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Nomenclature

nD n dimension(s)

ReX Recrystallization

DRX Dynamic recrystallization

PDRX Post-dynamic recrystallization

SRX Static recrystallization

GG Grain growth

SPP Second phase particle

ZP Zener pinning

EBSD Electron backscatter diffraction

M&S Modeling and simulation
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HPC High performance computing

FE Finite element

MC Monte Carlo

CA Cellular automata

PCA Probabilistic cellular automata

PDE Partial differential equation

PF Phase field

MPF Multiphase-field

CPF Continuum phase field

LS Level set

GLS Global level set

CPFEM Crystal plasticity finite element method

BC Boundary condition

REV Representative elementary volume

VT Voronoï tessellation

LVT Laguerre-Voronoï tessellation

DOF Degree of freedom
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CDE Convective-diffusive equation

SUPG Streamline upwind Petrov-Galerkin

GMRES Generalized minimal residual method

HJ Hamilton-Jacobi

CPU Central processing unit

FMM Fast marching method

RK Runge-Kutta

ENO Essentially non-oscillatory
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DR Direct reinitialization

DRT Direction reinitialization with trees

NNS Nearest neighbor search
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CAD Computer assisted design

GBMG Geometry-based mesh generation

DTSA Dynamic time step adaptation

2



General introduction

A little bit of history...

From 7000 B.C., Men begin to hammer copper and replace their existing tools made

of rock by their metal equivalents, which work as well and last far longer. Although

copper is a relatively soft metal, shaping it remains mainly an art at this period... But

it was without counting the great (and probably accidental) discovery of one nature’s

secret: the metal softens when heated. Even better, it turns to liquid whether the

temperature is sufficiently high, and can then be easily cast in molds. By casting sev-

eral metals as one substance, hybrid materials can be formed, the alloys, which are

sometimes harder than the initial metals on their own. Most scientists and historians

considers that the discovery of the bronze alloy, around 4000 B.C., marks the real

beginning of metallurgy, the science of metals.

Later in the Middle Ages, blacksmiths observed that swords are harder to break when

they have been rapidly cooled in water after forging. Despite this phenomenon was

clearly observed and used for many years, it remained misunderstood until the emer-

gence of optical microscopy in the 19th century. The metallurgists observed at this

period that metals are actually heterogeneous materials. Their microstructure is an

assembly of crystals, the grains, whose sizes are typically between 10 and 100µm. A

grain is associated to a given crystallographic orientation which describes the spatial

atom arrangement. A large heterogeneity of this orientation marks the transition from

a grain to an other, and this transition zone which is typically of few nanometers is

called grain boundary. The size, shape and orientation of the grains influence directly

the capacity of the material to conduct electricity, endure high temperatures, resist

to shocks... Thus when the blacksmith cools violently the burning sword in the water,

he stops the evolution of the microstructure without knowing it, making finally the

sword more resistant.

This ancestral example illustrates a basic but fundamental idea: the forming pro-
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cesses impact the grain structure and consequently the behavior of the metals,
during and after the forming . But understanding the related effects of this forming

process on the microstructure is a challenging research topic of modern metallurgy,

because it involves many complex and coupled phenomena.

Annealing phenomena in metals

An important part of the energy is dissipated as heat during deformation of a metal.

The remaining is stored into the microstructure in the form of crystallographic defects,

mostly dislocations, which disturb the thermodynamic equilibrium. If the material is

subsequently heated to high temperature (annealed), thermally activated processes

such as solid state diffusion provide mechanisms whereby the defects may be re-

moved or alternatively arranged in configurations of lower energy.

On annealing a cold worked metal at an elevated temperature, the microstruture and

also the properties may be partially restored to their original values by recovery in

which annihilation and rearrangement of the dislocations occurs. The microstruc-

tural changes during recovery are relatively homogeneous and do not usually affect

the boundaries between the deformed grains [Humphreys et al. 2004]. This phe-

nomenon results generally in the formation of a subgrain structure in the grain inte-

rior as schematically illustrated on fig. 1b.

Recovery generally involves only a partial restoration of properties because it leads to

a metastable state wherein the dislocation structure is still present. A further restora-

tion process called recrystallization (ReX) may occur in which new dislocation-free

grains, the nuclei, are formed within the deformed or recovered structure (see fig. 1c).

These new grains grow and consume the old grains, forming a new grain structure

with low dislocation density as depicted on fig. 1d. Recrystallization may take place

during deformation at elevated temperature and this is then termed dynamic recrys-

tallization (DRX) [Humphreys et al. 2004]. It can also continue during a thermal

post-treatment (post-dynamic recrystallization, PDRX), or be only initiated during

this post-treatment (static recrystallization, SRX) (see fig. 2). DRX is frequently ob-

served during the hot deformation of ordered alloys.

Although recrystallization removes the dislocations, the material still contains grain

boundaries, which are thermodynamically unstable. Further annealing may result in

grain growth (GG), in which the smaller grains are eliminated and the larger grains

4
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(a) (b)

(c) (d)

(e) (f )

Fig. 1 – Schematic diagram of the main annealing processes: (a) deformed state, (b) recovered,
(c) partially recrystallized, (d) fully recrystallized, (e) grain growth, (f) abnormal grain growth
[Humphreys et al. 2004].
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Roller

Roller

(a) SRX

Roller

Roller

(b) DRX

Fig. 2 – Schematic representation of the static (a) and dynamic (b) recrystallization regimes
[Zheng et al. 2008].

grow by minimizing the energy of the grain boundary network (see fig. 1e). Con-

sequently the mean grain size inside the material increases during GG. This effect

can be slowed down or eventually hindered by adding to the alloy a solute element

with low solubility which precipitates as second-phase particles (SPPs) able to pin the

grain boundaries [Smith 1948; Weygand et al. 1999]. This dragging effect exerted by

the SPPs is commonly referred as the Zener pinning (ZP) phenomenon. In certain

circumstances (heterogeneous particle distribution, gradient of stored energy, advan-

tage in size,...), some grains of the microstructure may grow preferentially, referring

to abnormal grain growth. This phenomenon depicted on fig. 1f can have a dramatic

effect on the mechanical properties of the material.

Addressing these annealing phenomena is very complex as they act together during

the forming process. In the last decades, more and more sophisticated experimental

techniques emerged for the characterization of material at the grain scale. Resolu-

tions close to micron are now achieved thanks to the recent advances in the field of

microscopy. Among all methods, Electron BackScatter Diffraction (EBSD) is probably

the most popular and is now widely used [Alam et al. 1954]. This method provides

a great description of the cutting-view of the grain structure, as illustrated on fig. 3a.

Most recent methods, such as near-field high energy X-ray diffraction microscopy

[Hefferan et al. 2012; Pokharel et al. 2015], X-ray diffraction contrast tomography

[Syha et al. 2012; Nervo et al. 2016] or absorption-contrast X-ray microtomography

[Werz et al. 2014] permit also to reconstruct precisely the 3D microstructure (see

fig. 3b for an illustration). But these techniques remain quite confidential because

they require complex and specific experimental facilities.

But characterizing the material at each stage of the forming process is not always

possible, and evaluate the intrinsic effects of the process parameters (temperature,

strain rate...) can be complex, costly and time-consuming. This is especially true
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for high value-added materials. Modeling and simulation (M&S) approaches are of a

valuable help in these situations for orienting the technological decisions. They can

effectively be employed to quantify the intrinsic influences of the process parameters

before having recourse to real materials, which limits the number of needed exper-

iments. M&S is in that sense a potential time and money saver, and thus attracts

growing interest from producers of high performance materials (ceramic, titanium

alloys, superalloys...). Numerical metallurgy is the research field which investigates

these modeling approaches. As illustrated in the next section, it is extremely active

nowadays in the scientific community and widely supported by the industry.

The DIGIMU® software

The "blacksmith’s experience" taught us that mechanical and functional properties

of metallic materials are strongly related to their microstructure, which are them-

selves inherited from the thermal and mechanical processing. The understanding of

the microstructural evolutions during thermomechanical treatments (TMT) or ther-

mal treatment (TT) is thus of prime importance for the control of the final in-use

properties (mechanical strength, fatigue limit, crack resistance, stress corrosion resis-

tance,...). Being able to accurately predict the microstructure obtained after complex

forming paths became recently crucial for the metallurgy industry, and is now a real

challenge in the scientific community. Addressing this challenge requires the devel-

opment of numerical modeling capabilities based on a realistic description of the in-

tricate physical phenomena undergone by the material during the forming processes.

The numerical modeling of materials and their behavior has now become a major

research topic in materials science because simulations can reduce greatly the time

and cost of the new material development, and help to better understand the met-

allurgical phenomena. From the improvement of Nickel-based superalloys used in

the critical parts of engine aircraft to the stainless steel used in nuclear power plants

which places unusual demands on the metallic materials, through the lightening of

structures in the automotive and aeronautics industries, the needs are tremendous.

So tomorrow’s material will also be numeric.

Let us consider a simple example. When an aircraft takes off, its engines develop

their maximal rated power. In the high-pressure compressors, the air temperature

reaches 950°C and the fan blades undergo very high stress and temperature solicita-
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(a)

(b)

Fig. 3 – (a) 2D Microstructure of a superalloy material obtained by EBSD technique (PhD work
of M.A. Charpagne, MINES ParisTech, 2013-2016); (b) 3D reconstruction of a polycrystalline
copper based on data obtained from near-field high-energy X-ray diffraction microscopy
[Pokharel et al. 2015]. In both images the color code refers to the local crystalline orientation.
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tions. There exist different materials able to tackle these extreme applications, such as

titanium alloys, monocristalline alloys and finally the nickel-based superalloys which

remain, at the time being, the better compromise in terms of mechanical properties

and costs for civil aircraft. However the performance requirements, the environmen-

tal and profitability considerations require the aeronautics manufacturer to reduce

the aircraft consumption, and this implies to increase the internal temperature in the

engines. However the resistance of today’s materials limit this increase in tempera-

ture. So the TMT of these superalloys must be improved.

Also in nuclear power plants, primary pipes must have high mechanical properties,

especially the Yield strength at high temperature. This requires to control the grain

size of the material during the forming process. But fine-grained microstructures are

hard to obtain for these massive parts because of the long heating periods that have to

be counterbalanced by SRX, DRX or PDRX which take place during forging and rolling.

These microstructure evolutions during TMT can be treated in an average way, by

using the classical method referred to as mean field approach. This relies on a macro-

scopic description using representative material parameters (grain size, inclusions,

phase fraction, precipitate size, etc.), the identification of physical laws that govern

the evolution of these parameters, and their influence on the mechanical behavior

[Chastel et al. 2012]. This approach is quite convenient for coupling the thermal, me-

chanical and physical computations but suffers from inherent limitations. Especially

a large amount of experiments is generally needed for identifying the parameters of

these models that describe the microstructure evolutions.

On the other hand, computations at the mesoscale are now possible and are devel-

oped for a potentially more realistic description of materials under the concept of

full field approach. The prefix meso- implies being between the atomic and macro-

scopic scales, but the precise length or time scale where the break in understanding

develops depends on the physical mechanisms of interest. Mesoscale modeling is a

very active research domain nowadays, especially for polycrystals [Rollett et al. 2015],

because it is potentially much more accurate. However full field modeling is also

more greedy in terms of computer resources and a direct coupling with macroscopic

TMT simulations seems at yet complicated, even with the recent developments of

High Performance Computing (HPC).

This PhD work has two main objectives. First, contribute to the development of a

unified groundbreaking and robust finite element (FE) numerical solution in order
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to describe a wide range of microstructural mechanisms and, secondly, develop rel-

evant multiscale strategies. For example full field simulations can be employed to

improve the mean field models used in existing FE software packages working at the

macroscale. It is also possible to simulate very precisely, at the microscale, a set of

specific interesting zones of the material during a macroscale simulation in order

to describe the local evolution. This work is part of a global trend towards a better

control of the industrial forming processes dealing with metallic products in order to

improve their reliability and their performance while limiting the production costs.

Our central objective is to provide precise numerical models able to predict the final

microstructure and the material behavior before they can be processed, in order to

improve the reactivity to new markets and increase our confidence in the proposed

manufacturing sequences and parameters.

In such context the recent report of the European Commission entitled Metallurgy

made in and for Europe should be cited [Metallurgy made in and for Europe 2014].

The purpose of this report is to set a roadmap concerning the development of materi-

als science and metallurgy in EU for the next 10-20 years and beyond, and the way to

promote this thematic which carries crucial economic and societal impacts. If con-

clusions of this document emphasize that "... Europe plays world-wide leading roles

in computational materials science..." and the importance of developing "...strong

modeling capacities..." in this field, it highlights also the emergency to promote the

following key challenge: "...Moving from "Modelling for industry" to "Modelling by

industry", which means shifting efforts from laboratory-centred modelling activities

to helping industry equip itself with advanced modelling tools and skills". Through

the development of HPC in metallurgy and the integration of these developments

within an industrial software package called DIGIMU® , the purpose of this PhD work

is then fully in line with these recommendations.

Thanks to the explosion of computer capacities and the better understanding of physi-

cal phenomena, several mesoscale numerical models have been proposed to simulate

ReX and GG during the last decades. Probabilistic voxel-based approaches such as

Monte Carlo (MC) and cellular automata (CA) are very popular. Furthermore, these

methods scale extremely well with parallelization as they rely on regular grids, but the

lack of physical time in the MC method and the difficulty to approximate accurately

the grain boundary curvature with regular grids are still open issues. There are also

difficulties with these approaches to treat the polycrystal deformation and the grain

boundary motion in the same numerical framework, which implies that they need

to be coupled with other numerical methods, at least for problems involving large
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polycrystal deformations. There are also deterministic approaches, which are more

precise, as they do not rely on probabilistic laws, but also more greedy in terms of

computational resources due to the fact that they involve the resolution of large sys-

tems of partial differential equations (PDEs). Thus several workers have developed

the vertex method wherein the grain boundaries are defined in terms of vertices ; the

interface motion is then imposed by the displacement of a set of points. The main

limitation of these front-tracking approaches is the handling of topological events

(grain shrinkage, appearance of a nucleus) in three dimensions, that is extremely

challenging and costly from a numerical point of view. Finally, the microstructural

evolution can also be modeled using a phase field (PF) or a level set (LS) description

of the interfaces, in a FE framework or in the context of uniform grids with Fourier

transform resolution. The FE-LS and FE-PF methods are actually quite close and

share some common features (front-capturing approaches, deterministic approach

lying on the solving of PDE systems, high numerical cost). Although the PF method

lies on strong physical and thermodynamical foundations, its formulation introduces

purely numerical parameters (like the grain boundary width). On the other hand, the

LS method only requires measurable quantities which have a direct physical interpre-

tation, making it more simple to use a priori. Also the interest of using a FE framework

instead of uniform grids relies on the possibility to handle large polycrystal deforma-

tions with the well-known Crystal Plasticity Finite Element Method (CPFEM) and to

deal with a global resolution framework concerning the modeling of the thermome-

chanical treatments and their subsequent microstructure evolutions.

This brief review of the existing methods show that they all have advantages and limi-

tations, that will be further detailed in the first chapter of this manuscript. However

it is worth noting that, for the time being, there is no global method able to treat

the successive steps required to model at the mesoscale the different mechanisms

involved during ReX for hot metal forming. These remarks have led us to develop a LS

numerical formalism working within a FE framework. Although this approach is not

perfect, especially concerning the numerical cost as it will be detailed later, it seems

to us the most promising candidate to address the considered problematic.

The present LS-FE model has been developed around the C++ library Cimlib devel-

oped at the Center for Materials forming - MINES ParisTech (CEMEF) [Digonnet et al.

2007]. The Cimlib library contains many numerical tools that can be directly used in

the context of this work (solvers, mesh adaptation algorithms,...). Recent studies have

demonstrated the very interesting potential of the LS-FE approach for the modeling

of SRX [Bernacki et al. 2008; Bernacki et al. 2009] and GG [Bernacki et al. 2011; Cruz-

11
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Fabiano et al. 2014]. However it remains rather inefficient from a numerical point of

view and several weeks of computations on a lab supercomputer (cluster) are some-

times needed to complete the simulations, even in two dimensions (2D) [Agnoli et al.

2014]. It is obvious that companies do not have access to such computational facili-

ties and the simulation times must be drastically reduced in order to make DIGIMU®

attractive for industrials. The three dimensional aspect must also be considered, as

specific metallurgical phenomena require to be treated in three dimensions (3D) like

the crystal plasticity, but also to avoid the use of a 2D paradigm. But predicting finely

the microstructural evolutions in 3D within reasonable computation times is a real

challenge, which requires major improvements of the existing implementations. One

main objective of this PhD work, and more generally of the industrial ANR Chair

DIGIMU started in October 2016 at the CEMEF, is therefore to increase drastically

the numerical efficiency of the LS-FE numerical model used by DIGIMU® in order to

make possible this transition from 2D to 3D. GG and SRX are particularly considered

in this manuscript to evaluate the quality of the new developments. However it must

be highlighted that these developments are completely generic and can be (or are al-

ready) used for a large variety of front-capturing problems based on a LS description

of the interfaces.

Finally due to the limited time, some topics have not been investigated in the context

of this work. Especially we focused on the development and improvement of the

considered LS-FE model. Even if a mean field model [Bernard et al. 2011] available

at the lab has been used to validate the full field predictions and for comparison, no

development has been carried out on this mean field model. Moreover the resolution

of the PDE systems has not been particularly studied in this work, as we simply used

the existing FE solvers available in the Cimlib library [Basset 2006]. The algorithms

used for the statistical generation of polycrystals, that will be introduced in the first

chapter, have been developed in the context of previous studies [Hitti 2011; Hitti et al.

2012; Fabiano 2013]. In the same manner, the CPFEM code [Delannay et al. 2006;

Logé et al. 2008; Resk et al. 2009] used in the fourth chapter to provide inputs for the

SRX simulations has been used as it is, without any modification. The mesh adapta-

tion algorithms were also provided by the Cimlib library [Mesri et al. 2008; Shakoor

et al. 2015a]. Finally the problem of the boundary conditions (BCs) applied to solve

the FE problems has not been investigated and we used null Neumann BCs in all

simulations. Obviously the choice of working with this kind of BCs can be discussed.

Periodic BCs are effectively preferred in most works from the state of the art because

they enable to limit the domain-size effects in an optimal way. They thus permit to

limit the sizes of the representative elementary volumes (REVs) used in the simula-
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tions, the number of considered grains, and consequently to save computation time.

On the other hand, periodic BCs impose to use a polycrystal and a mesh which are

also periodic. When simulations are performed from an experimental image of a real

material, as it will be presented in the third chapter of this manuscript, this condition

of polycrystal periodicity is not satisfied and periodic BCs are not relevant in this case.

Also, even if regular Cartesian grids are naturally periodic, maintaining the periodic-

ity of unstructured FE meshes is much more complex, especially when anisotropic

remeshing is performed. The numerical tools available in our library, and especially

the remeshing algorithms, are not able to tackle this problem for the time being. So in

this work, we made the choice to work with null Neumann BCs and consequently, not

minimal REV size concerning convergence aspects. Even if it is not optimal in terms

of numerical efficiency as it requires larger polycrystals, this solution presents the

advantage of being sufficiently versatile to simulate also non-periodic polycrystals

(possibly obtained from experimental data) and to deal easily with anisotropic mesh

adaptation thanks to our current numerical facilities. But let us keep in mind that

the ideal approach remains to have both methods (periodic and null Neumann BCs)

and to choose the most relevant according to the expectations and the configura-

tion. Future works have therefore been already planned in the context of the DIGIMU

Chair to integrate periodic BCs in the considered LS-FE numerical formalism and

meshing/remeshing algorithms.

Layout of the thesis

The manuscript is organized in five chapters. The first chapter introduces the existing

modeling approaches and highlights the advantages/limitations of the numerical for-

malism employed in the state of the art. Two central algorithms which address these

limitations are then introduced in the second and third chapters. Different bench-

marks are used to quantify the gains achieved in terms of numerical efficiency. The

last two chapters present finally new numerical strategies for the efficient modeling

of SRX in 3D and for the consideration of inert precipitates inside the material:

Chapter 1 first covers the existing models for GG and ReX at the macroscopic

and polycrystal scales. The main features, assumptions and limitations of these

approaches are thoroughly detailed. Special attention is paid to the LS method

used in the present work.

Chapter 2 introduces a direct algorithm for reconstructing (i.e. reinitializing)

analytically a signed distance function based on its front. This algorithm is
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especially employed in the present model to restore the metric property of the

LS functions during the GG/ReX simulations. By taking full advantage of the

parallel FE environment of Cimlib, this algorithm permits acceleration factors

up to 70 in 2D and 5 in 3D for polycrystal simulations, compared with the

existing reinitialization method.

Chapter 3 details the implementation of an efficient recoloring scheme working

on a FE mesh. The latter detects and handles dynamically the risks of contacts

between grains represented by the same LS function during a simulation. Thus

it prevents numerical issues and enables to use far less LS functions, especially

in 3D, which permits computation time and memory savings. Moreover a new

method is presented for immersing real polycrystal within a LS-FE framework

based on experimental images.

Chapter 4 presents a new implementation of the numerical formalism intro-

duced in [Bernacki et al. 2008; Bernacki et al. 2009] for the modeling of SRX

with nucleation within a LS-FE framework. This new implementation takes

advantage of the numerical tools introduced in the two previous chapters and

is demonstrated far more efficient than the existing one from a computational

point of view, with acceleration factors close from 700 for realistic large scale

3D SRX simulations.

Chapter 5 proposes an improvement of the numerical strategy presented in

[Agnoli et al. 2014] for the modeling of GG with inert SPPs. Especially we apply

the previous numerical developments to ZP simulations and introduce a new

method for generating the specific FE meshes needed in these simulations,

which results in excellent acceleration of the simulation times. A classical 2D

limiting mean grain size equation is then discussed and improved thanks to

the full field simulation results. Finally a first 3D LS-FE simulation of the ZP

phenomenon is performed, which was hardly possible before this thesis work.
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Chapter 1. Modeling of recrystallization and grain growth

Résumé en français

Ce chapitre aborde la modélisation des phénomènes de recristallisation et de crois-

sance de grains. Les modèles en champ moyen, qui reposent sur une description

simplifiée de la microstructure, sont d’abord présentés. Bien qu’ils soient rapides et

simples à mettre en œuvre, ces modèles homogénéisés ne permettent pas de décrire

explicitement les interactions ayant lieu entre les grains. Les modèles en champ com-

plet sont ensuite introduits. Ceux-ci sont basés sur une description du polycristal

à l’échelle microscopique et décrivent son évolution au travers de lois physiques.

Les principaux modèles en champ complet de la littérature sont détaillés. Un ac-

cent tout particulier est mis sur l’approche level set. Cette méthode a d’ores et déjà

démontré un potentiel très intéressant pour modéliser la recristallisation statique

et la croissance de grains, et des travaux sont actuellement en cours pour l’étendre

au phénomène de recristallisation dynamique. On introduit les principales équa-

tions liées à cette méthode level set ainsi que l’immersion de polycristaux dans des

maillages éléments finis non structurés. Une première simulation simple en deux

dimensions est réalisée afin de mettre en évidence les limites de l’implémentation

du modèle numérique existant au début de ce travail de thèse. On s’intéresse plus

particulièrement à ces limitations dans les prochains chapitres.
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1.1. Introduction

1.1 Introduction

Choosing the appropriate modeling scale is crucial in any engineering problem. This

choice is generally determined by the amount of computational resources available

and the desired degree of accuracy. Metallurgical models for GG and ReX fall classi-

cally on three categories: macroscopic, mesoscopic and atomistic models.

In order to limit the thickness of the present manuscript, models based on molecular

dynamics or dislocation dynamics are not considered hereafter. Effectively, consider

more than one grain (or even a portion of grain) is complicated in such simulations

because of the prohibitive numerical costs. So they are not compatible with the

present study, which aims to provide viable numerical solutions for the industry, that

are able to address the whole manufacturing process within reasonable computation

times. However molecular dynamics or dislocation dynamics simulations present a

great academic interest because they can help to better understand different phys-

ical phenomena that occur at a very fine scale, or to identify some material properties.

So this chapter will focus mainly on macroscopic and mesoscopic metallurgical mod-

els. But before considering precisely the existing modeling approaches, it is crucial

to introduce the physical and theoretical foundations of microstructural evolutions

from which most of these models are built.

1.2 Constitutive equations for the migration of grain bound-

aries

A grain boundary moves with a velocity #»v in response to the net pressure p on the

boundary. Its is generally assumed that the velocity is directly proportional to the

pressure, the constant of proportionality being the mobility M of the boundary, and

thus:

#»v = M p #»n , (1.1)

where #»n is the unit outward vector normal to the interface. The driving pressure p

can also be seen as the sum of two contributions p = pc +pe, the former pc depicting

the capillarity effects due to the curved shape of the grains, and the second pe which

is related to the stored energy gradients across the grain boundary. The capillarity

force pc is usually assumed to be directly proportional to the local mean curvature of

the interface, which is the trace of the curvature tensor:
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pc = ∞∑. (1.2)

Here ∞ is a material parameter called the grain boundary energy.

On the other hand pe depends on the local heterogeneity of the stored deformation

energy e:

pe =¢e. (1.3)

This deformation energy is usually deduced from the dislocation density Ω according

to e = øΩ, with ø being the dislocation energy by unit length. Finally the velocity #»v in

eq. (1.1) can be rewritten as follows:

#»v = #»v c + #»v e, (1.4)

where #»v c = M∞∑#»n and #»v e = M¢e #»n (see fig. 1.1).

~v

c

~v

e

~v

Grain 1

Grain 2

E

2

E

1

�12

Fig. 1.1 – Velocity #»v of a grain boundary consisting of a capillarity contribution #»v c and a term
representing the energy jump across the interface #»v e. Here, the concave shape of °12 gives
the orientation of #»v c and it is assumed that E1 < E2, explaining why the vector #»v e is oriented
from G1 toward G2. The energy is here assumed constant by grain for simplicity.

The material parameters M and ∞ depend on the material, the processing conditions
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1.3. Macroscopic models

and the local misorientation ¢µ, i.e. anisotropy in terms of crystalline orientation.

Especially the classical Read-Schokley relationship can be used in first approximation

to describe the dependence of ∞ to the misorientation:

∞(¢µ) =

8
>><

>>:

∞m
¢µ

¢µm

µ
1° ln

µ
¢µ

¢µm

∂∂
if¢µ ∑¢µm

∞m if¢µ >¢µm,

(1.5)

in which ∞m is the grain boundary energy in the case of large misorientation angles

(i.e. ¢µ > ¢µm), with ¢µm º 15° classically. However this expression is not valid for

any kind of boundaries, especially twin boundaries whose interfacial energy cannot

be described by eq. (1.5).

Also the mobility is usually given a temperature dependence according to an Arrhe-

nius relation on the form [Humphreys et al. 2004]:

M = M0(T )exp
µ
° Qm

RT

∂
, (1.6)

where T is the temperature, Qm is the activation energy for grain boundary migration

and R corresponds to the gaz constant. The pre-exponential term M0 is generally

inversely proportional to the temperature, but can be reasonably considered constant

for metallic materials processed at high temperature.

Most macroscopic and mesoscopic models work on these fundamental equations as

it will be detailed later. However it is to note that the present work does not consider

the possible anisotropy of the interface features, and more specifically of the grain

boundary energy (see eq. (1.5)).

1.3 Macroscopic models

There exists many confidential works and published metallurgical models that are

developed for specific applications and depend on the thermomechanical conditions

and of the considered materials. Mention all of them would obviously be impossible.

Here we focus on historic physical laws, analytic models, and recent mean field ap-

proaches based on an enriched description of the microstructure, in order to tackle

the DRX, SRX and GG phenomena with possible ZP. Examples of other phenomeno-

logical ReX models can be found elsewhere [Voyiadjis et al. 2005; Estrin et al. 2007;

Hallberg et al. 2010a].
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Chapter 1. Modeling of recrystallization and grain growth

1.3.1 Physical laws and analytical models of recrystallization and

grain growth

Dynamic recrystallization

The metal accumulates dislocations during deformation and empirical laws are usu-

ally employed to describe the evolution of Ω. These are classically composed of a

hardening term (+) related to Frank-Read sources of dislocations, and a softening

term (°) which reflects the rearrangement and annihilation of dislocations:

@Ω

@"
=

µ
@Ω

@"

∂+
°

µ
@Ω

@"

∂+
, (1.7)

where " is the effective plastic strain. Most-known hardening laws are summarized

in table 1.1. Different dislocation species can also be considered, such as mobile and

immobile dislocations. For example in [Bammann et al. 1982; Walgraef et al. 1985a;

Walgraef et al. 1985b; Walgraef et al. 1985c; Hallberg et al. 2013], the evolution of mo-

bile and immobile dislocations are described by a reaction-convection system.

Refs. Relation

Kocks-Mecking [Kocks 1976]
@Ω

@"
= K1

p
Ω°K2Ω

Yoshi-Laasraoui-Jonas [Laasraoui et al. 1991]
@Ω

@"
= K1 °K2Ω

Estrin [Estrin 1998]
@Ω

@"
= K1

p
Ω°K2Ω°

sr

"̇

Montheillet [Montheillet et al. 2009]
@Ω

@"
= K1

Ωx

Table 1.1 – Classical hardening laws used to describe the evolution of the dislocation density.
The additional term sr refers to static recovery, while x is a positive constant in the Montheil-
let’s model.

The DRX phenomenon starts when the dislocation density reaches a critical threshold

value during the deformation. This quantity is noted ΩDRX
cr , and was estimated by

Roberts and Ahlblom [Roberts et al. 1978]:

ΩDRX
cr =

µ
20K1∞"̇

3MK3ø

∂1/3

with K3 = Mø. (1.8)
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Here "̇ designates the plastic strain rate. The dependence of this model to strain rate

and temperature is indirectly considered through the parameters K3 and K1. However

eq. (1.8) neglects dynamic recovery, which is sometimes a strong assumption. Beltran

et al. [Beltran et al. 2015] proposed recently a new expression which is valid for a wide

range of thermomechanical conditions:

ΩDRX
cr =

2

664

°2∞"̇
K2

K3ø

ln
µ
1° K2

K1
ΩDRX

cr

∂

3

775

1/2

. (1.9)

The term K2 in this expression is related to the dislocation annihilation term in [Kocks

1976; Laasraoui et al. 1991; Estrin 1998]. After DRX is initiated, new recrystallized

grains emerge in the microstructure. The nucleation rate (per surface unit) during

DRX is usually related to the plastic strain rate and to the temperature according to:

®̇= c "̇exp
µ

Qn

RT

∂
, (1.10)

where c is a constant and Qn the activation energy for nucleation [Peczak et al. 1993;

Peczak et al. 1994]. After they appear in the microstructure, the nuclei can grow or

shrink, depending on the capillarity force, the local energy gradient and the mobil-

ity of the surrounding grain boundaries. Only the germs achieving a critical size rc

survive, while the others disappear. By neglecting capillarity effects, Bailey-Hirsch

[Bailey et al. 1962] estimated rc according to:

rc =
4∞

hΩiµb2 , (1.11)

where hΩi is the mean dislocation density inside the material, µ is the shear modulus

and b corresponds to the magnitude of the Burger’s vector. Favre et al. proposed

recently an extension of the previous criterion which considers also the capillarity

forces [Favre et al. 2013]:

rc =
4∞

hΩiµb2 + 4∞
hRi

, (1.12)

with hRi the mean grain size of the material.

Obviously these approaches are mainly phenomenological and experimental tests

are needed to calibrate the model parameters, which depend on the material and the

thermomechanical conditions.
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Static recrystallization

During SRX the nuclei grow and consume progressively the old microstructure. The

type of curve shown in fig. 1.2 is typically used to describe phenomenologically the

nucleation and growth processes of SRX. The early works in this area are due to Kol-

mogorov [Kolmogorov 1937], Johnson and Mehl [Johnson et al. 1939], and Avrami

[Avrami 1939; Avrami 1940; Avrami 1941]. They gave rise to the well-known JMAK

model.

Fig. 1.2 – Typical recrystallization kinetics during isothermal annealing [Humphreys et al.
2004].

This model is based on the assumption that nuclei are formed at a rate Ṅ and that

grains grow into the deformed material at a linear rate Ġ . If the grains are spherical,

their volume varies as the cube of their diameter, and the fraction of recrystallized

material Xv rises rapidly with time. However, the new grains will eventually impinge

on each other and the rate of ReX will then decrease, tending to zero as Xv approaches

unity:

Xv = 1°exp
°
°B t n¢

, (1.13)

where t is the time, n is a constant called the Avrami exponent and B is also a constant

equals to f ṄĠ3/4, with f a shape factor equals to 4º/3 for spheres.
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In the theoretical case where the rates of nucleation and growth remain constant dur-

ing ReX, the JMAK theory gives n = 4. Other configurations have been investigated by

Avrami [Avrami 1939], in which the nucleation rate is not constant, but a decreasing

function of time, Ṅ having a simple power law dependence on time. In this situation

n lies between 3 and 4, depending on the exact form of the function. A particular case

is that where the nucleation rate decreases so rapidly that all nucleation events effec-

tively occur at the start of recrystallization. This is termed site saturated nucleation.

In this limiting case, n is found to be 3.

The above analyses assume that until impingement, the grains grow isotropically in

three-dimensions. If the grains are constrained either by the sample geometry or

by some internal microstructural constraint to grow only in one or two-dimensions,

then the JMAK exponent is lower as shown in table 1.2. Cahn [Cahn 1956] has ex-

tended the theory to include nucleation at random sites on grain boundaries and

found that n fell from 4 at the start of the transformation to 1 at the end. It is gen-

erally assumed that a growth direction is constrained when nucleation occurs at the

grain boundaries [Fabiano 2013]. However, no general analytical treatment of non-

randomly distributed nucleation sites is available because the essential feature of the

JMAK approach is that the nucleation sites are assumed to be randomly distributed.

Growth Site saturated Constant
dimensionality nucleation nucleation rate
3D 3 4
2D 2 3
1D 1 2

Table 1.2 – Ideal values of the Avrami exponent n in eq. (1.13). According to [Humphreys et al.
2004].

Obviously this approach is limited because it relies on many assumptions concerning

the rate of nucleation and growth which are not constant practically and can be hardly

estimated. This requires a lot of experimental tests in order to calibrate the model

for a given material in the considered range of themomechanical conditions. Also

the JMAK theory is only valid in the case of a homogeneous distribution of the stored

deformation energy.
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Chapter 1. Modeling of recrystallization and grain growth

Pure capillarity-driven grain growth

In 1952 von Neumann discovered that the 2D growth of soap froth depends only on

the number of sides. Later in 1956 Mullins [Mullins 1956] confirmed these findings

by observing that the rate of area loss or gain of a given grain depends only on its

topological class nt, i.e. the number of neighbors. These investigations gave rise to

the von Neumann-Mullins topological law which relates the growth rate of a grain to

nt:

d A
d t

= 2ºM∞
≥nt

6
°1

¥
, (1.14)

where A is the instantaneous surface area of the considered grain. According to this

relationship, grains that have ncr = 6 neighbors do not grow or shrink, i.e. d A/d t = 0

in eq. (1.14).

Later in 2007 this analysis has been extended in 3D by MacPherson and Srolovitz

[MacPherson et al. 2007], which gave rise to the fundamental MacPherson-Srolovitz

law [MacPherson et al. 2007] that governs normal grain growth in three-dimensional

isotropic polycrystalline materials. Especially this relationship describes the volume

evolution of individual grains:

dV
d t

=°2ºM∞

µ
L° 1

6
J
∂

, (1.15)

where V is the volume of the considered grain, L is a one-dimensional measure of the

grain size called the mean width, and J is the sum of the lengths of all triple edges

(along which three grains meet) of the grain.

Other 3D analytical models of GG have also been developed, that can be seen, more or

less, like direct 3D counterparts of the von Neumann-Mullins law. Especially Mullins

[Mullins 1989] developed the symmetric model of polyhedral geometry and derived

an expression for the growth rate of a polyhedral grain with nt faces:

1
R

dV
d t

= M∞F (nt)5.35n2/3
t

µ
nt °2

2
p

nt °1
° 3

8
F (nt)

∂
, (1.16)

where F (nt) is given by:

F (nt) =
∑
º

3
°2arctan

µ
1.86

p
nt °1

nt °2

∂∏
. (1.17)

This symmetric model of a polyhedron is based on the following three assumptions:

(1) each face subtends an equal solid angle of 4º/nt at the centroid of the polyhedron,
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1.3. Macroscopic models

in accord with the approximate equiaxed shape of grains undergoing normal grain

growth; (2) three edges of the polyhedron intersect at each vertex, in accord with

the topology of a grain aggregate; (3) each face (plane) may be approximated as a

pentagon, in accord with the observed polygonal face of greatest frequency [Mullins

1989].

An other equivalent model were introduced in 2006 by Rios and Glicksman [Rios

et al. 2006], which is based on the so-called average N -hedra method developed by

Glicksman [Glicksman 2005] for polycrystalline structures, and relates directly the

growth rate of an individual grain to nt:

dV 2/3

d t
º 9

4
M∞

°p
nt °

p
ncr

¢
. (1.18)

Based on their theory the critical N -hedra which has an equivalent zero mean curva-

ture (zero growth rate) satisfies nt = ncr = 13.3973.

The main advantage of eq. (1.18) and eq. (1.16) comparatively to eq. (1.15) is that these

two models enable to estimate the growth rate of a grain in pure GG condition directly

as a function of the number of neighbors, which is an easily measurable quantity. On

the other hand, the parameter J in eq. (1.15) that represents the total length of triples

edges of the considered grain can be much harder to estimate, making this law less

convenient even if it is exact.

These precise analytical models are interesting because they permit to study the influ-

ence of the topology on the evolution of the individual grains during pure GG. They

can also be used directly as evolution rules in numerical models of pure GG [Lazar et

al. 2010; Lazar et al. 2011] or to validate new modeling approaches. However they re-

main rather limited, especially because they consider the grains "one by one" and do

not provide directly a statistically representative representation of the microstructure,

and especially of its mean grain size which determines the macroscopic behavior of

the material.

