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Résumé — This paper describes a level-set framework for the full field modelling of recrystallization
and grain growth in a polycrystalline material. Topological evolutions are simulated based on a kinetic
law linking the velocity of the boundaries to the thermodynamic driving forces. Dynamic recrystalli-
zation is also modelled by coupling the level-set method to mean field laws describing strain harde-
ning mechanism and nucleation criteria. The proposed formalism enables to reach outstanding massively
multi-domain computations in a front-capturing finite element framework comparatively to the state of
art.
Mots clés — full field, mean field, recrystallization.

1 Introduction

The mechanical and thermal properties of metallic materials are strongly related to their microstruc-
ture. The understanding and the modelling of the microstructural evolution mechanisms is then crucial
when it comes to optimize the forming process and the final in-use properties of the materials. Macrosco-
pic and homogenized models, also called mean-field models are widely used in the industry, mainly due
to their low computational cost. They are generally based on empirical laws and thus require many fitting
parameters which must be calibrated through experimental testing or lower-scale simulations. Further-
more, given the complexity of modern metallurgical problems, these models may not be accurate enough
to capture local but significant events. Thanks to the explosion of computer capacities, finer modelling
techniques are now available. These lower scale approaches, the so-called full field models, are based on a
full description of the microstructure topology [1, 2]. They have demonstrated an interesting potential for
the modelling of complex mechanisms, such as abnormal grain growth or Zenner-pinning phenomena,
which are hardly predicted with homogenized approaches. Over the last decades, several mesoscale nu-
merical models have been developed to simulate the microstructure evolution due to recrystallization
(ReX). Probabilistic voxel-based approaches such as Monte Carlo [3] and Cellular Automata [4] are
very popular. There are also deterministic approaches which enable to avoid probabilistic laws but are
more greedy in terms of computational resources due to the fact that they involve the solving of large
systems of partial differential equations. Thus several workers have developed the vertex method [5]
wherein the grain boundaries are defined in terms of vertices ; the interface motion is then imposed by
the displacement of a set of points. Another approach found in the literature is the phase-field method,
which offers the advantage of avoiding the difficult problem of tracking interfaces [6]. In this approach,
the interfaces evolve to minimize a thermodynamic potential of the system. Finally, grain growth (GG)
and ReX can also be modelled using a level-set (LS) description of the interfaces in the context of uni-
form grids with a finite difference formulation [7] or in a finite element (FE) framework [8, 9, 10, 11, 12]
which is the method used in this paper.
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2 Level-set method

2.1 Representation of the grain boundaries network

As mentioned above, the model considered in this paper works around a LS description of the in-
terfaces in a FE framework. First, grain interfaces are virtually generated either by the Voronoï method
or Laguerre-Voronoï method. The Voronoï method consists in generating a diagram composed of a set
of N Voronoï nuclei (Si). Then, a single Voronoï cells Vi per nucleus is defined following this rule :
each Voronoï cell is composed of all points closer to Si than to any other nuclei. However, the grain
size distribution in the microstructure cannot be a priori respected with the Voronoï tessellation method.
Thus, a second method called Laguerre-Voronoï can be used. This method consists in generating a dia-
gram where the locations of the cells faces are constrained by a given non-intersecting spherical packing.
Thus, the diagram is composed of N seeds each with a weight (Si,ri). Then, a single Laguerre-Voronoï Li
is created per seed following this new rule : each Laguerre-Voronoï cell is composed of all points closer
to Si, via the power distance, than to any other nuclei. Where the power distance from Si to x is defined
by d(x,Si)

2− r2
i .

The virtual interfaces are then immersed into a FE mesh thanks to LS functions. A LS function ψ is
defined over a domain Ω as the signed distance function to the interface Γ of a sub-domain G of Ω. The
values of ψ are calculated at each interpolation point (node in the considered P1 formulation) and the
sign convention states ψ ≥ 0 inside G and ψ ≤ 0 outside :{

ψ(x, t) =±d(x,Γ),x ∈Ω,
Γ(t) = {x ∈Ω,ψ(x, t) = 0}, (1)

where d(.,.) corresponds to the Euclidean distance.

2.2 Grain boundary kinetic

During a process at high temperature, grain interfaces migrate due to different thermally activated me-
chanisms. To simulate these mechanisms, each LS interface is displaced during simulation according to
a given velocity field~v by solving a transport equation : ∂ψ(x, t)

∂ t
+~v.~∇ψ(x, t) = 0,

ψ(x, t = 0) = ψ0(x),
(2)

The velocity is assumed to be the contribution of two terms :

~v =~vgg +~ve. (3)

~vgg and~ve are respectively the velocities due to capillarity effects and stored energy gradients expressed
as follow :

~ve = Mb∆E∇ψ, (4)

~vgg =−Mbγ∆ψ∇ψ, (5)

where Mb is the grain boundary mobility, ∆E is the stored energy gradient across the interface, and γ is
the grain boundary energy. These descriptions of the different kinetic terms are correct if and only if the
LS function ψ is a distance function ( i.e. || ∇ψ || = 1) at least in a thin layer ±ε around the interface.

