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Abbreviations and Symbols

Abbreviations
RX Recrystallized
NR Non-recrystallized
GG Grain growth
DRX Dynamic recrystallization
SRX Static recrystallization
PDRX Post-dynamic recrystallization
EBSD Electron backscattered diffraction
SEM Scanning electron microscopy
HEM Homogeneous equivalent medium
FE Finite elements
CA Cellular automata
LS Level-Set
MC Monte-Carlo
PF Phase-Field
Physical variables
ε Strain level
εp Peak strain
εcr Critical strain for onset of DRX
ε̇ Strain rate (s−1)
Z Zener-Hollomon parameter
τ Energy per unit dislocation line (J.m−1)
Mb Grain boundary mobility (m4.s−1.J−1)
θ Misorientation angle (◦)
γb Grain boundary energy per unit area (J.m−2)
b Norm of Burgers vector (m)
R Perfect gaz constant (J.mol−1.K−1)
Ri Equivalent sphere radius of the ith grain (µm)
Di Equivalent sphere diameter of the ith grain (µm)
Si Surface of the ith grain (µm2)
Vi Volume of the ith grain (µm3)
〈R〉 Mean grain radius (µm)
〈D〉 Mean grain diameter (µm)



〈R0〉 Initial mean grain radius (µm)
〈D0〉 Initial mean grain diameter (µm)
ρi Mean dislocation density in the ith grain (m−2)
〈ρ〉 Mean dislocation density (m−2)
Ei Stored energy in the ith grain (J.mm−3)
〈E〉 Mean stored energy (J.mm−3)
σR Standard deviation of grain radius (µm)
σE Standard deviation of stored energy (J.mm−3)
ρcr Critical dislocation density for onset of DRX (m−2)
rcr Critical nucleus radius (µm)
X Recrystallized fraction
T Temperature (K)
Qdef Activation energy for hot deformation (J.mol−1)
Qm Activation energy for boundary migration (J.mol−1)
Qn Activation energy for nucleation (J.mol−1)
Pe Pressure exerted on a grain boundary due to stored energy (N.m−2)
Pc Pressure exerted on a grain boundary due to local curvature (N.m−2)
Pb Total pressure exerted on a grain boundary (N.m−2)
vb Grain boundary velocity (m.s−1)
V̇ Volume of nuclei per unit time (s−1)

σi Flow stress in the ith grain (MPa)
σ Macroscopic flow stress (MPa)
σ0 Yield stress (MPa)
MT Taylor factor
µ Shear modulus (MPa)
κ Grain boundary curvature (m−1)
Model parameters
K1 Parameter related to strain hardening (m−2)

K2 Parameter related to dynamic recovery
Ks Parameter related to static recovery
δ Parameter related to grain boundary mobility under dynamic conditions
δs Parameter related to grain boundary mobility under static conditions
Kg Parameter related to nucleation (m.s−1)



Introduction
A metal alloy is composed of several grains, each grain having its own crystallographic
orientation describing the atoms arrangement in space. The grain size is typically be-
tween 1 and 100 µm and the frontier between one grain to another is called grain bound-
ary. The properties of a metal alloy (e.g. toughness, strength, conductivity) directly de-
pend on its microstructure, that is to say the chemical composition, crystalline structure,
as well as size, shape and orientation of the different grains.

To obtain an intermediate or final product, the metal alloy is generally cold-worked af-
ter casting by different processes such as forging, rolling, extrusion etc. During these
processes, a large part of the energy is dissipated as heat. However, a small part re-
mains in the microstructure in the form of crystallographic defects, mainly dislocations.
If the material is subsequently heated at high temperatures, thermally activated mech-
anisms tend to reorganize and anneal these defects to decrease the global energy: this
phenomenon is called static recrystallization.

However, casting products can also be directly hot-worked, therefore microstructure
mechanisms tending to increase and decrease defects in the microstructure occur si-
multaneously during deformation: this phenomenon is called dynamic recrystallization.
After deformation when the material is still at high temperatures, some mechanisms
tending to decrease defects are still activated, leading to post-dynamic recrystallization.

Even if most of dislocations are annihilated by recrystallization, the presence of grain
boundaries in the microstructure still leads to a thermodynamically unstable state. There-
fore under the effect of temperature, microstructure naturally tends to decrease the total
surface of grain boundaries, leading to a shrinkage of small grains and a growth of
coarse grains: this mechanism is called grain growth.

Given this large number of mechanisms occurring simultaneously in a microstructure
during and after deformation, a huge challenge for industrials is to control and predict
microstructure evolutions occurring during and after processes, whatever the initial state
of the microstructure (grain size distribution, dislocation density distribution, second-
phase particles etc.). Finite element software are widely used to predict the macroscopic
behavior (strain field, temperature field, stress field) of metal alloys during forging.
However, industrials and researchers have quickly understood that macroscopic simu-
lations are not always sufficient to correctly understand and optimize local behaviors of
metal alloys, and knowledges on microstructure evolutions are of prime importance in
some cases. Therefore, simulations at a polycrystalline scale, called full field simula-
tions, were proposed in the last decades to predict local microstructures of metal alloys.
These simulations showed good interests, in particular for discussing assumptions made
in higher scale models. Since full field models are generally greedy in terms of com-
putational costs, phenomenological laws can be used as an alternative to predict mean
quantities such as recrystallized fractions or mean grain sizes but these models are often
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based on many assumptions. Therefore, mean field models emerged as a compromise
between full field models and analytical laws. Mean field models are based on a an
implicit description of the microstructure by considering grains as spherical entities.

In this context, a project called DIGIMU was created at CEMEF in collaboration
with many R&D research centers: Safran, Aubert & Duval, Framatome, CEA, Timet,
ArcelorMittal and Ascometal, to develop a full field numerical software package
called DIGIMU R© and aiming to model microstructure mechanisms occurring at the
polycrystalline scale during and after hot forging processes. The DIGIMU R© software
package version pre-existing to this PhD work was able to handle only the mechanisms
of grain growth and static recrystallization, and was limited to two-dimensional
simulations.

The first contribution of my PhD work in this project was to develop and integrate a
three-dimensional full field model of dynamic and post-dynamic recrystallization into
the DIGIMU R© software package. Thereafter, my second contribution was to use this
full field model as a reference to propose a new mean field approach, aiming to perform
three-dimensional simulations of dynamic and post-dynamic recrystallization in a very
short time. Finally, my last contribution was to propose a method of calibration for these
two models and to test this method based on experimental data of a 304L austenitic steel.

This PhD book is subdivided into five main chapters :

• Chapter 1 : The first chapter is dedicated to the literature review of this work. The
304L austenitic stainless steel considered in this study is first presented. Then the
mechanisms of dynamic and post-dynamic recrystallization are introduced with
their influence on the flow behavior of metals. Finally, the main three different
scales for modeling of dynamic and post-dynamic recrystallization are mentioned
and different models of literature are described with their advantages and draw-
backs.

• Chapter 2 : In this second chapter, the formalism of full field modeling con-
sidered at CEMEF and used in the DIGIMU R© software for microstructure evo-
lutions is introduced. This latter is based on the Level-Set approach in a finite
element framework. In a second part, three-dimensional full field simulations of
grain growth (i.e. without stored energy and deformation) are performed using
this framework. More particularly, the influence of the initial grain size distri-
bution on microstructure evolutions occurring during the transient grain growth
regime is discussed thanks to full field simulations, and these results are used to
enhance two analytical grain growth models of the literature.

• Chapter 3 : This third chapter is dedicated to the development of a new full
field model for dynamic and post-dynamic recrystallization. Contrary to full field
models in the state of the art, this latter aims to describe microstructure evolutions
in three-dimensions, for large deformations and with relatively low computational
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costs. Modeling of microstructure and grain boundary migration is based on the
Level-Set method in a finite element framework presented in chapter 2 while other
mechanisms are simulated by phenomenological laws. First, the constitutive laws
for modeling strain hardening, recovery and nucleation are introduced. Then, a
sensitivity study about the model is made and finally, results are compared with
a mean field model of the literature to discuss limitations of existing mean field
models.

• Chapter 4 : In this fourth chapter, a new topological approach, called ”NHM” for
NeighborHood Model, is proposed for mean field modeling of dynamic and post-
dynamic recrystallization. The NHM is based on two major improvements with
respect to the literature. A major advantage is related to the fact that constitutive
laws (and thus model parameters) for dynamic and post-dynamic recrystallization
are the same as those considered in the full field model of chapter 3. Therefore
the full field model introduced in chapter 3 can be used as a reference to validate
improvements made in the NHM. Furthermore, since mean field simulations can
be perform in few seconds, the NHM can be used to identify very quickly by
inverse analysis the model parameters used in both the full field model and the
NHM. In a first part, the two major improvements considered in the NHM are
introduced. Then a sensitivity study of this model is made. Finally this model is
compared to the full field model of chapter 3 considering same model parameters.

