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A B S T R A C T

This paper proposes a new approach for mean field modeling of dynamic recrystallization. The main advan-
tage of the presented model compared to the state of the art is based on a more precise description of the
immediate vicinity and of the shape of each grain to describe microstructural evolution all along the hot defor-
mation process. Results provided by the new model are compared to those of a former mean field formulation
and those of a full field model with an explicit description of the microstructure. The predictions of the new
model in terms of recrystallization kinetics and grain size distributions are satisfactory and the progress when
compared to former mean field models is obvious. Furthermore, the limitation of mean field models concern-
ing the non-realistic shape of grain size distributions has been solved in this new formulation.

© 2018.

1. Introduction

During hot deformation of metal alloys, the mechanisms of strain
hardening and recovery tend to increase and reduce the energy stored
in the material respectively. When the stored energy level is high
enough locally, new grains nucleate. In parallel, grain boundaries mi-
grate as a result of stored energy gradients across interfaces and capil-
lary effects. The combination of those mechanisms leads to so-called
dynamic recrystallization (DRX) [1,2,3,4,5].

Over the past decades, much attention has been paid to microstruc-
ture evolutions of metal alloys by DRX. These works have lead to
different phenomenological models such as those based on the
well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK) equations
[6,7,8], aiming to predict the recrystallized fraction during hot defor-
mation. Considerable progress in terms of numerical resources cou-
pled with new experimental investigation techniques have lead to
more sophisticated models able to explicitly reproduce microstruc-
tural evolutions: so-called full field methods. The main numerical
frameworks for full field modeling of these phenomena are
multi-phase-field [9], level-set [10], Monte Carlo [11] and cellular au-
tomata [12] approaches. These methods have proven to accurately
model DRX thanks to an explicit representation of the microstructure.
However, a major limitation of these models is their computational
cost, especially when crystal plasticity is implemented or when aiming
at a direct coupling with macroscale computations.

Mean field models can be proposed as a compromise between the
phenomenological laws and full field models. Mean field models for

* Corresponding author.
Email address: ludovic.maire@mines-paristech.fr (L. Maire)

DRX are based on an implicit description of the microstructure by
considering grains as spherical entities with an equivalent grain ra-
dius and an average dislocation density. Each grain is considered in
a homogeneous equivalent medium (HEM) and its evolution is gov-
erned by its interaction with the HEM. Hillert [13] proposed the first
model of this kind for grain growth. Then, Montheillet et al. [14] pro-
posed a semi-analytical mean field model for DRX. The latter con-
siders a HEM composed of all other grains in the microstructure. An-
other DRX mean field model was also proposed by Cram et al. [15]
where the HEM is still composed of all other grains in the microstruc-
ture. A first particularity of this model is that each grain is defined
by a Taylor/orientation factor aiming to model the influence of the
grain orientation on its stress response. Furthermore, mean field mod-
els for DRX are generally based on the Taylor assumption, each
grain undergoing the same strain. However in the model of Cram
et al. [15], each grain undergoes the same mechanical work mean-
ing that softer grains deform more than harder grains. Two years af-
ter, Bernard et al. [16] proposed a physically-based mean field model
whose main novelty lies in a HEM that is subdivided into two dif-
ferent HEMs composed of recrystallized and non-recrystallized grains
respectively. Each grain evolves with respect to each of these two
HEMs. The main difficulty in this model lies in the fact that the sur-
face fraction between a grain and each of these two HEMs must be
estimated at every instant of the simulation. Beltran et al. [17] pro-
posed a model based on that of Bernard [16] where a new nucle-
ation criterion taking dynamic recrystallization into account is imple-
mented. More recently, Piot et al. [18] proposed a new approach in
which each grain interacts with a particular HEM composed of one
random grain. This model has proven to accurately describe recrystal-
lized fractions and mean grain sizes. Furthermore the predicted grain
size distributions are improved as compared to former mean field
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models [14,15,16,17] even if their are still quite far from experimental
ones.