The grain boundary mobility Mb, appearing in Eqs. 4 and 5 can be written as a function of temperature :

Mb = M0 exp
(
−Qm

RT

)
, (6)
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where Qm is the activation energy for grain boundary migration, M0 is the pre-exponential factor (which
can be considered constant at high temperature for the considered 304L material) and R is the gas
constant. Mb and γb are finally assumed constant for all boundaries in the microstructure.

Generally, the number of level-set functions N is taken equal to the number of grains Ng in the microstruc-
ture (N = Ng). To limit the number of level-set functions and thus the computational cost, a colouring
technique has recently been developed and applied in this model [10] leading to a number of LS func-
tions significantly lower than the number of grains (N� Ng). Finally, Eqs. 2, 4 and 5 of the N level-set
functions can be rewritten as convective-diffusive equations : ∂ψi(x, t)

∂ t
−Mγ∆ψi(x, t)+~ve.~∇ψi(x, t) = 0, ∀i ∈ {1, ...,N}

ψi(x, t = 0) = ψ0
i (x),

(7)

The interface of every grain of the level-set ψi is thus implicitly given at each time step by the equation
ψi(t,x) = 0. Then, the distance functions have to be reinitialized. Indeed, even if the LS functions are
initialized as distance functions, their metric properties are not preserved during the resolution of Eq.
7. In order to reinitialize the metric properties of the LS functions, a new direct reinitialization method
proposed in [13] is used. This parallel and optimized approach has been proven to be as accurate as a
classical direct reinitialization method, while being up to 20 times faster.

Figure 1 presents the initial and final stages of a full field grain growth simulation performed on the
austenitic stain steel 304L. The temperature of treatment is 1050◦C and the duration of treatment is 5h.
The number of initial grains is 8000 while the final number of grains is around 1500. The number of
mesh elements is 25M.
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FIGURE 1 – Grain boundaries networks of austenitic stainless steel 304L during a full field grain growth
simulation. The initial (left) and final (right) stages corresponding to the instants t=0 and t=5h of the heat
treatment are represented. The color code corresponds to the equivalent sphere radius of each grain.

3 Dynamic recrystallization modelling

3.1 Strain hardening and recovery mechanisms

During inelastic deformation, some dislocations appear in the microstructure due to the strain harde-
ning mechanism, resulting in an increase of the stored energy. However, a part of dislocations can also
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disappear by annihilation leading to the recovery mechanism. The strain hardening and recovery mecha-
nisms appearing during deformation, can be modelled at different scales as at a local scale with crystal
plasticity models [14, 15, 16] or at a macroscopic scale with mean field laws [17, 18]. In this model,
mean field laws are considered to limit the computational cost of the 3D simulations. The Representative
Volume Element (RVE) is deformed thanks to a Lagrangian displacement of mesh nodes and an isotro-
pic remeshing operation is performed every 20% of deformation. The described full-field method is then
used for modelling microstructure and grain boundary migration during deformation.

A dislocation density field is defined constant per grain at the beginning of the simulation. Considering j
grains in the microstructure, the averaged dislocation density field in each grain j noted 〈ρj〉 is assumed
to evolve according to the Yoshie-Lasraoui-Jonas law :

˙〈ρj〉=
(
K1−K2〈ρj〉

)
ε̇

p
eff, (8)

where ε̇
p
eff denotes the rate of the effective plastic strain, K1 and K2 are two constants which represent

respectively the strain hardening and recovery term. A superposed dot denotes differentiation with respect
to time. At each time increment, this differential equation is solved with an explicit Euler method, i.e.

〈ρj〉(t+∆t)−〈ρj〉t

∆ε
= K1−K2〈ρj〉t, (9)

leading to the final equation :

〈ρj〉(t+∆t) = K1∆ε +(1−K2∆ε)〈ρj〉t. (10)

When a grain boundary migrates, the swept area is almost free of defects, i.e. dislocations free. This
phenomenon of "recovery per boundary migration" can be described by a decrease of the dislocation
density in growing grains. Thus, during boundary migration, a minimal dislocation density equal to ρ0,
which is material dependant, is attributed to swept areas. Then the new dislocation density is averaged in
each grain following the equation :

〈ρj〉(t+∆t)V (t+∆t) = 〈ρj〉tV t +dV ρ0, (11)

where dV represents the swept volume between the instants t and t+∆t, and ρ0 is the low value of dislo-
cation density attributed to the swept areas, usually taken as 1.1011 m−2 for the 304L steel.