• Chapter 5 : In this last chapter, experimental investigations are performed on
304L steel samples. More precisely, compression tests are performed on two dif-
ferent sample geometries. First, the compression framework is introduced and
results in terms of stress-strain curves are presented and then used to identify both
hardening K1 and recovery K2 model parameters. Then, microstructure investi-
gations are introduced and results in terms of mean grain sizes, grain size distri-
butions as well as recrystallized fractions are presented and used to identify both
nucleation Kg and strain rate dependence of grain boundary migration δ model
parameters. After identification of these four model parameters, predictions of
the full field model and the NHM are compared to experimental data. Finally,
two-dimensional slices are performed from three-dimensional representative ele-
mentary volumes of full field simulations and results are qualitatively compared
to electron backscatter diffraction maps.

Oral and written communications
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CHAPTER 1. LITTERATURE REVIEW

Résumé en français
Ce premier chapitre est consacré à l’étude bibliographique de mon sujet de thèse.
Premièrement, la composition ainsi que les propriétés physiques du matériau considéré
dans cette étude, c’est-à-dire l’acier 304L, sont données. Par la suite les mécanismes de
recristallisation dynamique et post-dynamique sont physiquement décris et l’influence
de la recristallisation dynamique sur le comportement global du matériau est évoquée.
Finalement, les différents types de modèles métallurgiques existants dans la littérature
sont introduits. Pour chaque type, des modèles de recristallisation dynamique et post-
dynamique de la littérature sont décrits, avec leurs avantages et leurs faiblesses.

8



CHAPTER 1. LITTERATURE REVIEW

1.1 Dynamic and post-dynamic recrystallization

1.1.1 Introduction
Hot deformation of metals is responsible of a wide range of phenomena occurring in the
microstructure. At high deformation temperatures, the dislocation density is the result
of a competition between the increase of the amount of dislocations due to strain hard-
ening and its decrease due to dynamic recovery. In general, the increase is faster than
the decrease and the dislocation density globally goes up. Once a critical dislocation
density is locally reached, the recrystallization mechanism, characterized by the appear-
ance of recrystallized (RX) grains, occurs in the microstructure. These RX grains have a
low content of dislocations and therefore a low stored energy value compared to the de-
formed ones. Because of stored energy differences between RX and non-recrystallized
(NR) grains, RX grains grow by grain boundary migration at the expense of deformed
grains. Simultaneously, dislocation density increases in the RX grains because of plastic
deformation. In addition to stored energy differences, capillarity effect is also a driv-
ing force for grain boundary migration. This force tends to decrease the total grain
boundary energy and its contribution is particularly important at multiple junctions. All
these mechanisms acting during hot deformation constitute the so-called discontinuous
dynamic recrystallization mechanism [1–10], which is the classical dynamic recrystal-
lization (DRX) mechanism occurring in low/medium stacking fault energy (SFE) metal
alloys, such as the 304L austenitic steel considered for application in this work. If the
plastic deformation is stopped and the material is still at high temperature, grain bound-
ary migration is still active because of stored energy differences and capillarity effects,
which is called metadynamic recrystallization. Furthermore, the nucleation mechanism
can also occur in some hardened grains, which is then called static recrystallization
(SRX). Both SRX and MDRX appearing after hot deformation constitute the so-called
post-dynamic recrystallization mechanism (PDRX) [11, 12]. Finally, if the material is
left at high temperature and microstructure is almost free of stored energy, the only
mechanism occurring is boundary migration due to capillarity effects: this regime is
called grain growth (GG). A well-known review of recrystallization phenomena occur-
ring in metal alloys can be found in [5]. More recently, Huang et al. [10] proposed a
review of mechanisms acting during DRX.
In the following section, the 304L austenitic steel which is the material considered in
this work for application is first presented. Then, the individual mechanisms involved
in DRX and PDRX, i.e. strain hardening, recovery, nucleation and grain boundary
migration, are described.

1.1.2 Austenitic stainless steel 304L

Chemical composition

Among the large number of metal alloys, stainless steels are widely used for their good
corrosion resistance due to a large amount of chrome (>11%), as well as good me-
chanical properties at high temperatures. Depending of the nature of the phases formed
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in a steel, several classes are defined: martensitic, ferritic, austenitic and also duplex
austenitic + ferritic steels. 304L is an austenitic stainless steel that is widely used.
We can find this alloy in a large variety of applications such as automotive, aerospace
and nuclear structure constructions. The crystalline structure of the 304L steel is face-
centered cubic, with a lattice parameter a equal to 3.586.10−10m [13] and a Burgers
vector magnitude b equal to a/

√
2 ' 2.5.10−10m. In addition to the high amount of

Chrome, Nickel is also added in high proportions in 304L steel so as to stabilize the
austenite at low temperatures. The general chemical composition of the 304L steel is
reported in Tab. 1.1.

Element Carbon Mn P S Si Cr Ni N Fe
w% 304L <0.03 <2.00 <0.045 <0.03 <0.75 18- 20 8-12 <0.10 Bal.

Tab. 1.1. Chemical composition of austenitic stainless steel 304L (weight %).

Physical properties

The volumic mass of the 304L steel is about 7900 kg/m3 and its melting temperature
is about 1673K [14]. Concerning its mechanical properties at ambient temperature, the
Young’s modulus is about 200 GPa, the elongation to rupture is about 60% and the
failure strength is under 600 MPa. Numerous papers and studies exist concerning the
flow behavior of the 304L steel. In [15], the authors performed several compression
tests on 304L steel at different temperatures (from 300K to 1500K) and at very low
strain rates (< 0.003s−1). The thermomechanical conditions as well as measured elastic
modulus and yield stress are presented in Tab. 1.2.

T ε̇ Max Strain Young’s modulus Yield stress
(K) (s−1) (GPa) (MPa)

293K (20◦C) 0.00183 0.1131 228 447.8 8
600K (327◦C) 0.00196 0.1748 208 320.1
700K (427◦C) 0.00189 0.1803 195 322.2
800K (527◦C) 0.00184 0.2728 163 294.2
900K (627◦C) 0.00161 0.4569 156 264.5

1000K (727◦C) 0.00172 0.4967 132 231.2
1100K (827◦C) 0.00170 0.6144 107 162.1
1200K (927◦C) 0.00183 0.6891 72 96.9

1300K (1027◦C) 0.00263 0.7505 45 55.3
1400K (1127◦C) 0.00182 0.6963 45 27.3
1500K (1227◦C) 0.00197 0.6591 16 12.5

Tab. 1.2. Temperatures, strain rates and maximum strain levels achieved for compres-
sion tests on a 304L steel. The resulting Young’s modulus and yield stresses measured
on stress-strain curves are also reported from [15].
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1.1.3 Strain hardening
When a metal alloy is plastically deformed, a large quantity of energy is dissipated in the
form of heat and the remaining energy, typically 1% [5], is stored in the material under
the form of crystallographic defects, mainly dislocations. During plastic deformation,
dislocations move in the material until they interact with each other or with barriers
(e.g. dislocation pile-up at grain boundaries, twins, inclusions etc.) in the polycrystal.
Therefore the more dislocations in the metal, the more they interact and become pinned
or tangled, resulting in a decrease of their mobility and consequently a strengthening of
the metal alloy: this strengthening during plastic deformation is called strain hardening.
The typical dislocation density of an annealed microstructure is between 1010m−2 and
1011m−2 and can increase up to 1015m−2 for a cold-worked metal [16].

1.1.4 Recovery
The presence of a dislocation induces an elastic strain field around the dislocation core.
This strain field is in compression and tension on one side and the other of the disloca-
tion line. In order to reduce those stress fields (i.e. the energy per dislocation), attraction
and repulsion of dislocations take place between each other. Although at low temper-
atures dislocations are not mobile, at high temperatures dislocations move in order to
reduce the energy associated to their strain field. Dislocation glide and cross slip, as il-
lustrated on Fig. 1.1(a) and (b), respectively, are the main mechanisms occurring at high
temperatures. Dislocation glide allows a dislocation to move on its slip plane by broken
atomic bonds while cross slip allows a dislocation to change slip plane and hence move
in 3D. For some materials, at very high temperatures, dislocation climb may also occur.

All these thermally activated mechanisms concerning mobility of dislocations allow
them to adopt minimal energy configurations. Dislocations with opposite Burgers vector
annihilate, dislocations with same Burgers vector group together forming subgrains: this
global mechanism is called recovery. Dynamic and static recovery may occur depending
whether it takes place during deformation or not.