A common advantage to all mean field models is their compu-
tational cost that is considerably reduced as compared to full field
models. The computational cost of a mean field simulation is gener-
ally a few seconds while that of a full field simulations is generally
several hours. Furthermore, mean field models generally provide ac-
ceptable predictions in terms of recrystallization kinetics and mean
grain size evolution. However, grain size distributions sourced from
mean field simulations are not correctly described. This limitation is
due to the fact that all grains which have nucleated at a given time
have the same evolution (in size and dislocation density) in mean
field models [14,15,16,17] whereas in a real microstructure, each grain
evolves depending on its own neighborhood. Therefore, in this work
a new topological approach for the mean field modeling of DRX is
proposed. Hereafter, this new model will be called “ NeighborHood
Model (NHM) ”. The NHM is based on the same constitutive equa-
tions used in the mean field model of Beltran et al. [17] for modeling
strain hardening, recovery and nucleation. These laws are introduced
in Section 2. The major novelty presented in Section 3 is based on the
consideration of a particular neighborhood for each grain instead of
considering the whole average microstructure as HEM. In addition,
the evolution of principal lengths of the grains (in the sense of ide-
alized ellipsoid shapes) is modeled during deformation in the NHM,
as explained in Section 4. Finally, the results of simulations related to
hot forging of a 304L austenitic steel provided by the NHM, the mean
field model of Beltran [17] and a full field level-set model [19] are
presented in Section 5.

2. Constitutive laws for mean field modeling of DRX

Initial microstructures in mean field models are represented by
spherical grains, each having a dislocation density ρi and a grain size
Ri. In several existing models [17, 20], the concept of grain classes is
used to reduce computational cost. This consists of gathering several
similar grains in one single entity called “class”, that is defined by a
grain radius Ri, a dislocation density ρi and a number of grains Ni in
the considered class. The main drawback to this reduction is that all
the grains belonging to the same class follow the same behavior dur-
ing the simulation. This concept of classes is used in the NHM to re-
duce computational cost. However, in this paper, it will be referred to
grains instead of classes in order to facilitate the understanding of the
NHM principle.

Thereafter, a recrystallized grain (RX) denotes a grain that ap-
peared during the simulation and a non-recrystallized grain (NR) de-
notes a grain present from the first stage of simulation. Furthermore, a
RX grain having just appeared is called nucleus. The constitutive laws
used in the NHM are identical to those used in the model of Beltran et
al. [17], except for boundary migration. Grain boundary migration is
generally described in mean field models [16, 17, 21] by the following
equation:

where ΔV i is the volume variation of the th grain, Ri and ρi are the
radius and the dislocation density of the th grain respectively, R* and
ρ* are related to the average grain size ⟨R⟩ and volume-weighted av-
erage dislocation density ⟨ρvol⟩ of the HEM respectively. Writing the
volume conservation equation ∑ΔVi = 0 leads to R* = ⟨R2⟩/⟨R⟩ and
ρ* = ⟨ρvol⟩. Si is the boundary area of the th grain, K3 is a model para

meter defined by K3 = Mbτ,Kr is a model parameter defined by
Kr = Mbγb,Mb is the grain boundary mobility, γb is the grain boundary
energy, τ is the dislocation line energy and β is a geometrical dimen-
sionless constant referring to assumptions on mean field modeling of
capillary effects [13], taken equal to 1 in these models [16, 17, 21]. A
recent paper has shown that a value of β equal to 1.4 leads to more
accurate results [22]. Mb and γb are assumed to be isotropic (i.e. iden-
tical for all grain boundaries) in the following. To correctly describe
experimental results, it has been shown that K3 must be considered de-
pendant on both plastic strain rate and temperature T in these models
[16, 17, 21]. However, since K3 = Mbτ and there is no clear physical
explanation to consider Mb or τ dependent on the strain rate, an addi-
tional term noted is added in K3, so that . There-
fore, Eq. (2) can be rewritten as:

The evolution of the average dislocation density ρi in each th
grain during deformation is modeled by the Yoshie-Lasraoui-Jonas
law [23]:

where ε denotes the plastic strain, K1 and K2 are the strain hardening
and dynamic recovery terms, respectively, and depend on thermome-
chanical conditions (K1 depends on T and K2 depends on both T and
).

When a critical dislocation density is locally reached, nucleation,
i.e. appearance of new grains with a very low dislocation density, can
occur. To compute the critical dislocation density ρcr, the method used
in [17] is reproduced: a first value of ρcr is estimated thanks to Eq. (4)
and an iterative calculation is performed according to Eq. (5).

The critical radius of a nucleus noted r* is calculated according to
the modified Bailey-Hirsch criterion [24]:

where ω > 1 is a safety factor ensuring that the nucleus has the re-
quired driving force for growth. We consider ω = 1.5 in this paper as
in [19].