In 1952 Burke & Turnbull investigated the physical mechanisms of GG and developed

a model that remains probably the most widely-used model for normal GG. Based on

eq. (1.2), Burke & Turnbull developed a complete theory based on two fundamental

assumptions. The former is that the grains are perfectly spherical with radius R, so

that their curvature is constant and equal to ∑= 2/R in 3D. The second assumption

is that grain boundaries migrate by atom transport towards their center of curvature.
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Chapter 1. Modeling of recrystallization and grain growth

They finally deduced a parabolic law for the growth:

dhRi2

d t
=ÆM∞, (1.19)

where Æ is a growth constant that is found to be 0.5 according to the Burke & Turn-

bull analysis [Burke et al. 1952]. This value were later comforted by Mullins [Mullins

1989] which foundÆ= 0.5±0.1, based of its symmetric model of polyhedral geometries

and the experimental data of Hull [Hull 1988] on separated Ø-brass grains. The same

value Æº 0.5 were also obtained more recently thanks to 3D PF simulations [Darvishi

Kamachali et al. 2012]. The classical Burke & Turnbull law is finally obtained by inte-

grating eq. (1.19):

hRi2 °hR0i2 =ÆM∞t . (1.20)

with hR0i the mean grain size at the early stage of GG.

However recent numerical investigations have pointed out that this model is not able

to predict precisely the GG kinetics for any kind of initial grain size distribution in

2D [Cruz-Fabiano et al. 2014] or in 3D [Maire et al. 2016]. Especially in the case of

very homogeneous initial distribution, the mean grain size remains globally stable

during the first stage of the TT which reflects in a plateau for the mean grain size

evolution. This can not be captured by eq. (1.20). Moreover it is worth noting that

eq. (1.19), on which the Burke & Turnbull model is built, relies on many assumptions

(homogeneous and constant grain boundary mobility and energy, self similarity of the

grain size distribution, spherical grains, microstructure free of deformation energy

and second phase particle) that limit its scope.

Particle pinning

The interaction angle between a particle and a grain boundary is dictated by the re-

spective surface tensions at the interface. Let us consider fig. 1.3 for an illustration,

where ∞
p
1 , ∞p

2 and ∞ are respectively the surface tensions associated with the inter-

faces °p
1 , °p

2 , °12, and #»p is the unit outward vector normal to the precipitate. Here the

balance of the surface tensions provides:

∞
p
2 = ∞

p
1 +∞sin(Æ) , (1.21)

which can be rewritten:
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Grain 1

Grain 2

Particle

�

p

2

�

p

1

~p

↵

�

�p

1

�p

2

�
12

Fig. 1.3 – Schematic illustration of the interaction between a moving grain boundary and a
coherent SPP [Humphreys et al. 2004].

sin(Æ) =
∞

p
2 °∞p

1

∞
. (1.22)

A particular case is obtained when the surface tensions at the particle interface are

isotropic (∞p
1 = ∞

p
2 ). Particles which satisfy this equilibrium are denoted incoherent

with the matrix, and then eq. (1.22) boils down to Æ= 0 (grain boundary perpendicu-

lar to the particle).

Zener & Smith were first to investigate analytically the dragging effect exerted by

the SPPs [Smith 1948]. They developed a complete theory that rely on the following

assumptions:

• grain boundaries are rigid,

• the mobility and energy of the grain boundary are constant and homogeneous,

• particles are incoherent with the matrix, i.e. ∞p
1 = ∞

p
2 ,

• all particles are perfectly spherical with mean radius hrpi,

• each particle exerts the maximal dragging force º∞hrpi at the same time,

• particles are randomly dispersed in the microstructure (no clustering) with a

given volume fraction fv,
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Chapter 1. Modeling of recrystallization and grain growth

• the material is free of deformation energy.

They deduced an expression for the global dragging pressure exerted by the particle

cloud on the grain boundaries:

pz =° 3∞ fv

2hrpi
, (1.23)

that is supposed to counterbalance the homogenized capillarity driving pressure:

pc = 2∞/hRi. The equilibrium of the driving and dragging forces, pc + pz = 0, gives

finally:

hRfi=
4
3

hrpi
fv

, (1.24)

where hRfi designs the mean grain size achieved when normal GG is completely hin-

dered by the particles. This equation, well-known as the Smith-Zener equation, has

been widely discussed in the state of the art under the following more general form:

hRfi= K
hrpi
f m

v
, (1.25)

where K and m are two fixed parameters. However these values fluctuate according to

the authors and the assumptions that are made to obtain eq. (1.23). A brief overview

can be found in table 1.3. Also many recent numerical investigations based on full

field simulations have yielded to very different values for K and m. This point will be

further detailed in the fifth chapter.

References K m Remarks
[Smith 1948] 4/3 1

[Gladman 1966]
º

6

µ
3
2
° 2

Z

∂
1

p
2 ∑ Z ∑ 2

[Hellman et al. 1975] 4/9 1
[Anand et al. 1975] 1/2 most particles are on gain boundaries
[Hellman et al. 1975] 1/3 most particles are at grain corners

Table 1.3 – Evaluation of coefficients K and m in eq. (1.25) according to different authors.
Here Z is a parameter related to the initial grain size heterogeneity [Agnoli 2013].

Finally even if eq. (1.25) has a direct practical interest because it predicts the mean

grain size, there are strong limitations behind this approach. The most obvious is

that the Zener model only addresses the normal GG phenomenon without stored

energy. Then it can not be easily extended as such to more complex phenomena, like
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1.3. Macroscopic models

SRX, DRX or PDRX. The second limitation is related to the inherent parameters in this

model, that require to be calibrated. Also the large discrepancies for the (K ;m) values

reported in the literature and very recent numerical investigations [Agnoli et al. 2014;

Scholtes et al. 2016b] tend to indicate that K and m could actually be not considered

as constant. Finally, a main limitation of this model and all other presented above, is

the inability to treat the whole manufacturing process in a unified way. Effectively the

material and forming processes are now extremely complex, and treating the under-

lying metallurgical phenomena "one by one", as it is done in these approaches, is no

longer sufficient in the industry where the needs in terms of precision are increasingly

important. Also some industrial applications require information about the variabil-

ity of the microstructures, and not only the averaged quantities. Consequently more

attention has been paid recently to new enriched macroscopic models that are based

on a more accurate representation of the material microstructure and are able to treat

a wide range of different metalurgical phenomena.

1.3.2 Enriched mean field models

Enriched mean field models are typically based on a discrete representation of the

microstructure, composed of N classes of spherical grains. Each class i 2 {1, ..., N } is

represented by a grain radius Ri and eventually a dislocation density Ωi , as illustrated

on fig. 1.4. This description is especially employed in the recent models of Montheillet

et al. [Montheillet et al. 2009] and Bernard et al. [Bernard et al. 2011].

The first historic approach of this type is due to Hillert, which proposed in 1965 an

enriched mean field model for GG [Hillert 1965]. This model has been discussed in a

large number of studies [Chao et al. 2004; Rios et al. 2006; Suwa et al. 2008; Darvishi

Kamachali et al. 2012]. It states that the radius of each class evolves according to the

following equation:

dRi

d t
=ØM∞

µ
1

Rcr
° 1

Ri

∂
8i 2 {1, ..., N } , (1.26)

where Rcr is a critical grain radius equals to hRi in 2D. In 3D it can be demonstrated

that Rcr = hR2i/hRi by applying the volume conservation [Chao et al. 2004; Rios et al.

2006]. Also Hillert has shown that Rcr º 9hRi/8 at steady-state [Hillert 1965]. The

parameter Ø refers to the inherent approximations concerning the assumed idealized

geometry in the Hillert’s model representation. According to Hillert Ø= 0.5 in 2D and

Ø = 1 in 3D [Hillert 1965]. Other authors have nevertheless reported values above

unity, such as Øº 1.25 [Darvishi Kamachali et al. 2012] and Øº 1.1 [Suwa et al. 2008].
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R

i

⇢

i

Fig. 1.4 – Discrete representation of the microstructure in mean field models.

As it considers several grain classes, this model has the advantage of predicting the

evolution of the grain size distribution. Also Fabiano et al. [Cruz-Fabiano et al. 2014]

have demonstrated the ability of this model to capture correctly the GG kinetics in 2D

for different initial grain size distributions.

Later Hillert extended his theory of normal grain growth to include the effects of

particle pinning on the kinetics of grain growth and on grain size distribution. For

this purpose, an additional dragging term was added to eq. (1.26):

dRi

d t
=ØM∞

µ
1

Rcr
° 1

Ri
± z
Ø

∂
8i 2 {1, ..., N } , (1.27)

where z = 3 fv/4hrpi. Grains in the size range 1/R ± z/Ø are assumed to be pinned by

the particles and do not evolve (i.e. dR/d t = 0). Grains larger or smaller than this will

shrink or grow at a reduced rate.

Also in 2009 Montheillet et al. proposed an enriched mean field model of discontin-

uous DRX wherein each grain is assumed to be immersed in a homogeneous matrix

with average dislocation density hΩi (see fig. 1.5a). This model neglects capillarity ef-

fects which are assumed to be one order of magnitude smaller than the stored energy

gradients during DRX. Then the evolution of the grain classes are simply dictated by

the difference in dislocation density:
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dRi

d t
= Mø

°
hΩi°Ωi

¢
8i 2 {1, ..., N } , (1.28)

The term hΩi is deduced from the volume conservation condition:

d
d t

√
NX

i=1
Vi

!

=
NX

i=1

dVi

d t
=

NX

i=1
4ºR2

i
dRi

d t
=

NX

i=1
Si

dRi

d t
= 0, (1.29)

with Vi and Si the respective volume and surface area of the i th grain class, given by

Vi = 4ºR3
i /3 and Si = 4ºR2

i . Finally it falls:

hΩi=
NX

i=1
SiΩi

. NX

i=1
Si . (1.30)

The DRX model of Cram et al. [Cram et al. 2009], introduced in 2009, is globally similar

with the exception that each grain class has here its own mechanical behavior, related

to its respective orientation/Taylor factor Ti (see fig. 1.5b). More recently Bernard et

al. [Bernard et al. 2011] proposed a new semi-analytical model of DRX in which each

grain class evolves in a matrix composed of two homogeneous equivalent media, one

representing the recrystallized grains with a low dislocation density and the other one

representing the deformed grains with higher dislocation density (see fig. 1.5c). These

two media are considered at each time step for describing the grain migration. One

advantage of this model comparatively to the ones of [Montheillet et al. 2009; Cram

et al. 2009] is that it also takes into account the capillarity effects through a coupled

formulation of eq. (1.26) and eq. (1.28). See [Bernard et al. 2011; Beltran et al. 2015]

for more details about the evolution laws used in this model.

This model comes also with an original formulation for the nucleation rate:

®̇i = KgSc
Ni Rq

i

°
Ωi °Ωcr

¢bg

X

Ωk>Ωc

Nk Rq
k

°
Ωk °Ωcr

¢bg
; Kg = Kg (T, "̇) , (1.31)

where bg is a constant close to 3 according to Montheillet et al. [Montheillet et al.

2009], Kg is a probability constant depending on the processing conditions and Sc is

finally the total surface area of the grains satisfying Ωi > Ωcr. The exponent q is equal

to 2 or 3, depending whether it is assumed necklace or bulk nucleation [Bernard et al.

2011]. The critical dislocation density Ωcr in eq. (1.31) is given by eq. (1.9).

It is usually very convenient to express directly the evolution of the grains in terms of

volume (respectively in terms of internal area in 2D). This can be done by derivation
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Fig. 1.5 – Schematic microstructure representation in different enriched macroscopic models
of DRX: (a) grain immersed in a homogeneous matrix [Montheillet et al. 2009]; (b) grains with
different orientations/Taylor factors immersed in a homogeneous matrix [Cram et al. 2009];
(c) grain interacting with the rest of the aggregate (left) and simplified representation used in
the model, considering two equivalent homogeneous media [Bernard et al. 2011].
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of the internal volume Vi (respectively of the internal area Ai in 2D) of each class of

grains [Darvishi Kamachali et al. 2012]:

d Ai

d t
= 2ºRi

dRi

d t
(in 2D) or

dVi

d t
= 4ºR2

i
dRi

d t
(in 3D) (1.32)

One main interest of these enriched mean field models is that they predict the grain

size distribution and its evolution during the treatment. Moreover most recent mod-

els are able to account for capillarity forces, stored energy gradients and the possible

dragging effect exerted by precipitates, which makes them sufficiently versatile to

address a wide range of TMT/TT. Obviously the precision and the computational

cost of these approaches is strongly related to the number of classes N used in the

simulations. But simulation times are of few minutes for most configurations, using

standard laptop computers, making these models extremely effective from a numeri-

cal point of view. A less attracting feature of these models is there inability to predict

the non-averagable phenomena, such as abnormal grain growth, caused by local het-

erogeneities of the microstructure properties that can not be captured with averaged

approaches. An other issue is the lack of grain topology in the existing mean field

representations. More specifically, these models do not describe how the grains are

connected to each other in the aggregate which is especially problematic when the

interface properties depend on the adjacent grains. The Read-Shockley equation that

defines the grain boundary energy as a function of the local misorientation is a perfect

example (see eq. (1.5)). Finally, even if we have presented an extension of the Hillert’s

model that is able to consider the ZP phenomenon (see eq. (1.27)), let us keep in mind

that this approach averages the dragging effect on the whole microstructure, and can

thus not account for heterogeneous non-random distributions of SPPs. Also from

a more general point of view, these macroscopic models rely on many parameters

(for example Ø in eq. (1.26), z in eq. (1.27), c in eq. (1.10)) which do not have a direct

physical interpretation, contrary to the parameters needed in full field models. These

parameters must therefore be calibrated at a finer scale through experimental tests

and/or full field simulations. We interest to these lower-scale numerical approaches

in the next section.

1.4 Full field models

1.4.1 Stochastic approaches

Stochastic approaches, such as MC and CA are probably the most known and are still

widely used. The former has been introduced by Potts in 1952 [Potts 1952]. MC and
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CA approaches both rely on a pixelized in 2D or voxelized in 3D representation of the

microstructure consisting of P lattice sites (see fig. 1.6).

1 1 1 1 3 3

1 1 1 1 3 3

1 1 1 3 3 3

1 1 1 3 3 3

1 1 2 2 3 3

1 2 2 2 2 3

Grain 3

Grain 1

Grain 2

Fig. 1.6 – Pixelized representation of the microstructure in MC and CA models. Three grains
are depicted, with respective indexes 1, 2 and 3.

Monte Carlo models

First metallurgical MC models emerged in the 1980s [Anderson et al. 1984; Srolovitz

et al. 1984]. Later this method has become very popular especially through the works

of Rollett et al. [Rollett et al. 1992b; Rollett et al. 1992a; Rollett 1997; Rollett et al. 2001].

At the early stage of a MC simulation, each cell of the pixelized domain is assigned

an index si (also called a spin) and a set of internal variables (dislocation density,

crystallographic orientation,...). Then the total energy Emc of the initial configuration

is calculated:

Emc =
PX

i=1

√
niX

j=1

1
2
∞(si , s j )+E(si )

!

, (1.33)

with ni the number of neighboring lattice sites considered for each individual site i .

The boundary energy ∞(si , s j ) is a function of the lattice index si of the present site

and of the neighbor site j . This corresponds to the boundary energy being a function

of the relative crystallographic misorientation across the boundary as discussed in

relation to eq. (1.5) [Rollett et al. 1989; Rollett et al. 2004; Hallberg 2011].

Next a lattice site with index si is randomly picked in the domain and it is suggested a

different index si 0 (with si 0 6= si ). Due to the spin change the total energy becomes E 0
mc,
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and the difference E 0
mc °Emc determines whether the suggested index is accepted of

rejected thanks to a probabilistic law. A MC step is completed after P spin changes

have been tested. Obviously the morphology of the grains will be influenced by the

underlying lattice onto which the microstructure is mapped. The lattice structure

will be represented in the results, giving an undesired faceting of the modeled grain

boundaries, which may influence the kinetics. Another major drawback of MC ap-

proaches is the lack of physical time scale in the classical formulation. Different

techniques can however be employed to compare simulation and experimental re-

sults. One option is to relate the length and time scales of the simulation to their

physical counterparts and perform a statistical matching of simulation and exper-

imental results. Alternatively the parameters of the MC model can be interpreted

in terms of physical quantities as in [Raabe 2000] giving correct units to the simu-

lation. As the data structure employed in MC model is based on a regular lattice of

pixels/voxels, the numerical implementation is straightforward. These models ex-

hibit also high numerical efficiency, since they are well suitable for parallelization.

On the other hand, there are inherent issues in MC models that are still regularly criti-

cized. First the formulation of MC models does not allow to verify the linearity of the

grain boundary migration velocity to the stored energy gradients during SRX. Also the

influence of the underlying lattice on the kinetics and the lack of physical length and

time scale (although remedies have been proposed previously) are still at the origin of

many discussions in the literature, and complicate the comparison with experimental

results [Rollett 1997]. Recent applications of MC approaches in the context of SRX

and DRX can be found in the literature [Hore et al. 2013; Wang et al. 2014; Hore et

al. 2015], although they tend to be progressively replaced by CA for these applications.

The dragging effect of SPPs can be introduced in MC models by assigning to several

individual cells a particular spin, which is different of the spins used in the matrix and

is not allowed to switch during the simulation [Gao et al. 1997]. Then, as the total en-

ergy of the configuration is lower when a particle meets a grain boundary compared

to the situation when it is within the grain, there is a natural attraction between the

particles and the grain boundaries which hinders the grain boundary displacement.

The first MC simulations of ZP date from the eighties thanks to the work of Srolovitz

[Srolovitz et al. 1984] and were performed in 2D. The results of these simulations

yielded values for the parameter m in eq. (1.25) very different from unity (m < 0.5).

This was due to the fact that a particle in a 2D microstructure is equivalent to a fiber

in a 3D microstructure and so pinning forces are overestimated. Also successive 3D

simulations yielded values of m different from unity. However, it was shown that this
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result is only the consequence of the artificial faceting of grain boundaries that is

induced during the simulation [Miodownik et al. 1999]. Finally a large scale 3D MC

simulation (with about 107 voxels) where grain boundary faceting could be inhibited

[Miodownik et al. 2000] confirmed the value m = 1 as in the original model of Zener

& Smith, while K = 0.73 for a particle volume fraction lower than 10%. Overall, ac-

counting for the ZP effect is straightforward in the MC formalism and can be easily

implemented in 3D. However, this approach requires very fine lattice in order to coun-

terbalance the error induced by the interface faceting, and then describe properly the

grain boundary/SPP interactions.

Cellular automata

CA were introduced by von Neumann in 1963 and later on in 1986 by Wolfram to a

broader scientific public [Janssens 2010]. Then Hesselbarth [Hesselbarth et al. 1991;

Hesselbarth et al. 1993], Davies [Davies 1995; Davies 1997; Davies et al. 1999] and

Raabe [Raabe 1999; Raabe 2002] were first to use these models for problems involving

solid-state transformations. Especially Raabe introduced the concept of probabilistic

cellular automata (PCA) which are commonly used nowadays. In PCA models, the

probability for a grain boundary to cover a neighboring cell is:

Pca =
v

vmax
, (1.34)

where v and vmax are the local velocity in the considered pixel/voxel and the maximal

grain boundary velocity calculated in the whole simulated domain, respectively. Then

Pca is compared with a random number comprise between 0 and 1. If it is greater,

then the considered cell adopts the spin of the advancing adjacent grain, otherwise

the spin remains unchanged. The cell states are updated simultaneously at the end of

each time step in order to prevent multiple cell covering. Although PCA seems quite

close to the MC method, these have a physical time scale because they rely on the

kinetic law of eq. (1.4). This is a great advantage. Also CA scale very well with paral-

lelization and can be easily implemented. On the other hand estimating precisely the

local curvature of an interface is rather complex in a CA model because of the faceting

induced by the lattice. One approach is by use of kink-templates as formulated in

[Kremeyer 1998]. This method, very common in recent CA studies [Hallberg et al.

2010b; Liu et al. 2015; Lin et al. 2016], uses an extended neighborhood, a template,

of the cell to estimate ∑, based on the number of cells constituting the considered

grain and the number of cells that would constitute a planar interface in the template

region [Hallberg 2011]. However the precision of this approach is necessarily corre-

lated with the resolution of the cell lattice. For small grain whose sizes are close to cell

40



1.4. Full field models

dimensions, the number of neighboring cells in the template can be insufficient to

estimate properly the local curvature. The trivial solution is therefore to refine the cell

lattice in order to increase the number of cells in the template and thus the precision.

But in the context of regular grids such as those used in CA models, this approach

imposes to refine homogeneously (i.e. everywhere in the domain) the cell lattice,

with potential impact on the simulation time. This is a weakness comparatively to FE

approaches which permit to handle more efficiently and simply the local adaptation

of the mesh and the heterogeneous mesh sizes inside the domain.

An other limitation of CA approaches, which is common with MC, is the inability

to treat the microstructural evolution and the polycrystal deformation in a unified

numerical framework. These are often coupled with the CPFEM [Raabe et al. 2000;

Chuan et al. 2013; Lin et al. 2016; Madej et al. 2016]. Obviously coupled CA-CPFEM

models come with inherent numerical difficulties such as the transport of the fields

and the synchronization of the time steps. However CA remain an interesting ap-

proach for the modeling of ReX [Liu et al. 2015].

It is worth noting that MC and PCA both rely on probabilistic evolution laws. These

are only statistically representative. In other words, two different PCA simulations

using the same initial microstructure will not give exactly the same final result be-

cause evolution laws rely on probabilistic considerations wherein there is an inherent

random aspect. This has necessarily an impact on the predictions and needs also to

be taken into account.

1.4.2 Deterministic approaches

Recently more attention has been paid to deterministic approaches, which are more

precise as they do not rely on probabilistic laws and can be used within FE meshes.

However these are also largely more greedy in terms of computational resources due

to the fact that they involve the resolution of large systems of PDEs. Most determin-

istic models concerning the simulation of microstructure evolutions fall on three

categories: the front-tracking approaches, the PF approach and the LS approach.

Front-tracking approaches

Front-tracking methods explicitly construct and follow the motion of the grain bound-

aries. Based on, it is possible to use a volume discretization, as in the GRAIN3D model

developed by Kuprat et al. [Kuprat 2000; Demirel et al. 2003; Gruber et al. 2005], or to
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Chapter 1. Modeling of recrystallization and grain growth

mesh only the grain boundaries, as in the Vertex method developed at the end of the

1980s [Kawasaki et al. 1989; Nakashima et al. 1989]. In Vertex models, the microstruc-

ture is discretized into a set of real vertices at multiple junctions. Virtual vertices

may also be added along the grain boundaries to account for their curved shape, as

depicted on fig. 1.7.
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Fig. 1.7 – Explicit representation of the grain boundary network composed of real (yellow)
and virtual (blue) vertices in the Vertex method [Kawasaki et al. 1989; Nakashima et al. 1989;
Hallberg 2011].

There are several ways to derive the equations describing the migration of vertices.

Especially in [Kawasaki et al. 1989; Nakashima et al. 1989] it is assumed that the excess

surface energy variation of the grain boundary due to the area reduction is entirely

dissipated by viscous friction during the motion. This formulation results in a linear

system of equations that must be solved at each time step. Most recent Vertex models

of the literature are based on this formalism [Piekos et al. 2008; Toda-Caraballo et al.

2013; Mellbin et al. 2015]. Because interfaces are explicitly meshed, topological oper-

ation must be performed to ensure the FE mesh remains conform. But handling all

the possible events in 3D is not straightforward and can be very demanding in terms

of computational resources. See fig. 1.8 for an overview of the topological operations
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that need to be handled in a 3D Vertex model. It is worth noting that these operations

are immediate and irreversible in the sense that there is no progressive evolution. Let

us consider for example the disappearance of a grain, as illustrated on fig. 1.8e. At

the current time increment, the black grain is still present. Then, if a given arbitrary

criterion is satisfied (e.g. minimal distance between two vertices achieved), this grain

will be immediately removed from the microstructure, in sort that it will no longer

be present at the next time increment. So these evolutions are not correlated with

the time step of the simulation, but with an arbitrary criterion which does not have a

direct physical interpretation. This may obviously impact the predictions, and espe-

cially the kinetics of the microstructure evolution.

(a) (b)

(c) (d)

(e)

Fig. 1.8 – (a)-(e) Some topological operations that must be handled in 3D Vertex models [Lazar
et al. 2011].

Mellbin et al. [Mellbin et al. 2015] proposed recently an interesting 2D DRX model

based on the Vertex approach for the description of microstructural evolutions con-

sidering nucleation events. To our knowledge there is no equivalent in 3D for the time

being. Effectively handling the nucleation of a new grain, which can be interpreted

as a reversed (e) operation in fig. 1.8, remains an open-issue in 3D Vertex models. It
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could explain why this method seems at yet limited to GG [Syha et al. 2010; Lazar et al.

2011; Toda-Caraballo et al. 2013] or 2D ReX [Piekos et al. 2008].

The presence of particles can be simulated in Vertex models by introducing "pinning

centers" in the domain, which are a new kind of vertex characterized by the maxi-

mum force Fmax they can sustain. This force is a function of a critical unpinning angle

which is imposed arbitrarily [Weygand et al. 1999]. When grain boundaries sweep

an area which contains particles, the final position is chosen such that at most one

particle is present in the triangular area swept. Then, the conditions for unpinning

are tested: in the simplest situation, if the force acting on the particle is higher than

Fmax, then grain boundary unpins. Simulations have shown that if the overall pinning

force of particles Fmax increases, then the final grain size distribution shifts from a

log-normal one to a normal one. Moreover, the number of particles effectively acting

as pinning centers is inversely proportional to Fmax. The effect of different particles

sizes or shapes can be studied by assigning to the pinning centers different values

of Fmax. Nonetheless, it remains questionable if the simulation of pinning effects,

simply introduced in the model as a new kind of vertex, can be representative of real

microstructures where the interactions between particles and grain boundaries can

assume very complex geometries.

In 2005 Couturier et al. proposed a FE boundary tracking model which describes

the interaction of a single planar grain boundary moving through a cloud of parti-

cles [Couturier et al. 2003; Couturier et al. 2005]. Here the interactions between the

grain boundary and the particles are handled by applying kinematic conditions to the

boundary nodes in contact with the particles so that their velocity remains tangen-

tial to a meridian of the particles. Under certain assumptions on the grain geometry

during grain growth it is possible to extend the results yielded from this single grain

boundary model to obtain information on the behavior of a polycrystal. The simula-

tion results confirmed the theoretical value m º 1 in eq. (1.25) and highlighted that

the effective pinning force of particles is almost two times smaller compared to the

value proposed by Smith & Zener in eq. (1.23). Compared to previous approaches,

this FE model allows to simulate the phenomenon in more details and on a more

physically meaningful basis since the particle-grain boundary interaction is treated

as a geometrical constraint to the movement. Nonetheless, up to now simulations are

limited to spherical particles and do not consider the surface tension between grains

and particles. Moreover, since the surface of grain boundaries is assumed to be planar

with respect to particles, simulations are valid only if the ratio between the grain and

particle sizes is very important. Finally, as for Vertex models, the implementation of
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a full 3D simulations of a realistic polycrystal appears to be quite challenging due to

the difficult treatment of topological transformations due to the explicit description

of interfaces.

The boundary tracking approaches illustrate the complexity of the interface tracking

problem. An alternative consists in using mathematical functions to describe implic-

itly the grains in the mesh. Using this approach, the handling of topological events is

natural as grains can be added/removed from the simulation domain by performing

simple arithmetic operations on these mathematical functions. This attractive frame-

work based on implicit interfaces is at the heart of front-capturing methods, such as

the PF and LS methods.

The phase field method

The PF method employs continuous functions of spatial coordinates and time to rep-

resent the grains, the so-called PF variables. In the most basic form of PF models,

the variable ¥i which represents the i th grain of the microstructure is equal to unity

inside this grain and zero elsewhere. But this representation, illustrated in fig. 1.9a,

creates sharp gradients at the boundaries which result in discontinuities and in ill-

conditioned problems. To prevent this issue, grain boundaries are given implicitly

by narrow regions where the PF variables change smoothly between their values in

the neighboring grains [Moelans et al. 2008]. This introduces the concept of diffuse

interfaces (see fig. 1.9b).

(a) (b)

Fig. 1.9 – Sharp and diffuse interface descriptions related to PF approaches.

At least three grid points (respectively mesh elements in a FE framework) are gener-

ally needed in the normal direction to the interface to account for this transition and
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ensure numerical convergence [Darvishi Kamachali et al. 2012; Jin et al. 2015]. But

the limitation in computational power forces to take the diffuse interface regions in

the simulations wider than the physical grain boundary width in order to perform

simulations for relevant length and time scales [Moelans et al. 2008]. The diffuse in-

terface width is then treated as a numerical parameter that determines the accuracy

of the simulation results. Finding an appropriate value for this transition thickness

is a recurrent topic of discussions for PF methods [Moelans et al. 2009; Miyoshi et al.

2016].

Two variants of PF models can be found in the literature: the so-called continuum

phase field (CPF) [Fan et al. 1997b; Fan et al. 1997a] and multiphase-field (MPF) [Stein-

bach et al. 1996; Garcke et al. 1998; Steinbach et al. 1999] models. In both methods,

PF variables evolve to minimize the total free energy of the system, which is given

by an integral of the local free-energy density f̂ across the diffuse grain boundary

regions. Diverse expressions can be found for f̂ in the literature (see table 1.4 for a

brief review).

Refs. f̂
°
¥i ,r¥i

¢
Comments

[Takaki et al. 2009]
NpX

k=1

NpX

l>k

√

°
a2

kl

2
r¥kr¥l +Wkl¥k¥l

!

+ fe 2D DRX

[Takaki et al. 2007]
[Takaki et al. 2010]

NpX

k=1

NpX

l>k

√

°
a2

kl

2
r¥kr¥l +Wkl¥k¥l

!

2D SRX

[Darvishi Kamachali et
al. 2012]

NpX

k=1

NpX

l>k

µ
4∞kl

≤

Ω
° ≤2

º2r¥lr¥l +¥k¥l

æ∂
3D normal GG

[Jin et al. 2015]
NpX

k=1

NpX

l>k

≥
°"kl

2
r¥kr¥l +wkl |¥k ||¥l |

¥
2D anisotropic
GG

Table 1.4 – Few expressions of the local energy density f̂ reported in the literature. We refer
the interested reader to the related papers for more details.

CPF and MPF models are confronted in [Moelans et al. 2009] and it is demonstrated

that the two formulations can predict the same steady-state microstructure, but with

different kinetics. Especially authors point out the influence of the non-unique formu-
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lation concerning the local free-energy density. This is obviously problematic when

it comes to model real industrial processes, because many metallurgical phenomena

can be involved successively or simultaneously, and the material may never achieve

a steady-state. So predicting also the transient stage of microstructure evolutions

is crucial for industrial applications. However, the PF method relies on strong ther-

modynamical foundations, making it an attractive technique. Interesting couplings

with Crystal Plasticity have been proposed recently to model DRX [Zhao et al. 2016]

and SRX [Chen et al. 2015] in 3D. Also it is worth mention the commercial software

MICRESS® (http://web.micress.de/).

The presence of SPPs can be implemented in PF models by introducing an additional

space-dependent energy term in the total free energy of the system [Moelans et al.

2005]. This additional energy term is built so that the energy difference induced by

a particle placed on a grain boundary is equal to the intersection area multiplied by

the surface tension. For a spherical particle that is "cut" in half by a grain boundary,

the energy difference is then ºr 2∞. Several 3D PF simulations of ZP [Suwa et al. 2006;

Vanherpe et al. 2010] yielded values for m in eq. (1.25) close to unity, in accordance

both with the original model of Zener & Smith and with MC/Vertex simulations. On

the contrary, the values for the coefficient K are more scattered, even though the

order of magnitude remains the same. The effect of spheroid secondary-phase par-

ticles characterized by different aspect ratios and sizes [Vanherpe et al. 2010; Chang

et al. 2009], and of cylindrical particles [Schwarze et al. 2016] have been also stud-

ied. Results show that, for the same volume fraction of particles, smaller particles are

more effective in pinning grain boundaries. Moreover needle-shape particles have

a stronger pinning effect than spherical ones, even though the difference remains

quite limited. However these approaches rely on different assumptions in order to es-

timate the dragging force exerted by each particle as a function of its geometry. This

approach is possible for simple analytical geometries of particles, but much more

complex for particles with complex shapes, such as these present in real materials. To

our knowledge there is no PF formulation able to tackle real-shape particles for the

time being. Very recently a first PF approach to model the 2D interaction between a

single grain boundary and an evolving particle has been proposed [Chang et al. 2015]

and has shown very promising results. This model has not yet been extended in 3D

for the time being.

The last major full field approach for modeling GG and ReX is the so-called LS method.

As detailed in the first chapter, this approach can be used in the context of uniform

grids with a finite-difference scheme or Fourier transform resolution, or within a FE
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framework. The FE-LS modeling of microstructural evolutions is a very exciting re-

search topic due to the possibility to simulate many physical phenomena (particle

pinning, annealing twin development, solute drag, CPFEM and field dislocation me-

chanics,...). So the LS-FE approach presents very appreciable features, making it a

logical technical choice for the DIGIMU® software. However, as for the PF approach,

the numerical cost of LS-FE remains its main drawback, explaining why it was hardly

used in 3D up to now. Our main objective in this thesis work is to make this approach

much more numerically efficient in order to allow this transition from 2D to 3D. We

present the approach and its related limitations in the next section.

1.5 The level set approach, state of the art concerning

the modeling of polycrystals

The LS method is a front-capturing approach introduced by Osher and Sethian in

1988 [Osher et al. 1988], which allows to represent implicitly an (or a set of) object(s)

and to describe its (their) evolution(s) inside a simulation domain ≠. In that sense,

the LS method is relatively similar to the PF field approach. Here, signed distance

functions, also called LS functions, are employed to represent the interfaces instead

of the PF functions. A LS function √ returns the standard Euclidean distance to the

boundary ° of a sub-domain ß 2≠, and generally a sign convention is assumed:

8t

8
><

>:

√(x, t ) = d(x,°(t )) for X 2ß
√(x, t ) =°d(x,°(t )) for X ›ß
°(t ) =

©
X 2≠,√(x, t ) = 0

™
,

(1.35)

where d(X ,°(t )) corresponds to the Euclidean distance between a point X 2≠ with

spatial coordinates x and the interface ° of ß. The sub-domain ß can be composed of

one or several distinct connected components, as it will be presented later. Large multi-

phase problems involve typically the definition of several sub-domains in the simula-

tions. Hereafter we note Np this number of sub-domains and √i the LS function that

represents the i th sub-domain ßi , whose interface is denoted °i (with i 2
©
1, ..., Np

™
).

The first step of a LS simulation is to initialize the LS functions as a distance function

to the object interface, represented by its zero-isovalue. For this purpose the value of

each LS function is estimated at a certain number of points located inside≠. These

points can be simply the grid points if regular Cartesian grids are used for the com-

putations, or more generally the interpolation points of the mesh when the work is

done within a FE framework. We detail the possible approaches to initialize the LS

functions in the next section.

48



1.5. The level set approach, state of the art concerning the modeling of
polycrystals

1.5.1 Generation and immersion of virtual polycrystals within un-

structured finite element meshes

Basics about immersion

The term polycrystal immersion refers to the creation of a virtual representation of a

microstructure that can be used to describe its evolution. This virtual polycrystal is

generally referred as fictive when the shapes, sizes and positions of the grains are de-

termined by the computer at the start of the simulation, while it is simply designated

as real when it is obtained from an experimental image.

After generating a fictive or real polycrystal, this has to be linked with the FE mesh. In

the context of unstructured meshes, as used in this work, different methods can be

found in the literature. The most widely-used method, illustrated on fig. 1.10, consists

in creating a surface mesh for each grain (coincident with the neighboring grain) and

then generating a volume mesh based on these surface meshes [Rollett et al. 2004;

Delannay et al. 2009; Quey et al. 2011; Dancette et al. 2016]

This approach wherein the mesh is coincident with the grain boundaries is well-

suited for simulating the deformation of polycrystals. However when modeling ReX

and GG, specific topological operations must be performed on the FE meshes to han-

dle the shrinkage and nucleation events. This is exactly the same problem than for

Vertex models. So using these approaches in the context of microstructural evolutions

is not straightforward.

Front-capturing approaches such as the PF and LS methods avoid this problem of

tracking the interfaces by using mathematical functions to represent implicitly the

interfaces. However this approach requires to be able to initialize these mathematical

fields (PF or LS functions) in such a way that they represent accurately the considered

aggregate.

Using an experimental image as input, different techniques are possible to initialize

the PF/LS fields. In [Zhao et al. 2016] the image is firstly interpolated on a homoge-

neous FE mesh. Then this mesh is refined in order to increase the precision at the

interfaces. Finally the data from the experimental image are interpolated on the FE

mesh and converted into LS functions by resolving a standard redistancing equation.

In the third chapter, we will propose a new original approach, based on the devel-

opment of Shakoor et al. [Shakoor et al. 2015a], that is able to tackle efficiently the
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Fig. 1.10 – FE mesh of a 100-grain polycrystal coincident with the grain boundaries [Quey
et al. 2011].
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immersion of real polycrystals in a LS-FE framework.

However, experimental data are not always available. Especially obtaining a 3D image

of a microstructure requires specific numerical facilities. An alternative is to create

a fictive polycrystal that obeys certain constraints, e.g. mean grain size, respect of a

prescribed grain size or shape factor distribution and so on. This can be done by using

specific generation techniques that will be described in the next section. Their main

advantage is that they allow to modify easily the properties of the initial polycrystal.

Also they do not require a lot of experimental data. Hereafter we present the principles

of these approaches and how they can be used to immerse virtual polycrystals within

FE meshes using the LS functions.

Statistical generation of polycrystals and immersion

A very popular technique for generating 2D/3D polycrystals is the Voronoï tessellation

(VT) method [Wu et al. 2000; Bernacki et al. 2009; Quey et al. 2011; Hitti et al. 2012].

A Voronoï tesselation is fully described by a set of Nv sites, noted Si with i 2 {1, ..., Nv}.

Each nucleus Si defines a Voronoï cell Vi , which consists of all points closer to Si than

to any other nucleus (see fig. 1.11):

Vi =
Ω

X 2Rds /d(x,Si ) = min
1∑ j∑Nv

d(x,S j )
æ

, (1.36)

with ds the space dimension. From a mathematical point of view, the Voronoï dia-

gram of a set of points is dual to its Delaunay triangulation. We note Graph(Si ) the

sites that are connected to Si in the underlying Delaunay triangulation.