Cross slip 
plane 

primary 
slip plane 

dislocation 

(a) (b) 

Fig. 1.1. a) Glide of a edge dislocation: a bond is broken per plane for each glide and
b) cross slip of a dislocation: a dislocation moved from a slip plane to another.
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1.1.5 Grain boundary migration
At high temperatures, grain boundaries migrate due to driving forces. This mechanism
occurs to decrease the Gibbs free energy of the system and is based on the simple theory
that atoms cross boundaries with net energy gain. The grain boundary velocity ~vb is
generally assumed as a linear function of a driving pressure, noted Pb, leading to :

~vb = MbPb~n, (1.1)

where ~n is the unit outward vector normal to the grain boundary and Mb is the grain
boundary mobility. Furthermore, it is generally assumed that the total pressure exerted
on the boundary Pb is the sum of a pressure due to capillarity effects noted Pc and a
pressure due to a jump in stored energy across the grain boundary noted Pe :

Pb = Pc +Pe. (1.2)

In a highly deformed material, forces due to stored energy are much higher than capil-
larity forces. In the case where second phase particles exist in the microstructure, grain
boundaries can be pinned by these particles and their velocity is thus decreased: this
mechanism is called the Smith-Zener pinning effect [17] but is not considered in this
report since the investigated 304L steel is quasi single-phased.

The pressure Pc on a boundary is usually assumed to be directly proportional to its
mean curvature, which is the trace of the curvature tensor in 3D, and the pressure Pe is
generally assumed to be driven by a jump in stored energy across the grain boundary,
leading to :

Pc =−γbκ, (1.3)

Pe = JEK = τJρK, (1.4)

where γb is the grain boundary energy, κ is the local mean curvature, and JEK is the jump
in stored energy across the grain boundary. The stored energy E in a grain is generally
estimated with the relation E = τ × ρ where τ is the energy per unit dislocation line.
The parameter τ is often estimated by the relation µb2/2 where µ is the shear modulus
and b is the norm of the Burgers vector. A schematic illustration of a grain boundary
submitted to the pressures Pc and Pe is presented on Fig. 1.2 in the case where the grain
2 has a dislocation density higher than that of grain 1 (i.e. ρ2 >> ρ1).
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Grain 1 
 

Grain 2 

ρ2 >> ρ1 

𝑃𝑒 
𝑃𝑐 

𝑃𝑏 

Fig. 1.2. Schematic illustration of a grain boundary submitted to a pressure Pc due to
capillarity effects and a pressure Pe due to the jump in stored energy across the grain
boundary. Pb is the total pressure exerted on the grain boundary. The grain 2 has a
dislocation density noted ρ2 higher than that of the grain 1 noted ρ1.

A boundary separating two grains can be physically described by a misorientation of
the lattice between these two grains and by the normal to the boundary plane ~n. De-
pending on these two factors, the grain boundary energy γb can change. However, the
effect of boundary plane on its energy is still poorly understood which explains why
this effect is rarely considered in the state of the art concerning grain boundaries. Usu-
ally, the crystallographic mismatch between two grains at a grain boundary is quantified
using a misorientation angle, also called disorientation and noted θ . Furthermore, the
Read-Shockley relation [18, 19] is generally used to describe the dependence of the
disorientation θ on γb :

γb(θ) =

 γ0
θ

θref

(
1− ln

(
θ

θref

))
if θ ≤ θref,

γ0 if θ ≥ θref,
(1.5)

where γ0 is the energy of high misorientation angle grain boundaries (HAGB) and θref
is the misorientation angle that defined a HAGB, generally close to 15◦. This relation
assumes that grain boundary energy is not affected by misorientation angles above 15◦.
A modified Read-Shockley relation was proposed and used in [20, 21] for large values
of misorientation angles. Recently, using Olmsted molecular dynamic simulation re-
sults [22], Bulatov et al. [23] proposed an analytical function to describe qualitatively
the grain boundary energy variations in the 5-space of macroscopic parameters defining
a grain boundary (3 parameters for describing the misorientation and 2 for the plane
inclination).

Eq. 1.3 is widely used in literature for modeling of grain boundary migration under the
assumption of isotropic (i.e. constant in the microstructure) or anisotropic (i.e. con-
stant per grain boundary) grain boundary energies. In the context of anisotropic grain
boundary energies, Eq. 1.5 can be used as a first approximation to define constant per
grain boundary γb values. In [24], a novel formulation was proposed for modeling GG
with anisotropic energies. To our knowledge, there exists no models able to consider
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the dependence of~n on the grain boundary energy. However in this case, the capillarity
pressure given by Eq. 1.3 would become a large assumption and based on Herring’s
equation [25], the capillarity pressure should be expressed as :

Pc =−κ1

(
γb +

∂ 2γb

∂ξ 2
1

)
−κ2

(
γb +

∂ 2γb

∂ξ 2
2

)
, (1.6)

where κi is the curvature in the ith principal direction of the grain boundary and (ξ1,ξ2)
are the angles parametrizing the grain boundary normal~n.

The boundary mobility Mb, reflecting the ability of the boundary to move, is material
and temperature dependent and is generally assumed to follow a law close to Arrhenius
type [5] :

Mb = M0 exp
(−Qm

RT

)
, (1.7)

where M0 is a pre-exponential term, T is the temperature, Qm is the activation energy
for grain boundary migration, which is dependent on the material, and R corresponds
to the perfect gaz constant. M0 can also be considered inversely proportional to the
temperature.

1.1.6 Nucleation
Nucleation has a primordial role in understanding the microstructure evolution by re-
crystallization phenomena. It consists in the appearance of new grains with very low
stored energy. It is generally assumed that nucleation occurs at high temperatures in re-
gions with high dislocation content, i.e. high stored energy level (the concept of critical
strain is sometimes used). Hence, nucleation appears mainly at grain boundaries during
DRX . Some accepted mechanisms found in the literature for nucleation are presented in
the following: nucleation by subgrain coalescence, nucleation by strain induced bound-
ary migration (SIBM) and nucleation by low angle boundary migration. A review of
these major mechanisms can be also found in [26].

Subgrain coalescence
This mechanism was first proposed by Smith in 1948 [27]. Then, Hu [28, 29] stud-
ied nucleation occurring during annealing of a Fe-3%Si single crystal using TEM and
observed that it mainly occurs by subgrain coalescence as seen on Fig. 1.3.
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(a) (b) 

0,5μm 0,5μm 

Fig. 1.3. Coalescence of subgrains in Fe-3%Si alloy cold rolled to 70% seen by the
gradual disappearance of several subgrain boundaries, and a decrease of the contrast
between grains during annealing at 1000K after (a) 2min and (b) 3min. Reproduced
from [28].

Few years later, Jones [30] and [31] observed the same mechanism in aluminium alloys.
The theory of this mechanism is based on the rotation of one subgrain lattice up to coa-
lescence with a neighboring subgrain lattice. The subgrain boundaries slowly disappear
and a high angle boundary is formed. Then, the coalesced subgrains grow by bound-
ary migration. This mechanism is mainly observed in metal alloys with well organized
deformation substructures, which is not the case of the 304L steel. Furthermore, this
mechanism is favoured at moderate strain and low annealing temperatures.

Strain induced boundary migration (SIBM)
This mechanism is the common nucleation mechanism observed in most of metal al-
loys. It was first observed by Beck and Sperry in 1950 [32] in high purity aluminium,
as shown on Fig. 1.4 and schematized on Fig. 1.5. It was then validated thanks to
experiments on a large number of other metal alloys [33–35]. This mechanism is char-
acterized by the migration of a pre-existing grain boundary (position 1 on Figs. 1.4 and
1.5) toward the interior of a highly strained grain (grain B on Figs. 1.4 and 1.5). The
new position of the boundary (position 2 on Figs. 1.4 and 1.5) swept an area almost free
of defects, defined as a nucleus. A particularity of this mechanism is that the nucleus
formed has an orientation close to its parent grain.
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Fig. 1.4. SIBM in high purity aluminium from position 1 to position 2. Orientation in
the swept area is almost identical to that of the deformed grain A [32].

Since SIBM occurs at grain boundaries, it often leads to a necklace nucleation charac-
terized by several small nuclei along former grain boundaries. The condition for those
nuclei to survive is given by a positive energy-balance between the stored energy and the
surface energy of the migrating boundary surface. This condition, known as the Bailey-
Hirsch criterion [36], leads to a critical grain size rcr for the subgrain to be viable as a
nucleus :

rcr =
2γb

τ∆ρ
, (1.8)

where γb is the grain boundary energy, τ is the energy per unit dislocation line, and
∆ρ is the difference of dislocation density ∆ρ = ρB - ρA as seen on Figs. 1.4 and 1.5.
Investigations on deformed metals suggested that SIBM is the dominant mechanism
occurring for hot deformations lower than 20% [36,37], even if it also occurs for higher
deformations.