The nucleation rate representing a volume of nuclei per unit of
time, is calculated according to a variant of the proportional nucleation
model of Peczak and Luton [25]:

(1)

(2)

(3)

(4)

(5)

(6)
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where Kg is a probability coefficient related to the thermomechanical
conditions (T and ) and Φ represents the total boundary area (in a
necklace type nucleation) or total volume (in a bulk-type nucleation)
of grains having their average dislocation densities higher than ρcr.

As it can be observed in Eq. (2), the grain boundary migration of a
specific grain depends on the average microstructure through the val-
ues R* and ρ*, which means that no realistic topology is considered in
pre-existing mean field models [14,15,16,17]. An attempt to take a re-
alistic topology into account is presented in Section 3.

3. Neighborhood of individual grains

In a real microstructure, each grain is surrounded by a number of
neighbors (see Fig. 1 (a)). This microstructure is described in mean
field models by spherical grains in order to model equiaxed grains (see
Fig. 1 (b)), each grain having a radius Ri and a dislocation density ρi.
However a strong assumption made in mean field models [14, 15, 17]
is that each grain has no neighbors but is surrounded by a HEM (see
Fig. 1 (c)). To be more realistic, the new proposed approach tackles
this first limitation by considering a particular neighborhood for each
grain, composed of a certain number of grains that are appropriately
chosen (see Fig. 1 (d)).

3.1. Representation of a grain's neighborhood in the NHM

In the present approach, necklace nucleation is considered since
this is the kind of nucleation observed in 304L during DRX [26, 27].
Thereafter, the quantities θ(i) and (1-θ)(i) denote the surface fraction
of the th grain in contact with RX and NR grains respectively. The de-
scription of a grain with its neighborhood in the NHM is described in
2D in Fig. 2. To enrich this description, the quantity θ(i) is subdivided
into two other quantities noted θa(i) and θb(i) which represent the sur-
face fraction of any th grain in contact with nuclei and with other RX
grains respectively.

The 2D schematic surface of a grain i having RX grains appeared
on its boundary is represented in Fig. 3 (a). The quantity S1(i) repre-
sents the boundary surface between the grain i and RX grains while
S2(i) represents the boundary surface of the grain i that is not in con-
tact with RX grains. In this case, the boundary surface Si of the grain
i should be defined by Si = S1(i) + S2(i) and the surface fraction θ
should be defined by θ = S1(i)/(S1(i) + S2(i)) in Fig. 3 (a). However,
in mean field models [14, 15, 17] a surface such as the one presented
in Fig. 3 (a) is hard to consider, thus it is common to keep working
with the assumption of spherical grains as represented in Fig. 3 (b). In
the NHM, the assumption of spherical grains presented in Fig. 3 (b) is
also considered. The quantity S3(i) is defined as the total intersection
surface between the considered grain i and RX grains on its bound-
ary (see Fig. 3 (b)). Therefore the surface fraction θ is estimated in the
NHM by:

Fig. 1. Representation of the microstructure in mean field models. (a) EBSD picture of an austenitic steel 304L microstructure, (b) representation of a microstructure in mean field
models as a set of spherical grains, (c) standard mean field approach: each grain is surrounded by a homogeneous equivalent medium (HEM) composed of all grains in the microstruc-
ture and (d) new mean field approach NHM: each grain is surrounded by a certain number of grains that compose its neighborhood.

(7)
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Fig. 2. Representation of a grain in the NHM. Each grain i has a surface fraction θ(i) in
contact with recrystallized (RX) grains represented in red color and a surface fraction
(1 − θ)(i) in contact with non-recrystallized (NR) grains represented in blue colour. θ(i)
is also subdivided into two quantities θa(i) and θb(i) which represent the surface fraction
occupied by nuclei in dashed line and other RX grains in full line, respectively.

By doing the assumption that the grain i is large as compared to RX
grains, every surface of intersection between one RX grain and the
grain i are approximated by circles in the NHM as represented in

Fig. 3 (c). Furthermore by doing the assumption that every recrystal-
lized grain size is approximated by the recrystallized mean grain size
⟨Rrx⟩ with their center belonging to the boundary of i, each intersection
can be finally defined by a circle of radius ⟨Rrx⟩ having a surface equal
to π⟨Rrx⟩

2. If Nrx(i) denotes the number of RX grains that appeared in
the considered grain i, S3(i) can be estimated by πNrx(i)⟨Rrx⟩

2, and θ
can be finally approximated by:

The number of RX grain Nrx(i) that appeared in the grain i increases
during the simulation while the recrystallized mean grain size ⟨Rrx⟩
and the grain surface Si are quasi-constant. To avoid values of θ(i)
higher than 1, the final equation for θ(i) is defined as:

3.2. Number of neighbors per grain

The numbers of neighbors occupying the θa(i), θb(i) and (1 - θ)(i)
surface fractions of any th grain are noted Nθa(i), Nθb(i) and N(1−θ)(i)
respectively.