Voronoï sites are generally picked randomly in the domain, which makes the VT ex-

tremely fast and simple to implement. The number of sites and the domain dimen-

sions determine directly the mean grain size. On the other hand, this method does

not allow to obey a given grain size distribution. A possible alternative is the Laguerre-

Voronoï tesselation (LVT) method [Telley et al. 1996; Fan et al. 2004; Quey et al. 2011;

Hitti et al. 2012; Wejrzanowski et al. 2013; Randrianalisoa et al. 2015] wherein a weight

Wi is also affected to each site. Here each Laguerre-Voronoï cell Li is defined by a pair

(Si ,Wi ):

Li =
Ω

X 2Rds /¶(x,Si ) = min
1∑ j∑Nv

¶(x,S j )
æ

, where¶(x,Si ) = d(x,Si )2 °W 2
i . (1.37)

A possible option to determine the cell weights consists in generating a dense sphere
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packing with highest possible density which obeys the prescribed grain size distribu-

tion [Fan et al. 2004; Hitti et al. 2012]. Then the weight Wi of the i th site can be seen as

the radius of the corresponding sphere. But creating a dense packing is not straight-

forward, especially in 3D. A review of the existing methods and those implemented in

the Cimlib library can be found in [Hitti 2011; Hitti et al. 2012].

A great advantage of the VT and LVT techniques is that they permit to immerse easily

the generated aggregates using LS functions. Especially the LS function √i defining

the i th Voronoï/Laguerre cell is given by:

√i (x) = min
j2Graph(Si )

°
Æi j (x)

¢
, 8i 2 {1, ..., Nv} . (1.38)

In the VT method, Æi j is the signed distance between a point X 2≠ and the perpen-

dicular bisector of
£
Si S j

§
:

Æi j (x) = 1
2
k°°°!Si S jk°

°°°!
Si S j ·

°°!
Si X

k°°°!Si S jk
. (1.39)

This function Æi j adopts a different form in the LVT method because the cells are

weighted:

Æi j (x) = 1
2

√

k°°°!Si S jk+
W 2

i °W 2
j

k°°°!Si S jk

!

°
°°°!
Si S j ·

°°!
Si X

k°°°!Si S jk
. (1.40)

S

j

S

i

V

i

Fig. 1.11 – A Voronoï tesselation in 2D.
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In such a monolithic framework wherein all the phases are immersed in the same

mesh, it can be useful to achieve a better precision at the interfaces. Especially we

know that the velocity of the grain boundaries depends on their morphology (see

eq. (1.4)). Thus achieving a correct description of the interfaces is crucial for cap-

turing the interface kinetics. A first approach is to increase the interpolation degree.

An alternative consists in adapting the spatial discretization. The simplest way is to

refine homogeneously the mesh size to achieve a better description of the interface

geometry (see fig. 1.12a and fig. 1.12b). But homogeneous refinement increases signif-

icantly the number of degrees of freedom (DOF) and then the numerical cost. Local

refinement is a classical alternative, which consists in using a fine mesh size hn inside

a layer ±E around the interface and a coarse mesh size hb elsewhere (see fig. 1.12c).

This approach can be further optimized by employing anisotropic elements in the re-

fined zone. This strategy of local refinement is generally more simple than using non

constant order interpolation. Of course both techniques could be coupled. In this

work, a constant P1 formulation is adopted with a meshing/remeshing strategy. In

our GG/ReX context where grain boundaries migrate normally, the normal direction

to the interface needs to be finely discretized. In other directions, the mesh can be

stretched with coarse mesh sizes ht, dependent of the corresponding local curvature,

as illustrated on fig. 1.12d. Thus less elements and DOF are needed.

But anisotropic meshes are also more complex to generate because it requires a full

control of the shape, size, stretching factor and orientation of elements. Different ap-

proaches exist, although they are generally based on local modifications of an existing

mesh. Creating anisotropic meshes mainly requires to extend the way we measure

lengths following the space directions. This can be done by using a metric field to

redefine the geometric distances. Then the FE mesh is adapted according to this

metric field and a mesh quality criterion. Hereafter we define the quality of a mesh

element as the normalized ratio of its volume (respectively area in 2D) and perimeter

squared. This indicator is equal to unity when the simplicial mesh element is a reg-

ular tetrahedron (respectively an equilateral triangle in 2D) in the considered metric

field [Coupez 2011] and equal to zero for a ill-shaped tetrahedron. In this study we

use the topological mesher/remesher Fitz [Shakoor et al. 2015a] to perform the mesh

adaptation. This uses a nodal metric map as input which is motivated by the fact that

elements are much more versatile than the nodes, and therefore defining fields on a

continuous basis ease their reconstruction, interpolation and extrapolation [Coupez

2011].

A metric M is a real, symmetrical, positive definite ds £ds matrix (we recall that ds
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h

b

(a) Initial coarse mesh

h

b

(b) Homogeneous refinement

h
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n

(c) Local mesh adaptation (isotropic)

h

b

h

n

h

t

(d) Locally mesh adaptation (anisotropic)

Fig. 1.12 – Isotropic and anisotropic FE meshes at the interface of a spherical grain (repre-
sented by a solid white line). Elements having at least one node inside the grain are depicted
in red.

54



1.5. The level set approach, state of the art concerning the modeling of
polycrystals

is the space dimension). Since it is symmetrical, M can be diagonalized, and its

positive definite nature ensures that the eigenvalues are strictly positive. ThusM can

be decomposed as:

M= Rt

2

666664

1

h2
1

0

. . .

0
1

h2
d

3

777775
R>

t , (1.41)

where Rt is a rotation matrix whose columns are the eigenvectors ofM and
°
h°2

i

¢
1∑i∑d

are the corresponding eigenvalues. The hi are the mesh sizes in the basis directions

defined by the eigenvectors ofM.

The metric field can be constructed manually by specifying directly the directions

of refinement, and one or all the associated mesh sizes. In [Bernacki et al. 2009], an

approach able to deal with multiple LS functions is proposed in the context of poly-

crystalline aggregates. Basically the procedure gives a metric field that is a function

of the distance to the grain boundary and of the multiple junctions. More specifically,

fine and possibly anisotropic mesh sizes are employed near the standard grain bound-

aries (i.e. interfaces separating two adjacent grains) and a coarse mesh size is used

in the grain interior. At multiple junctions the interface is irregular. So there is no

well-defined normal and tangential directions in these regions, and a fine isotropic

mesh size is therefore employed in these regions. In this study the mesh size used

for each direction is directly specified by the user. So all the interfaces are identically

discretized in all the space directions. Figure 1.13a illustrates a part of a 2D polycrystal

(hRi = 72µm) and the related FE mesh obtained with this remeshing strategy [Resk

et al. 2009]. Here the overall mesh is composed of 164,000 triangles, the thickness of

the refined layer is E = 40µm and the mesh sizes are hn = 2µm and ht = hb = 10µm.

When the interface flow is dictated by curvature, as it is the case during normal GG,

it can be useful to refine the mesh only in the regions of high interface curvature in

order to save computation time. A possible approach is to define the tangential mesh

sizes as a function of the local corresponding curvature. This approach, used in [Quan

et al. 2014], has been proven to provide optimal convergence rates.

The main limitation of these approaches, referred to as a priori, is that the number

of elements used in the simulation is a direct function of the interface length and

cannot be easily anticipated. This can dramatically increase the computation time if
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inappropriate mesh sizes are specified by the user.

The second method consists in performing an error analysis in order to create an

"ideal" mesh, i.e. which minimizes a given error (typically the discretization error)

according to a physical field ! and/or a given number of elements (or a a given preci-

sion). Here the mesh size map is directly given by the error estimator, which allocates

the numerical resources preferentially in the areas and space directions that exhibit

the sharpest gradients r!. An important number of approaches have been proposed

in recent years and we refer the interested reader to [Almeida et al. 2000; Boussetta

et al. 2006; Coupez 2011; Bois et al. 2012; Rabizadeh et al. 2016] for further details. In

this work we focus more precisely on the error estimator of [Almeida et al. 2000; Mesri

et al. 2008], which is implemented in our FE library and allows to generate anisotropic

FE meshes according to a given number of elements.

We need firstly to create a field that will support the mesh adaptation. Providing

that our objective is to refine the mesh in the grain boundary area extending perpen-

dicularly to the interfaces, the field ! can be simply defined as the global unsigned

distance function of the aggregate:

!(x) = max
1∑i∑Np

√i (x), (1.42)

As this field has a discontinuity at != 0 and is therefore not differentiable, it is firstly

filtered by using a classical sinusoidal filter:

!s(x) =

8
>>><

>>>:

0 for !(x) <°E

0.5
µ
1+ !

E
+ 1
º

sin
≥
º
!

E

¥∂
for k!(x)k ∑ E

1 for !(x) > E .

(1.43)

Contrary to !, the filtered field !s is smooth and can be differentiate anywhere. We

use its gradient r!s as input in the error estimator in order to compute the metric

field needed for mesh adaptation. Hereafter this strategy is employed in all the simu-

lations that use local remeshing. Figure 1.13b depicts the FE mesh obtained with this

a posteriori method for the 2D polycrystal of fig. 1.13a. The target number of elements

is set to 150,000 and E = 5µm. Based on these information and r!s , the mesh sizes

in the different space directions and the related metric field are directly determined

by the error estimator.
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(a)

(b)

Fig. 1.13 – Anisotropic FE meshes of a 2D polycrystal obtained through: (a) an a priori tech-
nique [Bernacki et al. 2009] with E = 40µm, hn = 2µm and ht = hb = 10µm; (b) an a posteriori
technique [Mesri et al. 2008] with E = 5µm and a constrained number of elements (150,000).
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1.5.2 Migration of the grain boundaries

After initializing the distance functions and adapting the initial FE mesh, interfaces

can be displaced according to a given velocity field #»v i by solving a set of transport

PDEs:

8
<

:

@√i (x, t )
@t

+ #»v i ·r√i = 0

√i (x, t = 0) =√0
i (x)

8i 2
©
1, ..., Np

™
, (1.44)

where √0
i is the initial value of √i . In the considered LS framework, the terms #»n and

∑, present in eq. (1.4), can be rewritten as follows:

#»n i =
r√i

kr√ik
and ∑i =°r · #»n i , (1.45)

where r· corresponds to the divergence operator. By combining eq. (1.4), eq. (1.44)

and eq. (1.45), one obtains a set of convective equations which describe the mi-

crostructure evolutions in the context of uniform grain boundary mobility and en-

ergy:

8
<

:

@√i (x, t )
@t

°M∞r ·
µ r√i

kr√ik

∂ r√i

kr√ik
r√i + #»v e

i ·r√i = 0

√i (x, t = 0) =√0
i (x)

8i 2
©
1, ..., Np

™
, (1.46)

If the LS functions satisfy the metric property kr√ik= 1 at least in a thin layer ±"
around the interface, eq. (1.46) boils down to a system of convective-diffusive equa-

tions (CDEs):

8
<

:

@√i (x, t )
@t

°M∞¢√i + #»v e
i ·r√i = 0

√i (x, t = 0) =√0
i (x)

8i 2
©
1, ..., Np

™
, (1.47)

We interest specifically to the term #»v e
i in the fourth chapter of this manuscript. In the

case of GG without stored energy (i.e. #»v e
i =

#»
0 8i ), eq. (1.47) boils down to:

8
<

:

@√i (x, t )
@t

°M∞¢√i = 0

√i (x, t = 0) =√0
i (x)

8i 2
©
1, ..., Np

™
, (1.48)

In [Elsey et al. 2009; Elsey et al. 2011; Elsey et al. 2013; Mießen et al. 2015], eq. (1.47)

or eq. (1.48) is solved by using a spectral method relying on Fourier transforms in the

context of regular Cartesian grids. This approach has been proven extremely effective
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numerically and provides very good results. However, as exposed in the introduc-

tion chapter, using regular grids presents severe limitations related to the difficulty

to model the polycrystal deformation. Let us remember that our main objective is

to develop a robust approach able to tackle both the problem of the polycrystal de-

formation and the microstructural evolutions in a unified numerical framework. For

this reason, eq. (1.47) is here solved by applying a FE method, which is effectively

slower than spectral methods, but also more versatile and robust in the context of

large deformations. More precisely we use an implicit P1 solver with Streamline Up-

winding Petrov-Garlerkin (SUPG) method for the stabilization, and the Generalized

Minimal Residual Method (GMRES) for the numerical resolution of the linear system

of equations. This GMRES method is referred as iterative because it requires a cer-

tain number of iterations to find a satisfactory solution of the FE problem defined by

eq. (1.47) without computing the inverse matrix.

LS functions that become negative everywhere in≠ after resolving eq. (1.47) are de-

activated and are no longer considered in the simulation. Hereafter we omit system-

atically the physical time variable t in the notations although it is obvious that all

considered quantities are (or can be seen as) time-dependent.

Concerning the boundary conditions, a common choice adopted in the literature for

such problems consists in applying periodic BCs at the surface of the simulation do-

main @≠. This approach is straightforward to implement in the context of Cartesian

grids because regular meshes are naturally periodic. On the other hand unstructured

FE meshes such as employed in our approach do not satisfy any property of symmetry

which makes them poorly compatible with periodic BCs. So we apply the following

Neumann boundary condition:

r√i
#»s = sin(µ) 8x 2 @≠, (1.49)

where #»s is the unit outward vector normal to @≠ and µ is the interaction angle be-

tween the grain boundaries and @≠. Hereafter it is fixed µ = 90° which corresponds to

null Neumann BCs. Obviously this alters the topology and the kinetics of the grains

which interact with @≠. Consequently the REVs employed in the simulations need to

be large enough (i.e. with a sufficient initial number of grains) in order to be statisti-

cally representative and limit the influence of domain-size effects.

Due to numerical diffusion and the theoretically infinite curvature of the grain bound-

aries at multiple junctions, the resolution of eq. (1.47) may introduce kinematic in-
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compatibilities between the LS functions. It can be either a node where more than

one function is positive (overlap) or, on the contrary, a node where all functions are

negative (vacuum). A specific strategy to deal with these kinetic incompatibilities

relying on mesh adaptation can be found in [Hallberg et al. 2013]. This approach is

based on an explicit representation of the multiple junctions through the FE mesh.

An alternative consists in applying the following treatment [Merriman et al. 1994]:

√̃i (x) = 1
2

µ
√i (x)°max

j 6=i

°
√ j (x)

¢∂
, (1.50)

which is valid in the context of isotropic grain boundary mobility and energy. But this

treatment alters strongly the distance functions near the zero-isovalue, where their

profiles become very sharp. This is particularly problematic when a specific remesh-

ing technique depending on the distance property is used at the interface [Quan et al.

2014]. In addition, the diffusive formulation introduced in eq. (1.47) is valid only if

the function √i is a distance function, at least in a thin layer ±" around the interface

[Bernacki et al. 2008; Cruz-Fabiano et al. 2014]. Finally, the condition number associ-

ated with our weak formulation (P1 interpolation, implicit method) depends largely

on the regularity of the LS function [Shakoor et al. 2015b]. This condition number

determines how much the results can change for a small variation of the input func-

tion. A FE problem is said well-conditioned if the condition number is low. So the LS

functions used as input in eq. (1.47) must be regular enough to ensure this property.

This process of regularization of the distance function is called reinitialization. Given

a LS function √0, the reinitialization process finds the signed distance function √ to

the interface °0 of√0, which is the viscosity solution of the following Eikonal equation

[Crandall et al. 1984; Min 2010]:

(
kr√(x)k= 1

sgn(√) = sgn(√0),
(1.51)

where sgn denotes the sign value, taking either 1 (for √0 > 0), -1 (for √0 < 0), or 0 (at

the interface °0).

Several methods exist to restore the metric property of a distance function. They will

be detailed in the second chapter of the manuscript dedicated to this topic. Here the

well-known Hamilton-Jacobi (HJ) approach was used at the beginning of this work

[Bernacki et al. 2011; Cruz-Fabiano et al. 2014; Agnoli et al. 2014].

We introduce the notation Ng to designate the number of grains present into the
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microstructure. As mentioned above, a possible modeling approach consists in rep-

resenting each grain by a LS function, which leads to Np = Ng. But the numerical

costs associated with the resolution of the CDEs (see eq. (1.47)) and reinitialization

is strongly related to Np. Then this first approach is impracticable for large-scale

3D simulations, both from the standpoint of computing time as well as the amount

of memory needed to store so many floating-point values [Krill III et al. 2002]. An

alternative is the use of a coloring technique. Thus several distinct grains of the ini-

tial microstructure can be grouped to form Global Level Set (GLS) functions. For

convenience two grains represented by the same GLS function are denoted as child

grains hereafter. In the same manner, a grain is referred as exterior to i if it is not

represented by √i . By employing a coloring technique, as it is done in [Hitti 2011;

Cruz-Fabiano et al. 2014], the number of needed functions can be drastically reduced

Np ø Ng . Especially in 2D, the four color theorem states than any planar map (which

includes obviously 2D microstructures) is four colorable [Appel et al. 1977a; Appel

et al. 1977b]. An example is depicted on fig. 1.14a wherein a microstructure of 25

grains is represented by only four colors (i.e. GLS functions). However, with coloring

the child grains can no longer be distinguished and it is impossible to reach directly

the properties of individual grains, like the grain size. But worst still is the possibility

of numerical coalescence between child grains meeting each other, as illustrated on

fig. 1.14b. Obviously, the smaller the number of GLS functions, the more often coa-

lescence will occur, with potentially dramatic consequences for the grain topology

and rate of growth of the average grain size [Krill III et al. 2002]. This point was es-

pecially verified by Fan et al. [Fan et al. 1997b] in the context of 2D PF simulations

of GG. The strategy employed in [Fabiano 2013] is to delay coalescence by using a

number of functions N±
p which guarantee a minimal separation of ± exterior grains

between the child grains in the initial microstructure. Obviously the greater the ini-

tial separation, the greater the number of GLS functions and the computation time.

So ± must be chosen small enough to limit the computation time and sufficiently

high to prevent a significant amount of coalescence. Determining an adequate value

for ± becomes almost impossible to solve when it comes to simulate complex and

coupled metallurgical phenomena (GG, ReX with nucleation, possible particle pin-

ning,...). Furthermore this strategy imposes to use a number of functions which is

still much greater than the minimal number of colors really needed to represent the

microstructure, making it a non-optimized numerical solution in any cases. Ideally

the microstructure should be initialized with a strict minimal of colors and then re-

coloring should be performed automatically during the simulation everytime a risk

of coalescence is detected. This strategy has already been discussed in the context

of regular grids [Krill III et al. 2002; Elsey et al. 2009]. But its extension to a parallel
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framework using non uniform FE meshes is not straightforward. This point is further

discussed in the third chapter.

(a) (b)

Fig. 1.14 – (a) 2D polycrystal composed of 25 grains and represented by four colors; (b) illus-
tration of numerical coalescence between two (white) child grains.

Finally we summarize below the global algorithm for a LS simulation of SRX or GG:

1. initialize the distance functions according to a VT method, a LVT method, or

based on an experimental image,

2. adapt the initial FE mesh (homogeneous or local refinement can be employed),

3. compute #»v e
i (only for SRX simulations),

4. solve eq. (1.47) (SRX) or eq. (1.48) (GG) for all active GLS functions,

5. deactivate the GLS functions which are negative everywhere,

6. remove kinematic incompatibilities by performing the treatment given by eq. (1.50),

7. reinitialize the GLS functions,

8. adapt the mesh around the new interfaces (if local refinement has been cho-

sen),

9. loop to (3) until the end of the simulation.
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Recent extension of this framework to deal with DRX is still under development

[Boulais-Sinou et al. 2016]. Then, the most advanced LS-FE framework to model

GG/SRX has been described. Hereafter we interest to the limits of this numerical

strategy.

1.5.3 Limitations of the existing implementation

Now the efficiency of the existing implementation is discussed through a simple GG

benchmark in 2D. The simulation domain is a square with dimensions 9.2£9.2mm2

wherein 5000 grains are generated through a VT technique, with respect to the grain

size distribution measured experimentally in a 304L austenitic steel [Fabiano 2013]

(see fig. 1.15).

The aggregate is submitted to a heat treatment of th = 5h at T = 1050°C, which gives

M = 1.38£10°12 m4/J/s and ∞= 0.6 J/m2 for the considered 304L material at this tem-

perature [Cruz-Fabiano et al. 2014]. Local anisotropic mesh adaptation is preferred in

order to achieve a precise description of the grain boundaries. The metric field is cal-

culated a posteriori according to the error estimator of [Mesri et al. 2008], as discussed

previously. The half thickness of the refined anisotropic layer around the interface is

E = 5µm. The number of elements is around 1.5£106 and the time step is ¢t = 1min.

We set ±= 3 according to [Cruz-Fabiano et al. 2014], which gives N±=3
p = 27. Table 1.5

provides the distribution of the computation time obtained for this simulation us-

ing 6 Intel Xeon central processing units (CPUs). The respective contributions of the

CDEs resolution (eq. (1.48)), of the HJ reinitialization described in the second chapter

[Basset 2006], the mesh adaptation and the diverse post-treatment operations are

noted tresol, treinit, tremesh and tother. Finally the global simulation time, noted tsimu, is

the sum of the above contributions. To visualize the microstructure at a given time of

the simulation, an output text file which contains the mesh and the field values needs

to be created. Commonly in simulations an output file is generated every tf/3 incre-

ments to limit the storage needs. The evolution of the aggregate during the treatment

is depicted on fig. 1.16.

At the end of the treatment 24 GLS are still active. Almost 3 days of computations are

needed for this simple 2D case (normal GG, 5h of heat treatment, 5000 initial grains),

which is critically high. Especially the reinitialization step appears to be the bottle-

neck of the simulation because it demands almost 90% of the global computation

time.
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GLS function

271

7 14 21

Fig. 1.15 – 2D polycrystal containing 5000 grains, generated according to a LVT technique,
and representative of a 304L austenitic steel. The color code refers to the index of the GLS
functions.
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(a) t = 0 (5000 grains)

(b) t = 1/2th (2900 grains)

(c) t = th (2100 grains)

Fig. 1.16 – Zoom of the 2D microstructure at different stages of the heat treatment. The left
side of the microstructure illustrates the grains and the right side depicts the corresponding
FE mesh. The color code refers to the index of the GLS functions.
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Existing implementation
tremesh 4h 11min (6.4%)
tresol 2h 02min (3.1%)
treinit 59h 04min (89.8%)
tother 28min (0.7%)
tsimu 65h 45min

Table 1.5 – Distribution of the computation time for the 2D GG simulation of a 5h heat treat-
ment at 1050°C, using the initial polycrystal of fig. 1.15 composed of 5000 grains. Simulation
is performed on 6 Xeon Intel CPUs.

To summarize, the present FE-LS model has two main limitations. The former con-

cerns the reinitialization method, which is extremely demanding in terms of com-

putation resources and must be improved. Let us remind that this operation relies

on the resolution of HJ equations for each distance function. The second limitation

is related to the use of GLS functions which may introduce numerical coalescence

and does not permit to assess the individual grain properties. The negative effects

of numerical coalescence can be limited by employing more GLS functions but this

approach is not optimal and increases the memory requirements. Also it is not sys-

tematic because the number of needed GLS functions can not be anticipated in any

situations. We address these two limitations in the second and third chapters.

Summary

In this chapter, the approaches devoted to the modeling of GG and ReX are covered.

First of all, it is exposed that mean field models rely on a simplified description of the

microstructure. Although they are fast and simple to implement, these homogenized

models can not describe explicitly the interactions between the grains. Then full field

models are introduced. These are based on a complete description of the polycrystal

whose evolution is described by physical laws. Major full field approaches reported

in the literature are discussed. A focus is placed on the LS approach. This approach

has already been successfully employed to model GG and SRX, and is currently being

extended to model also DRX. The main equations behind the LS method and the

immersion of polycrystalline aggregates within FE meshes are detailed. A first 2D

LS-FE simulation of GG is analyzed in order to highlight the limitations of the existing

model implementation at the beginning of this thesis work. We interest to these

limitations in the next chapters.
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Résumé en français

Ce chapitre est consacré à la réinitialisation des fonctions distances. Le potentiel de

la méthode de réinitialisation de type Hamilton-Jacobi dans le cadre de notre appli-

cation est tout d’abord étudié. Il est démontré que cette méthode ne peut pas être

améliorée sans modifications importantes du formalisme numérique. En outre, cette

approche présente un défaut de robustesse et nécessite des paramètres numériques

qui peuvent être difficile à calibrer. Ces limitations rendent la méthode Hamilton-

Jacobi peu attrayante dans le cadre de la modélisation des évolutions microstruc-

turales en trois dimensions avec un nombre représentatif de grains. Une nouvelle

méthode de réinitialisation des fonctions distances est donc proposée et mise en

œuvre dans notre modèle numérique level set/éléments finis. Celle-ci repose sur

une discrétisation de l’interface et une reconstruction géométrique des fonctions dis-

tances. Elle bénéficie d’une implémentation numérique efficace reposant sur une

stratégie de partitionnement de l’espace utilisant les arbres k-d, ainsi qu’une tech-

nique de boîtes englobantes assurant une grande efficacité numérique lors des calculs

parallèles. L’algorithme a été testé avec succès et comparé à d’autres approches de

réinitialisation de l’état de l’art. Des facteurs d’accélération allant jusqu’à 300 ont

été obtenus par rapport à la méthode Hamilton-Jacobi. Il est également prouvé que

le nouvel algorithme est beaucoup plus précis et robuste car il ne requiert aucun

paramètre numérique. Enfin, cette nouvelle méthode de réinitialisation a permis

d’accélérer certains cas de croissance de grains en deux dimensions par un facteur

proche de 9, ainsi que d’effectuer une première simulation level set réaliste en trois

dimensions avec des temps de calcul raisonnables. Ces développements ont permis

la publication d’un article dans une revue internationale à comité de lecture [Shakoor

et al. 2015b].
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2.1 Introduction

In the first chapter, the reinitialization step during which the metric property of the LS

functions is restored has been clearly designated as the bottleneck of this approach

in 2D. This chapter aims to address this issue. First we propose a review of the state

of the art concerning reinitialization methods. Their principles, advantages and lim-

itations in the considered polycrystal context are thoroughly discussed. Then we

propose a study of the HJ reinitialization method which was used in previous works

at the CEMEF [Cruz-Fabiano et al. 2014; Agnoli et al. 2014; Jin et al. 2015]. Finally a

new reinitialization algorithm is proposed and we detail its implementation within

the present LS-FE framework. This algorithm is compared with the other methods

implemented in our numerical library and demonstrates much higher numerical

efficiency.

2.2 A review of numerical methods for the reinitializa-

tion of level set functions

Reinitialize a LS function is equivalent to find the viscosity solution of eq. (1.51). Here-

after we propose a comprehensive overview of the existing reinitialization methods.

2.2.1 The Fast Marching Method

The first option for reinitializing a LS function is to solve directly eq. (1.51) in a single

pass, using the well-known Fast Marching Method (FMM). At the early stage, the algo-

rithm fixes the values of a certain number of nodes, generally located in the vicinity

of the interface. These nodes, referred to as the upwind nodes, are shown in black

on fig. 2.1. Then a narrow band is constructed, which is composed of the downwind

nodes located "close" from the upwind nodes. These are colored in grey on fig. 2.1.

Then the method propagates the front from the upwind nodes by updating the values

at the downwind nodes in order to ensure a gradient whose magnitude is unity. After

the value of a downwind node has been updated, it swaps to a upwind node, and is

next used to update the values of its neighbors, and so on. Nodes in the narrow band

are visited in the order of causality to ensure consistency. The visiting order of causal-

ity is implemented by the Heap sorting algorithm. This approach was firstly formu-

lated for regular Cartesian grids by Sethian [Sethian 1995] and used in this framework

[Saye et al. 2012; Noumir et al. 2015; Treister et al. 2016; Weinbub et al. 2016]. The

method has been also extended to unstructured meshes [Kimmel et al. 1998] and has
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been used recently in [Gross et al. 2006; Lelièvre et al. 2011]. However its implemen-

tation becomes extremely complicated when it comes to consider anisotropic (i.e.

obtuse) triangulations [Sethian et al. 2000] because it modifies the visiting order of

causality. The implementation of a FMM-like algorithm [Elias et al. 2007] in our FE

library has been attempted by Desmaison during its PhD work [Desmaison 2013] but

with difficulties to exhibit a criterion for determining the visiting order of causality in

the case of anisotropic FE meshes. A solution is to insert numerical supports for the

obtuse triangles, but this makes the approach "cumbersome" according to [Sethian

et al. 2000]. To our knowledge, this variant is not used in the recent literature. Another

issue of the FMM approach is that is requires an a priori knowledge of the distance

values at the nodes near the interface in order to initiate the front propagation. These

values are used as reference and are no longer corrected during the algorithm. A com-

mon option is to use the algorithm developed by Chopp [Chopp 2001], which uses

bicubic (tricubic in 3D) interpolations to accurately initialize the FMM. However, in

our numerical framework where the treatment given by eq. (1.50) is performed after

the solving of the CDEs, it cannot be predicted whether the nodal distance values

near the interface are initially exact or no. So using this approach can compromise

the values of the LS function at the interface. Finally the original FMM algorithm is

inherently sequential and not well-suited with parallelization. So the algorithm needs

to be performed several times on each partition in order to synchronize the values

between the processors, which requires significant implementation efforts and gives

modest parallel efficiency, even if recent works have significantly improve this situa-

tion [Weinbub et al. 2016]. These points make the FMM hardly compatible with our

expectations.

2.2.2 The Hamilton-Jacobi equation

In most applications, the LS function at the current time step, obtained after solving

eq. (1.44), is nearly a distance function if the function was properly reinitialized at the

previous time step. For such cases there is more suitable equation for the reinitializa-

tion than the stationary eq. (1.51). Especially the time dependent Eikonal equation

works very efficiently here:

8
><

>:

@√̂(x,ø)
@ø

= sgn(√̂)
°
kr√̂k°1

¢

√̂(x,ø= 0) =√(x, t ).
(2.1)

In this equation, ø designates a fictive time and √̂ is the parameter function of the
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Fig. 2.1 – Narrow band in the FFM on a 2D regular Cartesian grid whose nodes are represented
by circles. Upwind nodes are shown in black and their values are blocked. Downwind nodes
that are in the narrow band (colored in gray) are going to be updated.

HJ equation. Without the signum term sgn, eq. (2.1) is a Hamilton-Jacobi equation.

As ø!1, the solution of this equation √̂ converges to the signed distance function

which has the same zero-isovalue than √ at the current time step.

A classical option to treat eq. (2.1) in a finite difference context is to discretize the equa-

tion with the Runge-Kutta (RK) method in time, and a Essentially Non-Oscillatory

(ENO) [Osher et al. 1988; Osher et al. 1991] or Weighted Essentially Non-Oscillatory

(WENO) [Jiang et al. 2000; Zhang et al. 2003] method in space [Min 2010]. The sign

function sgn plays a very important role because it fixes the position of the interface.

However its discontinuous nature invokes a lot of difficulties in the coupling between

the second order RK and ENO schemes. In [Sussman et al. 1994] the sign function is

smoothed around the interface to avoid this issue. However the artificial smearing

moves the interface during the reinitialization which induces considerable volume

loss. This was improved in [Sussman et al. 1999] by imposing the volume conserva-

tion in reinitialization to prevent artificial volume shrinking. Equation (2.1) can also

be solve separately in the two regions defined by
©
√0 > 0

™
and

©
√0 < 0

™
using a subcell

resolution technique [Harten 1989], so that it boils down to a classical HJ equation

without any smoothing of the sign function [Cheng et al. 2008].
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All the previous finite difference methods work efficiently on Cartesian grids, but lose

the advantage of simplicity on unstructured FE meshes and are generally computa-

tionally inefficient [Abgrall 1996; Zhang et al. 2003; Cheng et al. 2014; Karakus et al.

2016]. Also treating directly eq. (2.1) in a FE framework is a complex task due to its

non-linear form. Jensen et al. [Jensen et al. 2013] treated the problem as a second-

order fully nonlinear equation by introducing artificial diffusion which activates in

regions of degeneracy. Also recent works concerned by the FE resolution of eq. (2.1)

paid more attention to the discontinuous Galerkin FE method [Hu et al. 1999; Li et al.

2005; Cheng et al. 2007; Yan et al. 2011; Chang et al. 2014; Karakus et al. 2016].

Finally the HJ equation can also be reformulated and treated directly as a purely con-

vective linear equation in a continuous FE framework [Basset 2006]. This approach

will be further detailed hereafter.

2.2.3 Methods without reinitialization

In the last decade, new LS models emerged wherein no reinitialization of the distance

fields is needed. In these approaches, the transport is performed so that the LS func-

tions remain distance functions. An example of variational formulation is described

in [Li et al. 2005; Li et al. 2006] in which eq. (1.44) is modified to include a nonlinear

term that penalizes the deviation of the LS function from the signed distance. The

penalty term not only eliminates the need for reinitialization, it allows the use of a

simpler and more efficient numerical scheme in the implementation than those used

for conventional LS formulations. This model has been improved recently thanks

to a more general formulation for the penalty coefficient in order to limit the tuning

process [Touré et al. 2016]. Other works use a coupled formulation of eq. (1.44) and

eq. (2.1) which enables to transport and reinitialize the LS functions simultaneously

[Coupez 2007; Ville et al. 2011; Bernacki et al. 2008; Bernacki et al. 2009]. Especially

in [Coupez 2007], the parameter ∏= dø/d t is introduced (in practice ∏º h/¢t , with

h the local mesh size near the interface) to write the following equality:

@

@ø
= @t
@ø

@

@t
+ @x
@ø

·r= 1
∏

µ
@

@t
+ #»v ·r

∂
, (2.2)

and to formulate the coupled convection-reinitialization (CR) problem:

8
><

>:

@√(x, t )
@t

+ #»w ·r√=∏sgn(√)

√(x, t = 0) =√0(x)
with #»w = #»v +∏sgn(√)

r√
kr√k . (2.3)
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The main advantage of this approach compared to the HJ method is that only one

solver is needed for the simulation. According to [Coupez 2007], the signed distance

function can also be replaced by any smooth function which satisfies the metric prop-

erty at least in a thin layer around the interface. Especially a hyperbolic tangent

distance function √̃= " tanh(√/") can be used advantageously. The CR methods us-

ing a classical distance function (CR-DF) and a hyperbolic tangent distance function

(CR-HTDF) are both implemented within our FE library and will be considered here-

after. Although interesting these CR approaches have two main drawbacks in the

considered context of microstructural evolutions. First the eq. (2.3) is purely convec-

tive, which implies that the grain boundary curvature must be explicitly computed

through eq. (1.45) and can no longer be approximated with a diffusive formulation

as it is done in eq. (1.47). Knowing that a linear approximation is used for the LS

functions and that a P1 description of the curvature is required (since the velocity

interpolation is P1), the direct use of eq. (1.4) (and then of eq. (2.3)) implies, a priori,

two consecutive P0 ! P1 interpolations to estimate ∑. This approach was proven

poorly accurate in [Fabiano 2013]. The second issue is related to the treatment of the

vacuums and overlaps, related to eq. (1.50), which is performed after the solving of

eq. (1.47) and before reinitialization, according to the algorithm presented in chap-

ter 1. If eq. (2.3) was used to transport the LS functions, it would then be necessary

to perform eq. (1.50) to remove the eventual kinematic incompatibilities generated

during the resolution, and finally to reinitialize again the LS functions because the

previous treatment displaces the interfaces and distorts the distance fields [Bernacki

et al. 2008]. This solution is therefore hardly applicable.

2.2.4 Geometric reconstruction of the distance functions

Finally, a natural way to reinitialize the distance functions consists in using a brute

force algorithm to perform a complete reconstruction as it is done in [Merriman et al.

1994]. This technique works in two steps. Firstly the interface is discretized into a

collection of simple elements. Then the Euclidean distances between each FE node

and all the elements of the collection are computed and the smallest one becomes the

updated value of the distance function. This Direct Reinitialization (DR) technique

provides optimal accuracy and is perfectly robust because it is purely geometric. So

this method deals very well with irregular functions, which can possibly be very dif-

ferent from a distance function initially. On the other hand the basic approach has

a complexity which is a quadratic function of the number of elements in the col-

lection c and of the number of nodes in the FE mesh N , which explains why it is

generally mentioned as extremely greedy in terms of computational requirements in
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the literature [Sussman et al. 1994; Elias et al. 2007]. This is mainly why these direct

approaches are carefully avoided in most implementations, with the exception of

[Hallberg et al. 2013]. A review of the possible improvements for this method can be

found in [Jones et al. 2006], but these works address only regular grids or hierarchical

meshes [Fortmeier et al. 2011]. We interest further to the DR approach in the rest of

the chapter.

2.2.5 Summary on existing reinitialization methods

There are basically four main methods to reinitialize the LS functions that have been

detailed above: the FMM method, the HJ reinitializaton method, the CR approaches

and the DR methods. We have highlighted that the FMM approach is hardly compat-

ible with our massively parallel numerical framework using anisotropic FE meshes.

On the other hand, several CR solvers have been implemented within our FE library in

the context of previous works [Coupez 2007; Ville et al. 2011]. These approaches have

been proven able to tackle SRX without consideration of capillarity effects [Bernacki

et al. 2008]. However they do not permit to model efficiently the GG phenomenon in

our P1 framework. There are also geometric approaches which present many inter-

esting features (analytic reconstruction of the LS functions, no numerical parameter,

exact, conservative and robust) and could be seen as an ideal solution for the reini-

tialization of LS functions if their numerical costs could be significantly improved.

Finally the HJ reinitialization algorithm is sufficiently versatile to tackle most prob-

lems involving LS functions, as demonstrated in previous works [Fabiano 2013; Agnoli

2013; Jin et al. 2014]. However we pointed out in section 1.5.3 that the HJ approach

used in these works is rather inefficient computationally and is therefore very limiting

for considering the 3D aspect. In the next section, we detail the FE formulation of

the HJ problem and the way it is implemented in our numerical library [Basset 2006].

Our objective is finally to evaluate in what extent this method can be improved for

the modeling of SRX and GG by studying the numerical parameters involved in the

HJ formulation.
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2.3 Study of the Hamilton-Jacobi reinitialization within

a continuous and linear finite element framework

2.3.1 Formulation of the used finite element method

We mentioned earlier different methods for the resolution of the HJ equation given

by eq. (2.1). First approach is to solve directly the nonlinear equation. The second is

to use the discontinuous Galerkin finite element method. Finally a third approach

consists in reformulating eq. (2.1) as a linear convective equation that can be solved

more easily using standard linear and continuous FE schemes. This method has been

chosen by Basset [Basset 2006] during its PhD work for the implementation of the HJ

reinitialization solver in the Cimlib library. We detail this approach hereafter.

First, an implicit Euler-type scheme is use to approximate the time derivative of

eq. (2.1):

@√̂(x,ø)
@ø

= √̂° √̂°

¢ø
, (2.4)

where¢ø designates a fictive time step and √̂° is the known value of √̂ at the previous

increment.

