

Prediction of grain size evolution during thermal and thermomechanical treatments at the mesoscopic scale: numerical improvements and industrial examples

24th IFHTSE Congress 2017

<u>A. Settefrati¹</u>, B. Scholtes^{1,2}, L. Maire², N. Bozzolo², E. Perchat¹, M. Bernacki²

¹TRANSVALOR SA, Sophia Antipolis ²Mines ParisTech, PSL Research University, CEMEF, CNRS UMR 7635, Sophia Antipolis

A growing interest for microstructure modelling throughout the whole process chain...

... and particularly during hot forming processes

Microstructural evolution

- Governed by the process parameters (temperature, strain and strain rate)
- Given by reduction of the internal energy

Modelling scales

Mesoscale modelling – Full field approach

- Modelling the evolution of the grains (microstructure components fully modelled)
- Simulations performed on Representative Volume Elements (RVE)

Realistic description of microstructural features

- Topological aspects taken into account
- o Help for understanding microstructural phenomena
- Modelling local and heterogeneous phenomena

Concept of numerical tests (scale transition)

- Improvement of higher scale models usable for macroscopic simulations
- Calibration of these models

Computation time

 Simulation performed on specific locations of an industrial workpiece (thermomechanical and thermal history as boundary conditions applied to the RVE)

Context

Mesoscale modelling in a Level-Set framework

- DIGIMU[®]: mesoscale computations in an industrial context
- Generation of polycrystals in a finite element context
- Grain boundary migration modelling
- Numerical improvements

Application examples

- Pure grain growth
 - Solutionizing in one-phase field
 - HIP bonding
- Presence of second phase particles
 - Smith-Zener pinning phenomenon
 - Control of the grain size in an ODS steel
 - Understanding of the abnormal grain growth phenomenon
- Hot forming processes

Conclusion

Context

Mesoscale modelling in a Level-Set framework

- DIGIMU[®]: mesoscale computations in an industrial context
- Generation of polycrystals in a finite element context
- Grain boundary migration modelling
- Numerical improvements

Application examples

- Pure grain growth
 - Solutionizing in one-phase field
 - HIP bonding
- Presence of second phase particles
 - Smith-Zener pinning phenomenon
 - Control of the grain size in an ODS steel
 - Understanding of the abnormal grain growth phenomenon
- Hot forming processes

Conclusion

From simulations for industry towards simulations by industry

DIGIMU

Development of an industrial solution for simulating microstructural evolutions at the grains scale during thermomechanical processes

Our industrial partners

Digimu - ANR Industrial Chair (2016-2020)

Microstructure immersion in a FE mesh

Implicit description of the interfaces using a level-set framework

What is a level-set function?

Signed distance function

 $\left\{ \begin{array}{l} \psi(x,t) = \pm d(x,\Gamma(t)), \ x \in \Omega \\ \Gamma(t) = \{x \in \Omega, \psi(x,t) = 0\} \end{array} \right.$

Evolving interfaces

Transport of a LS function

$$\begin{cases} \frac{\partial \psi(x,t)}{\partial t} + \vec{v} \cdot \nabla \psi = 0\\ \psi(x,t=0) = \psi^{0}(x) \end{cases}$$

- Immersion of a polycrystal into a FE mesh
 - Statistical random processes (Laguerre Voronoï tesselation)
 - Experimental images
 - → Extension to several LS functions

[Bernacki et al., 2008], [Bernacki et al., 2009], [Bernacki et al., 2011], [Fabiano et al. 2014], [Hitti et al. 2012]

Normal velocity of a grain boundary

- *m* : grain boundary mobility γ : grain boundary energy κ : grain boundary mean curvature
- $\tau \Delta \rho$: stored energy \vec{n} : outward normal unit vector

Thermodependent

Driving force for grain boundaries motion

Convective-diffusive approach Ο

$$\begin{cases} \frac{\partial \psi_i(x,t)}{\partial t} - M \gamma \Delta \psi_i(x,t) + \vec{v}_e \cdot \nabla \psi_i(x,t) = 0, & \forall i \in \{1,...,N_p\} \\ \psi_i(x,t=0) = \psi_i^0(x), & \end{cases}$$

$$\vec{v}_e(x) = M \sum_{\substack{i=1\\j \neq i}}^{N_p} \sum_{\substack{j=1\\j \neq i}}^{N_p} \chi_i(x) f\left(\psi_j(x), l\right) \left(\mathcal{E}_i(x) - \mathcal{E}_j(x)\right) \frac{\nabla \psi_j(x)}{\|\nabla \psi_j(x)\|}$$

How to reduce computation times?