The number Nθa(i), representing the number of nuclei in the th
grain at the latest time increment, is directly known at any instant of
the simulation from Eq. (7). The reasoning leading to Eq. (10) can

Fig. 3. Schematic representation of (a) the surface of the grain i with RX grains on its boundary (b) the surface of the grain i as it is considered in the NHM (c) a 3D portion of a
grain boundary with three nuclei as neighbors. The intersections are approximated by several circles in green colour. S1(i) represents the boundary surface between the grain i and
RX grains, S2(i) the boundary surface of the grain i that is not in contact with RX grains, S3(i) the total intersection surface between the grain i and RX grains, estimated by a sum of
circles in the NHM.

(8)

(9)

(10)
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also be considered for the nuclei and leads to:

As such, θb(i) is deduced using the following relationship:

Assuming that Eq. (11) is also available for θb, the number of RX
neighbors Nθb(i) of any th grain can be estimated by the following re-
lation:

The number of NR neighbors N(1−θ)(i) must also be estimated.
As an approximation, the number of grains on the surface fraction
(1 − θ)(i) can be estimated using a law from literature for describ-
ing steady state or quasi steady state microstructures. Several kinds
of laws have been proposed in the literature to estimate the number
of neighbors of grains in steady state or quasi steady state 3D mi-
crostructures. DeHoff and Liu [28] have proposed a linear relation-
ship between the number of neighbors and the mean tangent diame-
ter of grains in 3D microstructures, validated experimentally by Liu et
al. [29]. Abbruzese and Campopiano [30] proposed a quadratic rela-
tionship between the number of neighbors and the normalized equiv-
alent sphere radius of a grain in 3D microstructures. This relation-
ship has been validated by experimental investigations [29, 31] and
numerical studies [32,33,34]. All the resulting curves are presented in
Fig. 4 (b). The curves are globally close to each other. To reinforce
this relationship, an additional grain growth numerical simulation has
been performed in 3D using a full field method based on a level-set
framework (DIGIMU® software package) [19, 35]. An equiaxed mi-
crostructure with an average grain size of 100μm has been generated
using a Laguerre-Voronoï algorithm [36] and a the simulation of a

heat treatment at 1373K for 30min was performed using model para-
meters for a 304L steel. Grain boundary mobility and energy are con-
sidered isotropic in the microstructure. The resulting microstructure is
composed of 2000 grains and the number of neighbors of each indi-
vidual grain is plotted as a function of its normalized equivalent sphere
radius in Fig. 4 (a) while the average number of neighbors is plotted as
a function of the normalized equivalent sphere radius in Fig. 4 (b). The
curve in Fig. 4 (b) resulting from the full field simulation (DIGIMU®

software package) is close to the other experimental and numerical
curves of the literature, which reinforces the idea that a general poly-
nomial equation can correctly estimate the number of neighbors of
grains as a function of their normalized equivalent sphere radius in
steady state or quasi steady state 3D microstructures. This polynomial
dependence is used in the NHM to estimate the number of neighbors
N(1−θ)(i) at a given stage of the deformation process. This relationship
is given in Eq. (14).

where ωi is the normalized grain radius defined by Ri/⟨RNR⟩.
Thus the total number of neighbors of any th grain noted Ntot(i) is

given by:

3.3. Criteria for choosing neighbors

As soon as the quantities Nθb(i) and N(1−θ)(i) have been estimated
for any th grain thanks to Eqs. (13), (14) respectively, the neighbors
are chosen according to the following criteria:

• The neighbors in Nθa(i) are the nuclei that appeared on the grain
boundary of the th grain during the last time step.

• The neighbors in Nθb(i) are chosen randomly among all the other RX
grains of the microstructure.

• The neighbors in N(1−θ)(i) are chosen randomly among the NR grains
of the microstructure.