Then the gradient term can be linearized as follows:

kr√̂k= kr√̂k2

kr√̂k º r√̂ ·r√̂°

kr√̂°k , (2.5)

leading to the following convective formulation:

√̂° √̂°

¢ø
+ #»w ·r√̂= sgn(√̂°) with #»w = sgn(√̂°)

r√°

kr√°k , (2.6)

which is equivalent to eq. (1.44) with an additional constant term sgn(√̂°
i ). So the

same P1 stabilized solver can be employed for the resolution of this equation.

Sussman et al. [Sussman et al. 1994] proposed an approximation of the sign function:

sgn(√̂) = √̂

√̂2 +h2 . (2.7)

This approximation works pretty well when the initial function √̂° is neither too

sharp nor too flat around the interface. Otherwise some issues may arise. Effectively

if r√̂ø 1, then the propagation speed of the distance function is reduced and more
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increments are needed, which increases the reinitialization time. On the contrary

if r√̂¿ 1 the sign of √̂ can change, which would modify the position of the zero-

isovalue during reinitialization. An other approximation has been proposed by Peng

et al. [Peng et al. 1999]:

sgn(√̂) = √̂
q
√̂2 +kr√̂k2h2

, (2.8)

which offers better performances according to [Basset 2006]. This version is therefore

preferred. Finally a FE method is apply to solve eq. (2.6). At steady state, it falls √̂= √̂°,

which gives kr√̂k = 1. So the solution of eq. (2.1) is effectively a distance function

with the same zero-level as the initial function √. But restoring the metric property

everywhere in the domain is costly from a numerical point of view. Furthermore most

applications requires only that the LS function satisfies kr√k= 1 in the direct vicinity

±" of the interface. Elsewhere the function can be constant:

√(x) =
(

±d(x,°i ) if d(x,°) < "

±" if d(x,°) ∏ ",
(2.9)

This is the local level set method [Chopp 1993; Adalsteinsson et al. 1997; Basset 2006].

When this formulation is adopted the reinitialization procedure can be performed

only on a small interval of fictive time ø 2 [0,"]. Here " can be seen as the half thickness

of the layer where √ retrieves its algebraic distance property during the reinitializa-

tion stage. This presents the great advantage of reducing significantly the computa-

tion time devoted to reinitialization because only "/¢ø increments of fictive time are

needed to restore the distance function in the zone d(x,°) < ", where " is very small

compared to the dimensions of the simulation domain. Obviously the numerical cost

associated with reinitialization is strongly dependent on the number of fictive time

increments. So a first approach for accelerating the HJ reinitialization is basically to

narrow the reinitialization band (i.e. reduce "). However the local LS formulation

creates a discontinuity at √=±" which may alter the conditioning of the FE problem

if this discontinuity is very close from the interface, i.e. if the reinitialization layer

is too tight. Moreover the diffusive formulation of eq. (1.47) is valid only if the GLS

function remains a distance function within a sufficient layer around the interface.

This parameter must therefore be carefully calibrated.

A second option is to increase the fictive time step. But this also complicates the

resolution of eq. (2.6) and more iterations can be needed to solve the FE problem (let

us remind that we use an iterative GMRES solver to solve the equations). As each
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iteration represents a large number of computations, using disproportionate time

steps can slow down the simulation. Using the GMRES method in such problems, a

satisfactory solution is generally obtained after few iterations (typically no more than

100 iterations). Hereafter we fix the maximal number of iterations to 3000, which is far

more than needed. So if the approximated solution is still not satisfactory after these

3000 iterations, one can reasonably consider that the iterative solver fails to converge.

It is worth noting that non-convergence usually results in numerical instabilities and

must be absolutely avoided.

Next numerical investigations are carried out in order to determine whether these

two numerical parameters (";¢ø) can be optimized for our application.

2.3.2 Study of the numerical parameters of the Hamilton-Jacobi ap-

proach for fixed mesh size

The half reinitialization thickness

Firstly we interest to the half reinitialization thickness. The objective is to calibrate

" and determine whether it is possible to narrow the reinitialization band without

compromising the precision. For this purpose we use the same 2D GG simulation

presented in section 1.5.3. In this first simulation, "= 4E = 20µm was fixed. Next dif-

ferent values are tested " 2 [0,8E ] and we analyze the predictions obtained in terms

of mean grain size. Obviously the case wherein " = 0 corresponds to a simulation

without reinitialization. The results of this study are depicted on fig. 2.2.

As expected the case without reinitialization (" = 0) provides catastrophic results,

which illustrates the importance of restoring the metric property. Predictions con-

verge for " ∏ 6E to a final mean grain size around 135µm. By using " = 4E as it was

done in chapter 1 the final mean grain is slightly underestimated around 7%, which

remains acceptable. For "< 4E , results are more scattered and deviate from the above

reference value. These investigations indicate that "= 4E is a good compromise be-

tween numerical efficiency and precision. So we adopt this value hereafter.

The results of this first study is therefore very clear: the half reinitialization thickness
can not be further optimized without degrading substantially the precision. Next

we examine the fictive time step.
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Fig. 2.2 – Influence of the half reinitialization thickness on the numerical predictions. See
section 1.5.3 for details concerning this simulation.

The fictive time step

This second analysis focuses on the fictive time step. Finding an appropriate value for

this parameter is not straightforward practically, especially because it has no physical

interpretation. It must be chosen as high as possible to limit the number of fictive

increments by ensuring a prompt convergence of the reinitialization solver (i.e. with

a low number of iterations). In the 2D GG simulation of chapter one, ¢ø= 4ms was

fixed, giving "/¢ø= 5 needed fictive time increments. We propose to challenge this

value by using the following numerical experiment:

1. take the GLS functions at a given time of the simulation. Let us take t = th/2 for

example,

2. solve eq. (1.48) with M∞= 0 in order to introduce numerical diffusion without

real migration of the grain boundaries,

3. perform the treatment given by eq. (1.50),

4. reinitialize the GLS functions.

After performing this procedure, GLS functions are expected to recover approximately

their initial values because d√i /d t = 0 in eq. (1.48) for M∞= 0. Let designate by Ni
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the set of nodes where d(n,°i ) < 4E is satisfied, n designating a mesh node. A possible

expression for the residual difference between the√i (tf/2) and√i (tf/2+¢t ) functions

is given by:

R = 1
Np

NpX

i=1

k√i (th/2+¢t )°√i (th/2)kNi
2

k√i (th/2)kNi
2

with kukNi
2 =

X

n2Ni

u(n)2. (2.10)

Figure 2.3 depicts the evolution of R and of the reinitialization time as a function of

the number of fictive time increments.
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Fig. 2.3 – Evolution of the reinitialization accuracy and time as a function of the number of
fictive time increments (for a single physical time increment).

The residual difference R becomes stable around 6% for "/¢ø∏ 4. Effectively the pre-

cision of the reinitialization is also determined by the spatial discretization, i.e. the

refinement of the FE mesh, so a minimal residual error is unavoidable. These results

suggest that at least four fictive time increments are needed to properly reinitialize

the GLS functions. The computation time is also shown to be extremely sensitive. For

"/¢ø ∑ 4 the solver fails to converge and the reinitialization time increases linearly

with "/¢ø. Optimal results in terms of accuracy and numerical efficiency are obtained

for "/¢ø = 5, which was the value adopted in section 1.5.3. So the final conclusion

of these two simple studies is that it is not possible to accelerate the HJ reinitial-
ization without improving the used numerical tools. Two options are possible at
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this point. The former consists in attempting to improve the present HJ approach

(solver, FE formulation, stabilization,...). However this HJ approach relies inherently

on purely numerical parameters, such as the fictive time step, which are hard to cal-

ibrate. Also the HJ reinitialization method remains globally costly from a numerical

point of view, regardless of the approach used to solve eq. (2.1), and appears to be

hardly optimisable. These are critical issues in the considered context of the develop-

ment of a robust reinitialization procedure. The second option is to develop a new

reinitialization algorithm which outperforms the existing HJ method. Our state of the

art about the existing reinitialization methods indicates that DR approaches could be

a very interesting alternative to the HJ method due to the fact they are geometric and

do not rely on any numerical parameter. However their numerical costs need to be

drastically reduced to make them competitive. A new computationally-efficient DR

algorithm has therefore been developed. This new reinitialization algorithm is com-

pletely generic and is thus able to tackle most problems involving moving interfaces

within a LS-FE framework. So it is compared in terms of numerical efficiency with

the other reinitialization methods implemented in our numerical library, especially

the HJ method presented above and the "reinitialization-free" CR-DF and CR-HTDF

solvers.

2.4 Development of a new reinitialization algorithm and

comparison with other classical methods of the state

of the art

2.4.1 To a direct reinitialization method

Principle and implementation

The basic idea behind DR is to firstly discretize the front and then perform a full re-

construction of the distance function. Let us consider the simple example of fig. 2.4a,

composed of five elements, whose four are crossed by the interface of a distance func-

tion √. We note nk
i the i th node of the mesh element k, with i 2 {1, ...,ds +1}, and xk

i
its respective spatial coordinates. The algorithm starts by inspecting the edges of each

element. In the frame of P1 (linear by element) interpolation, the distance function is

represented by its values at the mesh nodes. So the intersection between an element

edge and the front of a distance function is simply calculated by:
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xk = xk
i °

xk
i °xk

j

√(nk
i )°√(nk

j )
√(nk

i ). (2.11)

After performing this operation, a set of I k intersection points is obtained for the ele-

ment k, as illustrated on fig. 2.4b. It is obvious that I k ∏ ds is needed to create a repre-

sentation of the front in the considered mesh element. A particular case is obtained in

3D for I k = 4, which creates a quad interfacial element. This quad element is then de-

composed into two 3D triangles so that only point-to-triangle distance computations

are performed. A piecewise linear representation of the interface is finally obtained

by inspecting all the mesh elements (see fig. 2.4c). This set of (ds °1)-simplices, re-

ferred to as the collection, is therefore composed of segments (in 2D) or triangles (in

3D). Next, a reinitialization of the signed distance function can be performed at any

mesh node by searching the closest element in the collection. This is schematically

illustrated by fig. 2.4d. As the computation of the distance to a segment (2D) or a

triangle (3D) will be a critical operation in this part of the algorithm, we chose to use

the optimal implementations detailed in [Schneider et al. 2003]. Obviously the sign of

the reinitialized function remains the same because the procedure does not displace

the interface. So, given a P1 representation of a distance function, the DR method

performs a geometric reconstruction, which provides optimal precision. However

this method has an important numerical costs if used as is.

Using the previous notations (N is the number of mesh nodes and c is the number of

facets in the collection), the complexity of the collection construction is linear O (N ).

On the other hand the distance computation is of quadratic complexity O (N c) which

makes this brutal approach hardly compatible with our application, especially in 3D.

This explains why HJ method was preferred until now. Based on techniques widely

used in computer graphics, data mining, and other domains, we propose hereafter a

new DR method where the cost of the distance computation is significantly improved.

This optimization is based on a space partitioning technique, which consists in divid-

ing the space into a set of p zones, according to a given criterion. Such a structure is

called a tree. Then each zone composing the tree is recursively decomposed in the

same manner until small regions which can not be further optimized are obtained:

the leaf. Finally searching operations are performed inside these leaf with much lower

computational costs, which is the basic idea behind divide & conquer strategies. Here

p is a constant number, inherent to the strategy employed to partition the space.

Quad-trees in 2D are an example (p = 4) wherein the whole space is firstly placed in a

bounding box which is divided in fours boxes of identical dimensions, corresponding
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ψ(x) = 0
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Fig. 2.4 – DR method performed on a P1 mesh: (a) initial situation; (b) localization of inter-
sections between the interface and the element edges; (c) discretization of the front into a
collection of (d °1)-simplices; (d) computation of the distances between a reinitialized node
and the elements of the collection.
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to the four quarters of the initial box. Then each of these boxes is divided into four

other boxes, and so on. Using such systematic division, one or several boxes may be

empty at some stage, and the division may not be optimal, especially in the present

case with unstructured and possibly anisotropic FE meshes. The same statement

can be made regarding octrees (p = 8) which are the 3D counterparts of quad-trees.

That is the reason why it is chosen to partition the space hierarchically using a k-

dimensional (k-d) trees. Here the division is always made into p = 2 zones, using a

criterion which depends on the elements present in the collection. This structure was

firstly introduced in [Bentley 1975], with examples of potential applications. Here

we focus especially on the Nearest Neighbor Searches (NNS) whose objective is to

find the nearest element in the collection with minimal computations. Hereafter we

detail a new algorithm called Direct Reinitialization with Trees (DRT) in which the

complexity of the distance computations is reduced to O (N logc).

Unlike systematic methods, the division criterion employed hereafter is based on

an analysis of the space that is to be divided. In the present case, this space is the

initial collection, or a subset of it, which can be seen as a set of elements. This set is

then divided into two parts using a node, i.e. a division plane. Optimally, this plane

should be chosen in such a way that the two subdomains contain the same number

of elements. To narrow such result with minimal computation costs, division planes

are normal to the Cartesian axis and centered to the set of elements. This centering

is obtained by computing the barycenter of each element, and choosing a plane that

goes through the barycenter of these points. The whole process of tree construction

is given below:

(b.1) set the division plane (line in 2D) as the plane going through the barycenter of

all elements and having its direction alternatively defined by the #»x , #»y and #»z

directions depending on the depth in the tree,

(b.2) compute the signed distance from the vertices of all the elements in the collec-

tion to this plane,

(b.3) build a left child to the current tree by going back to (b.1) with all the elements

having at least a vertex with negative plane distance,

(b.4) build a right child to the current tree by going back to (b.1) with all the elements

having at least a vertex with positive plane distance.

A schematic example is given on fig. 2.5. Starting from fig. 2.5a, a first division plane is

introduced on fig. 2.5b, and then a second on fig. 2.5c. The process recursively builds
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a binary tree. As observed in fig. 2.5c, the procedure stops when at steps (b.3) and

(b.4) one of the two subtrees contains the other. In such situation a leaf is created,

which contains (typically) a small subset of the initial collection. Obviously there

exist multiple geometric configurations where the strategy employed for defining the

division plane does not create two subtrees having the same number of elements.

However, such situations are not met in practice and tests have highlighted that this

definition leads to a globally well-balanced tree. The final tree structure is given in

fig. 2.5d. Regarding costs, the computation of the barycenter is performed in linear

time, and the global tree construction is of optimal complexity O (c logc) because at

each stage the number of considered elements should be divided by around two.
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Fig. 2.5 – Example of recursive tree construction in 2D.

NNS queries can then be performed for each node of the mesh using the following
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algorithm at the root of the tree:

(b.5) compute the signed distance from the node to the division plane,

(b.6) if the distance is negative, go back to (b.5) with the left subtree,

(b.7) if the distance is positive, go back to (b.5) with the right subtree.

This recursive process reaches the leaf where the nearest element in the collection

is likely to be located. At this point, the smallest distance from the considered node

to all the elements contained in that leaf is calculated. It may appear at step (b.6) or

(b.7) that the resulting distance is bigger than the distance to the division plane. In

such case, it is required to go back to (b.5) with the other subtree. Though this opera-

tion is implemented to ensure consistency, it is scarcely met practically if the division

planes are well defined, as in our applications. Moreover, due to all the divisions, the

set of elements stored in any leaf should be small enough to consider that distance

computation is of optimal complexity O (N logc).

The figs. 2.6 and 2.7 illustrate two scenarii for the distance computation at a given

node n. At each stage of the NNS, the notation dp designates the distance to a di-

vision plane, de is the distance to an element of the collection and d(n) is the final

result. In the first configuration illustrated on fig. 2.6, the point is optimally located

since it is close enough to the interface. Hence, browsing two levels of the tree in

figs. 2.6a and 2.6b leads directly to the correct leaf in fig. 2.6c. A first distance de is

then calculated based on the elements present in that leaf. When browsing back in

figs. 2.6d and 2.6e, it is find that de is smaller than the distance to any of the division

planes. So the final result d(n) = de is directly obtained without further computations.

Now a worst case scenario is illustrated on fig. 2.7. Here the leaf containing n returns

a distance which is greater than the distance to the first division plane (see figs. 2.7a

and 2.7b). So a better (i.e. smaller) solution may exist in the other part of the tree.

Hence, this has also to be inspected (see fig. 2.7c). In the right subtree, an optimal

situation is met as the recursive browsing illustrated on figs. 2.7d and 2.7e provides

the final result.

It was mentioned in section 2.3.1 that HJ reinitialization is usually performed only in

a small thickness ±" around the interface. Implementing the same optimization in

the DRT method can drastically reduce the cost of the distance computations. Then,

at step (b.6) and (b.7), if the resulting distance rises a need to look in the other sub-

tree while being greater than ", this operation can be skipped. Moreover, if all the dp
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Fig. 2.6 – Example of recursive distance computation in 2D with the DRT method, best case
scenario.
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Fig. 2.7 – Example of recursive distance computation in 2D with the DRT method, worst case
scenario.
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calculated during the browsing of the tree are greater than ", no further computation

is needed and it falls directly d(n) = ". So the nodes located far from the interface are

rapidly eliminated during the distance computation. Because in practice the reinitial-

ization thickness is small, the number of nodes that have to be reinitialized and c are

of the same order, and the final complexity of the new DRT method is expected to be

O (c logc), on average.

Massively multi-domain simulations often require important numerical resources to

obtain sufficient accuracy. The same remark can be drawn for 3D computations. A

classical choice in these cases is parallelization using a distributed memory paradigm.

Opposed to shared memory, distributed memory paradigm permits to each parallel

unit, called process, to have its own independent memory which can be possibly lo-

cated on a different machine. This last point is essential for large scale computations,

where it is impossible to store the whole mesh and the corresponding fields on a sin-

gle machine. In such a paradigm, each process has only access to a part of the mesh,

a partition, and is only able to build a part of the collection. To solve this issue, a first

option is to communicate and gather the full collection on each process, and then

build a global k-d tree. Experiments have showed that this method performs well for

a small number of processes (up to 20) but has a poor parallel speed-up.

To retrieve parallel efficiency, an advanced technique has been developed. In this

method, each process builds its own collection and its own tree, ignoring other pro-

cesses. Then we employ a bounding box strategy. Each process computes the minimal

box aligned to the Cartesian axis that contain completely the local collection, i.e. the

collection associated with this partition. During the distance computation stage, each

process computes first the distance using its tree, and then interrogates one by one

the other processes to determine if they can improve the result (i.e. find an element

in their own collection that is closer to the considered node). This parallel implemen-

tation is summarized on fig. 2.8. The simulation is here distributed on four processes,

noted Pi with i 2 {0, ...,3} and the interface of a distance function is represented by a

solid white line. Let us consider the node labeled i located on the P0 process. The

recursive NNS queries on this partition provides a first local distance to the interface

d 0
i . Then the distance to the bounding box of the P2 process, noted b2

i , is evaluated.

It is observed that d 0
i < b2

i so there is no need to inspect the P2’s collection because

no better solution could be find on this process. Considering now the node j located

on P2, a first NNS on the local partition returns d 2
j . This latter is compared with b0

j ,

representing the distance between the node j and the bounding box of P0. Because

b0
j < d 2

j , a better solution could eventually be found on P0. If b0
j < " the coordinates

88



2.4. Development of a new reinitialization algorithm and comparison with other
classical methods of the state of the art

of j are communicated to the P0 process which performs a new NNS and returns d 0
j ,

the shortest distance between node j and the P0’s collection. Finally it is find that

d 0
j > d 2

j , so d 2
j is the final solution.

i

j

d

0
j

d

2
j

b

0
j

b

2
i

d

0
i

P0

P2

P3

P1

Fig. 2.8 – Schematic illustration of the bounding box strategy employed in the DRT method for
parallel computations. Each process is designated by a given color. The solid white line repre-
sents the interface of a distance function and the arrows correspond to the diverse computed
distances. The minimal boxes that contain the interface on each partition are represented by
dotted black lines.

For a large number of processes and a balanced distribution of the interfaces, commu-

nications are expected to be minimal and the optimal parallel efficiency is reached.

This bounding box technique at the global level completes the k-d tree optimization

used at the local level, and the DRT method can now be applied to perform efficient

and parallel reinitialization of the LS functions. The method is tested in the next

section and compared with the other reintialization approaches described earlier.
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2.4.2 Academic benchmark and comparison with other approaches

Both DR and DRT methods have been implemented. A comparison between these

two methods for a typical GG case in 2D can be found in [Shakoor et al. 2015b]. Re-

garding the HJ, CR and CR-HTDF methods used for comparison, parallel implemen-

tations were already provided by our library. All computations are performed on Intel

Xeon CPUs (the number of used CPU units is specified for each simulation).

The first test proposed consists in a square (respecively a cube in 3D) with initial edge

length l0 = 0.5mm centered in a [0,1mm]d domain. This square (cube) is represented

by a distance function√ and is subjected to a velocity field equals its gradient #»v =r√.

The theoretical instantaneous values of the distance function, noted √t, and of the

internal area (respectively internal volume in 3D), noted ft, are given by:

(
√t(x, t ) =√(x,0)° t

ft(t ) = (l0 °2t )d .
(2.12)

The simulation time steps are calibrated separately for each method so as to ensure a

global error on the internal area (volume in 3D) evolution lower than 1%:

vuuuuuut

Z0.25

t=0

°
ft(t )° f (t )

¢2 d t
Z0.25

t=0
f 2

t (t )d t
∑ 0.01. (2.13)

Square shrinkage (2D)

We use a fixed unstructured mesh composed of 150,000 triangles with average mesh

size hb º 4µm (homogeneous mesh size). We set "= 20hb = 80µm for all reinitializa-

tion methods in order to perform a fair comparison. Simulations are performed on

4 CPUs. The main results are summarized in table 2.1. Obviously for the CR solvers,

the distance function is automatically reinitialized during the solving of eq. (2.3) and

no distinction can be made between tresol and treinit.

Method HJ CR-DF CR-HTDF DRT
¢t (ms) 10 0.1 0.1 10
tresol 6.4s

1min 25s 1min 27s
5.8s

treinit 2min 13s 0.4s
Table 2.1 – Results of the shrinking square simulations performed on 4 CPUs.
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The new algorithm appears way more efficient than all other methods and is up to

300 times faster than the HJ approach in this configuration. The CR solvers are proved

more effective than the HJ method but require a very small time step to guarantee the

scheme stability. We plot on fig. 2.9a the discretization error given by:

R(t ) =
k√t(x, t )°√(x, t )kNint

2

k√t(x, t )kNint
2

with ku(x, t )kNint
2 =

X

n2Nint

u(xn , t )2, (2.14)

with Nint being the set of nodes satisfying k√k ∑ 5hb. These results prove again the

superiority of the DRT algorithm compared to CR approaches, which fail to properly

maintain the metric property, especially in the corner regions (see fig. 2.9b). On the

other hand, the DRT and HJ methods exhibit a high level of accuracy. Around 20

iterations are needed to achieve numerical convergence with the HJ approach using

the iterative solver described earlier. Finally this first 2D test case demonstrates that

the proposed DRT algorithm is both extremely fast (table 2.1) and accurate (fig. 2.9).
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Fig. 2.9 – (a) Residual error between the exact and calculated values of √ (see eq. (2.14) for
details about the computation of R); (b) kr√k at t = 150ms.

Cube shrinkage (3D)

Now we investigate the 3D counterpart of the previous test case. Here local anisotropic

remeshing is preferred for limiting the number of elements, which is taken constant

and equal to 500,000. The resulting FE mesh at different stages of the simulation is

depicted on fig. 2.10.

91



Chapter 2. Development of a new direct and parallel reinitialization method

(a) t = 0 (b) t = 80ms

(c) t = 160ms (d) t = 250ms

Fig. 2.10 – Anisotropic FE mesh used for the shrinking cube simulation. The interface of √ is
represented by a solid red line.
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In addition to the anisotropic mesh, this case is also critical for non-direct approaches

(HJ and CR) because the gradient is poorly defined along the bisecting planes and

diagonals of the cube. Hence, the linear problems built by the HJ solver are poorly

conditioned and around 430 iterations are needed to achieve convergence, on aver-

age. We observe also the appearance of a parasite phase outside the cube during the

simulation with HJ reinitialization (see fig. 2.11). It proves that the function becomes

too irregular to be properly reinitialized with the HJ solver which causes a modifica-

tion of the sign of the distance function. Furthermore the interface of this parasite

phase is automatically detected and captured by the remesher which adapts the mesh

around it. As the total number of elements is fixed, the calculation accuracy then falls

because fewer elements are used to represent the real interface of the cube.
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Fig. 2.11 – Evolution of the cube volume during the simulations with the HJ and DRT ap-
proaches. The appearance of a parasite phase with the HJ method is caused by an unsatisfying
reinitialization of the distance function.

The CR solvers exhibit unstable behaviors for this test case, although the simulation

time step remains an order of magnitude lower than the mesh size in the refined zone

(no violation of the stability condition). Despite multiple investigations, we were not

able to find a time step value which would satisfy eq. (2.13) with the CR solvers. Fi-

nally these approaches seem to be less robust than the HJ and DRT ones. In addition

they require a good knowledge of the parameters needed for the stabilization. Results

obtained with the DRT and HJ methods are summarized in table 2.2.
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Method HJ DRT
R (%) 57 0.5
treinit 4min 24s 52.8s

Table 2.2 – Results of the shrinking cube simulations performed on 20 CPUs. CR methods are
not reported because eq. (2.13) can not be satisfied with these approaches.

The DRT algorithm is around five times faster than the HJ approach in 3D, while pro-

viding much greater accuracy. So the accelerations observed in 3D are smaller than

the 2D ones, which suggests there is still room for improvement of the DRT method

in 3D.

To summarize, these academic test cases confirm the superiority of the proposed DRT

algorithm and demonstrate its robustness. This algorithm is also well-suited with

particular triangulations (anisotropic meshes) and does not require any calibration

contrary to other classical methods which require, at least, one purely numerical

parameter. Next we interest to realistic metallurgical applications in two and three

dimensions.

2.5 Test on realistic metallurgical cases in two and three

dimensions

Let us go back to the 2D GG case presented in section 1.5.3. It has been demon-

strated that the HJ reinitialization method was poorly efficient for this application.

So the same simulation is now performed with the DRT algorithm. We proved in

section 2.3.2 that " = 4E is a good compromise, so we conserve this value. Also the

same numerical parameters are employed for the simulation. The previous and new

computation times are compared in table 2.3.

We observe that the reinitialization of the GLS functions is performed around 70 times

faster with the DRT method, which results in a considerable acceleration of the simu-

lation, with a factor close from 9. So this direct approach is proven to be very efficient

in 2D. Next we attempt to confirm these promising results in 3D.

A 3D GG case is then considered. A cubic polycrystal with edge length 1.5mm contain-

ing around 1000 grains is generated according to a LVT technique. The grain size dis-

tribution is representative of a 304L material with initial mean grain size hR0i= 92µm.
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Initial With DRT
tremesh 4h 11min (6.4%) 4h 22min (57.1%)
tresol 2h 02min (3.1%) 1h 57min (25.6%)
treinit 59h 04min (89.8%) 52min (11.3%)
tother 28min (0.7%) 28min (6%)
tsimu 65h 45min 7h 39min

Table 2.3 – Distribution of the computation time with the HJ and DRT reinitialization methods
for the 2D GG simulation detailed in section 1.5.3. Simulations are performed on 6 Xeon Intel
CPUs.

The 3D polycrystal is submitted to a th = 5h heat treatment at T = 1050°C. A fixed

unstructured FE mesh composed of 1503 tetrahedra is used for this simulation, which

gives an averaged mesh size hb º 5µm. The half reinitialization thickness is "= 4hb,

which ensures good numerical convergence. We fix also ±= 3 in the same manner it

was done in 2D. But satisfying this separation condition in 3D is much more demand-

ing in terms of colors as N±=3
p = 102 GLS functions are effectively needed to represent

this 3D microstructure with this criterion, which is important. The aggregate is de-

picted on fig. 2.12. This simulation is performed on 12 CPUs and the computation

times are detailed in table 2.4.

Initial With DRT
tremesh No remeshing
tresol 11h 50min (9.4%) 11h 50min (33.1%)
treinit 113h 49min (90.5%) 23h 48min (66.6%)
tother 5min (0.1%) 5min (0.3%)
tsimu 125h 44min 35h 43min

Table 2.4 – Distribution of the computation time for the simulation of a 5h heat treatment
in 3D using the initial polycrystal of fig. 2.12a. Simulations are performed on 12 Xeon Intel
CPUs.

Performing such a simulation with the HJ approach is complicated because of the

high numerical costs. However by performing a single increment and by using the

evolution of Np obtained with the DRT method, the time which would have been

needed to perform this simulation with the HJ reinitialization method can be esti-

mated. Based on these simple considerations the simulation time needed with the
HJ reinitialization method should be more than five days on 12 CPUs. So the DRT
method permits to reduce the global computaton time by a factor 3.5 in 3D, while
being at least as accurate. This new DRT method is therefore a major advance for our
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GLS function

131

3 6 9

(a) t = 0 (1000 grains) (b) t = 1/3th (484 grains)

(c) t = 2/3th (293 grains) (d) t = th (203 grains)

Fig. 2.12 – Evolution of the 3D grain boundary network during the simulation of a 5h heat
treatment at 1050°C for 304L.

96



2.5. Test on realistic metallurgical cases in two and three dimensions

applications. But we estimate that the computation time could be further reduced

by using less distance fields in the simulation, which involves to improve the present

numerical formalism based on GLS functions.

Summary

In this chapter, the reinitialization of the distance functions is investigated. First

the potential of the HJ reinitialization method in the context of our application is

evaluated. It is demonstrated that this method can not be improved without signifi-

cant modifications of the numerical formalism. Furthermore this approach exhibits

poor numerical robustness and has numerical parameters whose calibration is not

straightforward. These points make the HJ method hardly compatible with the 3D FE-

LS modeling of microstructural evolutions with a representative number of grains. So

a new method for reinitializing the distance functions has been proposed and imple-

mented in our numerical framework, which relies on a discretization of the front and a

geometric reconstruction of the distance functions. This new reinitialization method

benefits from an efficient implementation based on a space-partitioning strategy us-

ing k-d trees and a bounding box technique providing high parallel efficiency. The

algorithm has been successfully tested and compared with other reinitialization ap-

proaches from the state of the art through diverse academic test cases. Acceleration

factors up to 300 have been obtained thanks to this new DRT approach compared

with the HJ reinitialization method. It is also much more accurate and robust because

it does not rely on any numerical parameter. Finally this method has permitted to

accelerate a typical 2D GG simulation by a factor close to 9 and to perform a first 3D

large-scale simulation within reasonable simulation times. These developments have

allowed to publish [Shakoor et al. 2015b].
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Résumé en français

Ce chapitre est consacré à l’étude des limites d’utilisation des fonctions level set

globales. Bien que ces dernières permettent d’important gains de temps de calcul

et de mémoire vive, il y a aussi des difficultés inhérentes liées à leur utilisation. La

première de ces limitations est la possibilité de coalescence numérique entre les

grains représentés par une même fonction, qui doit être impérativement évitée afin

de garantir la cohérence des résultats. Le deuxième difficulté liée à l’utilisation des

fonction level set globales est l’impossibilité d’accéder directement aux propriétés

intrinsèques des grains, comme leur taille. Dans les précédents travaux [Fabiano

2013; Cruz-Fabiano et al. 2014], la coalescence était retardée en introduisant une sé-

paration initiale suffisante entre les grains représentés par une même fonction dans

la microstructure initiale. Bien que simple à mettre en œuvre, cette approche a été

démontrée inefficace d’un point de vue numérique, et ne résout pas le problème

concernant l’évaluation des caractéristiques intrinsèques des grains. Une nouvelle

méthode a donc été proposé pour répondre à ces problématiques. Elle se compose

de deux étapes. D’abord, les composantes connexes d’une même fonction level set

globale sont séparées à l’aide d’un nouvel algorithme spécifique capable d’opérer di-

rectement dans un cadre éléments finis parallèle. Ensuite, les risques de coalescence

sont détectés et traités de façon dynamique à chaque incrément de la simulation.

L’implémentation numérique proposée pour cet algorithme tire parti d’une stratégie

utilisant des boîtes englobantes pour évaluer la distance séparant les composantes

connexes. Cette approche a démontré une très grande efficacité numérique et per-

met d’importants gains de mémoire. Des facteurs d’accélération proche de deux

ont ainsi été obtenus pour des simulations en trois dimensions tout en évitant la

coalescence numérique sans aucune hypothèse simplificatrice. En outre le nouvel

algorithme développé pour la séparation des composantes connexes permet égale-

ment de suivre les propriétés de chaque grain. Grâce à ces nouveaux outils, des

polycristaux à très grand nombre de grains ont pu être simulés en deux et trois di-

mensions avec des coûts calcul et mémoire très intéressants. Nous nous sommes

intéressés à la topologie et à l’évolution de la microstructure au cours du traitement

thermique. Ces évolutions ont été analysées et confrontées avec succès à des mod-

èles en champ moyen. Enfin une nouvelle procédure d’immersion a été proposée

afin de représenter des polycristaux réels dans un maillage éléments finis grâce aux

fonctions level set globales. Cet algorithme pilote la répartition des grains dans les

fonctions level set globales et utilise la méthode de réinitialisation introduite dans

section 2.4 pour initialiser les fonctions distances. Une simulation de traitement

thermique en trois dimensions à partir de données expérimentales a finalement été
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réalisée grâce à ce nouvel algorithme d’immersion. Les résultats numériques obtenus

grâce à notre modèle level set/éléments finis doivent maintenant être comparés à des

simulations en champ de phase et des observations in situ réalisées à l’université

d’Ulm dans le cadre d’une collaboration. Les développements numériques présentés

dans ce chapitre ont permis la publication d’un article dans une revue internationale

à comité de lecture [Scholtes et al. 2015].
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3.1 Introduction

The DRT reinitialization algorithm introduced in the previous chapter has permitted

to reduce significantly the numerical cost of our LS-FE simulations. However it was

found that the important number of distance fields needed is still very restrictive,

especially in 3D. In the present chapter the objective is to improve this situation by

working on the coloring aspect. New numerical tools are introduced to overcome

the important limitations of the existing method based on a fixed coloring of the

grains. We detail their implementation within the considered FE framework and

investigate challenging benchmarks in 2D and 3D to evaluate their efficiency. Finally

the immersion of real polycrystals in a FE mesh is explored. We propose a method for

initializing the GLS functions based on experimental data, which takes full advantage

of grain coloring and of the new numerical tools introduced in the previous chapter.

A virtual polycrystal is finally generated and GG mechanism simulated, based on a

3D image obtained by X-Ray tomography.

3.2 Basics about grain coloring

3.2.1 Principle

The simulation time is strongly related to the number of GLS functions Np. So us-

ing a distance function for each grain is unfeasible when several thousand of grains

are considered in LS simulations. The simple alternative is grain coloring and con-

sists in using GLS functions, each representing a set of distinct grains in the initial

microstructure. This technique reduces drastically the number of needed colors (i.e.

GLS functions), as shown on fig. 1.14a. Especially in 2D, the four color theorem [Appel

et al. 1977a; Appel et al. 1977b] states that no more than four colors are required to

map a microstructure so that no two adjacent grains have the same color. This the-

orem has no equivalent in 3D but different tests have shown that around 20 colors

are generally sufficient to map a 3D polycrystal for any number of grains. So grain

coloring is a very interesting approach for limiting the number of distance functions,

the numerical costs and also the memory requirements.

3.2.2 Limitations

Given the previous statement, using the strict minimal of colors (4 in 2D, around 20 in

3D) provides optimal numerical efficiency and minimizes the memory requirement.

But this radical approach is limited to the cases where the connected components
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(i.e. the grains in the present application) are static or subjected to very small dis-

placements. In other configurations, the moving child grains (i.e. grains sharing the

same color) can meet each other during a simulation and merge to form a single one,

whose shape is the union of the first two grains. This phenomenon called numerical

coalescence is illustrated on fig. 1.14b. A significant amount of coalescence during a

simulation alters the kinetics and may have dramatic consequences on the numerical

predictions [Fan et al. 1997b]. So it is crucial to avoid (or at least to delay) this purely

numerical issue.

3.2.3 Existing situation and problem statement

The initial solution adopted in [Fabiano 2013; Agnoli 2013; Jin et al. 2014] was to delay

the appearance of coalescence by initializing the microstructure with a number of

GLS functions N±
p which ensures a minimal separation of ± exterior grains between

the child grains. Obviously this parameter ± determines directly the number of colors

needed to map the initial microstructure. So it must be chosen small to limit the

number of GLS functions and the simulation time while being high enough to prevent

a significant amount of coalescence during the simulation. This approach is obviously

not systematic and estimating a priori (i.e. before the simulation) a correct value

for ± is very complex because it depends on the metallurgical phenomena that are

simulated and the considered material. Finally this approach is also numerically not

optimal because it uses much more functions than needed to represent the aggregate,

which increases the computational costs associated with the resolution of eq. (1.47)

and reinitialization. This represents a strong limitation of the existing FE-LS approach

that must be addressed. This is the objective of the present chapter.

3.3 Improvement of the existing situation

3.3.1 Literature review

The objective is to propose a method working within a parallel FE framework which

would enable to perform coalescence-free simulations with a minimal number of

colors. We opt for a dynamic solution consisting in an automatic reassignment of the

grains in the GLS functions (i.e. grain recoloring) when coalescence is about to occur.

Such an approach has been introduced in 2002 in the context of PF computations

with regular grids [Krill III et al. 2002]. The approach proposed by Krill et al. is based

on a simple idea: if two child grains are separated by only one exterior grain, there

exists a risk of numerical coalescence between these two grains and one of them must
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therefore be recolored. Their algorithm maintains for each grain with index g a list

of its short-range neighbors (i.e. adjacent grains) and long-range neighbors (i.e. ad-

jacent grains + neighbors of at least one adjacent grain). At each increment the list is

inspected. If one long-range neighbor is represented by the same PF function, then

it is reassigned to another PF function. Obviously the same procedure can also be

applied to distance functions. This algorithm is relatively simple providing that we

are able to separate the connected components, i.e. distinguish the grains composing

each PF/GLS function. No details are given in [Krill III et al. 2002] concerning the algo-

rithm employed to perform the separation of the connected components (SCC), even

if it is worth noting that the problem of the SCC using regular grids is well-addressed

in the literature. On the other hand performing such an individual identification of

the grains is much more complicated on FE meshes, especially in a parallel frame-

work. Authors mention that thanks to this algorithm, they were able to reduce the

number of needed PF functions to 20 and 50 respectively in two and three dimensions.