ρB >> ρA 

2rcr 

Grain B 

Grain A 

Position 1 

Position 2 

Fig. 1.5. SIBM of a boundary separating a grain of low stored energy (Grain A) from
one of higher energy (Grain B). The positions 1 and 2 denote the positions of the grain
boundary before and after SIBM, respectively.
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Low angle boundary migration
This nucleation mechanism was independently proposed by Beck in 1949 [38] and
Cahn [39] in 1950. Then, additional explanations were brought by Cottrel in 1953 [40]
leading to the Cahn-Cottrell nucleation model. This model is based on the growth of
a subgrain at the expense of its neighbors by thermally assisted subgrain boundary mi-
gration. During migration, the subgrain boundary absorbs dislocations, increasing its
misorientation angle and transforming into a mobile high angle boundary, as illustrated
on Fig. 1.6. For this mechanism, the condition for a subgrain to become a stable nu-
cleus can also be given by the Bailey-Hirsch condition (Eq. 1.8). This mechanism is
mainly observed in materials with a low stacking fault energy and during processes at
high temperatures and high strain levels [26, 41].

(a) (b) (c) 

Fig. 1.6. Schematic illustration showing the nucleation of a RX grain starting from a
subgrain: a) initial substructure, b) the growth of the larger (middle) subgrain over the
other (smaller) ones and c) an area free of defects associated to a large angle boundary
that is being formed [26].

1.1.7 Influence of recrystallization on the flow behavior
The flow behavior of a metal alloy is driven by its microstructure. During the first stage
of deformation, strain hardening and dynamic recovery, characterized by an increase and
a decrease of the stored energy, respectively, act in the microstructure. Globally, strain
hardening is preponderant and the global stored energy increases in the microstruc-
ture, inducing an increase of the macroscopic flow stress. As soon as nucleation occurs
(around 80% of the peak strain), new small grains with low energy contents appear in
the microstructure, leading to a decrease of the global stored energy and consequently
to macroscopic softening. Typical stress-strain curves obtained during hot deformation
of a metallic alloy are presented on Fig. 1.7. It is well known in literature [5] that an
increase in temperature or a decrease in strain rate leads to a decrease in the flow stress
and conversely. This sensitivity of the flow behavior to temperature and strain rate led to
the introduction of the Zener-Hollomon parameter [42] noted Z. This parameter is also
called temperature-compensated strain rate and is defined by the following relationship
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:

Z = ε̇ exp
(

Qdef

RT

)
, (1.9)

where ε̇ is the strain rate, Qdef is the apparent activation energy for deformation (J.mol−1),
R the perfect gas constant (J.mol−1.K−1) and T is the deformation temperature (K).

The parameter Z is used by several authors to describe the shape of the stress-strain
curve [1,19,43]. Usually, at high Z values, i.e. high strain rates and low temperatures, a
very pronounced single-peak flow is observed (Fig. 1.7 (a)), whereas at low Z values, a
multi-peak is observed (Fig. 1.7 (b)). Such oscillations can be explained by the fact that
at low strain rates and high temperatures, most of the microstructure is recrystallized
before the first RX grains hardened enough to start a new cycle of nucleation. So one
oscillation means that the major part of the microstructure was one time almost fully
recrystallized. If the strain rate is increased and/or temperature decreased, strain hard-
ening and nucleation are more simultaneous, damping out the flow curve oscillations.

ε

σ

(a) Single peak of DRX : Low T, High ε̇

(b) Multi-peak of DRX : High T, Low ε̇

Fig. 1.7. Schematic illustration of the typically observed stress-strain curves during hot
deformation. The two cases (a) and (b) show the transition from single to multi-peak
for DRX, respectively.

1.2 Modeling of dynamic and post-dynamic recrystal-
lization

Several kinds of model were reported in the literature to simulate the recrystallization
phenomenon :

• Phenomenological models can be used to reproduce experimental observations
by using analytical laws. However such models are based on a large number of
assumptions and do not describe explicitly the physical mechanisms taking place,
which makes them dependent on materials and thermomechanical conditions.
Furthermore, they use a large number of calibration parameters, which requires
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a large number of experimental data. Most of these DRX and PDRX models are
based on the well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK) [44–46]
and aim at predicting the evolution of the RX fraction during hot deformation.

• Mean field models are based on an implicit description of the microstructure by
considering grains as spherical entities with an equivalent radius and dislocation
density. To further decrease computational costs of mean field models, grains hav-
ing same characteristics (in terms of grain radius and dislocation density) can be
gathered into grain classes. Each grain is considered into a homogeneous equiv-
alent medium (HEM) and its evolution is governed by its interaction with the
HEM [47–50]. In those models, each individual physical mechanism taking place
during DRX (i.e. strain hardening, dynamic recovery, grain boundary migration
etc.) is described by a phenomenological or physical law. Hence they are more
versatile than phenomenological laws.

• Full field models are more sophisticated and are able to explicitly reproduce mi-
crostructure evolutions. Full field models can be based on different numerical
methods such as Phase-Field (PF) [51], Level-Set (LS) [52], Vertex [53], Monte
Carlo (MC) [54,55] or Cellular Automata (CA) [56,57]. Contrary to phenomeno-
logical and mean field models, full field models are based on an explicit descrip-
tion of the microstructure. However, a major limitation of these models remains
their computational cost, especially when crystal plasticity is implemented or
when aiming at a direct coupling with macroscale simulations.

The following part describes the state of the art of the different DRX and PDRX models
existing in the literature. First several models based on the JMAK equation are pre-
sented. Then mean field models of the literature are described with their advantages and
limitations. Finally, the different frameworks used for full field modeling of DRX and
PDRX are reviewed.

1.2.1 Phenomenological models
The JMAK [44–46] equation is often used as an empirical approach to describe the
RX fraction obtained during SRX. This well-known equation and its sigmoidal shape
are based on many assumptions such as a constant temperature, uniformity of nucleation
and growth rates, and location of the nucleation sites. The basic expression of the JMAK
law is the following [5] :

X(t) = 1− exp
(− f ṄĠ3t4

4

)
, (1.10)

where X is the RX fraction, Ṅ is the nucleation rate (number of nuclei per unit time and
volume), Ġ is the grow rate (assumed to be constant), f is a shape factor (equal to 4π/3
for spherical grains) and t is time. Eq. 1.10 can also be found in a more general form :

X(t) = 1− exp(−B× tn). (1.11)
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Since people observed that the evolution of the RX fraction during DRX and PDRX
plotted as a function of the strain level has a sigmoidal shape, the same form of JMAK
equation was adapted to these two regimes. In the following, the literature review will
be limited to the materials close to that of interest of this work (304 steel).

In 2001, Kim et al. [58] proposed these expressions for the modeling of DRX in a AISI
304 steel based on the JMAK equation :

Xdrx = 1− exp(−((ε− εdrx
cr )/ε∗)m), (1.12)

εdrx
cr = 0.27

(
Z
A

)0.0115

, (1.13)

ε∗ = 0.61
(

Z
A

)0.007

, (1.14)

〈D〉= 67.8
(

Z
A

)−0.017

, (1.15)

where εdrx
cr is the critical strain for DRX, i.e. the strain level at which nucleation is

triggered, ε∗ is the strain for maximum softening rate, 〈D〉 is the mean grain diameter,
Z is the Zener-Hollomon parameter and A is a constant. These equations were proposed
in the temperature range of 1173-1373K and the strain rate range of 5.0×10−2-5.0×100

s−1. In 2002, Venugopal et al. [59] proposed the following expressions for modeling of
DRX during hot deformation of a 304L steel in the temperature range of 1223-1523K
and strain rate range of 0.1-20s−1, representative of the extrusion process :

Xdrx = 1− exp(ln2(ε− εdrx
cr )/(ε0.5)

2), (1.16)

εdrx
cr = 5.32×10−4 exp(8700/T ), (1.17)

ε0.5 = 1.264×10−5〈D0〉0.31ε0.05 exp(6000/T ), (1.18)

〈D〉= 20560ε̇−0.3 exp(−0.25(Qdef/RT )), (1.19)

where ε0.5 is the plastic strain for 50% of RX fraction and T is the deformation temper-
ature. More recently in 2008, Dehghan-Manshadi et al. [60] proposed these expressions
for DRX modeling in 304L steel in the temperature range of 1173-1373K and strain rate
range of 0.01-1s−1 :

Xdrx = 1− exp(−k(ε− εdrx
cr )1.3), (1.20)

εdrx
cr = 2.2×10−3Z0.15, (1.21)
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〈D〉= 5.2×103Z−0.17. (1.22)

Several phenomenological models of PDRX based on the JMAK law were also pro-
posed in the literature. In 2001, Cho et al. [61] proposed these expressions for modeling
of PDRX in a AISI 304 steel, in the temperature range of 1173-1373K and a strain rate
of 0.5s−1 :