Fig. 4. Number of neighbors as a function of the normalized equivalent sphere radius. All investigations were done on steady or quasi-steady state microstructures. a) Each blue
dot represents a grain coming from a full field simulation (DIGIMU® software package) (b) Different curves issued from the literature and from the DIGIMU approach. Those are
obtained by least-square regression or by an average per topological classes.

(11)

(12)

(13)
(14)

(15)
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The choice of the neighbors in and N(1−θ)(i) is made ran-
domly but each grain is weighted by its volume in order to be repre-
sentative of real microstructures.

A bijectivity is imposed between a grain and its neighbors, mean-
ing that if the th grain has the th grain as neighbor, the th grain has also
the th grain as neighbor. Thus when the th grain grows of a quantity
dV(i,j) with respect to the th grain, the th grain shrinks of a quantity
-dV(i,j) with respect to the th grain in order to ensure the bijectivity as
well as volume conservation.

It is also worth noticing that the surface fractions θ(i) and (1− θ)(i)
are only used to identify the respective number of neighbors Nθb(i) and
N(1−θ)(i). Even so, after the random selection of the neighbors in Nθ(i)
and N(1−θ)(i), a small error on the fractions θ(i) and (1 − θ)(i) can exist.
However, this is not a strong assumption since a grain boundary sur-
face is never exactly spherical in reality.

3.4. Reformulation of boundary migration equation

Since this new approach considers a particular neighborhood for
each grain, Eq. (2) of grain boundary migration presented in the first
section has to be reformulated. First, the volume change of the th grain
is computed according to the following equation in the NHM:

where ΔV (i,j) is the volume variation between the th grain and its th
neighbors, defined by the equation:

where ρj and Rj denote the dislocation density and grain radius of a
neighbor j of the th grain. Ψ(i,j) is the radius fraction of a grain j with
respect to neighbors of i, aiming to redistribute the volume variation
of the th grain on its neighbors depending on their size. This quantity
is estimated by the following relation:

Two flow charts summarizing the main algorithm of NHM as well
as the implementation performing boundary migration are presented
for a single time step in Fig. 5 (a) and (b) respectively.

4. Modeling of grain elongation

To our knowledge, mean field models of the literature [14, 16,
17] assume that the grains remain spherical all along the deformation
process. However, it is well-known that the grain shape evolves dur-
ing deformation. In the case of necklace type nucleation, the assump-
tion of grains remaining spherical all along the deformation process
is a strong assumption that can effect the nucleation rate. Indeed, the

nucleation rate depends on the grain surface (Eq. (7)) which can
be underestimated when elongated grains are supposed to be spheri-
cal. Full field models have the advantage of explicitly describing the
grain shape evolution during deformation. To investigate the effect
of grain shape evolution on the recrystallization kinetics, several full
field simulations of DRX have been performed at different strain rates
(0.01 s−1 and 0.1 s−1), with and without considering the topological
deformation of the representative volume element (RVE) seeing that
the dislocation density evolution as well as the nucleation and grain
growth mechanisms were still modeled. Two snapshots of the simu-
lations performed at a strain rate of 0.01s−1 with and without consid-
ering the topological deformation of the RVE are presented in Fig. 6.
It is worth noting that the simulation presented in Fig. 6 (c) makes no
physical sense but is only used here to illustrate the potential effect
of grain shape evolution on the recrystallization kinetics during DRX
with a necklace nucleation. Recrystallized fraction, mean grain size
and mean dislocation density are presented as a function of strain in
Fig. 7 for the studied strain rates.

The consideration of the topological deformation of the RVE has
a clear influence on recrystallization kinetics, mean grain size evolu-
tion and mean dislocation density evolution. This can be explained by
the fact that when the topological deformation of the RVE is modeled,
the grain shape evolves from equiaxed to elongated, which increases
the grain boundary surface and thus the nucleation rate (Eq. (7)). The
following section aims to enrich the NHM by modeling the evolution
of principal lengths of the grains (in the sense of idealized ellipsoid
shapes) during a dynamic process.

In standard mean field modeling of DRX [14, 15, 17], each grain
is defined by an equivalent sphere radius Ri and an average disloca-
tion density ρi. In this section, grains are assumed to evolve toward
an ellipsoidal shape during the deformation process. Thus, for each el-
lipsoidal grain i, a local coordinate system that is aligned
in the three main directions of the ellipsoid is considered. Three val-
ues (a(i),b(i),c(i)) represent the three principal semi-axis lengths of the
ellipsoidal grain i in its local coordinate system . Further-
more each grain is associated with an orientation matrix Mi to express
the canonical coordinate system in the local coordinate sys-
tem . Therefore, each grain i is now defined in the NHM by
three semi-axis (a(i),b(i),c(i)), a dislocation density ρi and a rotation
matrix Mi. Thus its volume can be deduced by V i = (4/3)πa(i)b(i)c(i)
and its equivalent sphere radius by Ri = [(3V i)/(4π)]1/3.