The flow stress σi in the ith grain is computed during deformation from its average dislocation density ρi
using the Taylor equation :

σi = σ0 +Mαµb
√
〈ρi〉, (12)

where σ0 is a "dislocations-free" yield stress, M is the Taylor factor and α is a constant set to 0.2. Then
the total flow stress 〈σ〉 is calculated as a volumic averaged of the flow stresses of every grains :

〈σ〉= ∑σiVi

Vtot
, (13)

The PDRX mechanism is simply considered after deformation by modelling the migration of grain boun-
daries given by Eqs. 3, 4 and 5, the recovery per boundary migration given by Eq. 11 and the recovery
per annihilation of dislocation given by Eq. 14 :

˙〈ρj〉=−Ks〈ρj〉, (14)

We consider that no nucleation of new grains occurs during PDRX.

3.2 Nucleation mechanism

When enough energy is accumulated in the material due to plastic deformation, some dislocation
networks can develop within certain grains and tend to the formation of substructures, mainly located at
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grain boundaries [19]. Different criteria need to be verified locally in order that a substructure becomes
a nucleus : a mobile high-angle grain boundary has to be formed by the nucleation event and a high
stored energy gradient across the interface must be involved in order to provide enough positive driving
pressure for growth. In the considered framework, γ is assumed constant and thus only the stored energy
is taken into account. The nucleation mechanism appearing during hot deformation is taken into account
in this model following a mean-field approach used in [20] that is composed of two parts. First, new
grains are assumed to nucleate only if the strain reaches a critical value, which valid the second criterion
mentioned previously. This critical strain is equivalent to a critical value of dislocation density noted ρcr
and is initially calculated according to the equation :

ρcr =

(
20K1γbε̇

p
eff

3Mbτ2

)(1/3)

, (15)

where τ = µb2/2 is the dislocation line energy. The influence of the temperature and strain rate on ρcr is
taken into account in Eq. 15 by the parameters K1, ε̇

p
eff and Mb. It is physically assumed that ρcr increases

when decreasing temperature or increasing strain rate. As the dynamic recovery mechanism is neglected
in Eq. 15, this latter can be inaccurate in many cases. Thus, the equation proposed in [20] and taking the
dynamic recovery mechanism into account has been implemented in our model :

ρcr =

 −2γbε̇
p
eff

K2

Mbτ2

ln
(

1− K2

K1
ρcr

)


1/2

. (16)

To summarize, an initial value of ρcr is calculated according to Eq. 15 and an iterative calculation using
Eq. 16 leads to a converged value of ρcr that is used in our model.

Once a grain reaches the critical dislocation density ρcr, the nucleation rate Ṅ is calculated according to
the proportional nucleation model of Peczak and Luton [21] :

Ṅ = KgSb∆t, (17)

where Kg is a probability coefficient related to the thermo-mechanical conditions, i.e. the temperature
and the effective plastic strain rate, Sb is the total grain boundary area of grains verifying ρi > ρcr.

When a new nucleus appears in the microstructure, its initial radius must be high enough to counter
the capillarity forces. This corresponds to the condition when the stored energy of the material is large
enough to overcome the capillary force of the nucleus (Bailey-Hirsch),

r∗ = ω
2γb

ρcrτ
, (18)

where ω > 1 is a factor ensuring that the created nucleus has a required driving force for growth.

The nucleus can grow in the microstructure by consuming the surrounding worked grains. The velocity
of migrating boundaries are described following Eqs. 3, 4 and 5.

To illustrate results obtained with the proposed DRX-PDRX model, a simulation has been launched for
304L at a temperature of 1000◦C and a strain rate of 0.01s−1. The REV is firstly deformed during 100s
following by a 30min hold at 1000◦C. Several screenshots illustrating the REV at four different instants
of the simulation are presented on Fig. 2.
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FIGURE 2 – A DRX+PDRX simulation at large deformation for a 304L austenitic stainless steel . The
REV is firstly deformed at 1000◦C during 100s following by a 1000◦C hold during 30min.

4 Conclusion

In the present work, a 3D model based on the level-set method in a finite element framework has been
presented to model the DRX and PDRX phenomena in austenitic stainless steel 304L at large deforma-
tions. The first part was dedicated to the presentation of the level-set method while the second part was
focused on the mean field governing equations. A 3D illustrating case of the DRX + PDRX mechanisms
at very large deformation has been finally presented. It was concluded that the level-set approach coupled
to a remesher provides an accurate method to capture the interfaces (i.e. grain boundaries) all along the
simulation while mean field laws using for the nucleation, work hardening and recovery mechanisms lead
to relatively low computational costs. Future investigations will aim to perform a sensitivity study of the
input parameters, to calibrate more finely the model parameters according to experimental investigations
and finally validate this full field formalism thanks to the experimental results.
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