A variant of the above approach has been proposed recently by Elsey et al. [Elsey

et al. 2009] in a LS framework with Fourier transform resolution. This algorithm uses

a different criterion and triggers a recoloring operation when two child grains of √i

become ø-close, i.e. their union is completely contained in the same connected com-

ponent represented by √i >°ø, where ø is a distance parameter correlated with the

simulation time step. By using this algorithm the authors state that no more than 32

and 64 GLS functions are needed in 2D and 3D, respectively. Again nothing is clearly

detailed concerning the strategy employed to perform the SCC and its numerical cost,

even if the underlying numerical method relies on regular meshes.

These dynamic approaches are very attractive because they are systematic in the

sense that they do not require to estimate a priori the number of GLS functions that

will be needed for the simulation. Furthermore they permit to avoid coalescence

events based on simple considerations concerning the grain neighbourhood or the

distance between the child grains. On the other hand, these approaches are, to our

knowledge, only employed in the context of regular grids for the time being and no

details is given concerning the procedure employed for the SCC and the associated

numerical costs. Finally we estimate that, even if the number of functions employed

in these previous studies is much less than the number of grains, it can be further

improved. Let us recall that our final objective is to use a minimal number of colors
and to prevent coalescence in any case. We introduce in this chapter a new dynamic

algorithm enabling to perform coalescence-free simulations with nearly optimal nu-

merical efficiency. Although this algorithm is here implemented in a LS model work-
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ing within a parallel framework using unstructured FE meshes, it is perfectly general

and can also be employed for PF-FE simulations.

3.3.2 Development of an efficient recoloring scheme

The final objective of this algorithm is to handle dynamically the grain coloring during

the simulation. So it must be able to transfer automatically one or more child grains in

another GLS functions if these grains become too close from each other. The present

algorithm is divided in two steps:

• separate the connected components represented by the GLS functions,

• detect the risks of coalescence and swap (i.e. reassign) the grains in other GLS

functions when coalescence is likely to occur.

Separation of the connected components

Before considering the recoloring step itself, it is necessary to distinguish the child

grains and identify them individually. More specifically our objective is here to create,

for each GLS function√i , an index field noted Ii wherein its grains are represented by

a unique identifier. First we perform the procedure entitled TAG_NODE_AND_NEIGHBORS

in algorithm 1 on each GLS function. For the sake of clarity let us designate by M the

FE mesh and V (n) the patch of the nth mesh node, i.e. the set of nodes connected to

n by an element edge.

When a node located inside the i th GLS function is found (i.e. √i ∏ 0), it is assigned an

integer value i d (see figs. 3.1a and 3.1b). Then its neighbors are recursively contam-

inated (see figs. 3.1c and 3.1d) until the interface is reached (see figs. 3.1d and 3.1e).

The variable i d is finally incremented and the procedure continues with the remain-

ing unlabeled nodes. This first operation has a complexity which is almost linear.

It is obvious that the previous algorithm does not work in parallel because a process

cannot access to the mesh nodes located on another partition. Let us consider the

example of fig. 3.2a for an illustration.

In this worst case scenario, three partitions P0, P1 and P2 share two components. One

is totally located on P2 while the other is shared by the three of them. Moreover the

latter is seen as two distinct components by P1. To solve this situation and any other

situations that may occur with more processes or components, the following divide

and conquer procedure is performed:
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Algorithm 1 Recursive tagging of the connected components
function TAG_NODE_AND_NEIGHBORS(Field Ii , Node n, Patch V (n), Integer
i d)

Ii (n) √ i d
for Node ñ 2 V (n) do

if Ii (ñ) ==°1 then
TAG_NODE_AND_NEIGHBORS(Ii , ñ, V (ñ), i d)

end if
end for

end function
procedure TAG(Field √i )

Define an integer i d √ 1
for Node n 2 M do

if √i (n) ∏ 0 then
Ii (n) √°1

else
Ii (n) √ 0

end if
end for
for Node n 2 M do

if Ii (n) ==°1 then
TAG_NODE_AND_NEIGHBORS(Ii , n, V (n), i d)
i d √ i d +1

end if
end for
return Ii

end procedure
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ψ(x) > 0

ψ(x) < 0

(a)

ψ(x) > 0

ψ(x) < 0

(b)

ψ(x) > 0

ψ(x) < 0

(c)

ψ(x) > 0

ψ(x) < 0

(d)

ψ(x) > 0

ψ(x) < 0

(e)

ψ(x) > 0

ψ(x) < 0

(f )

Fig. 3.1 – Sequential tagging procedure. The recursive propagation stops when a node satis-
fying √< 0 is met (represented by the thick green circles), which indicates that the interface
has been crossed.
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Fig. 3.2 – (a) Example presenting a worst case scenario for tagging in a parallel context; (b)
local tags after performing algorithm 1 independently on each partition; (c) graph giving the
tag conflicts; (d) final global tags.
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1. each process performs algorithm 1 independently, leading to independent tags,

possibly redundant,

2. in algorithm 1, when a node located on another partition is met, it is stored in a

set,

3. this set is communicated between the processes,

4. each process receives messages of type "Process Pi wanted to tag your node n

with tag i d"; if node n already has a not null i d , the conflict is communicated

to the root process,

5. the root process solves the conflicts by applying algorithm 1 on the tags instead

of the nodes,

6. the root process finally broadcasts the new global tags to the other processes.

Let fig. 3.2b be the result of the first step of this procedure performed on the worst case

configuration given by fig. 3.2a. P0 has recognized one connected component, tagged

as "P0’s 1", P1 has a number 1 and a number 2 connected components, and P2 has

also a number 1 and number 2 connected components. During its tagging loop, P0

has seen that some of its nodes are connected (by an element edge) to nodes located

on P1 and P2, and the same for the other two. To prevent redundancy, one chooses to

consider there is a conflict only if the identifier of the neighboring partition is higher

than the one of the current partition. For example let us consider we are on partition

1 (corresponding to the process P1). If a node of P0 is met, there is no conflict because

1 > 0. On the other hand, if a node of P2 is met, the conflict is detected and stored

in the set. A description of all possible situations can then be established (the item

letters correspond to the element edges represented on fig. 3.2b):

(a) P1 has a 0 (unlabeled) node that P0 sees as tag 1 ! there is no conflict,

(b) P1 has a 2 node that P0 sees as tag 1 ! the conflict "P0’s 1 means P1’s 2" is stored,

(c) P2 has a 0 node that P0 sees as tag 1 ! there is no conflict,

(d) P2 has a 0 node that P1 sees as tag 1 ! there is no conflict,

(e) P2 has a 2 node that P0 sees as tag 1 ! the conflict "P0’s 1 means P2’s 2" is stored,

(f) P2 has a 2 node that P1 sees as tag 1 ! the conflict "P1’s 1 means P2’s 2" is stored.
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The next step of the algorithm is, for each process, to send its tags along with these

conflicts to the root process. All redundancies are then treated by applying algo-

rithm 1 on a specific graph constructed by the root process in which the nodes are the

local tags of each process and there exists a connection between two nodes if there is

a conflict between them (see fig. 3.2c). After performing the algorithm on such graph,

one obtains the global tags which are unique for each connected component. The

matching table between local and global tags is finally broadcasted to all processes,

which correct their numbering. Figure 3.2d illustrates the final result of the whole

procedure.

This step of the algorithm is critical because all the conflicts are treated by the root

process. Nevertheless, its complexity depends on the number of connected compo-

nents represented by the GLS function, which is several order of magnitude lower

than the number of mesh nodes. As it will be demonstrated in the last section of

this chapter, this sequential procedure does not affect the numerical efficiency of the

algorithm in the considered context of polycrystal simulations.

The fig. 1.14a illustrates a concrete microstructure composed of 25 grains (Ng = 25).

The input is the characteristic function ¬i of the i th GLS function which is equal to

one where √i ∏ 0 and zero elsewhere. Finally the resulting field Ii is obtained thanks

to the SCC algorithm, wherein each component is labelled by a unique i d as depicted

on fig. 3.3b.

Swapping algorithm

After performing the SCC on each GLS function, we are now able to tackle the problem

of the automatic grain recoloring. Next the term swapping is preferred to recoloring

because we do not perform a full recoloring of the grains constituting the microstruc-

ture. Effectively only the child grains which are getting too close from each other are

actually recolored. The algorithm introduced in this section is relatively similar to

the one discussed in [Krill III et al. 2002; Elsey et al. 2009] with the exception that it is

here developed, described and applied to unstructured FE meshes. It is also further

optimized and permits nearly optimal numerical efficiency.

The first step consists in gathering all the Ii functions with i 2
©
1, ..., Np

™
and creating

a unique P1 field I glob wherein all grains of the microstructure are simultaneously

represented by a unique id:

110



3.3. Improvement of the existing situation

1

1

1

1

1

(a)

3

2

5

4

1

(b)

Fig. 3.3 – (a) Characteristic function ¬i associated with the i th GLS function which contains
five grains; (b) the resulting field Ii obtained after performing the SCC procedure on the
microstructure of (a). The white zone corresponds to a null value.

I glob(x) = max
1∑i∑Np

Ii (x), 8x 2≠. (3.1)

The I glob field calculated for the microstructure of fig. 1.14a is depicted on fig. 3.4.

Then, each process scans its element edges and constructs the local short-range neigh-

borhood (first neighbors only) associated to each grain. These local tables (one for

each process) are then communicated to the root process which handles their asso-

ciation. The global short-range neighborhood S (g ) associated with each grain g is

finally built and broadcasted to all processes. In the example illustrated on fig. 3.4,

one has S (0) = {8,11,20}, S (6) = {2,12,22,24}...

By mixing the previous tables, the long-range neighborhood L (g ) of each grain g

can be built which is composed of the first and second neighbors (FSN). Going back

to the microstructure of fig. 3.4 one has: L (0) = {3,5,7,8,11,16,17,18,20,23}, L (6) =
{2,7,10,12,13,15,16,19,21,22,24}... Finally an other table giving the long-range neigh-

borhood (in terms of grains) of each GLS function is also constructed:

G (i ) =
n

L (g ), 8g 2
©
1, ..., Ng

™
/C (g ) = i , (3.2)

where C (g ) is a corresponding table returning the index i of the GLS function which

contains the grain g and
f

denotes the list concatenation operator. Obviously this
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Fig. 3.4 – I glob field wherein each grain of the microstructure has a unique i d .
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table evolves during the simulation due to the swapping operations.

It is worth noting that the long-range neighborhood of the i th GLS function may

contain redundancies because an exterior grain of i can be a FSN of several grains

represented by √i . Conserving these redundancies is crucial in our algorithm. Let us

consider the grain labelled 2 on fig. 3.4 for an illustration. This grain is connected five

times to the white GLS function (because it is a FSN of grains 5,6,15,16 and 19). So

if the grain labelled 6 is transferred from the white to the green function, the grain 2

would remain connected four times to the white function.

After these tables have been created, the sets L (g ) are scanned. If there exists a

grain g̃ 2 L (g ) which is also a child grain of g (i.e. C (g ) = C (g̃ )), it is assumed that

numerical coalescence is possible. This approach is strictly equivalent to the one

introduced by [Krill III et al. 2002] which considers there is a risk when only one

exterior grain separates two child grains. Hereafter this simple criterion is referred as

C1. In such situation, the following swapping procedure is performed:

if 9q 6=C (g ) / g 62G (q) then

1. transfer the grain g from √C (g ) to √q ,

2. remove L (g ) from G (C (g )), add it to G (q) and finally update C : C (g ) = q ,

else if 9q 6=C (g̃ ) / g̃ 62G (q) then

execute 1. and 2. by replacing g by g̃ ,

else

initialize a new GLS function Np √ Np +1 and execute (2) with q = Np.

A major advantage of this strategy lies in the fact that it can be easily extended to

the needs of ReX modeling. More specifically the values of the fields of interest (dis-

location densities, stored energy, orientation...) associated with the swapped grain

can also be directly transported in the receipting field. This allows for a grain to keep

its properties which are related to its thermomechanical state. This point is further

detailed in the next chapter.

The result of this algorithm performed on the microstructure of fig. 1.14a is depicted

on fig. 3.5. This is actually a worst case scenario because the microstructure of

fig. 1.14a has been initially colored with a minimal separation ±= 1, giving conflicts
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everywhere.

Fig. 3.5 – New grain coloring after performing the C1 swapping algorithm on the initial mi-
crostructure of fig. 1.14a. It is now represented by 10 GLS functions (instead of 4 initially)
separated by at least two exterior grains.

The previous algorithm has been extensively challenged and tested in [Scholtes et al.

2015]. Especially a large-scale 2D polycristalline aggregate containing around 50,000

grains has been simulated with less than 20 GLS functions. The computation times as-

sociated with the SCC and the swapping algorithm have been demonstrated very low

despite the large number of needed swapping operations (18,000 for the present case).

A large-scale 3D simulation with 5000 initial grains has also been performed. For this

simulation the number of GLS functions never exceed 61 which is in agreement with

the conclusions of Krill et al. [Krill III et al. 2002] and Elsey et al. [Elsey et al. 2009].

In 3D the numerical cost associated with the swapping algorithm represents again

a very small amount of the computation time (< 1%). On the other hand, the SCC

procedure was observed to be much more costly in 3D and represents around 17%

of the whole computation time. This was initially attributed to the higher number

of needed colors in 3D, which increases the number of operations in the SCC algo-
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rithm. Actually the implementation used for this simulation was not fully optimized

because the nodal patch of each mesh node was reconstructed for each GLS function.

This is obviously not necessary because the patches are only related to the FE mesh

and not to the GLS functions. Although this bug has since been corrected, the high

number of colors still penalizes the numerical efficiency of the simulation. Especially

the resolution of the CDEs for the different GLS functions represents more than the

half of the simulation time. Also this case requires a large amount of RAM memory.

Hereafter, we propose an optimization of this algorithm based on a redefinition of

the long-range neighborhood of the grains.

Optimization

We showed that the previous swapping algorithm remains limited, especially when it

comes to consider particular microstructures with strong size heterogeneities, such

as these obtained when nucleation occurs. Furthermore, we estimate that the num-

ber of colors needed in the previous simulations (around 20 and 60 respectively in 2D

and 3D) and then the numerical efficiency can be further optimized. A new swapping

criterion referred as C2 has therefore been developed.

According to the C1 criterion, g̃ is directly added in L (g ) without any restriction (see

eq. (3.2)). So L (g ) contains all the FSN of the g th grain. In practice, if the distance

separating two grains is sufficient, there is no risk of coalescence between two con-

secutive increments, even if there is only one exterior grain between them. So, in the

C2 criterion we firstly evaluate the algebraic distance d(g , g̃ ) separating g and g̃ in

order to determine whether g̃ is added in L (g ) or not. Finally by noting ª a distance

parameter, g̃ can be safely ignored if d(g , g̃ ) > ª. This has two consequences:

• no conflict can arise between g and g?, even if C (g ) =C (g̃ ),

• by assuming C (g ) 6=C (g̃ ) initially, it is perfectly possible that they become child

grains after the swapping procedure.

Thus it is obvious that working with C1 is equivalent to use C2 with ª=1. In order to

maintain high numerical efficiency the exact distance between g and g̃ is not directly

computed. Instead we evaluate the distance between their respective bounding boxes

in the Cartesian coordinate system used to generate the REV. This box-to-box distance

determines whether g̃ is accepted in L (g ) or not. The fig. 3.6 illustrates these two

situations: in fig. 3.6a, it is assumed that d(g , g̃ ) < ª which implies g̃ is added in L (g )

; in fig. 3.6b the grain g̃ is safely ignored because the separation is sufficient.
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g
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(a) d(g , g̃ ) < ª
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(b) d(g , g̃ ) > ª

Fig. 3.6 – Calculation of the distance between the bounding boxes of g and g̃ (represented by
the red thick arrow) and decision concerning g̃ : (a) g̃ must be included in L (g ) ; (b) g̃ can be
safely ignored.

This optimization completes the whole recoloring scheme. Next we challenge its

efficiency through diverse simulations in 2D and 3D.

3.4 Evaluation of the numerical efficiency

3.4.1 Standard benchmarks

Let us reconsider the 2D case previously detailed in section 1.5.3 and section 2.5.

It was found that N±=3
p = 27 are needed to represent this microstructure with an

initial separation ±= 3, which is assumed sufficient to prevent a significant amount

of numerical coalescence according to Fabiano et al. [Cruz-Fabiano et al. 2014]. Next

the same simulation is repeated with the above recoloring scheme. For this purpose,

the polycrystal is firstly initialize with the strict minimal number of GLS functions

and then we perform a first iteration of the recoloring algorithm in order to solve the

coloring conflicts present in the initial microstructure, i.e. recoloring of the FSN which

satisfy d(g , g̃ ) < ª (see fig. 3.6a). Different tests have demonstrated that fixing ª =
hRi/2 is largely sufficient to prevent any coalescence event during the simulation. So

we adopt this value hereafter. However let us remind that this parameter is optional,

contrary to±, and stands only for an optimization of the recoloring scheme that allows

to use less GLS functions. By using this strategy, only Np = 10 colors are needed for
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the whole simulation. We detail the simulation time in table 3.1. The notations tSCC

and tswapping are introduced to designate the computation times associated with the

SCC and swapping algorithms, respectively.

Initial With DRT With DRT + Recoloring
tremesh 4h 11min (6.4%) 4h 22min (57.1%) 4h 20min (72.4%)
tresol 2h 02min (3.1%) 1h 57min (25.6%) 43min (12%)
treinit 59h 04min (89.8%) 52min (11.3%) 27min (7.6%)
tSCC - 1min (0.2%)
tswapping - 1min (0.2%)
tother 28min (0.7%) 28min (6%) 28min (7.6%)
tsimu 65h 45min 7h 33min 5h 59min

Table 3.1 – Distribution of the computation time with and without the newly developed recol-
oring scheme for the 2D GG simulation detailed in section 1.5.3. Simulations are performed
on 6 Xeon Intel CPUs.

We observe that tSCC and tswapping are negligible (< 1%) despite more than 1000 re-

coloring operations have been performed during this simulation. This demonstrates

the efficiency of the present implementation. The global computation time is finally

reduced by a factor 1.3 compared to the situation of chapter 2 which is relatively

disappointing. So using the recoloring scheme does not increase significantly the nu-

merical efficiency in this case. It is mainly due to the fact that most of the computation

time is devoted to the remeshing operations in this 2D case and its complexity is inde-

pendent of Np. However using the previous recoloring technique presents two great

advantages. First, the parameter ± which translates the initial separation between the

colored grain is removed. Effectively, as the coloring of the grain is dynamically han-

dled and the algorithm creates automatically new GLS functions when it is needed,

the microstructure can be simply initialized with the strict minimal number of col-
ors in any case. This makes the approach completely systematic because it avoids

coalescence and does not require any complex calibration or assumptions. Only the

parameter ª remains in the new formulation but the influence of this parameter is

actually very small and our numerical investigations have demonstrated that fixing

simply ª º hRi/2 works fine in all situations that have been tested (GG, SRX). The

second advantage is directly related to the SCC algorithm itself. Effectively, as grains

are identified by a unique i d during the SCC procedure, it becomes very simple to

assess their intrinsic properties which is crucial for the post-treatment, analysis of the

simulation results or to take into account the properties at the grain scale. This was

impossible with the initial implementation of section 1.5.3, so the newly proposed

algorithm is a major advance.
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Let us now consider the 3D polycrystal of fig. 2.12a. We repeat the 3D simulation

of section 2.5 with identical parameters and introduce the dynamic grain recoloring.

The evolution of the number of active GLS functions during the simulation is plotted

on fig. 3.7 and the new time distribution is given in table 3.2.
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Fig. 3.7 – Number of active GLS functions during the simulation of a 5h heat treatment using
the initial 3D polycrystal of fig. 2.12a.

Because a fixed mesh is used in this 3D case, most computation effort is devoted to

the solving of the CDEs and reinitialization. Consequently using much less GLS func-

tions accelerates greatly the simulation in this case. Effectively we observe that tresol

evolves almost linearly with the number of active GLS functions. This is not true for

reinitialization, which may seem surprising. But this can be actually easily explained.

Let us remind that, for each distance field, a piecewise representation of the interface

is firstly constructed at the early stage of the reinitialization algorithm. The complex-

ity of a distance computation is, on average, a logarithmic function of the collection

size (see section 2.4). As fewer GLS functions are used when recoloring is active, each

contains more grains, which increases the interface length and therefore the size of

the associated collection. Consequently the reinitialization of a distance field taken

separately requires more efforts when coloration is employed, which justifies that

the cost of this operation is not a linear function of Np. However treinit is reduced
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Initial With DRT With DRT + Recoloring
tremesh No remeshing
tresol 11h 50min (9.4%) 11h 50min (33.1%) 2h 47min (15.2%)
treinit 113h 49min (90.5%) 23h 48min (66.6%) 15h 26min (83.8%)
tSCC - 3min (0.2%)
tswapping - < 1min (0.0%)
tother 5min (0.1%) 5min (0.3%) 8min (0.3%)
tsimu 125h 44min 35h 43min 18h 25min

Table 3.2 – Distribution of the computation time for the simulation of a 5h heat treatment
in 3D using the initial polycrystal of fig. 2.12a. Simulations are performed on 12 Xeon Intel
CPUs.

by a factor up to 1.5, which remains very interesting. Finally this approach permits

great memory savings because around six times less free memory is required for this

simulation comparatively with the initial formalism.

To summarize, the numerical developments introduced in section 2.4 and section 3.3.2

have permitted to:

• reduce the overall computation time by a factor of 11 and 7 for the tested con-

figurations in 2D and 3D, respectively,

• increase the robustness of the simulations because less numerical parameters

are needed and coalescence is avoided in all simulations,

• assess the properties of the individual grains for the analysis of the simulation

results.

In the last section of this chapter, we take advantage of these major advances to per-

form large-scale GG simulations and analyze the evolutions of the individual grains,

which was not possible before these developments. The simulation results are com-

pared with the well-known mean field approximations presented in chapter 1

3.4.2 Massive grain growth computations and topological analysis

2D grain growth simulation

First large-scale simulation is performed on a square domain 28£28mm2 composed

of 50,000 grains, randomly generated according to a VT method. Consequently the

initial mean grain size is around 71µm. The mesh is fixed for numerical convenience

with ten million elements. So each grain of the initial microstructure is represented by
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approximately 100 elements, on average. A heat treatment of th = 5h at T = 1050°C is

simulated. The material is again a 304L austenitic steel, and all the numerical parame-

ters are identical to the ones employed in section 2.5. The calculation of the individual

grain sizes uses the index fields returned by the SCC algorithm (see fig. 3.3b). This

simulation is performed on "only" 16 CPUs.

Next the predictions of our LS-FE simulation are compared with the classical Hillert

mean field theory. Substituting eq. (1.26) in eq. (1.32) gives the surfacic growth rate

associated with a grain class in Hillert’s formulation:

1
2ºM∞

d Ai

d t
=Ø

µ
Ri

Rcr
°1

∂
. (3.3)

Here the grain classes are assumed to be directly the grains that compose the virtual

aggregate. The theoretical value for the Ø parameter in eq. (3.3) is 0.5 in 2D. Let us re-

mind that this theoretical value relies on diverse assumptions concerning the shapes

of the grains in the Hillert’s formulation. Especially this model considers that the

grains are perfectly circular (respectively spherical in 3D). However, in [Cruz-Fabiano

et al. 2014] the offset between the grain size distributions predicted by the full field

simulations and eq. (1.26) with Ø = 0.5 tends to indicate that Ø could be actually

greater than 0.5. We confirm these results on fig. 3.8 where the best fit values calcu-

lated at two different stages of the treatment are both greater than 0.5 (respectively

0.61 and 0.57 at t = 1/3th and t = 2/3th). Approaching the steady-state, Ø becomes

stable around 0.55 (see fig. 3.9). According to [Darvishi Kamachali et al. 2015], the

adimensional ratio hRi2/hR2i is supposed to be globally constant during GG, which

is comforted by our numerical results on fig. 3.9.

The average growth rate of each topological class is plotted on fig. 3.10. A very good

agreement is observed between the simulation results and the Von Neumann-Mullins

2D law for 4 ∑ nt ∑ 9, which represents more than 99% of the grains. Also grains hav-

ing nt = 6 neighbors are found to be stable (d A/d t º 0), which is comforted by the

theory (ncr = 6 according to eq. (1.14)).

From a purely numerical aspect, only 10 GLS functions are needed for this simulation

with 50,000 initial grains. The overall simulation time is around 6h on 16 CPUs, whose

major part is equally distributed between the solving of the PDEs (38%) and reinitial-

ization (45%). Around 10,000 swapping operations are performed, which represents

6% of the simulation time. The SCCs takes less than 1% and the simulation time ob-

tained is outstanding comparatively to the state of the art of full field deterministic
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(a) t = 1/3th

(b) t = 2/3th

Fig. 3.8 – Growth rates of 20,000 grains picked randomly in the 2D polycrystal. The black lines
represent eq. (3.3) with two different values for the Ø parameter (Hillert’s value [Hillert 1965]
and best fit).
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Fig. 3.9 – Best fit values for Ø in eq. (3.3) calculated from the full field simulation results. As
observed by Kamachali et al. [Darvishi Kamachali et al. 2015] the ratio hRi2/hR2i remains
stable.
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Fig. 3.10 – Average growth rate associated with each topological class in the 2D simulation.
The solid black line refers to the Von Neumann-Mullins law (see eq. (1.14)).
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approaches.

3D grain growth simulation

The same analysis is now performed in 3D using a cubic REV with edge length 3.5mm

and composed of 10,000 grains (see fig. 3.11a). We simulate a heat treatment of th = 5h

at T = 1050°C. The FE mesh is fixed and consists of 3103 tetrahedral elements. The

numerical parameters are identical to the ones employed for the 3D simulation in

section 2.5. Figure 3.11 depicts the evolution of the aggregate during the treatment.

Around 2000 grains are still present inside the domain after 5h.

The growth rate of a 3D grain can also be expressed in Hillert’s formulation by substi-

tuting eq. (1.26) in eq. (1.32):

1
M∞

Ri
dRi

d t
=Ø

µ
Ri

Rcr
°1

∂
. (3.4)

This analytic result is confronted with the simulation results on fig. 3.12. Again the

kinetics predicted by the full field model indicates that Ø> 1. Same conclusions have

been drawn by Kamachali et al. [Darvishi Kamachali et al. 2012] which found Øº 1.25

based on the results of large-scale PF simulations. More recently, a 3D analysis using

the present LS-FE model has exhibited that Ø= 1.4 provides the better predictions for

different initial grain size distributions [Maire et al. 2016]. This value (Ø= 1.4) is also

in good agreement with the present simulation results as the best fit values obtained

at t = th/3 and t = 2th/3 are respectively Ø= 1.49 and Ø= 1.48 (see fig. 3.12).

Finally the respective evolution of each topological class is investigated on fig. 3.13. A

very good agreement with the 3D Mullins law (see eq. (1.16)) is obtained in the interval

5 ∑ nt ∑ 20, which represents more than 93% of the grains present in the simulation

domain. The deviation observed for nt ∏ 25 can be due to the small number of grains

in these topological classes, which are typically represented by less than 10 grains.

The stable topological class is found to be ncr º 13.75 according to this simulation,

which is very close to the value ncr = 13.39 obtained by Rios and Glicksman [Rios et al.

2006] (see eq. (1.18)) and in the range 13.5 ∑ ncr ∑ 14 proposed by Kamachali et al.

[Darvishi Kamachali et al. 2012].

This 3D simulation requires 2 days and 17 hours of computations using 48 CPUs

whose major part is devoted to reinitialization (85%). The rest is divided between

the solving of the CDEs (11%) and the diverse post-treatment operations (3%). The

SCC and swapping algorithms represent less than 1%. Given the acceleration factors
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(a) t = 0 (10,000 grains) (b) t = 1/3th (4600 grains)

(c) t = 2/3th (2750 grains) (d) t = th (1950 grains)

Fig. 3.11 – Evolution of the grain boundary network during the simulation of a 5h heat treat-
ment at 1050°C. Only the interfaces of three GLS functions are displaced to facilitate the
visualization (shown in different colors).
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3.4. Evaluation of the numerical efficiency

(a) t = 1/3th

(b) t = 2/3th

Fig. 3.12 – Growth rates of the individual grains in the 3D polycrystal. The black lines represent
eq. (3.4) with two different values for the Ø parameter (Maire et al. [Maire et al. 2016] and best
fit).
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Fig. 3.13 – Average growth rate associated with each topological class in the 3D simulation.
The solid black line refers to the 3D Mullins law (see eq. (1.16)).

mentioned at the end of the previous section (11 in 2D, 7 in 3D), the simulation time

needed for such a 3D simulation with the initial formalism of section 1.5.3 can be

estimated around 19 days using the same number of CPUs. The initial situation has

been therefore drastically improved.

As mentioned in the introduction chapter, the use of periodic BCs for such 2D/3D GG

simulations would probably have permitted to obtain as-good numerical results with

smaller number of grains.

3.5 Immersion of real microstructure from experimen-

tal data

3.5.1 Procedure

Sometimes creating a virtual polycrystal which is only statistically representative of

the real material is not sufficient. Especially the real grains may have particular shapes

that can not be represented accurately by standard generation techniques such as

the VT and LVT methods. Also strong local heterogeneities of the grain size may be

hard to obtain with these methods. In such cases, create a polycrystal based on an

experimental image is very useful because it gives an (almost) exact representation
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of the real material. An other interesting feature of this approach is the possibility

to compare easily the experimental and numerical results. A possible approach is

to, first, fit the Voronoï/Laguerre tesselation directly on the experimental data, and

secondly, use the classical formula for immersing the grains within the FE mesh as it

is done in [Spettl et al. 2016]. Although very interesting, these methods can be long

to converge and do not permit to describe the possible curved shape of the grains

boundaries because Voronoï/Laguerre cells are polyhedra. In this part, we interest to

the direct immersion of the real material without any approximation.

Advanced observation techniques have greatly improved during the last decades. 2D

representation of microstructure can be quite easily obtained thanks to EBSD facil-

ities. Moreover, new experimental techniques, such as those presented in the intro-

duction chapter, are also able to provide a 3D image of the polycrystal (see fig. 3b).

Basically an experimental image is a regular lattice of cells. We note ri the resolu-

tion of the image (i.e. the number of cells) along the i th axis of the Cartesian co-

ordinate system, with i 2 {1, ...,ds}. Each cell has a spin, represented by a vector of

values hs1, ..., sDi. Here D denotes the dimensions of the spin, that can be, a scalar for

D = 1 (e.g dislocation density), or a vector/tensor for D > 1 (e.g crystalline orientation,

quaternion). This representation of the microstructure is actually very similar to the

one used in MC/CA models (see fig. 1.6). So using experimental data as input in these

approaches is straightforward. This is not so obvious in our framework because it

requires preliminary operations, such as the mapping of the image on the FE mesh

and the construction of the distance fields. This section aims to provide a complete

method for the immersion of real polycrystals in a LS-FE framework. Our objective

is here to take maximum advantage of the tools introduced in the previous sections

in order to maximize the numerical efficiency of the immersion procedure. Partic-

ularly the proposed approach must be able to represent the real polycrystal in a FE

mesh in 2D or 3D with an optimized number of GLS functions and to handle coloring.

Hereafter we detail the immersion procedure. After obtaining the 2D or 3D experi-

mental image, the first step is to treat it, in order to fade the small spin discrepancies

inside the grains. Effectively a grain is typically described as the set of adjacent cells

whose spins are close from each other. This operation can be performed by applying

standard treatment techniques implemented in analysis softwares, like DREAM.3D

[Groeber et al. 2014]. Undetermined voxels can also be treated to define a parent

grain. The result is an image wherein the spin is homogeneous inside a given grain, as

illustrated with the gray levels on fig. 3.14. In this image each gray level corresponds to

a crystallographic orientation, given by three Euler angles. Using this representation,
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the grain boundaries are simply defined by the straight lines (respectively surfaces in

3D) which separate two adjacent cells with different spins.

Fig. 3.14 – 2D image of a microstructure obtained by EBSD. The gray scale refers to the crys-
tallographic orientation.

The second step of the algorithm is to inspect the individual cells of the lattice and

their respective spins. When a new spin is met (i.e. which has not been found in

another cell inspected previously) it is stored in a set. After inspecting all the lattice,

this set contains all the possible spins, and its size is therefore equal to the number of

spins present in the image. The maximal number of spins is the number of grains as

two separated grains can have the same spin. For the sake of simplicity, we associate

a unique scalar identifier to each spin which is here simply the position of the consid-

ered spin in the set.

Now the objective is to determine how the grain are connected to each others in

order to determine their distribution inside the GLS functions. This operation re-
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quires to construct firstly the short-range neighborhood of each grain, composed of

all the grains that are adjacent to the considered grain. This step is globally equiva-

lent to what it is done at the beginning of the swapping algorithm when the table S

is constructed (see chapter 3), with the exception that the operation is here directly

performed on the regular lattice and not on the FE mesh. The other approach would

be to first interpolate the spins on the FE mesh, and then construct the grain neigh-

borhoods as it is done in chapter 3. However, in our numerical library the generation

of the microstructure is performed prior to the mesh initialization, which makes, at

yet, this second approach impracticable.

A second scan of the lattice is thus performed to construct the short-range neighbor-

hood. If an identifier g̃ is met in the neighborhood of a cell whose identifier is g , with

g 6= g̃ , then g̃ is added in S (g ). In the end, S (g ) contains all the identifiers of the

grains that are adjacent to g . The complete graph S is obtained after all the lattice

cells have been inspected. Next the grains are distributed inside the GLS functions

with respect to this graph, thanks to the coloring algorithm described in [Hitti 2011;

Hitti et al. 2012]. This algorithm returns a table A (g ) which gives, for each grain with

identifier g , the index i of the GLS function that will represent this grain. So this table

is globally equivalent to the corresponding table C introduced in chapter 3. However

a distinction must be made between these tables. Effectively A defines how the grain

will be distributed inside the GLS functions. On the other hand C only describes the

microstructure and the coloring at a given time. In other words, C and A describes

what we have and what we want to obtain, respectively. Using A , each grain can now

be represented with the index of its GLS function. This is illustrated on fig. 3.15 for

the initial microstructure of fig. 3.14, where each color designs the index of a GLS

function.

Next algorithm 2 is performed on each GLS function √i with i 2
©
1, ..., Np

™
and each

mesh node n. It relies on two main functions. The former, GET_CELL(n) uses a simple

localization algorithm to determine the number of the lattice cell of the experimental

image, noted C , that contains the considered mesh node n, which is given by:

C =
dsX

i=1
floor(

ni

di
ri ), (3.5)

where ni and di are respectively the coordinate of the node n and the dimension of

the experimental image along the i th axis of the Cartesian coordinate system. The

function floor(x) is a simple rounding down.
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Fig. 3.15 – Coloring of the initial immersed microstructure defined by the table A calculated
with the algorithm of [Hitti 2011]. The color of each grain refers to the index of the GLS
function that represent this grain.

Then the function GET_IDENTIFIER(C ) is performed, which determines the spin and

the related identifier gc of the C th cell.

Algorithm 2 Initialization of a GLS function from an experimental image
procedure INITIALIZE_GLS_FUNCTIONS(Field √i , Table A )

Define two integers C and gc

for Node n 2 M do
C = GET_CELL(n)
gc = GET_IDENTIFIER(C )

if A (gc) == i then
√i (n) = 0.5

else
√i (n) =°0.5

end if
end for
return √i

end procedure

After these preliminary operations, the i th distance field is initialized. If the consid-

ered mesh node n is located inside a grain represented by √i (i.e. if A (gc) == i ), then
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√i = 0.5. Otherwise √i is set to °0.5. This gives a binary representation of each GLS

function, as depicted on fig. 3.16, which is very similar to a Heaviside function.

Fig. 3.16 – Binarization of the grains represented by a GLS functions. Red and blue zones
represent respectively 0.5 and °0.5.

The interface, given by √i = 0, can then be obtained by simple interpolations (see

eq. (2.11)). Obviously due to the binary representation, the precision of this approach

is limited to the mesh size, which induces a faceting of the grain boundaries as illus-

trated on fig. 3.17. An alternative would be to apply standard processing operations

[Schindelin et al. 2012; Schneider et al. 2012] directly on the experimental image to

smooth the data, threshold the grains belonging to the same GLS functions and then

convert these binary data to a signed distance function that is finally imported on

the FE mesh. This method is much more precise [Shakoor et al. 2015a] but the pre-

treatment applied on the image does not benefit from the distributed computing

capabilities of the FE code and is highly memory-consuming. Effectively it requires to

create an image for each GLS function. So an option would be to implement directly

the pre-treatment operations within our FE library with an adequate management of

the memory. These points will be investigated further in future works.

After the GLS functions have been initialized to binary fields, the DRT algorithm of

section 2.4 is simply performed to convert them into real distance fields, based on the
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Fig. 3.17 – Faceting of the grain boundaries due the binary representation and the limited
mesh size.

interpolated zero-isovalue (see fig. 3.18). This reinitialization operation concludes

the immersion procedure.

3.5.2 Illustration

A real practical case is now investigated for illustrating the capabilities of the above

immersion procedure. Here we use a 3D experimental image of an aluminum mate-

rial obtained by the research team of Carl E. Krill III (University of Ulm, Germany) in

the context of the thesis work of Mingyan Wang, thanks to a X-ray diffraction tech-

nique. The material sample, represented in red on fig. 3.19, has a cylindrical shape

and contains around 1300 grains. It is embedded in a 321£ 321£ 531 data box by

inserting a virtual phase all around with a specific spin, depicted in blue on fig. 3.19.

The voxel size is assumed to be 1µm. Each voxel is represented by three Euler angles.

A cylindrical FE mesh is then generated, whose axis is aligned with the material sam-

ple. We encountered numerical difficulties during the resolution of eq. (1.48) when

attempting to simulate the whole material sample, that are probably caused by the

cylindrical shape of the FE mesh. To avoid this issue and limit the numerical cost, we

choose to study only a part of the sample and therefore to use a cylindrical FE mesh

which is smaller than the material sample (see fig. 3.19). This mesh is composed of
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Fig. 3.18 – Distance field obtained by performing the DRT algorithm on the binary field of
fig. 3.16. The solid black line indicates the interface of the GLS function.

1.3 million tetrahedral elements, and its height and radius are 100µm and 90µm, re-

spectively.

Then we perform the immersion procedure detailed previously. Around 150 grains of

the material sample are initially present in the simulation domain and 18 GLS func-

tions are needed for the mapping of this microstructure. Figure 3.20 depicts the grain

boundary network obtained after performing algorithm 2 on all the GLS functions.