Xpdrx = 1− exp(−0.693(t/t50)
1.06), (1.23)

t50 = 1.33×10−11ε̇−0.41〈D0〉exp(230300/RT ), (1.24)

where t50 is the time for 50% softening. In 2003, Uranga et al. [62] proposed these
expressions for modeling of PDRX in a coarse Nb microalloyed austenite in the strain
rate range of 0.2-5s−1 and a temperature of 1373K :

Xpdrx = 1− exp(−0.693(t/t50)), (1.25)

t50 = 1.77×10−6ε̇−0.62 exp(153000/RT ). (1.26)

Finally in 2008, Dehghan-Manshadi [63] proposed these expressions for PDRX model-
ing in 304 steel at a temperature of 1173K and a strain rate of 0.01s−1 :

Xpdrx = 1− exp(−0.693(t/t50)1.1), (1.27)

t50 = 8×10−9ε−1.48Z−0.42 exp(375000/RT ). (1.28)

Other models can be found for GG regime, i.e grain boundary migration with no stored
energy within the microstructure. Burke & Turnbull (B&T) proposed an analytical law
aiming to predict a parabolic evolution of the mean grain size as a function of time
during GG :

〈R〉2−〈R0〉2 = αMbγbt, (1.29)

where α is a constant close to 0.5 according to [64, 65], Mb is a function of tempera-
ture and γb is assumed isotropic (i.e. constant in the microstructure). Cruz-Fabiano et
al. [66] recently proposed a modified B&T law where the grain size distribution (GSD)
characteristics are considered, leading to a more realistic prediction of 2D mean grain
size, in particular during the transient regime.

Conclusion of phenomenological laws

Despite their very low numerical cost and ease of use, phenomenological approaches
are limited by the fact that they generally do not take the heterogeneities of energy and
grain size into account. Furthermore, in these models, the nucleation occurring during
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hot deformation is considered to be with a constant rate and to be topologically random
but these assumptions are far from reality. We can even speak of ”blind” models con-
cerning the involved physical mechanisms. Finally phenomenological models cannot
be generalized and must be discussed and parametrized each time thermomechanical
conditions or materials evolve.

1.2.2 Mean field models
Several mean field models can be found in the literature to model DRX and PDRX. The
structure of these models is always the same: the microstructure is implicitly described
by considering spherical grains with a given dislocation density (uniform per grain). To
further decrease computational costs, grains with same characteristics (in terms of radius
and dislocation density) can be gathered into grain classes. This concept was already
used in few mean field models but can be easily extended to any other ones. The main
drawback of this concept is related to the fact that all grains belonging to the same class
follow the same behavior during the simulation. The individual physical mechanisms
taking place during DRX, i.e. strain hardening, dynamic recovery, dynamic nucleation
and grain boundary migration and those taking place during PDRX, i.e. static recovery,
static nucleation and grain boundary migration, are independently described by analyti-
cal laws. The main advantage of mean fields models as compared to phenomenological
laws is the modeling of each underlying physical mechanism, which makes them more
versatile. In addition, not only the mean grain size but also the grain size distribution
can be predicted along the hot deformation process. The first mean field model was
proposed by Hillert and Abbruzzese [47, 67–69] for modeling GG. This model was ex-
tended to DRX in 2009 by Montheillet et al. [48]. In Montheillet’s model, each grain is
considered inside a HEM composed of all grains of the microstructure. Also in 2009,
Cram & Zurob [70] proposed another kind of mean field model for DRX based on an-
other assumption: during deformation, each grain undergoes the same mechanical work
meaning that softer grains deform more than harder ones. Following Montheillet’s ap-
proach, Bernard et al. [49] proposed two years later another physically-based mean field
model, for both DRX and PDRX mechanisms, whose main novelty lies in the fact that
the HEM is subdivided into two different media composed of RX and NR grains re-
spectively. In 2015, Beltran et al. [50] proposed an improvement of Bernard’s model
to handle multi-pass deformation routes. Very recently, Smagghe [71] developed in his
PhD work a new approach for DRX and PDRX modeling in which each grain interacts
with only one randomly-selected grain all along the process. All the quoted mean field
models are detailed below.

Model of Hillert/Abbruzzese [47, 67–69]

Description of the microstructure

In this GG model, the microstructure is modeled by considering grain classes as spheri-
cal entities, each composed of an equivalent sphere radius Ri and an equivalent number
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of grains Ni as illustrated on Fig. 1.8. Then each grain class is immersed into a HEM
with an equivalent radius Rcr, considering the assumption that all grain classes smaller
than Rcr shrink while those larger than Rcr grow.

Ri , Ni 

Rcr 

Fig. 1.8. A grain class immersed into a HEM as considered in the model of
Hillert/Abbruzzese.

Grain boundary migration

This model is based on a single central equation for the modeling of boundary migration
:

dRi

dt
= βMbγb

(
1

Rcr
− 1

Ri

)
, (1.30)

where β is a geometrical dimensionless constant close to unity in 3D, which refers to
the inherent approximations concerning the assumed idealized grain geometry and Rcr
is relative to the mean grain size. By applying the volume conservation equation, it can
be demonstrated that Rcr = 〈R2〉/〈R〉 [72–74]. Therefore at each time increment, grain
classes undergo Eq. 1.30 and all equivalent radius are updated simultaneously at the end
of the time increment, leading to a new grain size distribution.

Model of Montheillet et al. [48]

Description of the microstructure

In the DRX model of Montheillet et al. [48], the microstructure is described by spherical
grains having an equivalent sphere radius Ri and a dislocation density ρi. Although the
concept of grain classes was not initially considered in this model, it could be done
by adding an additional scalar value Ni accounting for the number of grains in each
class. In that case, the index i used in all the constitutive equations would denote the ith

grain class instead of the ith grain. In this model, each grain is immersed into a HEM
composed of all the grains in the microstructure as shown on Fig. 1.9. This HEM is
characterized by a mean dislocation density noted 〈ρ〉surf (weighted by grain surface).
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Ri 

ρi 

<ρ>surf 

Fig. 1.9. A grain immersed into a HEM as considered in the model of Montheillet.

Strain hardening and dynamic recovery

Strain hardening and dynamic recovery are both described in this model within the same
differential equation. In other words, the dislocation density in each grain is updated at
each time increment following a differential equation. Three different differential equa-
tions, summarized in Tab. 1.3, were tested in this model: the power-law (PW) equa-
tion [48], the Yoshie-Lasraoui-Jonas (YLJ) equation [75, 76] and the Kocks-Mecking
(KM) equation.

Name Equation
PW dρi/dε = H/ρν

i
YLJ dρi/dε = K1−K2ρi
KM dρi/dε = K1

√ρi−K2ρi

Tab. 1.3. The three differential equations compared in [48] for strain hardening and
dynamic recovery modeling.

K1 and K2 are the strain hardening and dynamic recovery parameters respectively, H is
a parameter accounting for both strain hardening and recovery balance effects and ν is
a constant.

The macroscopic flow stress of the material is computed at any instant in this model
according to this form of Taylor’s equation :

σ = αµb
√
〈ρ〉vol, (1.31)

where α is a constant close to unity [48], µ is the shear modulus, b is the Burgers vector
magnitude and 〈ρ〉vol is the mean dislocation density (weighted by grain volume), i.e. :

〈ρ〉vol =
∑ρiR3

i

∑R3
i
. (1.32)
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Grain boundary migration

Grain boundary migration is assumed to be driven only by the stored energy difference
between each grain and the HEM, leading to the following equation :

dRi

dt
= Mbτ(〈ρ〉surf−ρi), (1.33)

where Mb is the grain boundary mobility, τ is the energy per unit dislocation line and
〈ρ〉surf is the mean dislocation density of the whole set of grains, weighted by grain
surface to ensure volume conservation :

〈ρ〉surf =
∑ρiR2

i

∑R2
i
. (1.34)

The capillarity term is not considered in the grain boundary migration equation of this
model. If capillarity effects would be considered, the nuclei would have to be generated
with a minimum radius to counter capillarity effects and survive after their appearance
(Bailey-Hirsch criterion in section 1.1.6). On the contrary, the omission of the capil-
larity term in this model enables the creation of nuclei with no limitation in terms of
minimal size. However, it was shown that capillarity effects play a role in microstruc-
ture evolutions, not only during GG but also during DRX and PDRX, in particular at
multiple junctions [77]. Omitting the capillarity term could thus lead to non-physical
results in particular cases. Another drawback is that GG can of course not be modeled
with this model.