Reduce the number of LS functions

- Use of *Global Level Set functions*: a set of initially distinct grains can be packed in a single LS function
- Associated with evolutive graph coloring technique to avoid numerical coalescence : *Swapping algorithm*

25 grains represented by 4 colors

Coalescence

Microstructure composed of 3680 grains represented by 5 GLS functions

[Scholtes et al. 2015] [Scholtes et al. 2016a]

How to reduce computation times?

Optimize the main steps of the computation

 Development of a new formalism for the reinitialization procedure*: the *Direct Reinitialization (DR) method*

120

100

80

60

40

20

E

CPU times using the initial formalism or the DR method for the reinitialization procedure

Initial formalism
 With DRT

Remeshing Resolution

Example: 3D grain growth case (12CPUs)

- 5h of heat treatment
- Initial polycrystal composed of 1000 grains
- Material : 304L steel

Property of Transvalor SA – Duplication prohibited

Reinit

Others

How to reduce computation times?

Reduce the number of elements without losing precision

Realistic predictions necessitate a sharp description of the interfaces

• Use of *anisotropic mesh adaptation* (and *periodic remeshing*) around grain boundaries

Context

- Mesoscale modelling in a Level-Set framework
 - DIGIMU[®]: mesoscale computations in an industrial context
 - Generation of polycrystals in a finite element context
 - Grain boundary migration modelling
 - Numerical improvements

Application examples

- Pure grain growth
 - Solutionizing in one-phase field
 - HIP bonding
- Presence of second phase particles
 - Smith-Zener pinning phenomenon
 - Control of the grain size in an ODS steel
 - Understanding of the abnormal grain growth phenomenon
- Hot forming processes

Conclusion

Solutionizing treatment in the one-phase field

Inconel 718 heat treated 75min at 1040°C (<d₀>=20µm, 100% Y phase)

Grain growth in monophasic structures

 Microstructural evolution driven by grain boundaries (GB) curvature only (capillarity effect, no stored energy)

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \psi_i(x,t)}{\partial t} - M \gamma \Delta \psi_i(x,t) + \vec{v}_c, \quad \forall \psi_i(x,t) = 0, \\ \psi_i(x,t=0) = \psi_i^0(x), \end{array} \right. \quad \forall i \in \{1,...,N_p\}$$

- Uniform GB mobility (thermodependent)
- Uniform and isotropic GB energy
- Influence of initial grain size distribution

HIP bonding

HIP bonding with press

Hot Isostatic Pressing (HIP)

[E. Rigal – CEA Liten]

HIP bonding

Smith-Zener pinning phenomenon

What is particle pinning?

• Dragging force exerted by SPP on GB

- → Slow down the GB kinetics
- → Enable to control the final grain size

In LS context

- SPP explicitly represented in the FE mesh
 - No assumptions concerning the interactions between GB and SPP
 - Coherent or incoherent interfaces can be considered by applying the suitable boundary conditions

$$\frac{\nabla\psi}{\|\nabla\psi\|} \cdot \overrightarrow{n} = \nabla\psi \cdot \overrightarrow{n} = \sin(\alpha)$$

[Agnoli et al., 2013], [Agnoli et al., 2014], [Scholtes et al., 2015], [Scholtes et al., 2016b]

Control of the grain size in an ODS steel (Oxide Dispersion Strengthening)

[F. Villaret, B. Hary, Y. de Carlan, T. Baudin, R. Logé, M. Bernacki]

- Ferritic steel + Y₂Ti₂O₇ nanoparticles (oxides) Ο
- Dislocations and grain boundaries pinning on the 0 oxides

f = 2,5%

Understanding of the abnormal grain growth phenomenon

- Growth of a limited number of grains much faster than the rest
- Decrease of mechanical properties

Phenomenon controlled by the balance of: capillarity, stored-energy and pinning forces

[Agnoli et al., 2013], [Agnoli et al., 2014]

Local heterogeneity simulated implicitly

Modelling the different physical phenomena

Dynamic and Post-dynamic recrystallization

Context

- Mesoscale modelling in a Level-Set framework
 - DIGIMU[®]: mesoscale computations in an industrial context
 - Generation of polycrystals in a finite element context
 - Grain boundary migration modelling
 - Numerical improvements