Considering any kind of solicitation, the macroscopic strain tensor
E applied on the material in the canonical coordinate system
can be written as follows:

Therefore the local strain tensor Li in the coordinate system of a given
ellipsoidal grain i can be obtained by the following relation:

The obtained local strain tensor Li can be written:

(16)

(17)

(18)

(19)
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Fig. 5. Flow charts representing (a) one time step of the main algorithm and (b) the way to perform boundary migration in the NHM.

This local strain tensor can be used in the considered ellipsoidal grain
to update its three semi-axis (a(i),b(i),c(i)). However the obtained
strain tensor Li is not necessarily diagonal and shear strain can be ob-
served. In order to keep the grains ellipsoidal, only the terms in Li
that are in the diagonal are considered. This assumption means that if
only shear strain components are observed in the local strain tensor Li
of a grain i, its three semi-axis (a(i),b(i),c(i)) will not change. If ε is

small enough at each time increment, the evolution of (a(i),b(i),c(i))
can be expressed as follows:

When a grain grows due to boundary migration (Eq. (2)), its three
semi-axis (a(i),b(i),c(i)) must also be updated. In this model, growth
of a grain is assumed isotropic, thus the three semi-axis (a(i),b(i),c(i))
of a grain i having undergone a variation volume are updated follow-
ing the relations:

(20)
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Fig. 6. Microstructural evolution during a full field simulation of DRX performed at a strain rate of 0.01s−1 (a) at the initial stage of the simulations (b) at ε = 1 with representing the
topological deformation of the RVE (c) at ε = 1 without representing the topological deformation of the RVE.

where V i
t and V i

(t+Δt) are the volume of the grain i at the instants t and
(t + Δt) respectively.

The evolution of principal lengths of a grain i during deformation
leads to an increase of its boundary surface. The grain boundary sur-
face of any ellipsoidal grain can be calculated using incomplete ellip-
tic integral of the first and second kind. However to make it simpler
and to decrease the computational cost, the surface of a grain i is esti-
mated using the relation [37]:

where p= ln(3)/ln(2). This equation gives the surface of a general el-
lipsoid with a relative error < 1.42%. With this approach, the grain
boundary area of all grains will increase during deformation and the
constitutive equation of nucleation rate Eq. (7) will be affected. This
leads to an acceleration of the nucleation kinetics. In standard mean
field models in the literature [14, 15, 17], the initial microstructures
are composed of spherical grains. Thanks to this new formulation,
it is now possible to perform a DRX simulation on an initial mi

crostructure composed of elongated grains, by defining particular ini-
tial values of (a(i),b(i),c(i)) for each grain i.

5. Comparison with full field results

In the present section, a recent published full field model of
DRX [19] is used to discuss the NHM results. This full field
model [19] is based on the same constitutive laws that are used in the
present work for strain hardening, recovery and nucleation. The only
difference between the full field model [19] and the present NHM is
that the microstructure is explicitly described in the full field method-
ology which means that the comparison between both will indicate if
the new microstructure description proposed in the NHM is accurate.
An illustrated case of a DRX simulation using the full field model is
presented in Fig. 8. The simulated process is a channel-die compres-
sion on a 304L steel at a temperature of 1273K and a strain rate of
0.01s−1.

The results in terms of recrystallized fraction, mean grain radius
and mean dislocation density obtained from the mean field model
of Beltran [17], the NHM and full field simulations are compared in
Fig. 9. The evolution of the recrystallized fraction and mean grain
size weighted by volume obtained with the model of Beltran [17] are
quasi-linear for the two considered strain rates (see Fig. 9 (a) and (c)).
With the present NHM, the recrystallized fraction follows an Avrami
evolution (i.e. with a “S” shape, see Fig. 9 (a)), which is commonly
observed in experimental investigations of DRX [38, 39]. Further-
more, evolutions of recrystallized fraction, mean grain size weighted
by volume and dislocation density weighted by volume described
with the NHM are quite close to those described by the full field
model. Finally, the evolution of the mean grain size (see Fig. 9 (b)) is