As mentioned earlier, the limited precision in terms of mesh size induces a faceting of

the grain boundaries. A heat treatment of 17min with M∞= 1£10°6 mm2/s (arbitrary

value) is finally simulated with a fixed time step ¢t = 2s (510 time increments). The

evolution of the polycrystal is depicted on fig. 3.21. We observe on fig. 3.21a that the

virtual faceting disappears immediately during the first time increment. After this, the

grain boundaries adopt a smooth shape. An interesting point would be to evaluate the

impact of the initial faceting on the microstructure predicted after the first increment.

The calculation time for this simulation is around 9h using 6 CPUs, which is very

reasonable.
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Fig. 3.19 – Schematic illustration of the immersion case from the 3D experimental image.
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Fig. 3.20 – Grain boundary network obtained after the immersion of the 3D experimental
image on a reduced simulation domain (see fig. 3.19).

Although these first results are interesting, several points should now be investigated.

First of all, it important to solve the numerical issues related to the FE solver used

to treat eq. (1.48) in order to be able to simulate the whole material sample with our

LS-FE approach. It would be also very interesting to compare these LS-FE simulation

results with PF simulation tools developed at the university of Ulm. In situ observa-

tions of the considered material during the TT are also available thanks to the thesis

work of Mingyang Wang and should be compared with the numerical results in the

context of a collaboration. More particularly it has been observed by Mingyang Wang

that the anisotropy of the grain boundary features in the considered aluminum ma-

terial, and especially the grain boundary energy, may influence the microstructure

evolutions. Comparison of numerical and experimental in situ results could thus

permit to calibrate a model, for example a Read-Schokley relationship, that describes

the heterogeneity of the grain boundary energy for this material in the considered

thermomechanical conditions.

Summary

In this chapter, the limitations of the GLS functions have been investigated. Despite

it permits significant computation time and memory savings, GLS functions come ef-
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Grain size (µm)
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15 30 45 60

(a) t =¢t (152 grains) (b) t = 150¢t (35 grains)

(c) t = 300¢t (22 grains) (d) t = 450¢t (10 grains)

Fig. 3.21 – Evolution of the aggregate during the heat treatment simulation based on the initial
microstructure of fig. 3.20.
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fectively with inherent difficulties. The former is the possible numerical coalescence

between the child grains, which must be absolutely avoided to ensure the consistency

of the simulation results. Second limitation is the impossibility of assessing directly to

the individual properties of the grains, like the grain size. In previous works, an initial

separation was introduced between the child grains of the initial microstructure in

order to delay coalescence [Fabiano 2013; Cruz-Fabiano et al. 2014]. This approach

was demonstrated to be numerically insufficient and does not address the problem

concerning the assessment of the individual grain features. A new method has there-

fore been proposed to address these issues. It is composed of two steps. First the

connected components are distinguished using a specific algorithm working within

a parallel finite element framework. Then the coalescence risks are detected and

eliminated dynamically at each increment. An efficient implementation has been

proposed which takes advantage of a bounding-box strategy for the evaluation of the

separation distance between the child grains. This approach has been demonstrated

to be nearly optimal in terms of memory requirements and numerical efficiency. Es-

pecially acceleration factors around two have been obtained in 3D while ensuring

coalescence-free simulation without any assumption. The newly proposed algorithm

for the separation of the connected components permits also to track the properties

of each grain. Large aggregates with several thousand of grains have been simulated

in two and three dimensions thanks to these new developments. The topology and

evolution of the simulated microstructures have been analyzed and successfully con-

fronted with mean field approximations. Finally an algorithm has been introduced

for the immersion of real polycrystals within a LS-FE framework. This algorithm han-

dles the distribution of the grains inside the GLS functions and uses advantageously

the DRT method introduced in section 2.4 for the initialization of the distance fields.

A first heat treatment simulation based on a 3D experimental image has finally been

performed thanks to this new immersion algorithm. The results of this LS-FE simu-

lation should now be compared with PF simulations and in situ observations carried

out at the university of Ulm in the context of a collaboration. The numerical develop-

ments presented in this chapter have allowed to publish [Scholtes et al. 2015].
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Résumé en français

Ce chapitre est consacré à la modélisation du phénomène de recristallisation statique

par une approche level set/éléments finis. Premièrement, le modèle de recristallisa-

tion introduit par Bernacki et al. [Bernacki et al. 2008] a été discuté. Ce dernier utilise

un niveau d’énergie constant et homogène pour chaque fonction distance. Ensuite,

nous avons mis en évidence les limitations de ce modèle, et plus particulièrement

l’impossibilité d’utiliser la coloration et la recoloration à la volée des grains. Il est donc

limité à des configurations simples à faible nombre de grains, car chacun d’entre eux

doit être représenté par une fonction distance. Sur cette base, notre objectif était

d’étendre ce formalisme numérique pour tirer pleinement parti des fonctions level

set globales et du nouvel algorithme de recoloration automatique introduit dans sec-

tion 3.3.2. Pour cela, une nouvelle implémentation du modèle de recristallisation

statique a été développée. Cette dernière repose sur l’utilisation de champs d’énergie

stockée qui permettent de gérer des énergies indépendantes pour chaque grain tout

en utilisant très peu de fonctions distances. Dans cette approche, l’énergie est com-

plètement indépendante des fonctions level set globales. Elle est donc parfaitement

compatible avec l’algorithme de recoloration introduit dans le chapitre précédent

car les énergies peuvent être réassignées en même temps que les grains lors d’une

opération de recoloration. Un nouvel algorithme de germination a également été

introduit. Celui-ci détermine les sites potentiels et gère l’affectation des nouveaux

grains à l’intérieur des fonctions level set globales. Ces nouveaux outils numériques

ont été implémentés de façon générique dans notre librairie numérique afin qu’ils

puissent manipuler n’importe quelle quantité (scalaire, vecteur, tenseur) associée

aux grains. Cette nouvelle implémentation a été testée au travers de différentes sim-

ulations de recristallisation statique à grand nombre de grains en trois dimensions.

Son efficacité, avec des facteurs d’accélération pouvant atteindre 45 pour certaines

configurations, a ainsi été démontrée. Enfin l’influence du scénario de germination

sur la cinétique globale de recristallisation a finalement été étudiée en s’appuyant

sur des résultats de simulations de recristallisation statique de type sites saturées. Les

développements numériques présentés dans ce chapitre ont permis la publication

d’un article dans une revue internationale à comité de lecture [Scholtes et al. 2016a].
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4.1 Introduction

The two previous chapters focused on the improvement of the LS methodology itself.

Especially we introduced a new DRT algorithm (see chapter 2) and a dynamic recolor-

ing scheme (see chapter 3) which have both demonstrated high numerical efficiency

in the context of pure GG without stored energy (i.e. #»v e = #»
0 in eq. (1.47)). Obviously

real materials are rarely free of deformation energy and local energy gradients must

be addressed for capturing the real kinetics of the grain boundaries, especially dur-

ing and after the deformation stage. So the objective of this chapter is to propose

an efficient approach for the modeling of the SRX phenomenon. After introducing

the initial LS-FE model of SRX developed in [Logé et al. 2008; Bernacki et al. 2009],

we highlight its limitations. Then we propose a new implementation which takes

advantage of the numerical tools introduced in the previous chapters.

4.2 Modeling of static recrystallization using the level

set/finite element method: first approach and lim-

itations

According to eq. (1.4), the normal velocity of a grain boundary consists of a capillarity

term #»v c and a recrystallization term #»v e. This latter is related to the jump in stored

energy across the grain boundaries as the stored energy is averaged per grain in the

discussed numerical framework. Effectively, if different methods can be used to com-

pute this term, the initial approach was proposed by Bernacki et al. in 2008 [Bernacki

et al. 2008]. This approach works around a homogeneous energy level inside the

grains, which implies that the energy gradient is non-zero only at the grain bound-

aries. In other words, this model does not consider intragranular heterogeneities and

assumes that energy is spatially constant inside a given grain. Also this formulation

lies on a constant energy values ei for each GLS function, which can be eventually

time-dependent. Given the previous statements, a natural way to compute the term
#»v e at the interface between two grains with indexes i and j could be:

#»v e(x) = Mi j f
°
√i (x), l

¢°
e j °ei

¢ r√i (x)
kr√i (x)k , (4.1)

where f is a decreasing function varying from 1 (for √i = 0) to 0 (for |√i | = l ), and Mi j

is the interface mobility between grains i and j . Here we assume a homogeneous

mobility throughout the microstructure with a constant M value, so Mi j is simply

replaced by M . The time variable is still omitted in the notation for simplicity but let
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us remind that all the considered quantities are (or can be seen as) time-dependant.

However, this formulation generates discontinuities at multiple junctions which re-

sult in ill-conditioned problems. The alternative proposed by Bernacki et al. [Bernacki

et al. 2008] is to use the weighted contributions of all GLS functions and their respec-

tive energies at each node of the FE mesh:

#»v e(x) = M
NpX

i=1

NpX

j=1
j 6=i

¬i (x) f
°
√ j (x), l

¢°
ei °e j

¢ r√ j (x)

kr√ j (x)k , (4.2)

which presents the advantage of avoiding the identification of the neighboring grains

and leads to a smooth velocity field also at the multiple junctions.

The above approach has been extensively tested and validated in [Bernacki et al. 2008;

Bernacki et al. 2009]. However no grain coloring was used in these works (i.e. Np = Ng)

so that an independent energy level can be considered for each grain. As mentioned

in the previous chapter using a distance field for each grain of the aggregate is in-

feasible in 3D because the computational cost is strongly related to Np. So using a

coloring technique seems to be a logical choice in this situation. But this is actually

not so simple. Effectively there are major incompatibilities between the grain coloring

technique and the above ReX formalism:

• considering that the stored energy level ei is a constant quantity for the i th

GLS function, all the child grains of √i have necessarily the same energy, which

makes no sense from a metallurgical point of view,

• if recoloring is used, each swapping operation (see chapter 2 for details) would

inevitably modify the energy of the recolored grain, which would receive the en-

ergy corresponding to the recipient GLS function and lose the energy associated

with its own mechanical state.

We propose in this section a new implementation of the ReX model to overcome

these difficulties. This latter employs stored energy fields and is fully compatible

with the recoloring scheme introduced in the previous chapter. Although this ap-

proach is strictly equivalent to the existing one from a metallurgical point of view, it

will be proven much more numerically efficient and permits massive computation

time savings. Different large-scale simulations of SRX in three dimensions have been

performed within very interesting CPU times thanks to these improvements.
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4.3 New implementation of the recrystallization model

4.3.1 Objective

Our objective is to create a new description of the polycrystal wherein each grain has

its own energy, which is completely independent of the GLS functions. The most nat-

ural way to achieve this goal consists in replacing the energy ei of each GLS function

(constant for the whole FE mesh) by an energy field Ei evaluated at the interpolation

points. We will see that such an extension is not straightforward and requires the

development of new algorithms to:

1. initialize the energy fields by assigning an energy level to each grain of the

microstructure at an early stage of the simulation, with respect to a prescribed

energy field,

2. compute the velocity field #»v e with an energy which is no more constant for a

given GLS function,

3. track the respective grain energies during the simulation,

4. handle efficiently nucleation events in order to limit the number of GLS func-

tions and maintain low computational costs.

It is worth emphasizing that, even if the present study deals only with scalar energy

fields, the algorithms introduced in this section are completely general and address

also problems involving vector and/or tensor fields. The interested reader may find

an other example of application in [Boulais-Sinou et al. 2016], in which the same tools

handle the crystal orientation fields (vector with dimension 3) in the context of DRX.

4.3.2 Initialization of the energy fields

The first step consists in initializing the energy fields. This operation is performed in

two stages:

1. SCC in order to identify the grains represented by the same GLS function,

2. generation and assignation of the grain energies.

The SCC algorithm has been detailed extensively in section 3.3.2. It returns an index

field associated with each GLS function, wherein the grains are marked with a unique

identifier (see fig. 3.3b).
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Let us designate by Gi the number of grains represented by the i th GLS function at

a given time. After performing the SCC algorithm, an energy value is generated for

each grain of index g 2 {1, ...,Gi }. These values can be directly imported from CPFEM

calculations or experimental data. In both cases, this procedure is designated by the

function GENERATE_VALUE() in algorithm 3. Once the energies have been defined,

the mesh nodes are scanned and the procedure detailed in algorithm 3 is performed.

Algorithm 3 Initialization of the energy fields at an early stage of the simulation
procedure INITIALIZE_ENERGY_FIELD(Field Ii )

Create a Table E with size Gi

for Integer g 2 {1, ...,Gi } do
E

£
g
§
√ GENERATE_VALUE()

end for
for Node n 2 M do

if Ii (n) > 0 then
Ei (n) √ E [Ii (n)]

else
Ei (n) √°1

end if
end for
return Ei

end procedure

When a node n satisfying Ii (n) > 0 is met, the corresponding energy field receives

the value previously generated for this grain identifier. In the zones where Ii = 0, the

energy field Ei is set to an arbitrary negative value (°1 for simplicity), which indicates

that it is an undefined region. Figure 4.1 illustrates the result obtained by executing

this procedure on the microstructure shown in fig. 3.3b.

4.3.3 Calculation of the recrystallization velocity field

Considering that in our new formalism energy is no longer a constant but a space-

dependent variable, it seems obvious to reformulate eq. (4.2) as follows:

#»v e(x) = M
NpX

i=1

NpX

j=1
j 6=i

¬i (x) f
°
√ j (x), l

¢°
Ei (x)°E j (x)

¢ r√ j (x)

kr√ j (x)k . (4.3)

However, this extension makes no sense if used as such because all the energy fields

E j (with j 6= i ) are not defined inside the i -th GLS function (i.e. where ¬i = 1). Let us
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e3

e2

e5

e4

e1

Fig. 4.1 – Energy field Ei associated with the i th GLS function. This represents five grains
which all have their own independent energy. The white zone corresponds to an arbitrary
negative value (°1 for the sake of simplicity).
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illustrate this situation with the simple two-grain microstructure depicted in fig. 4.2a.

These grains are respectively represented by two GLS functions, √1 and √2, and two

energy fields E1 and E2 (see figs. 4.2b and 4.2c).
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Fig. 4.2 – Simple two-grain microstructure illustrating the problem of computing the recrys-
tallization velocity term with the new formulation given by eq. (4.3).

At the node n represented in fig. 4.2a, ¬1 is naturally null and eq. (4.3) boils down to:

#»v e(n) = M f
°
√1(n), l

¢
(E2(n)°E1(n))

r√1(n)
kr√1(n)k . (4.4)

However E1 is not defined at this node, i.e. E1 =°1.
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To solve this issue, the energy fields must be extended outwards their respective GLS

functions before computing the velocity field #»v e. When coloring is employed we

have Gi > 1 and the nodal value of a GLS function represents the distance from this

node to the nearest grain it contains. The energy fields must therefore be extended in

√i 2 [°",0] with the energy value of this nearest grain. So this field extension proce-

dure is basically a pure NNS problem which can be elegantly addressed by the DRT

algorithm introduced in chapter 2. Next the extension of the energy fields is coupled

with reinitialization in order to maintain high numerical efficiency. For this purpose

we modify the previous implementation of the DRT algorithm in such a way that it

returns the nearest element itself, and not only the distance to this nearest element

as it was proposed in section 2.4. This approach enables to assess all the features

associated with this nearest element (coordinates of the delimiting nodes, normal

vector, field values,...). Considering that the only quantity of interest in the context of

SRX is the stored energy, we attach a unique scalar value to each facet during the con-

struction of the collection (see section 2.4). Obviously this value is the energy level of

the grain surrounded by this facet. Then during the reinitialization stage, the energy

attached to the nearest element of the collection is used to complete the stored energy

field in √i 2 [°",0]. This operation is schematically illustrated on fig. 4.3a where the

field h (which can be a scalar, a vector or a tensor) receives at the FE node n the value

attached with the nearest facet. Also a great advantage of this new implementation

is the possibility to compute the exact P1 gradient of the GLS function, by projecting

the reinitialized node on the nearest facet (see fig. 4.3b). Finally the nodal value of

r√i is used to compute the velocity field #»v e according to eq. (4.3).

The reinitialization of the distance functions and the extension of the energy fields are

thus performed simultaneously, which involves few additional computations com-

pared to a classical reinitialization, i.e. without field extension. The impact of the

field extension procedure on the computation time is discussed in the next section.

Going back to the previous two-grains microstructure, the result of the reinitializa-

tion/extension procedure performed on the energy field E1 is depicted on fig. 4.2d.

After performing the algorithm, the energy field lives also in [°",0], which allows a

correct evaluation of the velocity field #»v e at node n through eq. (4.4).

4.3.4 Tracking of the grain energies

After the velocity field #»v e has been computed, the GLS functions √i evolve accord-

ingly to the system of CDEs defined by eq. (1.47).
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Fig. 4.3 – Extension of an arbitrary field h (a), and computation of the exact P1 gradient r√
(b) with the new implementation of the reinitialization algorithm.

For convenience, we introduce the notation Ng ,i to represent the set of FE nodes

located inside the grain with index g 2 {1, ...,Gi }, represented by the function √i . Also

the superscripts ·t and ·t+¢t are employed to designate the values of a field before and

after the solving of the CDEs, respectively.

After displacing the GLS interfaces, the energy fields must be updated to ensure the

energies remain fitted on their respective grains between two consecutive increments.

The employed procedure is relatively simple and consists in two steps:

• for each grain of index g 2 {1, ...,Gi }, search for the maximal positive energy

value of the field E t
i in the set of nodes N t+¢t

g ,i ,

• perform a second loop and assign this maximal energy to all the nodes of the

field E t+¢t
i belonging to N t+¢t

g ,i ,

• tag all the other nodes (i.e. n 62N t+¢t
g ,i ) with °1 (undefined region).

It is obvious such an algorithm requires the existence of an overlap region between

the old and updated positions of each grain in order to perform the identification,

which can be formulated as follows:

N t
g ,i \N t+¢t

g ,i 6=;. (4.5)
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In other words, at least one node having a positive energy value must be found in

N t+¢t
g ,i . In practice, eq. (4.5) is not satisfied in the two following configurations:

(a) N t+¢t
g ,i =;, i.e. when the grain with index g disappears,

(b) N t+¢t
g ,i 6= ; but the displacement of g during t and t +¢t is so important that

N t
g ,i \N t+¢t

g ,i =;,

Case (a) is actually not problematic as the energy of a dying grain must necessarily

be removed from the energy field, which is what it is done by the algorithm. On the

other hand, the scenario (b) must absolutely be avoided. If it occurs, the considered

grain would lose its energy and would receive a negative value instead, as illustrated

by the pink grain on fig. 4.4. To prevent this issue, it appears crucial to ensure a proper

identification of all the grains between two consecutive increments. The satisfaction

of this condition is actually strongly related to the time step ¢t . As a simple example,

let us consider a grain and the sphere centered on its centroid, which have a sufficient

radius Req to contain this grain. In this configuration, it is obvious that eq. (4.5) is

always verified between two consecutive increments as long as:

¢t <
Req

vmax
, (4.6)

where vmax is the maximal grain boundary velocity at the interface of the consid-

ered grain. A worst case scenario for the satisfaction of this inequality comes when a

shrinking grain becomes very close from the the mesh size Req ª h. However, given

the typical values of vmax and h used in our simulations, the condition ¢t < h/vmax is

always easily verified, even with the large time steps permitted by our implicit numer-

ical scheme. Figure 4.4 illustrates the updating of an energy field. In this example, the

grain with energy e4 disappears during the resolution of the CDEs. The grain having

the energy e5 illustrates what happens when eq. (4.5) is not satisfied, even if it has

been demonstrated above that this scenario does not occur in practice.

We summarize the global algorithm for the updating of the energy fields in algo-

rithm 4.
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Fig. 4.4 – An energy field before (a) and after (b) the updating procedure. The grain with energy
e4 disappears between t and t+¢t . The white zone corresponds to an arbitrary negative value.

Algorithm 4 Updating of the energy fields between two consecutive increments
procedure UPDATE_ENERGY_FIELD(Field Ii , Field E t

i )
Create a Table E with size Gi and initialize its components E [·] √°1
for Node n 2 M do

if Ii (n) > 0 then
E [Ii (n)] √ max

°
E [Ii (n)] ,E t

i (n)
¢

end if
end for
Process synchronization ! keep the maximal value in E component by compo-

nent
for Node n 2 M do

if Ii (n) > 0 then
E t+¢t

i (n) √ E [Ii (n)]
else

E t+¢t
i (n) √°1

end if
end for
return E t+¢t

i
end procedure

4.3.5 Improvement of the nucleation algorithm

During annealing at elevated temperatures, a deformed microstructure usually re-

crystallizes discontinuously, through the appearance and growth of new grains with

low dislocation density, the nuclei. This process is known as discontinuous recrystal-
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lization. On the other hand, the microstructure may also evolve relatively homoge-

neously throughout the material, with no recognizable ’nucleation’ and ’growth’ of

the recrystallized grains. In these conditions, the process can reasonably be classified

as continuous recrystallization. The microstructural mechanisms involved during dis-

continuous and continuous recrystallization are actually similar and the difference

between these terminologies is purely phenomenological, referring only to the spatial

and temporal heterogeneity of microstructural evolution [Humphreys et al. 2004].

During SRX, DRX or PDRX, nuclei can appear continuously during the treatment or

in site-saturated conditions. When a nucleus emerges in the microstructure, it can

grow or shrink, depending on the capillarity force, the local energy gradient and the

mobility of the surrounding grain boundaries. In the present study, a constant mobil-

ity is assumed for all grain boundaries, which means that the behavior of a nucleus is

only dictated by the balance between capillarity effects and stored energy gradients.

In our LS framework, introducing new grains in the microstructure is straightforward

because it relies on simple arithmetic operations on the distance functions. In this

section, we propose a new nucleation algorithm. The latter can be seen as an im-

proved version of the algorithm introduced in [Bernacki et al. 2008; Bernacki et al.

2009] which takes full advantage of GLS functions and of the numerical tools intro-

duced in chapters 2 and 3. Although only SRX in site saturated condition is considered

hereafter, this algorithm can address also continuous recrystallization at the subgrain

scale.

An important aspect of recrystallization is heterogeneity, especially as influenced by

the placement of the nuclei [Cahn 1956; Rickman et al. 1997]. The present algorithm

must therefore be able to handle the distribution of the nuclei inside the microstruc-

ture. To do so, a set P of all the potential nucleation sites is firstly constructed at the

early stage of the algorithm. This set can contain all the nodes of the FE mesh or just a

subset of them (e.g. nodes located inside a layer around the grain boundaries, energy

greater than a threshold value,...). A nucleation site with coordinates xg is then picked

in P , randomly or according to an eventual selection criterion (highest stored energy,

closest point from the grain boundaries,...). For simplicity we assume that nuclei are

perfectly circular with radius r . Then the distance function ¡ of the new nucleus is

calculated:

¡ (x) = r °kxg °xk. (4.7)

Next the new grain is affected to a GLS function. The index k is used hereafter to
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designate the GLS function which receives the nucleus. To determine k, we firstly

evaluate, for each GLS function i , the minimal distance Ωi between this nucleus and

the grains already represented by √i . The GLS function √k which satisfies:

Ωk = max
8i2{1,...,Np}

(Ωi ), (4.8)

is finally chosen to host the germ, provided that Ωk ∏ s, with s a positive security

distance. If Ωk < s, no existing GLS function can receive the nuclei. A new function is

therefore created Np √ Np +1 and initialized such as √Np =¡.

All the nodes where ¡> 0 are finally removed from P to prevent the appearance of

an other germ in the recrystallized region and the following arithmetic operations are

performed on the GLS and stored energy fields:

√̃i (x) =
(

max
°
√i (x),¡(x)

¢

min
°
√i (x),°¡(x)

¢ and Ẽi (x) =
(

e0 if i = k

°1 if i 6= k
8i 2

©
1, ..., Np

™
, (4.9)

with e0 the assumed stored energy level in the recrystallized material.

This procedure is repeated until the desired number of created nuclei is achieved

or until the set P becomes empty (which corresponds to a fully recrystallized mi-

crostructure).

4.3.6 Evaluation of the numerical efficiency and comparison with

the initial implementation

By using the new implementation using stored energy fields, the recoloring scheme

introduced in section 3.3.2 can now be also employed in ReX simulations. We pro-

pose in this section to evaluate the gains in numerical efficiency permitted by the

new implementation. Let us remind that two versions of the recoloring algorithm

were proposed in section 3.3.2. The former (C1) generates a coloring conflict when

two child grains are separated by only one exterior grain. The second version (C2)

evaluates also the distance separating the child grains before considering there is a

conflict between them. These two approaches are tested and compared with the im-

plementation of [Bernacki et al. 2008; Bernacki et al. 2009] wherein grain coloring is

static (i.e. Np = Ng).
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Let us consider the polycrystal of fig. 4.5a with dimensions 0.3£0.3£0.3mm3, com-

posed of 48 grains and represented by Np = 15 colors.

GLS function

151
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Fig. 4.5 – (a) 3D polycrystal of 304L composed of 48 grains and represented by 15 GLS func-
tions; (b) the same microstructure after nucleation at grain boundaries (Ng = 348).

300 nuclei are then introduced at the grain boundaries following the procedure de-

tailed in section 4.3.5, giving Ng = 348. Here the set P is initialized with the nodes

satisfying √glob ∑ h in order to restrict nucleation in a narrow band around the grain

boundaries. The minimal security distance s is set to 2r (see section section 4.3.5 for

explanations).

Obviously such a microstructure presents strong grain size heterogeneities. More pre-

cisely, the larger grains act like bounds between the nuclei, creating a large number

of conflicts if the criterion C1 is used for the swapping procedure. By executing this

version of the algorithm (as it is done in [Scholtes et al. 2015]) on the microstructure of

fig. 4.5b, 69 new GLS functions are initialized to solve the conflicts, leading to Np = 84,

which is critically high. Using C1 is therefore inefficient in ReX simulations with nu-

cleation. On the other hand if C2 is employed with ª= hRiReX/2 (with hRiReX being the

mean recrystallized grain size), all the coloring conflicts can be treated without creat-

ing any GLS function. Next, a heat treatment of th = 5min at T = 1000°C is simulated
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on the obtained microstructure. A null stored energy is affected to the nuclei while

the deformed grains present in fig. 4.5a receive a value of 3.3£10°4 J/mm3, which is

a realistic order of magnitude. The material and simulation parameters are summa-

rized in table 4.1. The time step is set to 5s. The FE mesh is fixed and composed of

903 tetrahedral elements. Simulations are performed on 6 CPUs.

Parameter Value Units
T 1000 °C
M 5£10°13 m4.J°1.s°1

∞ 0.6 J.m°2

r 11 µm
e0 0 J.m°3

Table 4.1 – Input parameters for the simulation of a 5min heat treatment using the polycrystal
of fig. 4.5b.

As illustrated on fig. 4.6, the number of needed GLS functions remains much lower

all along the simulation with the C2 criterion, which is again proven more efficient

that C1. In the simulation with static grain coloring, the number of distance fields is

naturally equal to the number of grains.

Table 4.2 provides the computation time and its distribution. The average number

of active distance fields during a simulation is noted hNpi. It is equal to 343 without

coloring and falls down to 21 with C2, which results in a great improvement of the

simulation time. Effectively, an acceleration factor around 9 is obtained.

Without coloring C1 criterion C2 criterion
hNpi 343 90 21
Solving of CDEs 7h09min 1h56min 27min
Reinitialization 2h01min 1h02min 38min
Others 37min 8min 3min
Total simulation time 9h47min 3h06min 1h08min

Table 4.2 – Distribution of the computation time for the simulation of a 5min heat treatment
at 1000°C using the polycrystal of fig. 4.5b. Simulations are performed on 6 Intel Xeon CPUs.

Hereafter, the optimized simulation using the C2 swapping criterion is defined as ref-

erence configuration. The computation time and the average number of needed GLS

functions for this simulation are noted, t ref
simu and hNpiref, respectively, and table 4.2

provides t ref
simu = 1h08min and hNpiref = 21. Based on the results of table 4.2, a simple
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Fig. 4.6 – Number of active GLS functions during the simulation of a 5min heat treatment at
1000°C using the initial polycrystal of fig. 4.5.

linear relationship with slope 0.5 can be exhibited between the number of active GLS

functions and the simulation time:

tsimu ° t ref
simu

t ref
simu

= 0.5
hNpi°hNpiref

hNpiref
. (4.10)

Again we observe that the global computation time is not proportional to the number

of distance fields. This was justified in chapter 3 as the execution time of the reini-

tialization algorithm depends also on the number of grains represented by each GLS

function. However the time devoted to reinitialization is reduced by a factor greater

than three thanks to the new implementation, which remains very interesting. Here-

after eq. (4.10) is used to roughly estimate the computation times that would have

been obtained with more GLS functions.

The new implementation is finally demonstrated much more efficient. Next we chal-

lenge our optimized ReX model through different large-scale simulations of SRX in

3D (with and without nucleation) and confront the numerical results with mean field

approximations.
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4.4 Large-scale simulations of static recrystallizaton in

three dimensions

This last section focuses on realistic applications. Especially we study two different

SRX configurations. The former is a pure ReX simulation from a deformed state with-

out nucleation wherein each grain is initially affected a given energy. Here recovery is

not considered, which can be a strong assumption. So the grain energies remain con-

stant during a simulation. In the second application, the deformation of a polycrystal

is firstly simulated using a classical CPFEM code. Then different SRX simulations in

site-saturated conditions are performed based on the post-deformation microstruc-

ture. Especially the dislocation density fields predicted by the CPFEM simulation are

used to initialize the energy fields and to determine the potential nucleation sites.

4.4.1 Static recrystallization simulation from a deformed state

During SRX, there is a competition between capillarity effects and stored energy gra-

dients. We introduce a ratio § = hRihei/2∞, which reflects the balance between the

averaged capillarity and pure recrystallization forces. §> 1 means that, on average,

recrystallization forces outperform the capillarity effects. We pointed out in chapter 1

that these capillarity forces are commonly neglected in mean field models of ReX

[Montheillet et al. 2009; Cram et al. 2009] because they are assumed to be one order

of magnitude lower than the stored energy gradients. Next we attempt to challenge

this assumption based on our new LS-FE SRX model.

First, we introduce ei = øΩi the stored energy level of the i th grain to reformulate

eq. (1.28):

dRi

d t
= bMhei

µ
1° ei

hei

∂
8i 2 {1, ..., N } , (4.11)

with b the slope supposed to be unity according to eq. (1.28).

Then we perform a large-scale SRX simulation using the same 3D polycrystal of sec-

tion 3.4.2, composed of 10,000 grains, and the same fixed FE mesh containing 3103

tetrahedral elements. This configuration without nucleation mainly applies to cases

where the plastic strain is less than about 15%. Consequently each grain receives ini-

tially a random energy level comprised between 1£10°4 and 5£10°4 J.mm°3, which

is a representative order of magnitude. A heat treatment of th = 17min at T = 1000°C

is simulated. The simulation parameters are the same than before (see table 4.1). The
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average energy inside the material at the early stage of the simulation is hei= 3£10°4

J.mm°3.

The evolution of the polycrystal during the TT is depicted on fig. 4.7.

The ratio§ evolves between 13 and 19 during the full field simulation, which under-

mines that stored energy gradients are at least 13 times greater than the averaged

capillarity forces in the present case. On fig. 4.8 we compare the growth rates of the

individual grains predicted by the LF-FE simulation with the mean field law given

by eq. (4.11) at two different stages of the treatment (7min and 14min). The best

slopes obtained by linear regression of the full field simulation results are 1.04 at

t = 7min and 0.96 at t = 14min, which is very close from the unitary slope b = 1 given

by eq. (1.28).

In this first case, the errors induced by the inherent approximations in the mean

field formulation of eq. (1.28) are justified and sufficient to describe properly the

grain evolutions. However let us remind that neglecting the capillarity effects impacts

the shapes of the grains as it was demonstrated in 2D in [Fabiano 2013]. Especially

the equilibrium angle at multiple junctions is no longer satisfied. The weakness of

eq. (1.28) is then that it does not consider the microstructure topology and the way

grains interact with each others. Even if this has not a significant influence in this

first case, we will illustrate how topology may affect the predictions in the next section.

This 3D SRX simulation requires 50h of computation using 48 CPUs. The computa-

tion time for a single time increment is of the same order than for the same case with-

out stored energy, detailed in section 3.4.2 (pure GG). The average number of grains

present in the domain during the treatment is 9130 and hNpi= 23.7. Using eq. (4.10),

the computation time for this simulation without coloring can be estimated at more

than one year. Also in section 3.4.2 an acceleration factor of 3.5 were obtained in

the context of 3D pure GG with the DRT method comparatively to the HJ approach.

Here the same acceleration factor can be reasonably expected as the extension of the

energy fields (see section 4.3.3) takes less than 1% of the whole computation time. So

this simulation would have required around four years at the beginning of this thesis

work, using the same numerical facilities. This gives a global reduction of the simu-

lation time by a factor close to 700, which is outstanding. This result is particularly

exciting because it demonstrates our model is now very efficient for SRX simulations.
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Stored energy (J/mm

3

)

3.29 ⇥ 10�42.44 ⇥ 10�4

2.65⇥ 10

�4
2.86⇥ 10

�4
3.08⇥ 10

�4

(a) t = 1/4th, hei= 2.7£10°4 J/mm3 (b) t = 1/2th, hei= 2.3£10°4 J/mm3

(c) t = 3/4th, hei= 2.1£10°4 J/mm3 (d) t = th, hei= 1.9£10°4 J/mm3

Fig. 4.7 – Evolution of the grain boundary network during the 3D SRX simulation with an
initial random energy level for each grain comprised between 1£10°4 and 5£10°4 J/mm3.
The color code refers to the stored energy level.
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(a) t = 7min

(b) t = 14min

Fig. 4.8 – Growth rates of 2500 grains picked randomly in the 3D polycrystal. The solid and
dotted lines refer respectively to eq. (1.28) with two different values for b (theoretical and best
fit).
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4.4.2 Simulation of static recrystallization in site-saturated condi-

tions

In this second application we investigate the deformation of a 3D polycrystal with

subsequent SRX in site-saturated conditions. A REV is firstly submitted to a channel-

die compression test and its mechanical state after deformation is used as input to

perform several SRX simulations. Different configurations are investigated in which

necklace or bulk nucleation is considered with either heterogeneous or homogeneous

stored energy distribution. The model predictions are confronted with the experi-

mental work of Huang [Huang 2011], wherein a 304L material has been submitted

to hot torsion tests with subsequent heat treatment in various thermomechanical

conditions, in order to investigate DRX, PDRX or SRX.

Deformation of the polycrystal

The mechanical behavior of the 304L aggregate during deformation is described by

a CPFEM model based on a classical elasto-viscoplastic formulation. This model

assumes that elastic strains are infinitesimal and plastic deformation is achieved by

dislocation slip along the {111}h110i crystallographic system, as expected in FCC

crystals deforming at low temperature. The details and validation of the constitutive

time integration scheme can be found in [Delannay et al. 2006; Logé et al. 2008]. A

viscoplastic exponential flow-rule is used to relate the slip rates to the applied stress

[Hutchinson 1977]:

∞̇Æ = ∞̇0

ØØØØ
øÆ

øc

ØØØØ
1/m

sgn
°
øÆ

¢
, (4.12)

where ∞̇Æ and øÆ are respectively the rate of dislocation slip and the resolved shear

stress of the slip system Æ. The coefficient ∞̇0 is a reference slip rate, m is the sensi-

tivity exponent and øc is the critical resolved shear stress which is assumed for the

considered 304L material to be identical for all slip systems [Resk et al. 2009]. This

model also considers two populations of dislocations:

• the statistically stored dislocations which are the dislocations accumulated in

the material during homogeneous plastic deformation,

• the geometrically needed dislocations which appear in areas of strain gradient

and thus ensure the crystal lattice continuity.

The total dislocation density inside the material Ω is naturally the sum of the dislo-

cation densities related to these two populations. The critical resolved shear stress

evolves with Ω according to the following hardening law:
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øc = ø0 +
1
2
µb

p
Ω, (4.13)

We refer the interested reader to [Delannay et al. 2006; Logé et al. 2008; Resk et al.

2009; Boulais-Sinou et al. 2016] for further details concerning the temporal evolution

of the dislocation densities, the CPFEM model and the FE formulation.

The initial polycrystal is composed of 100 grains with dimensions 0.62£0.62£0.62mm3.

It is submitted to a planar compression test and deformed until the averaged strain

inside the material reaches a value of 30%. The FE mesh is composed of 1003 un-

structured tetrahedral elements and remeshing operations are performed every 5%

of deformation in order to ensure good element qualities all along the CPFEM sim-

ulation. At the end of the deformation, we compute the stored deformation energy

field D from the dislocation density field D = øΩ.

The final FE mesh and the GLS functions obtained at the end of the CPFEM simula-

tion are then used as input for the SRX simulations. Considering the initialization of

the energy fields, two different distributions are studied. In the former, the average

value of the field D is affected to all the grains of the polycrystal, giving a homoge-

neous distribution of the stored energy. This first simplified configuration permits

comparisons with the JMAK theory, which assumes a homogenized deformation en-

ergy throughout the microstructure. Hereafter the term "Homogeneized Energy"

designates this configuration.

In the second distribution, the energy of a given grain is obtained by averaging the val-

ues of D inside this grain. In this configuration, the function GENERATE_ENERGY() of

algorithm 3 can be described by algorithm 5. Obviously this representation, referred

as "Heterogeneous Energy", is much more realistic because it also considers energy

gradients between deformed grains.
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Algorithm 5 Generation of a grain energy in configuration "Heterogeneous Energy"
procedure GENERATE_ENERGY(Field Ii , Field D, Integer g )

Create Floats e √ 0 and k √ 0
for Node n 2 M do

if Ii (n) == g then
e √ e +D(n)
k √ k +1

end if
end for
Process synchronization ! sum the values obtained by each process for e and k
return e/k

end procedure

The dislocation density in the annealed material is around 1011 m°2 and is more than

three thousand times smaller than the average dislocation density resulting from the

CPFEM simulation. It can thus be reasonably assumed that e0 º 0.

Let us remind that our ReX formalism is only able to consider a homogeneous energy

level inside a given grain for the time being, which remains a strong assumption. In

real materials, intragranual heterogeneities may result in different migration rates for

the grain boundaries. Ongoing studies attempt to address this limitation by consid-

ering heterogeneous stored energy fields inside the grains within the LS formulation

[Ilin et al. 2016]. Furthermore, grain energies remain constant during the simulation.

Thus in our framework, when a migrating grain boundary sweeps into the interior of

a neighbor grain, the energy of this advancing grain is naturally affected inside the

migration region, which is not the case practically. However this approach has the

advantage of avoiding a specific treatment in the migration zone. On the other hand,

updating the crystal orientation fields in the context of DRX requires much more at-

tention and a specific approach has then been developed very recently [Boulais-Sinou

et al. 2016]. The latter relies on an extension of the crystal orientation fields, which is

performed during reinitialization, as detailed in section section 4.3.3.