Nucleation

Several mechanisms of nucleation were reported in section 1.1.6. Since it is not straight-
forward to investigate and model independently each nucleation mechanism, the authors
propose a nucleation rate equation accounting for any physical type of nucleation :

dN
dt

= Bn×〈ρ〉p ∑Si, (1.35)

where N is the number of nuclei, Bn is a nucleation parameter depending on tempera-
ture and p is a positive exponent. The term ∑Si is due to the fact that nucleation mainly
occurs at grain boundaries and the nucleation rate is assumed to be proportional to the
total grain boundary surface.

Model of Cram & Zurob [70]

Description of the microstructure

The same year, Cram & Zurob [70] proposed a mean field model of DRX with a similar
but richer microstructure description compared to that of Montheillet et al. [48], as
shown on Fig. 1.10. The concept of grain classes is not considered in this model but this
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concept can be easily integrated to this model in the same manner as already discussed
for the model of Montheillet. In addition to the equivalent sphere radius Ri and the
dislocation density ρi, each grain is also characterized by a Taylor factor MT(i) and a
parameter Pi describing the subgrain size distribution.

Ri 

ρi , MT(i), P(χi) 

<ρ>surf 

Fig. 1.10. A grain immersed into a HEM as considered in the model of Cram & Zurob.

Strain hardening and dynamic recovery

Strain hardening and dynamic recovery are based on the ”iso-work increment assump-
tion” in this model. For modeling of strain hardening and dynamic recovery, two as-
sumptions can actually be done. The first one, called Taylor’s assumption, consists in
assuming that all grains undergo the same homogeneous strain. This assumption is con-
sidered in the model of Montheillet et al. [48] and ensures strain compatibility between
grains. The second one, called static assumption, consists in assuming that all grains are
submitted to the same homogeneous stress. In a real microstructure during deformation,
two conditions should be fulfilled: the softer grains should deform more than the hard
ones (which is not fulfilled with the Taylor’s assumption) and the flow stress should vary
from grain to grain (which is not the case with the static assumption). Therefore a com-
promise between these two conditions was proposed by Bouaziz et al. [78] by assuming
that mechanical work noted K is equal from grain to grain. This assumption, called
”iso-work increment assumption”, is used to decompose each macroscopic strain incre-
ment noted dεmac in individual strain increments dεi using the following relationship :

dεi =
K
σi
, (1.36)

where dεi and σi are the strain increment and the stress in grain i, respectively. In this
way, softer grains deform more than harder ones in the same macroscopic increment dε .
The mechanical work K is chosen so as to maintain a relatively low macroscopic strain
increment dε . The macroscopic strain dε and the macroscopic stress σ are calculated
by the respective relationships :

dε =
∑Vidεi

∑Vi
, (1.37)
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σ =
∑Viσi

∑Vi
. (1.38)

Finally, in the model proposed by Cram & Zurob, a Voce hardening law [79] is used as
constitutive equation between the stress increment and the strain increment to describe
strain hardening and dynamic recovery :

dσi

dεi
= ΘII

(
1− σi

σs,i

)
, (1.39)

where σs,i is the steady-state stress of grain i and ΘII is the stage II work-hardening
rate. The flow stress of grain i is related to its mean dislocation density by the following
relationship :

σi = αMT(i)µb
√

ρi

(
ε̇i

ε̇ref

)m

, (1.40)

where α is a constant, µ is the shear modulus, b is the Burgers vector magnitude, ε̇ref is
a reference strain rate and m is the strain rate sensitivity.

Grain boundary migration

The boundary migration is driven by the same equation as considered in the model of
Montheillet et al. [48] (Eq. 1.33). The grain boundary mobility Mb is estimated in this
model based on the relation proposed in [80] :

Mb ≈
δDgb(T )Vm

5b2RT
, (1.41)

where δ is the grain boundary width, Vm is the molar volume, R is the perfect gas con-
stant and Dgb(T ) is the grain boundary diffusivity.

Nucleation

The nucleation mechanism modeled in this work is the SIBM mechanism introduced in
section 1.1.6. which is based on the fact that a subgrain can grow into a more hardened
grain until reaching the critical radius to become a viable nucleus. Therefore it is con-
sidered in this model that each grain owns a Rayleigh distribution of subgrain sizes and
the evolution of the mean subgrain size noted 〈ri〉 of a grain i evolves according to two
components. The first one accounts for the growth of subgrains :(

d〈ri〉
dt

)+

= Mb
2γb

〈ri〉
. (1.42)

The second one accounts for the shrinkage of subgrains due to the stress applied onto
dislocation structures. The subgrain shrinkage term is derived from the work of Raj et
al. [81] and leads to :(

d〈ri〉
dt

)−
=

(
d〈ri〉
dσi

)(
dσi

dεi

)(
dεi

dt

)
=−1

2
Ksubb

(
µ
σ2

i

)
ΦII

(
1− σi

σs,i

)
ε̇i, (1.43)
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where Ksub is a constant. Then for each time increment, grains have a part of their sub-
grains (i.e. those with a size larger than a critical radius rcr) that transform into nuclei
(i.e. into new grains).

Model of Beltran et al. [50]

The Model of Beltran et al. [50] is quite similar to the model of Bernard et al. [49]. The
main improvement results in the fact that the model of Beltran is able to model multi-
pass deformation routes (DRX + PDRX), therefore only the model of Beltran et al. is
introduced below.

Description of the microstructure

The microstructure is represented by spherical grain classes characterized by an equiv-
alent sphere radius Ri, a dislocation density ρi and a number of grains Ni. Contrary to
the models of Montheillet et al. [48] and Cram & Zurob [70] previously introduced,
this model considers two different HEM composed of RX and NR grain classes, respec-
tively, in order to obtain more physical results (Fig. 1.11).

Ri 

ρi , Ni 

<ρNR>surf 

Rcr(NR) 

<ρRX>surf 

Rcr(RX) 

NR grains RX grains 

Fig. 1.11. A grain class immersed into two HEM, respectively composed of NR and RX
grain classes, as considered in the model of Beltran.

Strain hardening and recovery

The law used in Beltran’s model to describe the dislocation density evolution (i.e. strain
hardening and dynamic recovery) in each grain class during deformation is the YLJ
law [76] :

dρi

dε
= K1−K2ρi, (1.44)

where K1 and K2 are two parameters accounting for strain hardening and dynamic recov-
ery. Right after deformation while the material is still at high temperature (i.e. PDRX
regime), static recovery occurs in the microstructure. Static recovery is modeled by the
following relationship :

dρi

dt
=−Ksρi, (1.45)
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where Ks is a static recovery parameter. When a grain boundary migrates, the swept
volume is almost free of dislocations, reducing the stored energy per unit volume in the
growing grain. This consideration, omitted in most of mean field models, is taken into
account in Beltran’s model using the Eq. 1.46. The latter aims to decrease the dislo-
cation density in a grain class when its size increases using the following relationship :

∆ρi

ρi
=−∆Vi

Vi
. (1.46)

The individual flow stress in any grain of the ith class is calculated at any instant using
the Taylor’s equation :

σi = σ0 +MTαµ
√

ρi, (1.47)

where σ0 denotes the yield stress, α is a constant, µ is the shear modulus and MT is the
Taylor factor. The macroscopic flow stress is deduced from individual grain stresses by
a volume weighted average :

σ =
∑σiViNi

∑ViNi
. (1.48)

Grain boundary migration

Contrary to the previous models of Montheillet et al. [48] and Cram & Zurob [70], a
capillarity term is considered in grain boundary migration equations of this model. Fur-
thermore, since two different HEM made of RX and NR grain classes are considered,
two equations are used for boundary migration. The first one, defined by Eq. 1.49,
represents the interaction between any grain class and the HEM composed of RX grain
classes. In the same manner, the second one, defined by Eq. 1.50, represents the inter-
action between any grain class and the HEM composed of NR grain classes.

dRi/RX

dt
= Mb∆ERX

i = Mb(τ(〈ρRX〉surf−ρi)+ γb

(
1

Rcr(RX)
− 1

Ri

)
), (1.49)

dRi/NR

dt
= Mb∆ENR

i = Mb(τ(〈ρNR〉surf−ρi)+ γb

(
1

Rcr(NR)
− 1

Ri

)
), (1.50)

where Rcr(RX) and Rcr(NR) are respectively defined by 〈R2
RX〉/〈RRX〉 and 〈R2

NR〉/〈RNR〉
in order to ensure volume conservation.

Each grain class has a surface fraction in contact with the two different HEM. Thus the
quantities γNR and γRX, presented on Fig. 1.12, are used to describe the surface fraction
of NR and RX grain classes in contact with the HEM composed of RX and NR grain
classes, respectively.
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RX class 

NR classes RX classes 

ɣRX NR class 

NR classes RX classes 

ɣNR 

(a) (b) 

Fig. 1.12. Representation of surface fractions between grain classes and HEM in the
model of Beltran.