(21)

(22)
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Fig. 7. Comparisons of the results obtained with the full field model described in [19], with and without representing the topological deformation of the RVE. The conditions of
deformation are a temperature of 1273K and two different strain rates of 0.01s−1 and 0.1 s−1. The model parameters are those of a 304L steel.

correctly described with both the NHM and mean field model of Bel-
tran [17]. It is also observed that the recrystallization kinetics are al-
ways faster in the full field case. This observation can be due to the
fact that the surface S1(i) is approximated by the surface S3(i) in
the NHM and model of Beltran [17] with S3(i) < S1(i) (see Fig. 3),
whereas S1(i) is explicitly taken into account in the full field case.
Thus the total boundary surface Φ considered in the nucleation rate
(Eq. (7)) is always underestimated in the NHM and model of Bel-
tran [17], leading to slower kinetics of recrystallization.

As already mentioned, a known drawback of pre-existing mean
field models if that they provide grain size distributions which do
not match with experimental ones. The grain size distributions ob-
tained with the full field model, the NHM and the model of Bel-
tran [17] are compared in Fig. 10. These distributions are compared
at four strain levels ε = 0.5,ε = 1,ε = 1.5 and ε = 2. The grain size distri-
butions described by the NHM are globally close to grain size dis-
tributions obtained with the full field model. Furthermore, the grain
size distributions obtained with the NHM are quite wide and spread,
which is characteristic of experimental distributions observed during
DRX [40]. The grain size distributions obtained with the model of
Beltran [17] are more tight, which is the characteristic shape observed
in the grain size distributions predicted by standard mean field mod-
els [14, 15, 17]. This issue has already been discussed in the state of
the art [40] and is due to the particularity of Eq. (2). In fact, when
nuclei appear during the simulation, they grow in the microstructure
while increasing their dislocation density by strain hardening. When

they reach a given size and dislocation density, they decrease with re-
spect to other nuclei that recently appeared. Therefore, the grains can-
not grow more than a given size characterized by a high peak on dis-
tributions provided by the model of Beltran [17] (see Fig. 10).

As already mentioned, the great advantage of mean field models is
their computational cost. This gives them the possibility to be coupled
with macroscopic finite element simulations to predict microstructural
evolutions throughout the processed product. To perform such cou-
pling, many sensors must be placed onto or into the forged part (at
each integration points for example) to follow the thermomechanical
path (temperature and strain rate as a function of time) at any point
of the part during the finite element simulation. Then, a mean field
simulation is performed at each sensor using the recorded thermo-
chemical path as input in order to predict the microstructure evolu-
tions. Since a mean field simulation is performed at each sensor, the
computational cost of a single simulation is very important to be able
to perform a large number of simulations on a relatively short time.
The computational cost of a NHM simulation mainly depends on the
total number of classes, which is affected by the initial number of
classes, the deformation step and the strain level. Therefore, several
simulations using the NHM have been performed with three differ-
ent initial number of classes (8, 16 and 24 classes) considering the
same initial mean grain size. Resulting recrystallized fraction, compu-
tational cost, mean grain radius as well as mean dislocation density
evolutions are presented in Fig. 11. The obtained results are not re-
ally dependent on the initial number of classes (see Fig. 11 (a), (c) and
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Fig. 8. Illustrated case of a DRX simulation using the full field model [19]. The simulated process is a channel-die compression on a 304L steel at a temperature of 1273 K and a
strain rate of 0.01s−1.

(d)). However, the computational cost seems to increase quite linearly
with the initial number of classes (see Fig. 11 (b)). Thus, a number of
8 initial grain classes is a good compromise between low computa-
tional cost and converged results. It is worth mentioning that for this
case, the number of classes at the end of the simulation is around 90.

