in a single mesh (monolithic
approach). The elements of this mesh occupied by no body, called void phase elements, are
constantly being adapted in order to have simplexes as regular as possible. When some specific
configurations are encountered in these elements (Figure A.5), the notion of contact element is
introduced.
These contact elements are used to discretize an implicit augmented Lagrangian formulation that
is solved thanks to a Newton-Raphson procedure, which is itself included in an Uzawa iterative
scheme. The main advantage of this method is that no penetration is possible, as the method can
detect its own failure and automatically reduce the time step to correct itself. Promising results
are obtained with applications not only in static problems but also in impact mechanics.
The method is based on mesh adaptation, which is a costly operation and requires to maintain
a small thickness between bodies to prevent degeneration of contact elements. However, the
costs are reduced with no sacrifice on robustness when contact surfaces only move locally or
slightly, in comparison with a global search. Additionally, the mesh in the void phase is ignored
in most Finite Element (FE) operations such as field transfer, since no history data is stored in
these elements.

Though the numerical experiments presented in this appendix show the potential of the
proposed adaptive immersed approach to contact/impact mechanics, several developments are
necessary in order to improve its robustness, and assess completely its interest with respect to
more standard contact detection techniques.
First, the cost of mesh adaptation could be reduced using a coarser mesh size in the void phase,
or studying error estimators to adapt the mesh in specific directions and help contact detection.
Second, the parallel implementation of this approach relies on the parallel implementation of
the mesh adaptation algorithm (Section 2.5), which does not show optimal parallel efficiency.
This should be improved in order to ensure the performance of the method in massively parallel
computations. Due to the local nature of the mesh adaptation algorithm, results are likely to be
very promising with respect to standard approaches that are based on global searches.
Third, the face-to-node discretization used in the present work results in an over-constrained
formulation. The contributions due to the supplementary edge-to-edge discretization in 3D
can only aggravate this issue. This could be improved by using quadrangular and hexahedral
elements, but then defining mesh adaptation methods that could handle them. These elements
would yield a face-to-face discretization and enable to assemble the contact constraints on a
better approximation of the contact surfaces. Another possibility would be to adapt the mesh
with simplex elements and then build a face-to-face discretization by combining simplexes.
Finally, the test used to automatically correct contact detection by reducing the time step
consists in computing the volume of deformed elements. This naturally takes into account
large deformations, while the contact formulation assumes small deformations. The formulation
should be upgraded to eliminate this paradox. Such study could be an opportunity to integrate
frictional terms in the formulation.
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Résumé 
L’objectif de cette thèse de doctorat est de 

contribuer à une meilleure compréhension et 

modélisation de la rupture ductile lors de la 

mise en forme des métaux. Cette mise en 

forme se réalise en général par une série de 

chargements thermomécaniques où de 

multiples paramètres comme le type et la 

direction de chargement varient. Des outils de 

simulations prédictifs sont nécessaires pour 

modéliser les mécanismes de rupture, et 

ensuite optimiser les coûts de production.   

La rupture ductile des matériaux métalliques 

est précédée par la détérioration progressive 

de leur capacité de charge due à la 

germination, croissance, et coalescence de 

cavités microscopiques. Dans ce travail, une 

approche micromécanique est développée 

afin de conduire des simulations éléments 

finis réalistes et à champ complet de la 

rupture ductile à l’échelle microscopique. Des 

méthodes de génération et d’adaptation de 

maillage s’appuyant sur des fonctions de 

niveau sont proposées pour discrétiser la 

microstructure. Avec ces méthodes, les 

propriétés géométriques des fonctions de 

niveau sont conservées, ainsi que le volume 

et la morphologie de chaque composante de 

la microstructure, et ce pour de grandes 

déformations plastiques. Ces méthodes 

numériques sont étendues pour permettre la 

modélisation de fissures aux interfaces entre 

certaines composantes de la microstructure, 

ou à l’intérieur même de ces composantes. 

Une nouvelle méthode de détection de 

contact par adaptation de maillage est aussi 

développée. 

L’intérêt de ces développements numériques 

et modèles micromécaniques est démontré 

tout d’abord pour des microstructures 

générées statistiquement. Ensuite, une 

nouvelle méthodologie est proposée pour 

modéliser des microstructures réelles 

(laminographie in-situ) avec des conditions 

aux limites mesurées expérimentalement 

(corrélation d’images volumiques). 

 

Mots Clés 
Rupture ductile, endommagement, 

micromécanique, remaillage, interfaces, 

fonctions de niveau 

Abstract 
The present PhD thesis aims at a better 

understanding and modeling of ductile 

fracture during the forming of metallic 

materials. These materials are typically 

formed using series of thermomechanical 

loads where many parameters such as 

loading type and direction vary. Predictive 

numerical tools are necessary to model 

fracture mechanisms, and then optimize 

production costs. 

Ductile fracture in metallic materials is the 

result of a progressive deterioration of their 

load carrying capacity due to the nucleation, 

growth, and coalescence of microscopic 

voids. In this work, a micromechanical 

approach is developed in order to conduct 

realistic full field finite element simulations of 

ductile fracture at the microscale. Meshing 

and remeshing methods relying on the use of 

Level-Set functions are proposed to discretize 

the microstructure. Thanks to these methods, 

the geometric properties of Level-Set 

functions are preserved, as well as the 

volume and morphology of each component 

of the microstructure, even at large plastic 

strains. These numerical methods are 

extended to account for cracks and model the 

failure of some components of the 

microstructure, or interfaces between them. A 

new contact detection method based on mesh 

adaptation is also developed. 

The interest of these numerical developments 

and micromechanical models is first 

demonstrated at the scale of representative 

volume elements with statistically generated 

microstructures. Then, a new methodology is 

proposed to conduct simulations of real 

microstructures observed via in-situ X-ray 

laminography, with boundary conditions that 

are measured using digital volume correlation 

techniques. 

 

 

 

 

 

Keywords 
Ductile fracture, damage, micromechanics, 

remeshing, interfaces, level-set 
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