It is well known that nucleation plays an important role in the kinetics of recrystalliza-

tion. In this study we consider nucleation in site-saturated conditions with different

spatial distributions for the nuclei. In "Bulk" nucleation, P contains all the mesh

nodes, while it is only composed of the nodes close from the grain boundaries in

"Necklace-Type" nucleation. Two different approaches are also tested for the deter-

mination of the nucleation site:

• "Site of Highest Energy" in which the node n 2 P having the highest energy
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value (related to the field D) is chosen as nucleation site,

• "Random Nucleation" wherein the nucleation site is randomly picked in P .

After one nucleus has been created, all the mesh nodes located inside (¡ > 0) are

removed from P . Five configurations are thus simulated, which are summarized in

table 4.3.

Configuration Energy distribution Nucleation
1 Homogeneous Energy Bulk / Random Nucleation
2 Homogeneous Energy Necklace-Type / Site of Highest Energy
3 Heterogeneous Energy Bulk / Random Nucleation
4 Heterogeneous Energy Necklace-Type / Site of Highest Energy
5 Heterogeneous Energy Bulk / Site of Highest Energy

Table 4.3 – Description of the simulated SRX configurations.

Determination of the nucleation parameters, a multiscale approach

In [Kerisit 2012], the critical dislocation density needed to trigger SRX is identified

through experimental tests. However, a large number of experiments has to be per-

formed with different strain rates and annealing temperatures in order to correctly

estimate this threshold value. Recently a mean field model of DRX [Bernard et al.

2011] and its adaptation to SRX [Fabiano 2013] have been proposed. Hereafter the

equations of this SRX model are used to estimate the nucleation parameters Ωcr, ®

and r which are needed inputs for our LS-FE SRX simulations.

The mean dislocation density at the beginning of SRX is hΩi= 2.01£1014 m°2. By us-

ing the data of table 4.4 representative of the 304L steel in the considered processing

conditions, eq. (1.9), eq. (1.31) and eq. (1.12) provide respectively Ωcr = 5.7£1013m°2,

® = 3224 for q = 2 (necklace nucleation), ® = 3235 for q = 3 (bulk nucleation) and

rc = 3.89µm. We choose r º 2hb > rc in the simulations, which is a minimum to have

a correct description of the nuclei.

Figure 4.9 illustrates the initial microstructure before and after the nucleation stage

for the different configurations (see table 4.3). It is worth emphasizing that, thanks to

the new ReX formalism detailed in the previous section, each grain of the microstruc-

ture (deformed grain or nucleus) has its own energy, represented by a given color in
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Parameter Value Units
T 1000 °C
"̇ 0.01 s°1

b 2.54£10°10 m
µ 4.55£1010 Pa
M 5£10°13 m4.J°1.s°1

∞ 0.6 J.m°2

K1 1.01£1015 m°2

K2 3.3
ø 1.47£10°9 N
µ 0.3
Kg 7£108 m°2.s°1

bg 3
r 11 µm
e0 0 J.m°3

Table 4.4 – Processing conditions and input parameters for the SRX simulations.

fig. 4.9. This energy is also completely independent of the GLS functions.

Simulation results and discussion

After deformation the dimensions of the REV are 0.8£0.62£0.48mm3. The FE mesh is

homogeneously refined in order to limit the initial size of the nuclei. It contains finally

2003 elements. A heat treatment of th = 17min at T = 1000°C is finally simulated. The

time step is set to 5s.

The evolution of the recrystallized fraction is plotted on fig. 4.10. In site-saturated

conditions, the Avrami exponent in eq. (1.13) is expected to be 2 for necklace-type

nucleation and 3 for bulk nucleation. As the JMAK theory assumes a homogeneous

deformation energy throughout the microstructure, only configurations 1 and 2 are

considered for this first comparison. Figure 4.10 illustrates that the present LS-FE

model captures greatly the recrystallization kinetics, as the calculated Avrami expo-

nents fall very close from the theoretical values.

The numerical results are finally confronted with the experimental observations of

[Huang 2011]. Figure 4.11a depicts the evolution of the bulk recrystallized fraction

during the heat treatment for configurations 3, 4 and 5 (see table 4.3).
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Stored energy (J/mm

3

)

3.29 ⇥ 10�42.44 ⇥ 10�4

2.65⇥ 10

�4
2.86⇥ 10

�4
3.08⇥ 10

�4

(a) Post-deformation (b) Configuration 3

(c) Configuration 4 (d) Configuration 5

Fig. 4.9 – Initial microstructure before (a) and after (b-c-d) nucleation with the "Heteroge-
neous Energy" representation. The color code corresponds to the stored energy level. Recrys-
tallized regions are colored in white.
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Fig. 4.10 – Numerical predictions concerning the recrystallized fraction and calculation of the
Avrami exponent for configurations 1 and 2 (see table 4.3).

Figure 4.11a illustrates that configuration 4 (necklace-type nucleation with selection

of the highest energy node) provides the most realistic prediction in terms of recrys-

tallized fraction. These results are in agreement with the experimental observations

of Huang [Huang 2011], where nuclei appeared mainly at the grain boundaries during

the recrystallization of the considered 304L steel. With bulk nucleation, the recrystal-

lization kinetics is accelerated because nuclei have more space to grow and do not

interfere with each other in the initial microstructure. In configuration 5, the pro-

gression of the recrystallized front is slowed down due to the formation of clusters in

regions of highest energy.

In [Huang 2011], the recrystallization fraction is measured on slices of the material.

One great advantage of the present numerical model lies on the possibility to easily

interpolate the 3D distance and energy fields on a planar mesh in order to construct a

2D representation of the microstructure from the volume results (see fig. 4.12). Thus,

10 equally-spaced cutting planes of the virtual polycrystal are analyzed. We compute

the respective surface recrystallized fractions of these 10 slices and then the average

value hXsi. The evolution of this quantity is plotted on fig. 4.11b for the configuration

4 and compared with the bulk recrystallized fraction. It appears that the surface re-

crystallized fraction slightly overestimates the volumetric one, despite the number of

cutting grains is relatively important (> 1000 for the 10 slices considered). This tends

to indicate a small space anisotropy of the recrystallized fraction. Moreover, these
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Fig. 4.11 – (a) Bulk recrystallized fraction Xv during the heat treatment at 1000°C for the
configurations 3, 4 and 5 (see table 4.3) and comparison with the experimental observations
of [Huang 2011]; (b) comparison of the bulk and surface recrystallized fractions simulated for
configuration 4. The error bars indicate the minimal and maximal values measured among
the 10 slices.
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results also demonstrate that the recrystallized fraction may fluctuate from a cutting

plane to another (see the error bars in fig. 4.11b), especially if the number of grains in

the cutting plane is not sufficient. This numerical tool could thus be wisely used to

size correctly the samples used for the experimental observations a priori and not a

posteriori (determination of the minimal number of cutting grains) in order to ensure

that the observed slice(s) is/are representative of the bulk behavior of the material.

Cutting plane

(a) 3D results (b) 2D extrapolation (slice view)

Fig. 4.12 – Creation of a 2D representation of the microstructure (slice) from the 3D simulation
results. The color code corresponds to the GLS functions.

Starting from the mean field equation given by eq. (4.11), all the recrystallized grains

(i.e. ei º 0) are assumed to grow at the same rate in the mean field model:

1
M

dRi

d t
= hei. (4.14)

The average growth rate of the nuclei obtained in the full field simulation is plotted

on fig. 4.13 for comparison. As expected in this context, we observe that this mean

field expression describes poorly the numerical predictions.

Effectively, there a two strong assumptions behind eq. (4.14). First, no capillarity term

is considered which makes sense only if stored energy gradients prevail on capillarity

forces. Secondly it does not take into account the interactions between the recrys-

tallized grains, which is strongly related to their initial distribution. By examining

the ratio § on fig. 4.14a, we observe that capillarity and recrystallization forces are

globally in balance for this configuration, and none of them can be safely neglected.

Even after 6min the growth regime becomes essentially driven by capillarity, as § is

smaller than unity.
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Fig. 4.13 – Average growth rate of the nuclei during SRX as a function of the critical stored
energy level. Here recovery is not considered, so recrystallized grains have a constant null
energy.

Taking into account the microstructure topology is then important in this case. In

configuration 3 considering random nucleation it is logically expected that germs

have more space to grow because they are homogeneously distributed. On the other

hand in configuration 4 and 5, nuclei are packed within high-energy regions and/or

around the grain boundaries. Consequently they rapidly interact with each others

which eliminates one or more growing direction(s) and slows down the coarsening.

These conjectures are confirmed by fig. 4.14b which depicts the average number of

neighbors for the recrystallized grains. The average number of facets is initially less

than two for configuration 3 and around five for configuration 4 and 5. This number

of neighbors remains also much lower in configuration 3 during the first stage of the

heat treatment t ∑ 5min which explains why the recrystallization kinetics is faster in

this case.

This second study illustrates the importance of considering also the microstructure

topology which is often omitted in mean field models. Full field approaches are ex-

tremely interesting in this context because they provide a complete representation

of the grain interactions and can help to better understand the kinetics at the grain

scale. Thus they can be advantageously employed to enrich/improved the mean field

representations. Ongoing studies are part of this topic (PhD work of Ludovic Maire,

MINES ParisTech, 2015-2018).
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Fig. 4.14 – (a) Ratio between average capillarity and recrystallization forces ; (b) average num-
ber of neighbors for the recrystallized grains.
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Considering the capacities of the present LS-FE model, an exciting perspective would

be to challenge the numerical predictions with more sophisticated experimental char-

acterisations in terms of volume recrystallized fraction and grain size. Although ob-

taining these quantities is straightforward numerically (see fig. 4.15), estimating the

recrystallized grain size inside the material is rather complex experimentally. Gener-

ally, the 3D grain size is estimated from the observed one by the mean of stereological

considerations, which relies on assumptions.

Stored energy (J/mm

3

)

3.29 ⇥ 10�42.44 ⇥ 10�4

2.65⇥ 10

�4
2.86⇥ 10

�4
3.08⇥ 10

�4

(a) t = 6min (b) t = 8min

(c) t = 10min (d) t = 12min

Fig. 4.15 – Simulated microstructure at different stages of the heat treatment (configuration
4). The color code corresponds to the stored energy. Recrystallized regions are represented in
white.

As illustrated in table 4.5 for configuration 4, each 3D simulation requires around one
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day of computations using 24 CPUs, distributed as follows:

Related section Computation time Percentage
Solving of CDEs eq. (1.47) 8h24min 31.4%
SCCs section 3.3.2 2min 0.1%
Initialization of energy fields section 4.3.2 < 1min 0%
Reinitialization section 2.4 17h21min 64.9%
Field extension section 4.3.3 10min 0.6%
Tracking of grain energies section 4.3.4 < 1min 0%
Nucleation section 4.3.5 < 1min 0%
Post treatment operations 57min 3.5%

Table 4.5 – Distribution of the computation time for a 3D large scale SRX simulation (configu-
ration 4). The simulation is performed on 24 Intel Xeon CPUs.

The extension of the energy fields detailed in section 4.3.3 is performed simultane-

ously with reinitialization and entails an additional cost of around 1% compared with

a classical reinitialization (without field extension), which is negligible.

As the nucleation algorithm and the initialization of the energy fields are only exe-

cuted one time at the early stage of the simulation, they represent a very small amount

of the global computation time. In the same way, the numerical costs associated with

the SCC procedure, the nucleation algorithm, the initialization and the tracking of

the energy fields are negligible compared with the reinitialization and the solving of

the CDEs.

On average, 34 GLS functions are active during this simulation (22 and 37 at the early

and final stages of the simulation, respectively) and the average number of grains

present in the microstructure is equal to 3067. By using eq. (4.10) the computation

time needed for such a simulation without coloring can be estimated around 1 month

and 20 days. So the computation time is reduced by 45 thanks to the new implemen-

tation, which is quite satisfying. By considering again an acceleration factor of 3.5

in 3D between the HJ and DRT reinitialization methods (see section 2.5), one can

estimate around 5 months and 25 hours the computation time needed to perform

this simulation at the beginning of this work.

Although very promising, the present model should be further improved in order to

capture the complexity of microstructural mechanisms involved during the forming

process. First of all, the influence of anisotropy in terms of grain boundary energy
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and mobility should be considered. More specifically, it is well known that the real

304L material contains twin boundaries, which are currently omitted in the simu-

lations. Some recent studies using the LS method have investigated the influence

of anisotropic grain boundary features in the context of 2D grain growth [Jin et al.

2015; Hallberg 2014; Mießen et al. 2015]. To our knowledge, this topic has never been

investigated in 3D with stored energy for the time being. Next, the intragranular het-

erogeneity in terms of stored energy and its evolution during the migration of the

grain boundaries should also be considered. This point is currently under study [Ilin

et al. 2016; Boulais-Sinou et al. 2016]. Also in the present study, only SRX is con-

sidered, which means that recrystallization starts only after the deformation stage.

First efforts to model DRX in a LS framework with consideration of the polycrystal

deformation are very recent [Boulais-Sinou et al. 2016]. The numerical approach em-

ployed in [Boulais-Sinou et al. 2016] for the modeling of DRX works around a coupling

between the CPFEM and GG/ReX models and uses the numerical tools detailed in

this manuscript. Further experimental investigations should also be carried out in

order to verify the values of the input parameters needed for the full field simulations

(number and size of the nuclei, critical dislocation density,...). Finally, as nucleation

models suitable for SRX conditions are relatively scarce in the literature, using the

present model to develop and/or calibrate an accurate SRX nucleation law is a very

interesting prospect.

Summary

The LS-FE modeling of SRX has been covered in this chapter. First we have discussed

the recrystallization model introduced by Bernacki et al. in [Bernacki et al. 2008]

which uses a given energy level for each distance field. Then we pointed out that

this model is not effective enough from a numerical point of view because of the

impossibility to use grain coloring and swapping. It is therefore limited to simple con-

figurations with small number of grains because each grain needs to be represented

by a distance field. Based on this initial situation, our objective was to extend this first

formalism to take full advantage of GLS functions and of the new recoloring scheme

introduced in section 3.3.2. For this purpose we developed a new implementation

of the recrystallization model based on stored energy fields which permit to handle

the energies without using a distance field for each grain. In this approach the en-

ergy is completely independent of the GLS functions. Consequently it is perfectly

compatible with the recoloring scheme introduced in the previous chapter because

the energies can be swapped simultaneously with the grains when a recoloring oper-
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ation has to be performed. Also a new nucleation algorithm which determines the

potential nucleation sites and handles the affectation of the new grains inside the GLS

functions has been developed. These new numerical tools have been implemented in

our numerical library in a completely general manner in such a way that any kind of

quantity (scalar, vector, tensor) associated with the individual grains can be handled

in the same way it is done for the stored energy (crystal orientation is an example). We

challenged this new implementation through different large-scale SRX simulations

in 3D. The new approach was observed to be far more efficient with acceleration fac-

tor up to 45 for the considered cases. The influence of the nucleation scenario on

the overall recrystallization kinetics has finally been studied based on different full

field simulations of SRX in site-saturated conditions. The numerical developments

presented in this chapter have allowed to publish [Scholtes et al. 2016a].

174



Chapter 5

To an efficient modeling of
microstructural evolution under
consideration of Zener pinning

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.2 Level set modeling of the Zener pinning phenomenon within a fi-

nite element framework . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.2.1 Description of the numerical approach . . . . . . . . . . . . . . 177

5.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2.3 Improvement of the algorithm for the generation of finite ele-

ment meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.3 Numerical investigations of the Zener pinning phenomenon . . . . 187

5.3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.3.2 Discussion of a classical limiting mean grain size equation in 2D188

5.3.3 First 3D simulation of Zener pinnning using a level set ap-

proach within a finite element framework . . . . . . . . . . . . 193

175



Chapter 5. To an efficient modeling of microstructural evolution under
consideration of Zener pinning

Résumé en français

Dans ce chapitre, la modélisation du phénomène d’ancrage par une méthode level

set/éléments finis a été étudiée. L’approche numérique développée par Agnoli et

al. [Agnoli 2013] pour la modélisation des précipités inertes a d’abord été présentée.

Celle-ci repose sur la construction de maillages éléments finis spécifiques contenant

des trous, qui représentent les précipités et freinent les joints de grains. Même si

cette méthode est très précise, elle est incompatible avec les simulations industrielles

en raison de temps de calcul très importants. La situation a été considérablement

améliorée par l’introduction des nouveaux algorithmes de reinitialisation et de recol-

oration dynamique (cf. sections 2.4 and 3.3.2) dans les simulations du phénomène

d’ancrage. Cependant, les temps de simulation étaient toujours pénalisés par la

génération des maillages éléments finis troués, qui est très longue. Une nouvelle

méthode de génération a donc été développée. Cette approche se base sur la géométrie

des objets à mailler (les particules de seconde phase en l’occurrence) pour construire

un maillage éléments finis conforme à l’interface des précipités. Un mailleur ex-

terne est utilisé pour mailler les entités géométriques dans l’ordre de leur dimension

spatiale. Beaucoup plus efficace, cette nouvelle méthode permet de générer des mail-

lages éléments finis adaptés à un grand nombre de particules en trois dimensions

avec des temps de calcul raisonnables. Ces développements ont été mis en pratique

pour réaliser plusieurs simulations du phénomène d’ancrage en deux dimensions et

pour discuter une loi classique à champ moyen prédisant la taille de grains moyenne

finale à partir des résultats de simulation en champ complet. Enfin une première

simulation réaliste du phénomène d’ancrage en trois dimensions a été réalisée en

s’appuyant sur des données expérimentales pour l’Inconel 718. Les développements

numériques et résultats présentés dans ce chapitre ont permis la publication d’un

article de conférence [Scholtes et al. 2016b].
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5.1 Introduction

As presented in the introduction chapter, the ZP phenomenon is a dragging effect

exerted by the precipitates on the grain boundaries, which may hinder GG or even-

tually stop it completely under certain conditions. In the case where GG stops, the

microstructure reaches a steady-state and a limiting mean grain size hRfi is obtained.

The ZP phenomenon is largely exploited in the industry for many alloys and espe-

cially for superalloys, where SPPs are used to control the grain size of the material.

Because it can dramatically impact the grain boundary kinetics, this phenomenon

must be taken into account in numerical models in order to predict accurately the

microstructure evolutions and the underlying physical mechanisms. Our main ob-

jective in this chapter is to propose an efficient LS-FE method for the modeling of

microstructural evolutions in presence of dragging precipitates. We start from the

numerical approach developed by Agnoli during its PhD work (MINES ParisTech,

2010-2013) for the modeling of inert SPPs (i.e. whose shape, size and position do not

evolve during the TMT/TT) and improve drastically its numerical efficiency through

the recent numerical developments. We introduce also a new methodology for the

efficient generation of the specific FE meshes needed for such simulations. These

developments are put into practice to discuss the fitting parameters of a classical

limiting mean grain size equation in 2D and to perform a first realistic 3D LS-FE

simulation of the ZP phenomenon.

5.2 Level set modeling of the Zener pinning phenomenon

within a finite element framework

5.2.1 Description of the numerical approach

Basics

The LS modeling of ZP is quite recent comparatively to the other full field approaches

presented in chapter 1 [Agnoli et al. 2012; Agnoli et al. 2014]. When coupled with

FE, this approach can be very interesting to address this phenomenon. Effectively,

no assumption is required concerning the shape or the dragging force exerted by the

SPPs. The balance of the surface tensions at the interface between a particle and

a grain boundary, given by eq. (1.22), can here be imposed thanks to a boundary

condition:

177



Chapter 5. To an efficient modeling of microstructural evolution under
consideration of Zener pinning

r√
kr√k ·
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∞
, (5.1)

where #»p represents the unit outward vector perpendicular to the interface of the

precipitate (see fig. 1.3). Then, when a grain boundary passes through a particle, its

shape adapts to satisfy eq. (5.1), which modifies its local curvature and therefore its

kinetics. Coherent or incoherent SPPs can thus be considered by applying the suit-

able boundary conditions. If null boundary conditions are applied at the SPP/grain

boundary interfaces, then we have r√ · #»p = 0 and Æ = 0°, which represents a pre-

cipitate incoherent with the matrix, i.e. ∞p
1 = ∞

p
2 in fig. 1.3. In practice, the SPPs are

represented by voids in the FE mesh and the boundary condition defined by eq. (5.1)

is directly integrated in the weak formulation of eq. (1.47):
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Let us remind that #»s is the unit outward vector normal to the boundary of the simu-

lation domain. At the interface of a precipitate #»s =°#»p (see fig. 1.3), and the second

member term in eq. (5.2) can be rewritten as follows:

Z

@≠
∞Mr√i · #»s u =°

Z

@≠
∞M sin(Æ)u (5.3)

Using this approach, the only adaptation needed to include SPPs in the simulation

is to, first, create a FE mesh that contains voids, each void representing a precipitate,

and secondly, apply the desired Neumann boundary conditions (only needed for

coherent precipitates).

In [Agnoli 2013], an approach is presented to generate these FE meshes with holes.

The first step is to create a binary field that represents the precipitates, equals to unity

inside the SPPs and zero elsewhere, as illustrated on fig. 5.2a. This field can be gener-

ated according to an experimental image or a virtual dispersoïd of precipitates that

follows a prescribed size distribution. Then the mesh is refined in the zones where the

binary field varies from zero to one in order to increase the precision at the precipitate

interfaces (see fig. 5.2b). After the mesh has been refined, all the elements that have at

least one node inside a particle are killed, i.e. removed from the FE mesh. The holes

formed by the killed elements represent the SPPs, as depicted on fig. 5.2c.
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Fig. 5.1 – View of a FE mesh used for a ZP simulation. The voids (white disks) represent the
SPPs.

5.2.2 Limitations

This LS-FE approach for the modeling of ZP has been demonstrated very precise [Ag-

noli et al. 2014]. However different issues have also been reported in the thesis work

of Agnoli [Agnoli 2013]. First, such Zener pinning simulations require to adapt (i.e.

reduce) the time step in order to describe properly the interactions between the grain

boundaries and the SPPs. If we use the same time step than for a classical GG simula-

tion without SPP, then the dragging effect exerted by the precipitates can be drastically

underestimated and the above approach loses its interest. Agnoli proposed a calibra-

tion procedure for the time step in the context of an Inconel 718 material in [Agnoli

2013]. But reducing the time step impacts directly the simulation time because more

time increments are needed to simulate the TMT/TT. This was especially problematic

when a HJ approach was used for the reinitialization of the LS functions because this

method was proven inefficient in the context of our application (see chapters 1 and 2).

The second issue is related to the description of the SPPs within the FE mesh. Ef-

fectively, before killing the mesh elements located inside the SPPs, the mesh must

generally be refined to better describe the precipitate interfaces. However, if a coarse

mesh size is fixed near the SPPs, the obtained interfaces can be sharp and irregular,

which alters the kinetics of the boundaries. It may also rise different numerical diffi-

culties concerning the resolution of the HJ equation (see eq. (2.6)) and increase the

number of needed iterations [Agnoli 2013]. On the other hand, if the prescribed mesh
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(a)

(b)

(c)

Fig. 5.2 – Generation of a FE mesh with holes with the method presented in [Agnoli 2013],
based on a kill-element strategy. The blue and red colors represent respectively the zero and
unity values of the binary field.
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size around the SPPs is very fine then the generation of the initial FE mesh with holes

is more time demanding.

Finally, the possibility of numerical coalescence imposed to Agnoli et al. to use the

same approach than in [Cruz-Fabiano et al. 2014], consisting in introducing an initial

separation between the child grains (see parameter ± in section 1.5.3. Obviously this

approach is catastrophic in terms of numerical efficiency because all the GLS func-

tions must be reinitialized at each time step.

Consequently the computation times reported in [Agnoli 2013] for the different 2D

simulations of the ZP phenomenon are extremely high. Several weeks are effectively

required, even for reasonable 2D microstructures with one thousand initial grains.

Obviously these simulation times are not compatible with our expectations and must

be drastically improved.

The first problem concerning the reinitialization stage in these ZP simulations has

been directly addressed here by replacing the HJ reinitialization method used in [Cruz-

Fabiano et al. 2014; Agnoli et al. 2014] by the DRT algorithm introduced in section 2.4,

which is far more efficient and robust. The problem of numerical coalescence has

also been directly solved by using the dynamic recoloring scheme of section 3.3.2

in the ZP simulations. These two algorithms are effectively completely generic and

can be directly employed in ZP simulations without any adaptation. Finally, even if

our developments have not permitted to use greater time steps in ZP simulations, it

is worth noting that the computation time per increment has been greatly reduced

thanks to the previous developments.

The last problem concerns the generation of the specific FE meshes needed in the ZP

simulations, which can be very time-consuming. Let us consider a simple 3D case for

an illustration. In [Agnoli 2013; Agnoli et al. 2014], the volume fraction of ∞ precipi-

tates measured in the considered Inconel 718 material is around 2%, with an average

radius of particles hrpi= 0.35µm. For this test case, we generate a single precipitate

with radius 0.35µm, centered in a 2£2£2µm3 cubic simulation domain, which gives

fv = 2%. Then the SPP and the domain are meshed by using local refinement with

the kill-element strategy detailed previously [Agnoli 2013]. Three different mesh sizes

are tested near the SPP hn = rp/2 (coarse), rp/5 (medium) and rp/10 (fine). Far from

the precipitates the mesh size is set to hb = 5hn. We depict on figs. 5.3a to 5.3c the

FE meshes generated in the different configurations with the corresponding element

qualities. Table 5.1 provides the number of elements composing each mesh and the

181



Chapter 5. To an efficient modeling of microstructural evolution under
consideration of Zener pinning

computation times needed for their generation, using 1 CPU.

Coarse Medium Fine
Number of mesh elements 718 3324 32,354
CPU time for one particle 9.2s 12.8s 52.2s
Estimated CPU time for 10,000 particles 1 day 2h 1 day 12h 6 days 1h

Table 5.1 – Generation of FE meshes for one precipitate with the approach of [Agnoli et al.
2012]. Simulations are performed on 1 CPU.

It is shown that, the aspect of the precipitate remains irregular, even with the finest

mesh size. Now, if a real polycrystal composed of around 500 grains with a mean

grain size hRi = 3.35µm (which is representative of the Inconel 718 considered in

[Agnoli 2013; Agnoli et al. 2014] is considered, 10,000 SPPs with radius rp = 0.35µm

must be generated to obtain fv = 2%. In terms of numerical cost, this problem is

globally equivalent to mesh 10,000 distinct small domains, each with dimensions

2£2£2µm3. In the last row of table 5.1, we estimate the computation times needed

to generate the FE mesh for such a particle cloud with the different precision levels,

using 1 CPU. Even by assuming a perfect speed-up of the parallel mesh adaptation

procedure (which is very far from the real speed-up observed in practice [Coupez

et al. 2000]), the computation times needed to generate these FE meshes with the

kill-element approach are impracticable in 3D, regardless the number of used CPUs.

This is a main reason why no 3D LS-FE simulation of the ZP phenomenon has been

performed for the time being. We attempt to improve the situation in the next section

by introducing a new algorithm for generating the FE meshes.

5.2.3 Improvement of the algorithm for the generation of finite ele-

ment meshes

In the approach of [Agnoli 2013], the particles are firstly immersed within the FE mesh,

then the mesh is refined, and finally the holes are created by killing the elements. This

approach is the most generic because any kind of particles can be considered, and

especially real-shaped SPPs. However, Agnoli [Agnoli 2013] has demonstrated that

the real particles can, most of the time, be reasonably approximated by simple ge-

ometrical entities, especially spheres. Thus the dispersoïd of SPPs can be modeled

by a cloud of spheres (respectively disks in 2D), each represented by the spatial co-

ordinates of its centroïd and a radius. Using this geometrical description, the above

strategy based on mesh adaptation for the construction of the initial FE mesh is not
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Mesh quality
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0.2 0.4 0.6 0.8

(a) Coarse (718 elements) (b) Medium (3324 elements)

(c) Fine (32,354 elements) (d) GBMG (755 elements)

Fig. 5.3 – Representation of a SPP within the FE mesh using different refined mesh sizes with
the kill-element strategy of [Agnoli 2013] and the new geometry-based one. The interface of
the precipitate is depicted in white.
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optimal because we know in advance where and how the mesh must be refined.

In most engineering problems, and especially in mechanics, the part is generally de-

signed in a first time. Then a virtual representation of the part is created thanks to

a CAD (Computer Assisted Design) software and finally the geometry is meshed in

order to perform the different simulations. This is the Geometry-based approach,

which relies on a simple idea: if we know in advance (before creating the FE mesh) the

shape of the entity that has to be simulated, then it is preferable to use its geometry as a

support for the mesh adaptation.

Next we will work around this concept of Geometry-based mesh generation (GBMG)

and introduce a new method for generating the FE meshes with holes much more

efficiently. The objective is to generate body-fitted FE meshes, wherein the interfaces

of the particles are explicitly represented. The most simple way to achieve this de-

scription is to generate first the mesh of low dimensional entities and then build

on top of them higher dimensional entities. This approach is classically referred to

as bottom-up mesh generation. In other words, in the 3D case, the point (0D) are

meshed first, then the lines and splines (1D), then the surfaces (2D) and, finally, the

cavities (3D). There are existing solutions to generate the FE meshes according to a

geometry. Hereafter we use the open-source GMSH 3D mesh generator [Geuzaine

et al. 2009] which is very efficient. Especially we employ the frontal algorithm imple-

mented in GMSH to generate the FE meshes (see [Rebay 1993] for details concerning

the frontal algorithm). GMSH uses as input a .geo file that contains the geometrical

entities and generates the FE mesh according to these prescriptions. It returns a .msh

files composed of the spatial coordinates of the FE nodes and the connectivity table.

This file is finally post-treated in such a way that it can be read and understood by our

numerical library. The newly developed GBMG procedure can then be summarized

as follows:

1. generate a dispersoïd of spheres (respectively disks in 2D) in the simulation do-

main, that satisfies the prescribed volume (respectively surface in 2D) fraction

and the prescribed size distribution of the SPPs. Hereafter we use the algorithm

detailed in [Hitti 2011; Hitti et al. 2016] to generate the centers and radii of

the precipitates which alloys to reach easily high densities but also to handle

particle clustering,

2. create a geometric description of the particle cloud (points, lines, splines, sur-

faces, volumes) that can be understood by the mesh generator (.geo file for

GMSH),
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3. mesh the geometric entities in the order of dimensionality according to a frontal

algorithm,

4. post-treat the generated mesh file in order to make it compatible with our C++

library.

The key-point in this algorithm is the generation of the geometry file (.geo), that needs

to be constructed very quickly to ensure efficiency. A C++ code has been developed to

perform this operation. Basically, this code converts the data from the files contain-

ing the spatial coordinates of the centers and the radii of the SPPs into a collection of

geometrical entities (points, splines, surfaces, volumes) that are then used by GMSH

to generate the mesh.

Now we repeat the previous test with a unique SPP centered in a cubic domain and

use this GBMG approach to generate the mesh. The mesh sizes close and far from

the interface are respectively set to hn = rp/2 and hb = 5hn, which corresponds to the

coarse configuration described earlier. The resulting FE mesh is depicted on fig. 5.3d

The description of the precipitate is here much more accurate. It demands also a

small number of elements to achieve this precision (around 750). Finally the CPU

time is extremely interesting because only 117ms are needed to generate this mesh,

giving an acceleration factor around 79 compared with the kill-element approach

(coarse configuration).

Now we use the GBMG approach to generate 10,000 homogeneously distributed SPPs

with radius 0.35µm in a 44£44£44µm3 simulation domain, which gives fv = 2%. As

illustrated on fig. 5.4, the obtained precision is very good and the computation time is

also very satisfying because less than 40min are needed on 1 CPU to generate the final

3D mesh with holes which contains more than 7 million elements. Obtaining such a

massive 3D FE mesh with equivalent precision and CPU time would be impossible

with the kill-element strategy [Agnoli 2013].

Hereafter we take advantage of the numerical developments introduced in the previ-

ous chapters (DRT algorithm, dynamic recoloring scheme, optimized FE mesh gener-

ation) to discuss a classical limiting mean grain size equation in 2D and to perform a

first 3D LS-FE simulation of the ZP phenomenon.
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Mesh quality
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(a)

(b)

Fig. 5.4 – 3D FE mesh of a 44£44£44µm3 simulation domain containing 10,000 SPPs with
radius rp = 0.35µm. The mesh is composed of 7 million elements approximately. The color
code refers to the mesh element quality. Precipitates are shown in white.
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5.3 Numerical investigations of the Zener pinning phe-

nomenon

5.3.1 Literature review

As presented in chapter 1, the limiting mean grain size obtained when the dragging

precipitates hinder GG is generally predicted by a Zener-type law (see eq. (1.25)).

This relationship contains two fitting parameters (K ;m) which have been extensively

discussed in the last six decades. First analytic investigations were based on many

approximations (idealized microstructure topology, simplified shape of the precip-

itates, estimation of the dragging force, isotropy of the interface energies) and are

thus rather limited. More recently, these parameters have been investigated in more

details thanks to sophisticated full field models (see chapter 1). A rapid overview of

the proposed values for the pair of parameters (K ;m) is given in table 5.2.

Year Refs. K m Comments
1945 [Smith 1948] 4/3 1 Analytical study
1975 [Hellman et al. 1975] 4/9 0.93 Analytical study
2000 [Miodownik et al. 2000] 0.728 1.02 MC simulations (3D)
2005 [Couturier et al. 2005] 0.606 1 FE simulations (3D)

Table 5.2 – Brief review of the values proposed for the parameters K and m in eq. (1.25).

In 2006, Moelans and al. [Moelans et al. 2006] proposed to consider only the SPPs

located at the grain boundaries to estimate hRfi, because only these precipitates really

hinder the grain boundaries. Especially the authors introduced a new quantity, noted

fgb, which represents the volume (respectively surface in 2D) fraction of precipitates

in contact with a grain boundary and reformulated eq. (1.25):

hRfi= K
hrpi
f m

gb

, (5.4)

Interestingly, even if the relevance of eq. (5.4) comparatively to eq. (1.25) was proved

in 2D [Agnoli et al. 2014], quite surprising results were obtained concerning eq. (5.4).

It has thus been found that eq. (5.4) can not predict exactly the limiting mean grain

size in microstructures characterized by different grain/precipitate size ratios (see

fig. 5.5).

However in this study, the important simulation times limited the number of consid-

ered grains and the numerical difficulties encountered, especially those concerning
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Fig. 5.5 – Results obtained by Agnoli et al. [Agnoli et al. 2014] for the limiting mean grain size.

the HJ reinitialization solver, have not permitted to determine if these results are

founded or just caused by numerical artifacts. This is the question we attempt to

address in the next section, wherein we use our new numerical tools to reinvestigate

eq. (5.4) and the previous 2D study of Agnoli et al. [Agnoli et al. 2014].

5.3.2 Discussion of a classical limiting mean grain size equation in

2D

We perform a set of 2D GG simulations with different distributions of SPPs in order to

investigate the influence of the precipitate size and surface fraction on the limiting

mean grain size.

Simulation parameters

On average, 16 CPUs are used for the simulations and the simulation times are around

one or two days, depending on the configuration, which is considerably less than the

ones from the previous study [Agnoli et al. 2014]. Furthermore, around twice as many

grains are now considered, which enables more statistically representative predic-

tions by limiting the impact of the edge effects.
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The initial polycrystal follows the grain size distribution measured experimentally

in Inconel 718. The values of the GB mobility and energy are respectively fixed to

M = 2.3£10°13 m4/J/s and ∞= 0.6 J/m2, which is representative of this material at a

sub-solvus temperature (around 985°C) [Agnoli et al. 2014]. The simulated domain is

a square with dimensions 0.3£0.3mm2, leading to an initial number of grains close

to 2600. The initial mean grain size is hR0i = 3.35µm. All SPPs are perfectly circular

with identical radius rp and assumed incoherent (Æ= 0° in eq. (1.22) and eq. (5.1)).

In [Agnoli 2013], Agnoli calibrated the time step for Inconel 718 by performing dif-

ferent ZP simulations of a circular (2D) shrinking grain passing through a dispersoid

of particles. He compared the grain shapes obtained at steady state (i.e. when its

boundary is hindered by the SPPs) with the different time steps and observed that the

grain adopts globally the same final shape for ¢t ∑ 0.1s, which indicates numerical

convergence is achieved. According to this study, we use ¢t = 0.1s hereafter for all ZP

simulations.

Results and discussion concerning the limiting mean grain size equation

The initial FE meshes with voids are generated using the GBMG strategy described

earlier. Then the interfaces of the precipitates are blocked to ensure they do not move

during the simulation, and anisotropic remeshing is performed at the grain bound-

aries in order to improve the description of the interfaces (see fig. 5.1).

Hereafter the results of the LS simulations are constantly confronted with the work

of Moelans et al. [Moelans et al. 2006], wherein eq. (5.4) is discussed based on the

results of PF simulations with different particle and grain sizes. As these PF results

show good agreement with experimental observations, it is assumed they stand for a

reliable comparison.

In the present study, four particle radii rp are tested (0.2µm, 0.4µm, 0.8µm and 1µm)

with surface fractions of 1% to 8%. For each simulation, the values of fgb and hRfi are

measured at the steady state (when the mean grain size becomes stable). The fig. 5.6

illustrates the microstructure for the configuration rp = 0.4µm / fv = 3% at the early

and final stages of the simulation.

The evolution of the mean grain size during the heat treatment is plotted on fig. 5.7

for different pinning configurations. It appears that, for a given surface fraction, the

189



Chapter 5. To an efficient modeling of microstructural evolution under
consideration of Zener pinning

Grain size (µm)

12.50

2.5 5 7.5 10

(a) t = 0

(b) t = 9min

Fig. 5.6 – Microstructure at the early and final stage of the simulation for the ZP configuration
rp = 0.4µm / fv = 3%. The color code corresponds to the grain size.
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radius of the precipitates influences drastically the GG kinetics. For example, with

rp = 1µm, 20min are needed to reach the steady state while the mean grain size

becomes globally stationary after less than 5min with rp = 0.2µm. The fig. 5.8 sum-

marizes the results obtained at steady state for all the simulated configurations.
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hR
i
(µ
m
)

rp = 0.2µm
rp = 0.4µm
rp = 0.8µm
rp = 1µm

Fig. 5.7 – Mean grain size during the heat treatment for different particle radii with a surface
faction fv = 1%.