Then several simulations using the NHM have been performed
with an initial number of 8 grain classes and by considering differ-
ent deformation steps (Δε = 0.01,Δε = 0.025 and Δε = 0.05). Results in
terms of recrystallized fraction, computational cost, mean grain radius
as well as mean dislocation density are presented in Fig. 12. The re-
crystallized fraction evolution obtained with the NHM with the three
different deformation steps are quite similar (see Fig. 12 (a)). How-
ever, the final value of the mean dislocation density and mean grain
size obtained with the NHM with a deformation step of 0.05 is a bit
different from those obtained with a deformation step of 0.01 or 0.025,
the latter being close to each other. It is also observed that the com-
putational cost is very dependent on the deformation step (see Fig. 12
(c)). A simulation using a deformation step of 0.025 leads to com-
putational cost significantly lower than using a deformation step of
0.01. The influence of the deformation step on the computational cost
comes from the fact that the deformation step has a strong influence
on the apparition of new classes during the simulation. During nucle-
ation, a new class is created at each deformation step, thus the smaller
the deformation step, the more new classes will be created during the
simulation. A deformation step of 0.025 is retained as a good compro-
mise between converged results and low computational cost.

Finally, since the computational cost also depends on the strain
level, Fig. 13 presents the evolution of the number of increments as
well as the cumulated computational cost as a function of the true
strain during a simulation using the NHM. A number of 8 initial
classes as well as a deformation step of 0.025 were considered in the
simulation. First the evolution of the number of increments is linear
up to a strain level of 1.2 and then evolves faster. This increase is due

to the strategy adopted in the model of Beltran [17] and used in the
NHM. The latter consists of adapting the deformation step in order
to avoid grains with a negative volume, which can appear with Eq.
(2) or 17. This adaptation means that each deformation step can be
discretized in several increment during the simulation. The cumulated
computational cost also increases as a function of the true strain dur-
ing the simulation. This evolution is slow up to a strain level of 1.2
since the number of classes is still low at the beginning of the sim-
ulation. Then the evolution of the computation cost increases faster
up to the end of the simulation. This increases is due to the fact that
the number of increments as well as the number of classes are con-
stantly increasing all along the simulation. The global computational
cost of the NHM simulation is still very low even at high level of
strain. Therefore if a finite element simulation of hot forging is com-
posed of 50,000 integration, reaching a homogeneous strain level of
2, it is possible to simulate the microstructural evolutions on the en-
tire forged part in less than 1week using the NHM, which would have
taken almost a few years using a full field model.

6. Conclusion

A new topological approach called “NHM” for NeighborHood
Model is proposed for the mean field modeling of dynamic recrys-
tallization. The latter is based on two main improvements as com-
pared to the state of art: (i) the consideration of a particular neigh-
borhood for each grain and (ii) the modeling of principal lengths of
grains. The results obtained by NHM are compared to those obtained
by a former mean field model [17] and non-negligible improvements
are observed in terms of average quantities as well as grain size dis-
tributions. A sensitivity study showed that the NHM is interesting in
terms of numerical cost, which gives the opportunity to simulate the
microstructural evolutions on an entire forged part issued from a fi-
nite element calculation in less than 1week. Despite large advances in
terms of predictions as compared to former mean field formulations,



UN
CO

RR
EC

TE
D

PR
OO

F

Materials and Design xxx (2018) xxx-xxx 11

Fig. 9. Comparison of the results obtained by three different models: the full field model [19], the mean field model of Beltran et al. [17] and the NHM proposed in this paper.
Compared results are: (a) recrystallized fraction (b) mean grain size, (c) mean grain size weighted by grain volume and (d) mean dislocation density weighted by grain volume. The
simulated process is a channel-die compression at 1273K, at two different strain rates of 0.01s−1 and 0.1 s−1.

some improvements concerning neighbors choices can still be done
based on experimental investigations. Furthermore, an extension of
NHM for post-dynamic and static evolutions is required to simulate
multi-pass deformations.
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Fig. 10. Comparison of the grain radius distributions obtained with the full field model [19], the mean field model of Beltran et al. [17] and the NHM. The simulated process is a
channel-die compression at 1273 K during 200s at two strain rates 0.01s−1 and 0.1 s−1 and interrupted at different strain levels ((a) to (d)).
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Fig. 11. Sensitivity study of the initial number of grain classes on results obtained with the NHM: (a) recrystallized fraction (b) computational cost (c) mean grain radius weighted by
grain volume (d) mean dislocation density weighted by grain volume.
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Fig. 12. Sensitivity study of the deformation step on results obtained with the NHM: (a) recrystallized fraction (b) computational cost (c) mean grain radius weighted by grain volume
(d) mean dislocation density weighted by grain volume.

Fig. 13. Number of increment and cumulated computation cost as a function of the true
strain obtained during a simulation using the NHM at a strain rate of 0.01s−1 and a tem-
perature of 1273 K. A number of 8 initial grain classes and a deformation step of 0.025
were considered.
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