Application examples

- Pure grain growth
 - Solutionizing in one-phase field
 - HIP bonding
- Presence of second phase particles
 - Smith-Zener pinning phenomenon
 - Control of the grain size in an ODS steel
 - Understanding of the abnormal grain growth phenomenon
- Hot forming processes

Conclusion

CONCLUSION & PERSPECTIVES

Prediction of grain sizes evolution during thermomechanical and thermal treatments: a key for optimizing final in-use metal properties

Microstructural evolution modelling at the mesoscopic scale

- Simulate heterogeneous and local phenomena
- Improve mean field models for macroscale computations

Approach based on a Level Set description of the interfaces in a finite element framework

- Deterministic approach based on the resolution of convective-diffusive equations of the level set functions
- Grain boundary migration given by the balance of capillarity, stored-energy and pinning forces

Will to propose an industrial solution

- Numerical improvements done on the method to improve computational efficiency
- Step by step introduction of the developments into the DIGIMU[®] software

CONCLUSION & PERSPECTIVES

Future developments

- Continuous improvements of the physical models (anisotropy, phase transformations...)
- Towards full 3D simulations: intensive work to reduce computation times
 Pure grain growth¹
 Pinning effect on second phase particles²

Dynamic and Post-dynamic recrystallization⁴

¹[Scholtes, 2015] ²[Scholtes, 2016b] ³[Fabiano, 2014] ⁴[Scholtes, 2016a]

[Scholtes et al. 2016a] B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. Pino Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, and M. Bernacki. 3D level set modeling of static recrystallization considering stored energy fields. Computational Materials Science, 122:57–71, 2016.

[Scholtes et al. 2016b] B. Scholtes, D. Ilin, A. Settefrati, N. Bozzolo, A. Agnoli, and M. Bernacki. Full field modeling of the Zener pinning phenomenon in a level set framework - discussion of classical limiting mean grain size equation. Proceedings of the 13th International Symposium on Superalloys, 2016.

[Shakoor et al. 2015] M. Shakoor, B. Scholtes, P.-O. Bouchard, and M. Bernacki. An efficient and parallel level set reinitialization method - application to micromechanics and microstructural evolutions. Applied Mathematical Modelling, 39(23-24):7291–7302, 2015.

[Scholtes et al. 2015] B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, and M. Bernacki. New finite element developments for the full field modeling of microstructural evolutions using the level-set method. Computational Materials Science, 109:388–398, 2015.

[Fabiano et al. 2014] A.-L. Cruz-Fabiano, R. Logé, and M. Bernacki. Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework. Computational Materials Science, 92:305–312, 2014.

[Agnoli et al. 2014] A. Agnoli, N. Bozzolo, R. Logé, J.-M. Franchet, J. Laigo, and M. Bernacki. Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy– application to a nickel-base superalloy. Computational Materials Science, 89:233–241, 2014.

[Agnoli et al. 2012] A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo. Understanding and modeling of gain boundary pinning in Inconel718. Proceedings of the 12th International Symposium on Superalloys, pages 73–82, 2012.

[Hitti et al. 2012] K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki. Precise generation of complex statistical represen- tative volume elements (RVEs) in a finite element context. Computational Materials Science, 61:224–238, 2012.

[Bernacki et al. 2011] M. Bernacki, R. Logé, and T. Coupez. Level set framework for the finite-element modelling of recrystal- lization and grain growth in polycrystalline materials. Scripta Materialia, 64(6):525–528, 2011.

[Bernacki et al. 2009] M. Bernacki, H. Resk, T. Coupez, and R. Logé. Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Modelling and Simulation in Materials Science and Engineering, 17(6):064006, 2009.

[Bernacki et al. 2008] M. Bernacki, Y. Chastel, T. Coupez, and R. Logé. Level set framework for the numerical modelling of pri- mary recrystallization in polycrystalline materials. Scripta Materialia, 58(12):1129–1132, 2008.

[Boulais-Sinou et al. 2016] R. Boulais-Sinou, B. Scholtes, D. Pino Muñoz, C. Moussa, I. Poitrault, I. Bobin, Montouchet A., and M. Bernacki. Full field modeling of dynamic recrystallization in a global level set framework, application to 304L stainless steel. Proceedings of NUMIFORM 2016, 2016. [Maire et al. 2017] L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, A. Settefrati, I. Poitrault, A. Karch, M. Bernacki. 3D Full field modelling of recrystallization in a finite element framework – application to 304L, CSMA 2017 (13^{ème} Colloque National en Calcul des Structures, Presqu'île de Giens)