Therefore the total volume variation of a ith NR grain class noted (∆Vi,NR) or a ith RX
grain class noted (∆Vi,RX) is expressed as follows :

∆Vi,NR =

(
dRi/RX

dt
γRX +

dRi/NR

dt
(1− γRX)

)
Si∆t, (1.51)

∆Vi,RX =

(
dRi/NR

dt
γNR +

dRi/RX

dt
(1− γNR)

)
Si∆t. (1.52)

A major drawback of this model is the calculation of γNR and γRX that is not straightfor-
ward. By applying volume conservation equations, a relation between γNR and γRX can
be found as seen in Eq. 1.53 :

γRX =
−γNR(∑NR N jS j∆ERX

j −∑NR N jS j∆ENR
j )− (∑NR N jS j∆ENR

j −∑RX NiSi∆ERX
i )

(∑RX NiSi∆ENR
i −∑RX NiSi∆ERX

i )
.

(1.53)
For the determination of these two fractions during the simulation, a first value of γNR
or γRX is estimated using the RX fraction and the second term is deduced from the first
using Eq. 1.53.

Nucleation

In the same manner as the model of Cram & Zurob [70], nucleation is modeled here
by the SIBM mechanism introduced in section 1.1.6., similarly to the model of Cram
& Zurob [70]. This mechanism postulates a necklace nucleation. In the considered
model, these nucleation regions are defined by the grain boundaries of classes having a
dislocation density higher than a critical dislocation density noted ρcr. The computation
of ρcr is done following this method: a first estimation is done according to Eq. 1.54
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(see [43]) and an iterative solution is found according to Eq. 1.55 (see [50]):

ρcr =

(
20K1γbε̇

3K3τ

)1/3

, (1.54)

ρcr =

 −2γbε̇
K2

K3τ

ln
(

1− K2

K1
ρcr

)


1/2

. (1.55)

Since nuclei mainly appear at grain boundaries, the nucleation rate in each grain class
i is assumed to be proportional to the total grain boundary surface of all grain classes
having ρi ≥ ρcr multiplied by a nucleation parameter Kg. Furthermore, the nucleation
rate in each ith grain class is weighted by its number of grains as well as its size and its
dislocation density, leading to the final relationship :

dNi

dt
= KgScr

Nir
q
i (ρi−ρcr)

m

∑ρk≥ρcr Nkrq
k(ρk−ρcr)m , (1.56)

where q is a constant equal to 2 for necklace nucleation and 3 for bulk nucleation, m is
a constant close to 3 and Scr is the total surface of grains having ρi > ρcr.

The SIBM mechanism also postulates that a subgrain must have a critical radius to
become viable as a nucleus. This condition, known as the Bailey-Hirsch criterion intro-
duced in section 1.1.6, is calculated as following in this model :

rcr =
2γb

ρcrτ
. (1.57)

After hot deformation, within the PDRX regime, nucleation can still occur due to rear-
rangement of dislocations. However in this model, it is assumed that all nuclei appeared
during hot deformation and therefore only static recovery and boundary migration are
modeled during PDRX. In spite of many assumptions, this model showed good results
in terms of mean quantities such as RX fraction and mean grain size [50].

Model of Smagghe [71]

All models presented above have the same drawback inherent to the implicit microstruc-
ture description, to not consider topology. Recently, Smagghe [71] developed in his PhD
work a semi-topological approach for the mean field modeling of DRX and PDRX pub-
lished in [82]. The motivations for developing this new model was the fact that even
if mean quantities can be correctly described by the pre-existing mean field models,
predicted grain size distributions were generally unrealistic. Comparisons between ex-
perimental grain size distributions and grain size distributions predicted by the model of
Montheillet et al. [48] are introduced in [82] and illustrated on Fig 1.13. Distributions
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were obtained after one hot torsion test on a 304L steel at a strain rate of 0.01s−1 and a
temperature of 1323K.
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Fig. 1.13. A comparison between experimental grain size distributions and grain size
distributions predicted by the model of Montheillet et al. [48] at two different strain
levels (a) ε = 0.5, (b) ε = 1.5, and for a temperature of 1323K and a strain rate of
0.01s−1 [82].

It is clearly seen that grain size distributions predicted by the mean field model of Mon-
theillet et al. [48] are far from experimental distributions. The numerical distributions
tend to a vertical asymptote with a maximal grain size, whereas a high number of large
grains are still observed in experimental distributions. Piot et al. [83] already discussed
this kind of limitation in mean field modeling of DRX and showed that this issue of
distributions is directly related to the grain boundary migration equation (Eq. 1.33) and
the consideration of the same HEM for each grain. During the steady-state regime,
the mean dislocation density 〈ρ〉 is constant. Thus, according to Eq. 1.33, the softest
grains rapidly grow until their dislocation density reaches the mean value 〈ρ〉. Then,
these grains continue to hardened and their dislocation density becomes higher than
〈ρ〉, leading to a shrinkage of these grains. However, the time spent by the grains when
they had a dislocation density close to the mean dislocation density 〈ρ〉 is much higher
than the time spent when they had a low dislocation density. Therefore, they spent a
long time with the maximal grain size, which leads to the typical distributions on Fig.
1.13 with more and more high peak when grain size increases and a vertical asymptote.
Smagghe [71] recently tackled this issue in his PhD work by making each grain evolves
with a random-selected grain as neighbor. It is worth noticing that his new model con-
siderably leads to a best prediction of grain size distributions during DRX.

Description of the microstructure

As in the model of Montheillet et al. [48], each grain is defined in Smagghe’s model
by its equivalent sphere radius Ri and mean dislocation density ρi. However, the main
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difference between this model and other mean field models lies in the omission of the
HEM. In the mean field models previously introduced, each grain is immersed into a
HEM composed of all the grains in the microstructure [48, 70] or two HEM composed
of RX and NR grains, respectively [49,50]. In his mean field model, Smagghe proposed
to make each grain evolves with a unique randomly-selected grain as neighbor in order
to include a stochastic effect in the model, as presented on Fig. 1.14.

Ri 

ρi Rj 

ρj 

Fig. 1.14. Principle of the semi-topological approach considered in the model of Smag-
ghe: each grain evolves with a unique randomly-selected grain as neighbor.

At the first stage of the simulation, a neighborhood (i.e. one neighbor) is chosen for
each grain, and this connection is maintained until one of the two grains disappears.
However, this connection is not reciprocal, meaning that if a grain i has the grain j as
neighbor, the grain j has not necessarily the grain i as neighbor. Furthermore, each grain
has only one neighbor but can be chosen as neighbor of several grains.

Grain boundary migration

The boundary migration between one grain i and its neighbor j is considered to be driven
only by the difference of stored energy between these two grains, and the capillarity
effects are neglected as in the models of Montheillet et al. [48] and Cram & Zurob [70],
leading to :

dRi

dt
= Mbτ(ρ j−ρi), (1.58)

with Mb the grain boundary mobility, τ the energy per unit dislocation line, ρi the dis-
location density of the grain i and ρ j the dislocation density of the neighbor grain j.
Volume conservation is not necessarily fulfilled with this new configuration, therefore
the volume variation of the grain i is automatically transferred to the grain j for the sake
of volume conservation.

Right after deformation, within the PDRX regime, boundary migration still occurs. The
latter is then described using a modified Eq. 1.58 accounting for capillarity effects :

dRi

dt
= Mb

[
τ(ρ j−ρi)+ γb

(
1
R j
− 1

Ri

)]
, (1.59)
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were γb is the grain boundary energy.

Strain hardening and recovery

In the considered model, a power law (PW) close to that proposed by Montheillet et
al. [48] is used to describe strain hardening and dynamic recovery during deformation :

dρi

dε
=

Hν+1

ρν
i

, (1.60)

with H a parameter accounting for both strain hardening and dynamic recovery, and ν
is a constant. The macroscopic flow stress is calculated at any instant by the following
relationship derived from the Taylor’s equation :

σ = αµb
∑(
√ρiR3

i )

∑R3
i

, (1.61)

where α is a constant, µ is the shear modulus and b is the Burgers vector magnitude.

Static recovery occurring in the PDRX regime is modeled using the following relation-
ship :

dρi

dt
= rs(ρs−ρi), (1.62)

where rs is a recovery parameter and ρs is a threshold density. This equation only ap-
plies to grains with a mean dislocation density higher than ρs.

Nucleation

The nucleation mechanism is modeled here using the same nucleation law as used in
the model of Montheillet et al. [48] (Eq. 1.35). Some rules are imposed concerning
the choice of neighbors for nuclei. For instance when a nucleus appears in the mi-
crostructure, this latter can only have a neighbor which is not a nucleus to ensure that
the difference in dislocation density between the nucleus and its neighbor is high enough
to promote its growth. Additional rules, presented in [71], are used to integrate more
quickly the nucleus into the neighborhood system.