As previously observed by Agnoli et al., all the data plotted on fig. 5.8 can not be rep-

resented by a single master curve, which corroborates the idea that the formalism

of eq. (5.4) must be enhanced to predict the limiting mean grain size in microstruc-

tures presenting different grain/SPP size ratio. For this purpose we plot on fig. 5.9

the evolution of the parameters K and m (see eq. (5.4)) obtained with the present

LS simulation results as a function of the initial grain/SPP size ratio. It is obvious

that this normalization makes sense only for microstructures wherein the grain size

distribution is relatively regular (relatively small deviation from the mean grain size),
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Fig. 5.8 – Results of the LS simulations at the steady state. Each dashed line corresponds to
the best first satisfying eq. (5.4) for a given particle radius.
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which is the case in the considered Inconel 718 material.

By using power regressions for these two parameters, the two following expressions

are obtained:

K = 0.362
(rp/hR0i)

and m = 0.853
µ

rp

hR0i

∂0.428

. (5.5)

As illustrated on fig. 5.9, the PF results of [Moelans et al. 2006] fall very close from the

trend lines given by eq. (5.5).

Substituting eq. (5.5) in eq. (5.4) gives finally a new expression for the limiting mean

grain size:

hRfi= 0.362hR0i f
°0.853(rp/hR0i)0.428

gb . (5.6)

Figure 5.10 illustrates the quality of the proposed model comparatively to the ob-

tained LS results and the PF simulations of [Moelans et al. 2006].

5.3.3 First 3D simulation of Zener pinnning using a level set approach

within a finite element framework

Finally we apply the main developments of this thesis work for a realistic 3D simu-

lation of ZP without stored energy. For this purpose we use the FE mesh of fig. 5.4

whose dimensions are 44£44£44µm3. Then a polycrystal of 530 grains is immersed

inside this domain, following the grain size distribution measured experimentally in

Inconel 718 [Agnoli et al. 2012]. Then the initial mean grain size is hR0i º 3.35µm.

No remeshing is performed in the simulation. In first approach, we fix the same time

step than in 2D, i.e. ¢t = 0.1s and stop the simulation after 2400 time increments

where the steady-state is achieved. The evolution of the microstructure is depicted

on fig. 5.11 and fig. 5.12 offers a more precise description of the interaction between

a grain boundary and the precipitates. The shape of the interface is close from a

catenoid of revolution, as detailed in [Hellman et al. 1975; Harun et al. 2006].

The limiting mean grain size obtained is hRfi= 7µm (see fig. 5.13). This value is com-

pared with the predictions of the other models in table 5.3.
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Fig. 5.9 – Values of K and m (see eq. (5.4)) obtained with full field simulations. The dashed
lines correspond to the best power fits. Diamond data points are taken from [Moelans et al.
2006].
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Fig. 5.10 – Predictions concerning the limiting mean grain size obtained with eq. (5.6) (rep-
resented by the dashed lines) for different SPP/grain size ratios and comparison with the full
field simulation results (PF simulations from [Moelans et al. 2006] and LS-FE simulations).

Model hRfi (µm) Comparison
LS-FE approach 7
[Smith 1948] 23.3 +70%
[Hellman et al. 1975] 5.9 -18.4%
[Miodownik et al. 2000] 13.8 +49.2%
[Couturier et al. 2005] 10.6 +34%
Equation (5.6) 7.44 +1.7%

Table 5.3 – Mean grain size predicted by the present LS-FE model and comparison with other
works.
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Grain radius (µm)

130

2.5 5 7.5 10

(a) t = 0 (530 grains) (b) t = 800¢t (138 grains)

(c) t = 1600¢t (75 grains) (d) t = 2400¢t (54 grains)

Fig. 5.11 – Evolution of the grain boundary network during the 3D ZP simulation. The color
code refers to the grain size and SPPs are represented in white.
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Fig. 5.12 – Zoom on the interaction between a grain boundary and the cloud of SPPs.
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Fig. 5.13 – Mean grain size in the polycrystal during the 3D ZP simulation.
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It appears that the predicted mean grain size at the steady is much smaller than the

one obtained with the classical Zener & Smith’s set of parameters [Smith 1948]. De-

spite a very small number of grains are still present in the domain at the end of the

simulation (around 50), the calculated mean gain size falls between the predictions

of Hellman et al. [Hellman et al. 1975] and of Couturier et al. [Couturier et al. 2005],

which tends to validate the consistency of our results.

1770 SPPs are in contact with the grain boundaries at the steady-state, giving fgb =
0.37%. Using this value, eq. (5.6) provides hRfi= 7.44µm which is in very good agree-

ment with the full field predictions, even if eq. (5.6) has been built on 2D ZP simulation

results. This interesting result should be confirmed through additional 3D simula-

tions of ZP with different particle distributions.

Such simulation requires 2 days and 10 hours of computations using 24 CPUs, which

is remarkable compared to the state of the art. It is worth noting that performing

this simulation would have been hardly possible before this thesis work due to the

numerical requirements. That being said, computation times for ZP simulations

remain relatively important and require to be further optimized in order to discuss

the classical limiting mean grain size equations in 3D.

Summary

In this chapter the LS-FE modeling of the ZP phenomenon has been investigated.

First we have detailed the numerical approach developed by Agnoli et al. [Agnoli

2013] for the modeling of inert precipitates. The latter is based on the construc-

tion of specific FE meshes containing holes that represent the precipitates and hin-

der the movement of the grain boundaries. Even if it is very precise, this approach

was demonstrated to be incompatible with industrial simulations due to the colos-

sal computation times. The situation has been drastically improved by introducing

the DRT algorithm and the dynamic recoloring scheme (see sections 2.4 and 3.3.2

for details about these algorithms) in ZP simulations. However the simulation times

were still penalized by the generation of the FE meshes with holes which is highly

time-consuming. So we developed a new method for generating these specific FE

meshes. This approach uses the geometry of the objects that have to be meshed (the

SPPs in the present context) in order to built a FE mesh conform with the interfaces of

the precipitates. An external frontal mesh generator is used to mesh the geometrical

entities in the order of dimensionality. This new method was demonstrated much
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more efficient and able to tackle large 3D particle clouds within reasonable computa-

tion times. These developments have been put into practice to perform a set of 2D ZP

simulations and to improve a classical limiting mean grain size equation based on the

full field simulation results. Finally we performed a first realistic 3D LS-FE simulation

of ZP based on experimental data of Inconel 718. The numerical developments and

results presented in this chapter have allowed to publish [Scholtes et al. 2016b].
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Chapter 6

Conclusion and outlooks

The objective of this PhD work was to improve the numerical performances of a LS-FE

model devoted to the simulation, at the polycrystal scale, of microstructural evolu-

tions in metallic material formed at high temperature.

It has been illustrated in the introduction chapter that the recent metallurgical prob-

lems faced by the industrials require precise modeling tools in order to limit the cost

and time needed for the development/improvement of materials and processes. So

these modeling tools need to be extremely precise and versatile in order to capture the

complex physical mechanisms involved during hot metal forming. They must also

be very efficient and robust to enable industrials to perform the simulations by them-

selves with their own numerical facilities in reasonable computation times (typically

less than few days with standard workstation). Developing such numerical models is

a main challenge of today’s materials science, and especially in metallurgy where the

economic, security and environmental concerns are more and more bindings. The

reduction of aircraft engines, for example, requires the improvement or development

of materials able to endure higher service temperatures. The modeling approaches

are of great interest to support the technological decisions of the engineers in order

to address these challenges.

The development of HPC in metallurgy is thus supported by the European institutions

at the highest level to encourage the development of new numerical solutions and

their implementation directly in the industry. This PhD work, by proposing efficient

numerical tools able to predict the microstructure evolutions during hot forming, is

then fully in line with these recommendations.

As presented in chapter 1, different approaches have been developed in the last
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decades to model microstructure evolutions. Analytical and enriched mean field

models which use a homogeneized/simplified description of the material have the

advantage of simplicity and rapidity, but rely on many limiting assumptions. On the

other hand, full field approaches provide a complete description of the material and

are very precise. They are also more greedy in terms of computation time.

The CEMEF and the company Transvalor have therefore initiated the development

of a global software package, called DIGIMU® , able to conciliate the most attracting

features of mean field and full field approaches in order to tackle the whole manu-

facturing process of metallic parts and the subsequent microstructural evolutions.

Especially a LS-FE approach is employed in DIGIMU® to address the microstructure

evolutions at the polycrystal scale. Even if this is not the most rapid or straightforward

method, the LS-FE approach presents the great advantage to be more versatile as the

approach is able to treat most of the physical phenomena taking place during hot

metal forming in a global, robust and unified numerical framework. However the

numerical cost of this method remains its main drawback, especially in 3D where

simulation times are usually counted in days, or even weeks.

The first step in the development of DIGIMU® was therefore to improve drastically

the numerical efficiency of full field simulations, and more specifically of the used

LS-FE formalism.

6.1 Achievement

After analyzing the distribution of the simulation times for a classical GG simula-

tion in 2D, the first efforts were devoted to the improvement of the reinitialization

method. A review of the existing approaches in the literature led us to develop the

DRT algorihtm which is based on a geometric approach and uses optimized searching

procedures coupled with an efficient bounding-box strategy, ensuring high parallel

efficiency. This method was proven far more efficient with acceleration factors up to

300, but also more robust as it requires no numerical parameter and does not rely

on the resolution of PDE systems. Colleagues apply this new DRT algorithm to other

applications using the LS method, especially phase changes and solidification during

welding of additive manufacturing processes [Nguyen 2015; Saad 2016; Chen et al.

2016]. More generally this DRT algorithm is able to address most of the numerical

problems based on the LS-FE method, such as fluid mechanics or image treatment.
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The second aspect treated in this work was the optimization of the numerical formal-

ism based on GLS functions. Two objectives were particularly sought. The former was

to accelerate the simulation times and to reduce the memory requirements by using

less GLS functions for representing the polycrystals. The second point was to avoid

numerical coalescence and to assess the properties of the individual grains contained

in the GLS functions. These two objectives have been addressed by developing and

implementing a dynamic recoloring scheme which separates the connected compo-

nents of each distance field, detects the risks of coalescence and redistributes the

grains inside the GLS functions when numerical coalescence is about to occur. This

algorithm has permitted to reduce drastically the memory requirements, to improve

the efficiency, to prevent coalescence in all simulations, and finally to assess the in-

trinsic properties of each grain. Based on these developments, a new algorithm was

also proposed to immerse real polycrystal within a FE mesh thanks to GLS functions.

This algorithm was successfully applied to immerse a real 3D polycrystal from an ex-

perimental image and to perform a GG simulation based on this image. Although they

have been only used in the context of GG and ReX in this work, these algorithms are

completely general and can be directly applied to a variety of multiphase problems

relying on coloring. Hot powder compaction [Zouaghi 2013] and fracture mechanics

[Trejo et al. 2016] are examples of application where these developments have been,

or will be, applied.

After improving the LS formalism itself, special attention has been paid to the SRX

phenomenon, and more particularly to the SRX model introduced in [Bernacki et al.

2008]. Effectively this formulation of the ReX model suffers from inherent limitations

due to fact it does not handle coloring and thus requires to use as many GLS functions

as grains in order to handle the different stored energy levels of the grains. Numerical

tools have therefore been developed in order to propose a new efficient formulation

of the SRX model working around stored energy fields. These stored energy fields

enable to handle independent energy for each grain while taking full advantage of

grain coloring and recoloring. This new implementation has permitted to reduce

drastically the computation times of SRX simulations. Accelerations up to 45 have ef-

fectively been achieved for the considered 3D cases with important number of grains.

Also the algorithm used in the new SRX model have been developed in a generic man-

ner, and was recently used by colleagues to model DRX [Boulais-Sinou et al. 2016],

and also to handle heterogeneous stored energy inside the grains [Ilin et al. 2016].

Last chapter of the manuscript was finally devoted to the LS-FE modeling of the

ZP phenomenon. This problem was tackled previously in [Agnoli 2013; Agnoli et al.
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2014] where a LS-FE numerical approach has been developed to model inert precipi-

tates without any simplifying assumption concerning the dragging effect exerted on

the grain boundaries. This method relies on, firstly, the construction of specific FE

meshes with holes that represent the SPPs, and secondly, the use of suitable boundary

conditions that hinder the migration of the grain boundaries. It has been illustrated

that the generation of the FE meshes needed in ZP simulations can be extremely time

consuming in 3D. This is particularly problematic because a new FE mesh has to be

created for each distribution of precipitates. A new approach has therefore been pro-

posed to improve the situation. The latter uses a geometrical representation of the

precipitates that supports the mesh generation and enables to build large FE meshes

with several million elements in few minutes. Different 2D simulations of ZP have

been performed with different particle distributions in order to discuss a classical lim-

iting mean grain size equation. A new formulation of this law has then been proposed

based on the full field simulations results. The main developments of this PhD thesis

work have finally been applied to a realistic LS-FE simulation of the ZP phenomenon

in 3D which is, to the author knowledge, a first time for this approach. The method de-

veloped in the context of this work for generating the FE meshes with holes has been

recently applied to the simulation of the HIP bounding process [Bernacki et al. 2016].

Especially under certain conditions of loading and/or temperature, the roughness of

the initial surfaces in contact during diffusion welding may result in porosities at the

interface, that can hinder the movement of the grain boundaries. A simple way to

account for this phenomenon is to add holes in the FE mesh near the initial welding

interface. Using this approach, grain boundaries are naturally slowed down when

they cross the interface. A PhD work based on this development is already planned

(CEA/MINES ParisTech 2017-2020).

This project was particularly important to develop all the necessary numerical tools

for the modeling of GG and SRX in an accurate way within reasonable computation

times. These tools are now being or will be used in other works, and especially in the

context of the industrial ANR Chair DIGIMU, started in October 2016 at the CEMEF,

whose one objective is to develop and extend the capacities of the DIGIMU® package.

It is worth noting that the quality of the present work gave rise to four papers pub-

lished in peer-reviewed international journals, and conferences (11 international and

10 national).
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6.2 Suggestions for future works

Although very promising, the present numerical model should however be further

improved in order to capture the complexity of microstructural mechanisms involved

during the forming process. First, the influence of anisotropy in terms of grain bound-

ary energy and mobility should be considered. Particular grain boundaries, and es-

pecially twin boundaries, must also be modeled. These are basically particular grain

boundaries that have a very low energy and thus migrate much slower than the reg-

ular boundaries. Recent LS studies focused on the influence of anisotropic grain

boundary features in the context of 2D GG [Jin et al. 2015; Hallberg 2014; Mießen et al.

2015]. To our knowledge, these works have no 3D equivalent for the time being. Such

topic is an obvious perspective of this PhD work.

Next the intragranular heterogeneities in terms of stored energy and their evolutions

during the migration of the grain boundaries should also be considered. This point

is currently under study [Ilin et al. 2016; Boulais-Sinou et al. 2016]. Again the ap-

proach developed by colleagues uses the numerical tools developed in the present

work applied to heterogeneous energy fields inside the grains. Especially the algo-

rithm introduced in section 4.3.4 has been adapted to affect a stored energy level

representative of the recrystallized material in the zone swept by the grain bound-

aries during a time increment. This approach is effectively much more relevant from

a physical point of view [Boulais-Sinou et al. 2016].

Another global challenge might be to compare MC simulations with the LS-FE simu-

lations for the same GG and ReX problems. This would expose both the differences in

computational cost and (perhaps) differences in accuracy. This could be done with,

e.g. the Sandia SPPARKS code [Plimpton et al. 2009], which is very efficient (fully

parallelized).

Although the experimental results obtained by Huang [Huang 2011] for SRX have

been used in this work, the current available data are not sufficient for a quantitative

discussion of the obtained numerical results. It is then important to perform new

experimental investigations of the materials that are considered in the simulations

(mainly the 304L material in the present work). As discussed in section 3.5, the collab-

oration that is being initiated with the university of Ulm offers also a great opportunity

to compare the results of the present LS-FE model with in situ observations and PF

simulations. Especially it was observed that the aluminum material considered in the

PhD work of Mingyang Wang presents important anisotropy of the grain boundary
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energy. Such collaboration could thus permit to validate the numerical tools needed

to consider anisotropic boundary features.

Considering the ZP phenomenon, the numerical results obtained in section 5.3 are

quite satisfying. However they shall be substantiated with additional experimental

validations. Moreover it appears important to investigate the variability of the fitting

parameters in eq. (5.6). More precisely it has been found in this study that the pro-

posed values are in good agreement with the results of Moelans et al. [Moelans et al.

2006] even if the material (grain size distribution, grain boundary energy/mobility)

and the TT conditions are different. This new model seems therefore quite general-

izable. But further investigations should be conducted in order to corroborate these

first remarks. The enrichment of this mean field equation in order to consider more re-

alistic microstructure (anisotropy of grain boundary energy, presence of twin bound-

aries,...) is also an exciting perspective.

Finally the 3D aspect must also be further considered, as the real interaction between

a grain boundary and a precipitate can only be described in 3D. The 3D simulation

of ZP phenomenon is now possible thanks to the developments introduced in this

manuscript, as illustrated by the simulation of Inconel 718 presented in section 5.3.

However discussing the limiting mean grain size equations in 3D remains compli-

cated for the time being due to the high computational cost of these simulations.

Effectively, even if the above developments have grandly improved the situation, 3D

ZP simulations require a fine spatial discretization near the SPPs and small simula-

tion time steps all along the simulation in order to correctly describe the interaction

between the precipitates and the grain boundaries. Given the current numerical tools

available in our library, performing mesh adaptation in 3D is extremely costly for

the time being, and even counterproductive in the context of our application. This

imposes to use fixed isotropic FE meshes with a relatively fine mesh size everywhere

inside the domain, which increases obviously the number of DOFs in the FE problem

and the memory requirements. Moreover, as we need to simulate a large number of

grains to prevent domain-size effects, performing statistically-representative LS-FE

simulations of ZP in 3D remains a real challenge for the time being, even with our new

numerical tools. The situation could however be improved, as mentioned earlier, by

using periodic BCs which enable to limit the RVE sizes, providing that we are able to

generate and maintain periodic microstructures and FE meshes. This point has not

been investigated in the present work but will be the topic of a planned PhD work in

the context of the DIGIMU Chair. Finally, it is worth noting that the above approach

for ZP simulations enables to simulate only inert SPPs and should then be extended
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to account also for evolving precipitates during non-isothermal TMT/TT.

The above remarks rise three main planned area for improvements:

• improvement of the time step management,

• work on 3D mesh adaptation,

• extension of the numerical model of ZP presented in chapter 5 to evolving

precipitates.

6.2.1 Management of the time step in simulations

As illustrated by the example of ZP, different levels of precision may be needed in-

side the simulation domain. This concept was introduced in chapter 1 for the spatial

discretization with mesh refinement and can also be extended to the time variable.

Effectively, it has been discussed earlier that a fine time step is needed to describe

properly the interactions between the grain boundaries and the SPPs. However this re-

marks is only true in the regions where these interactions effectively occur. Elsewhere,

and especially in the grain interiors, the needs in terms of accuracy are not the same

and using this fine step is a waste of numerical resources. This introduces nicely the

complex concept of space-time FE method. In this approach, the time is also meshed

in the same manner than space, and different time steps may be adopted simulta-

neously in the same simulation domain. This approach, currently investigated by

colleagues at the CEMEF, requires a mesher/remesher able to perform mesh adapta-

tion both in space and time, a space-time error estimator for the construction of the

metric fields and finally 4D solvers adapted to the space-time FE formulation. Even if

the Fitz mesher/remesher available in Cimlib is under development to be compatible

with the 4D formulation, this is not the case of most numerical tools implemented in

the numerical library. Many adaptations are thus needed to investigate this method.

More simply it is also possible to adapt dynamically the time step during the simu-

lation while keeping it homogeneous. Let us consider a simple GG simulation with

long treatment time for an illustration. Following the method used in this work, a

time step value is chosen for the entire simulation at the early stage, based on the

estimation of an average displacement hdi of the grain boundaries during one time

increment:

hdi=
Zt 0+¢t

t 0
hvid t , (6.1)
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where hvi is an average migration rate of the grain boundaries. Classically, the time

step is fixed in such a way that hdi does not exceed an arbitrary fraction of the refined

layer E (when local mesh adaptation is used) or of the mesh size (in the case of ho-

mogeneous mesh refinement). Using classical mean field approximations, hvi can be

estimated from eq. (1.4):

hvi= M
µ
∞

ds °1
hRi + hei

∂
. (6.2)

During GG and SRX in site saturated conditions, 1/hRi and hei decreases, so as hvi,
and finally hdi. An alternative in this situation can be to adapt the time step in such

a way that the average displacement of the grain boundaries hdilim remains constant

during the treatment. By assuming hRi and hei are constant between two consecutive

times t 0 and t 0 +¢t , and by substituting eq. (1.6) in eq. (6.2), the time step must

therefore satisfy this condition:

hdilim ∏
µ
∞

ds °1
hRi + hei

∂Zt 0+¢t

t 0
M0(T )exp

µ
° Qm

RT

∂
d t . (6.3)

Using a piecewise linear temperature profile, the trapezoid rule can be used to cal-

culate iteratively the integral term in eq. (6.3) until the greatest value of ¢t which

satisfies eq. (6.3) is found. Then this greatest value gives the time step for the next

time increment.

This method, referred to as dynamic time step adaptation (DTSA), has been recently

integrated to our numerical framework. To illustrate its interest, we reinvestigate the

SRX simulation referred as "Configuration 4" in section 4.4.2 with DTSA. The evolu-

tion of the time step and of the recrystallized volume fraction obtained with both

methods (fixed time step and DTSA) are depicted on fig. 6.1. Here hdilim is chosen in

such a way that ¢t (t = 0) = 5s with the DTSA method, which was the value adopted

in the SRX simulation of section 4.4.2 (with constant time step).

Using this approach, only 66 time increments are needed to simulate the whole TT

of 17min at 1000°C instead of 204 with the fixed time step strategy. The simulation

time is thus reduced from more than one day to around 9h, still using 24 CPUs. The

predictions in terms of volume recrystallized fraction are also almost identical with

both methods (see fig. 6.1b), which proves the great potential of this approach. These

good results should now be comforted with other comparisons. An interesting point

would be now to determine automatically an adequate value for hdilim as a function

of the considered material and of the thermomechanical conditions in order to assist

208



6.2. Suggestions for future works

5 10 15 20
0

20

40

60

80

100

120

t (min)

X

v
(
%
)

Fixed time step
DTSA

(a)

5 10 15 20
0

10

20

30

40

50

t (min)

�
t
(s
)

Fixed time step
DTSA

(b)

Fig. 6.1 – Evolution of the bulk recrystallized fraction (a) and of the time step (b) for the
SRX simulation referred as "Configuration 4" in section 4.4.2 with fixed time step and DTSA
methods.

the user. In chapter 5, we mentioned that the time step must also be reduced in ZP

simulation to correctly describe the grain boundary/precipitate interactions. So the

DTSA approach must be extended to account for the presence of SPPs.

6.2.2 Mesh adaptation, perspectives and challenges

The developments introduced in this manuscript have permitted to address many

issues of the LS-FE model used to model microstructure evolutions. However some

points has not been considered, and especially remeshing. As discussed previously,

performing mesh adaptation, even in 2D and with anisotropic elements, has most

of the time an important numerical cost. Even in 3D performing remeshing can be

counterproductive for the present polycrystal application, as better performances are

obtained with fixed fine and homogeneous FE meshes. However, using this kind of

FE mesh demands a large amount of free memory available. Also in ZP simulations,

the mesh refinement near the precipitates must be correlated to their sizes (see chap-

ter 5), which is generally very small compared to the dimensions of the simulation

domain. So, if a fixed FE mesh is used, the mesh size around the SPPs must be kept

very small all along the simulation, which increases significantly the computational

cost.

An important work must therefore be performed on the remeshing topic. Two ap-

proaches are possible. First, it is possible to focus on a better construction of the met-

ric field that supports the mesh adaptation. The latter can effectively be optimized in
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such a way that it minimizes the number of needed elements without degrading the

precision. An interesting example is pure GG. Effectively during this phenomenon

the migration velocity of the grain boundaries is dictated by their local curvature. So

the mesh can be unrefined in regions where interfaces are slightly curved, thus saving

DOFs. This can be achieved by using curvature-based mesh adaptation as it is done

in [Quan et al. 2014]. Recently Shakoor (PhD MINES ParisTech, 2013-2016) adapts

this approach to our LS P1 numerical framework and proposed a new error estimator

based on interface curvature through gradient and hessian recovery (see [Shakoor

2016] for more details). Obviously this error estimator should be enriched in order to

consider also the stored energy gradients in ReX simulations, and not only the inter-

face curvature. The advantage of working on metric fields is that no development has

to be made on the core of the remeshing algorithm, i.e. the remesher itself.

On the other hand, a work can be made directly on the remeshing tools to improve

the global efficiency. Especially other techniques should be investigated to adapt the

FE mesh. We refer the interested reader to [Gruau 2004] for a comprehensive review

of the existing mesh adaptation techniques. Among all, the approach relying on con-

form FE meshes, presented in chapter 1 (see fig. 1.10) deserves a particular interest to

the opinion of the author. These body-fitted approaches are rather similar to Vertex

models, with the exception that the grain interiors are also meshed. Using conform

FE meshes has two main advantage. First, far less mesh elements are needed to rep-

resent a curved interface for an identical level of accuracy. This was nicely illustrated

with the meshing of SPPs in chapter 5, where the GBMG is essentially a body-fitted

approach. Secondly, thanks to the explicit representation of the grain boundary net-

work obtained with the body-fitted approach, the interface curvature can be explicitly

calculated based on geometrical considerations, as it is done in Vertex models. How-

ever estimating directly the interface curvature based on the interfacial mesh is more

costly numerically than using a diffusive formulation as it was done in the present

work (see section 1.5.3). Another advantage of using conform FE meshes is that the

decreasing function f in eq. (4.3), that smoothes the recrystallization velocity field #»v e,

is not longer needed because the position of the grain boundaries is now known. Fi-

nally, as the two terms #»v c and #»v e can be explicitly calculated, it is possible to displace

directly the nodes located on the grain boundaries so as:

xt+¢t = xt + #»v ¢t , (6.4)

where xt and xt+¢t design the spatial coordinates of a node located on the bound-

aries at current time and at the next time step, respectively. Using this approach, the
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migration of the grain boundaries, which is treated by solving the system of CDEs

given by eq. (1.47) in the present work, boils down here to a remeshing problem. This

problem can especially be tackled by the Fitz mesher/remesher [Shakoor et al. 2015a]

which allows to preserve the explicit interfaces represented by the zero-isovalue(s) of

the distance field(s).

It should be extremely interesting to compare this formulation with the existing im-

plicit one, both in terms of precision and accuracy. The main limitation of the body-

fitted approach is related to the handling of grain shrinkage, that relies on specific

topological operations on the FE mesh. The problem is actually rather similar than

the one encountered in Vertex models. However the problem is here simplified be-

cause the grain interiors are also meshed, and not only the interfaces as in Vertex

models. Another difficulty could be to handle correctly the quality of the elements

near the body-fitted interfaces and mainly at the multiple junctions. Different adapta-

tions and developments seem therefore necessary to make this body-fitted approach

very attractive for the modeling of ReX. This point will be investigated in the context

of an upcoming PhD work (MINES ParisTech, 2017-2020) during the DIGIMU chair

mentioned previously.

More generally the implicit and body-fitted approaches have both their own advan-

tages and limitations. Thus the best option seems to develop them conjointly in order

to benefit from their most attractive features and, to choose for each application the

most suitable method according to the expectations.

6.2.3 Level set modeling of the ZP phenomenon in the presence of

evolving second phase precipitates

Chapter 5 focused on the ideal case wherein precipitates are static in space and time.

However in most industrial processes, the temperature evolves and the solvus tem-

perature of the SPPs can be reached during the TT/TMT. In this situation the pre-

cipitates dissolve and may disappear, fading the dragging effect exerted on the grain

boundaries. Being able to model evolving SPPs is thus crucial in order to address

real industrial processes. A future thesis work on this topic is already planned in the

DIGIMU chair, especially for the LS-FE modeling of phase transformations that may

occur during hot metal forming.

Hereafter we propose a first methodology to model dissolving precipitates. The ob-

jective is to give some clues and thought on how this phenomenon can be modeled
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efficiently by exploiting the numerical tools introduced earlier.

Basically, the proposed methodology works around a dual-mesh strategy, which un-

dermines that two distinct FE meshes are used in the simulations and that the fields

of interest will be alternatively transported from one FE mesh to the other. The mod-

eling of the precipitates relies on the same paradigm used for inert precipitates which

has, as mentioned earlier, the great advantage of making no approximation concern-

ing the pinning effect exerted by the SPPs (see chapter 5 for more details).

The first step for a ZP simulation with evolving precipitates is to generate a FE mesh

in the same way it was done in chapter 5, but this time, the interior of each precipitate

must also be meshed. For this purpose an option has been added to the algorithms

presented in chapter 5 to define whether the interiors of the precipitates need to be

meshed or not, according to the case. As the GMSH mesher handles nicely these two

configurations, obtaining such conform FE meshes without void in the precipitates

is straightforward.

The result is a body-fitted FE mesh, conform with the interfaces of the precipitates, as

illustrated on fig. 6.2a. This first mesh, wherein the particles are fully meshed is des-

ignated hereafter as the support mesh (SM). The signed distance field of the particle

cloud, noted£, whose zero-isovalue coincides with the body-fitted mesh of the pre-

cipitates is constructed. At this point, a polycrystal is created and the GLS functions

√i that represent this polycrystal are initialized. If needed, mesh adaptation can be

performed around the grain boundaries. However it is here important that the FE

mesh remains fitted on the interfaces of the SPPs during the mesh adaptation. The

mesher/remesher Fitz used in this work [Shakoor et al. 2015a; Shakoor 2016] is able

to tackle this problem because it has the ability to preserve the zero-isovalue(s) of one

or several distance fields while performing the topological operations on the FE mesh.

After SM has been satisfactory adapted, the second FE mesh, called the pinning mesh

(PM), is built. Its construction consists in three steps. First PM is initialized to SM.

Then the GLS functions √i and the field£ are transported from SM to PM. As SM and

PM coincide at this point, no interpolation is needed and no error is made during the

field transport. Then the mesh elements and nodes of PM located inside the SPPs (i.e.

whose nodes satisfy £ ∏ 0) are killed. Now PM can be seen as a counterpart of SM

with no mesh element inside the SPPs (see fig. 6.2b), and this configuration is strictly

equivalent to the one described in chapter 5 for inert SPPs.

212



6.2. Suggestions for future works

(a) (b)

Fig. 6.2 – SM (a) and PM (b) at the early stage of a simulation.

Suitable boundary conditions are then applied around the holes and the FE prob-

lem described by eq. (5.2) is solved on PM. Next the vacuum treatment given by

eq. (1.50), the swapping algorithm described in section 3.3.2 and the DRT algorithm

of section 2.4 are successively performed, still on PM. The √i and £ fields are then

interpolated from PM to SM. As all the nodes of PM are coincident with the nodes

of SM, the transport of the fields from PM to SM is still direct and do not rely on any

interpolation. The velocity of the dissolving precipitates is computed and used to

update the spatial coordinates of the SM nodes located at the interface of the precipi-

tates. We considered here a fictive dissolving velocity with arbitrary magnitude and

oriented toward the centroid of the particles for an illustration. The related evolution

of a cloud of SPPs on the FE meshes is depicted on fig. 6.3. After these nodes have

been displaced, Fitz adapts SM around the new zero-isovalues of the GLS functions

while keeping unchanged the interfaces of the precipitates and the zero-isovalue of

£. This concludes the sequence of operations for one time step of the simulation, as

schematically illustrated on fig. 6.4.

Using this approach, PM is then reconstructed at each time step according to the

new positions of the precipitates (see figs. 6.3b, 6.3d and 6.3f). When a precipitate

becomes too small and can no longer be accurately represented, it is simply removed

from the particle cloud by assigning to £ an arbitrary negative value inside this pre-

cipitate. As Fitz uses the zero-isovalue of£ for the body-fitted mesh adaptation, the

interface of this precipitate will no longer be captured and conserved by the remesher.

So at the next increment, the PM elements and nodes located inside this precipitate

will not be killed, as illustrated on the right column of fig. 6.3.
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(a) (b)

(c) (d)

(e) (f )

Fig. 6.3 – Evolution of dissolving SPPs on SM (left column) and PM (right column). A radial
velocity with arbitrary magnitude is used to displace the precipitates.
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PM initialization

PM SM

Migration of

Field transport

PM SM
Field transport

SM PM

Kill elements

inside SPPs
and nodes

grain boundaries

Move SM nodes
located on SPP

interfaces

Generate SM
and polycrystal

Fig. 6.4 – Schematic illustration of the sequence of operations for the simulations of ZP with
evolving SPPs. Blocks filled in blue and orange are related to the operations performed on PM
and SM, respectively. Green blocks stand for the transport of the fields √i and£.
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However a problem rises when a precipitate is removed. Effectively the values of the

GLS functions in its interior are not well-defined because this zone was previously

ignored in the computations through the use of the PM mesh (let us remember that

a hole was created in this region of the PM mesh to treat it like a precipitate). To ad-

dress this issue we perform the DRT algorithm at the nodes located inside the dying

precipitate(s) before resolving eq. (1.47). This operation recalculates the values of the

GLS functions in this zone, that will be now considered as the matrix and no longer

as a precipitate. Let us remind that SPPs have small dimensions and so the number

of nodes where GLS fields have to be recalculated is sufficiently small to not affect

significantly the simulation time. After resolving the CDEs, the vacuum treatment

(see eq. (1.50)) is applied to repair the vacuum(s) created by the dying precipitates.

This approach can also tackle the formation of SPPs during the simulation. Using

the nucleation algorithm introduced in section 4.3.5 on SM, new precipitates can be

easily inserted in the distance field£. Then the new implicit interface created when

a precipitate is added can be explicitly meshed by Fitz, which has the great ability to

cut (or split) the elements in order to construct a body-fitted mesh of a (or several)

interface(s). We refer the interested reader to [Shakoor 2016] for more details about

the strategy adopted to perform this operation and its implementation. Obviously the

interfacial mesh of the SPPs that are already present (i.e. nodes where£was already

zero before inserting the new precipitates) is not affected by the mesh cutting proce-

dure. This numerical approach for the modeling of evolving SPPs has been tested and

is numerically robust. Also the few additional numerical tools required to perform

such simulations have been developed and validated during the present thesis work.

However the evolution law used to calculate the dissolution of the precipitates was

here purely virtual and must be improved in order to take into account the chemical

composition, the precipitate sizes and shapes, the thermomechanical conditions and

the ad hoc PDEs describing the SPP evolution [Mei et al. 2015; Masoumi et al. 2016].

Also the PF modeling of precipitate evolution seems more mature at present and can

be used advantageously to challenge and validate the future predictions of the LS-FE

model [Vaithyanathan et al. 2002; Zhu et al. 2004].

Because the solving of the CDEs, the reinitialization, the dynamic grain recoloring and

the vacuum treatment are all performed on PM, no specific treatment is needed for

the GLS functions inside the SPPs, as these zones are naturally omitted during these

operations. The approach is therefore simple to use but requires to manipulate two

FE meshes, which has a memory cost. An interesting prospect would be to impose
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the interaction condition between the SPPs and the grain boundaries directly on SM,

without having to kill the elements inside the particles. Using this approach, only SM

would be needed for the whole simulation.
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Résumé 
 
Les propriétés mécaniques et fonctionnelles 
des matériaux métalliques sont conditionnées 
par leurs microstructures, qui sont elles-
mêmes héritées des traitements 
thermomécaniques subis. Etre capable de 
prévoir et simuler la microstructure et ses 
hétérogénéités lors des procédés de mise en 
forme complexes est récemment devenu 
crucial dans l'industrie métallurgique. C'est 
également un véritable challenge d'un point 
de vue numérique qui met en évidence 
l'importance des matériaux numériques dans 
les nouvelles méthodes de modélisation. 
Dans ce travail, nous nous intéressons à un 
modèle en champ complet récent basé sur la 
méthode level set (LS) dans un cadre 
éléments finis (EF) pour la modélisation des 
mécanismes de recristallisation. 
 
Les points forts de cette approche par rapport 
à l'état de l'art ont motivé le développement 
d'un logiciel appelé DIGIMU® par la société 
TRANSVALOR avec le soutien de grandes 
entreprises industrielles. Toutefois, le 
principal inconvénient de cette approche, 
commun aux autres méthodes en champ 
complet utilisant des maillages EF non 
structurés, reste son coût numérique 
important. 
 
Le principal objectif de ce travail a donc été 
de réduire considérablement le coût 
numérique de la formulation LS utilisée dans 
le contexte de maillages EF non structurés. 
De nouveaux développements génériques ont 
été réalisés pour améliorer l'efficacité globale 
du modèle. La formulation 2D LS existante, 
déjà utilisée pour modéliser la croissance de 
grains, la recristallisation statique et l'effet 
d'ancrage de Smith-Zener, a été étendue et 
améliorée afin de modéliser ces mécanismes 
en 3D pour des polycristaux à grand nombre 
de grains en des temps de calcul 
raisonnables. 
 

Mots Clés 
 
Métallurgie numérique, méthode level set, 
éléments finis, calcul à haute performance 

 

Abstract 
 
Mechanical and functional properties of 
metallic materials are strongly related to their 
microstructures, which are themselves 
inherited from thermal and mechanical 
processing. Being able to accurately predict 
and simulate the microstructure and its 
heterogeneities after complex forming paths 
recently became crucial for the metallurgy 
industry. This is also a real challenge from a 
numerical point of view which highlights the 
importance of digital materials in new 
modeling techniques. In this work, we focus 
on a recent front-capturing full field model 
based on the level set (LS) method within a 
finite element (FE) framework to model 
recrystallization mechanisms. 
  
The strengths of this approach comparatively 
to the state of the art have motivated the 
development of a software package called 
DIGIMU® by the company TRANSVALOR 
with the support of major industrial 
companies. However, the main drawback of 
this approach, common with other full field 
approaches working on unstructured FE 
meshes, remains its important computational 
cost, especially in 3D.  
 
Main purpose of this work was finally to 
drastically reduce the numerical cost of the 
considered LS formulation in context of 
unstructured FE meshes. New generic 
numerical developments have been proposed 
to improve the global efficiency of the model. 
The existing 2D LS formulation, already used 
to model grain growth, static recrystallization 
and the Smith-Zener pinning effect, has been 
extended and improved in order to model 
these mechanisms in 3D for large-scale 
polycrystals with reasonable computational 
efforts.  
 
 
 
 
Keywords 
 
Numerical metallurgy, level set method, 
Finite elements, high performance computing 
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