In the same manner as in the model of Beltran et al. [50], all nuclei are assumed to ap-
pear dynamically and no nucleation is assumed to occur after deformation. Therefore,
the PDRX regime is only described in this model by boundary migration using Eq. 1.59
and static recovery using Eq. 1.62.

Conclusions on mean field models

Several mean field models showed good ability to predict microstructure quantities such
as mean grain size and RX fraction during and after hot deformation, or even during
multi-pass deformation routes. In addition to their low numerical cost, these kinds of
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model have no numerical limitations in terms of maximal strain level that can be mod-
eled, which makes them widely used to model industrial processes at high strain levels
(ε > 2). However these models still have some drawbacks. First, the grain morphology
is not considered, which can have an effect on the effective grain boundary surface and
therefore on the nucleation rate predicted by the model. Furthermore, although grain
size distributions are obtained with these models, comparisons with experimental data
showed poor predictions of these distributions [84]. This limitation is due to the fact that
all grains are immersed into the same HEM and boundary migration equation imposes
the same evolution for each grain. A first step in the improvement of predicted grain
size distributions was recently made with the PhD work of Smagghe [71] by making
each grain evolves with a particular random-selected grain as neighbor. However, this
consideration of particular neighborhood for each grain can still be improved. Both im-
provements (grain shape evolution and a particular neighborhood for each grain) will be
implemented into a new mean field model proposed in this PhD work and presented in
chapter 4.

1.2.3 Full field models
Stochastic approaches

Stochastic approaches were introduced long time ago, by Potts in 1952 [85]. This kind
of approach is still widely used for modeling microstructure evolutions. In stochastic
approaches can be found MC and CA approaches. These approaches are based on an ex-
plicit microstructure representation considering a regular grid of lattice sites (i.e. cells).

Monte Carlo

The first metallurgical models based on the MC method were proposed in the 1980’s
by Anderson and co-workers for modeling GG [86], grain size distribution and topol-
ogy [87], influence of particle dispersions [88], anisotropic grain boundary energies [89]
as well as abnormal GG [90]. Few years later, several models based on the MC approach
were also developed for SRX [91, 92], leading to a major improvement in terms of mi-
crostructure evolution modeling.

In the MC approach, a grid is composed of a number N of lattice sites, and each site is
characterized by an orientation number Oi as well as microstructure variables such as
stored energy. Therefore, a grain i is defined by all sites having the identifier Oi and the
frontier between two sites of different identifiers is the grain boundary (Fig. 1.15).
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Fig. 1.15. Representation of the microstructure with a regular grid of lattice sites as
used in MC and CA approaches. Six grains are depicted, composed of square sites
having the same index and grain boundaries are plotted as bold line.

The MC algorithm for boundary migration is composed of MC steps. Furthermore, a
MC step is composed of N lattice site change tests, N being the total number of sites
composing the microstructure. A site change test is classically composed of four main
steps : (i) random selection of a site, (ii) assignment of a new orientation number to this
site, randomly selected among all the orientation numbers except the actual one, (iii)
calculation of the energy variation ∆Etot in the domain due to reorientation of the site,
(iv) possible reorientation of the site validated with a probability p that depends on ∆Etot.

In case of isotropic (i.e. constant in the microstructure) grain boundary energy assump-
tion, the total energy Etot of the MC domain is generally calculated following the rela-
tionship [93] :

Etot =
γb

2

N

∑
i=1

m

∑
j=1

(1−δi j)+
N

∑
i=1

Ei, (1.63)

where γb is the boundary energy, m is the number of nearest neighbors of the site Ii,
δi j is the Kronecker delta function and Ei is the stored energy in the site Ii, considered
constant per grain. Furthermore, an example of a probabilistic law depending on ∆Etot
for lattice site reorientation is the following [94] :

p(∆Etot) =

 1 if ∆Etot ≤ 0,

exp
(
−∆Etot

kT

)
if ∆Etot ≥ 0,

(1.64)

where k is the Boltzmann constant and T is a simulation temperature term introduced
to manage the lattice site evolution kinetic in some particular cases. After testing N site
changes, a MC step is reached and a new increment starts. Even though N site changes
are done for N sites, because of the random choices, the N changes do not affect all N
sites.

A major advantage of using the MC method is the ability to easily parallelize cal-
culations, which enables to model microstructure evolutions with a huge number of
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grains and with relatively low computational costs. Furthermore, the MC framework is
straightforward to implement since it is based on a simple grid of lattice sites coupled to
analytical laws. Finally, the creation of nuclei during DRX can be easily implemented
by simply adding a new orientation number at a given place where a criterion is val-
idated. However, although this kind of model proved its efficiency, some drawbacks
may still limit its use. First a major drawback of the MC approach is the difficulty to
link MC increment to a physical time. Experimental or other computational methods
are generally used to calibrate the ”MC time” scale. Furthermore, the grain boundary
curvature is not straightforward to calculate in MC models due to the consideration of
regular lattice sites to model microstructure. Finally, due to the discrete nature of the
MC method, the description of the domain deformation during DRX is a limitation and
major assumptions, or even a total omission, are generally made with these regards.

To our knowledge, only few models of DRX based on the MC method were proposed
in the literature. The first ones were proposed by Rollet in 1992 [93] and Peczak in
1995 [95] but the deformation of the domain is omitted in these models. More recently
in 2010, Li et al. [96] proposed a model based on the MC method for the prediction of
DRX in solder interconnections. This model is coupled to a finite element (FE) algo-
rithm for modeling of stress and strain fields. However, none information were given
concerning the grid deformation and many assumptions were probably made on this
topic.

Cellular automata

The CA method was first introduced by von Neumann in 1963 [97] for the simulation of
self-reproducing Turing automata and population evolution. This approach was then ex-
tended to another scientific field in 1986 by Wolfram [98]. It became a major approach
for modeling microstructure evolutions in terms of phase transformation [99], dendrite
growth during solidification [100] as well as recrystallization [101].

Like the MC approach, the CA approach consists in partitioning the microstructure into
a regular grid of lattice sites as presented on Fig. 1.15, each lattice site being charac-
terized by internal variables (crystalline orientation, dislocation density etc.). Although
CA models can be formulated as either stochastic or deterministic, most of CA models
for recrystallization are stochastic and use cell state switches as introduced in [54, 56]
to model grain boundary kinetics in a physical time scale. In stochastic CA models,
the computation of boundary kinetics is mainly composed of four main steps: (i) ran-
dom selection of a lattice site, (ii) consideration of a local neighborhood [102], (iii) a
switching rule is defined as a function of the state of the considered site prior to switch
and the states of the neighboring sites, (iv) updating of state variables through the local
switching rule.

The switching rule, used in stochastic CA models, consists in estimating a probability
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P for the reorientation of a lattice site :

P =
v

vmax
, (1.65)

where v is the velocity in the considered lattice site and vmax is the maximum velocity
in all the domain. Then the probability P is compared to a random number between 0
and 1. If this random number is inferior to P, the site adopts the orientation number of
the growing adjacent grain, otherwise it remains unchanged. The updated state of all
sites is calculated as a discrete solution but no change is made until the switching rule
was applied to all sites. Then, all the sites are updated simultaneously to avoid multiple
sites covering.

A major advantage of the CA over MC approach is the consideration of an explicit ve-
locity which defines the propagation rate between two lattice sites. Furthermore, the
CA algorithm is able to capture local effects and shows a good efficiency for parallel-
ing since only a small amount of data has to be passed between sites [103]. However,
similarly to the MC method, a major limitation of this approach is the estimation of
the grain curvature that is not straightforward since the grain boundary is composed of
square sites. A formulation was proposed by Kremeyer in 1998 to estimate a curvature
by use of kink-template [104] and was applied in several CA studies [57,103,105]. Fur-
thermore, the problem of domain deformation mentioned above in the description of the
MC method is also a limitation in CA models and most of models are based on many
assumptions when dealing with the CA space deformation issue [106].

A large number of DRX models based on a coupling between the CA method to model
microstructure and phenomenological laws to model recrystallization mechanisms were
proposed in the last decades. The first one was proposed in 2001 by Ding and Guo [107]
where CA method is used to model 2D microstructure and phenomenological laws are
used to model strain hardening, dynamic recovery and nucleation. The CA space defor-
mation is not modeled in this paper, which allows to reach high strain levels. In 2010,
Hallberg et al. [105] proposed a 2D stochastic CA model for modeling of DRX in pure
Cu. Strain hardening and dynamic recovery are modeled using phenomenological laws
while nucleation is modeled using a probabilistic law depending on the local dislocation
density and the maximal dislocation density in the microstructure. Furthermore, even if
CA space deformation is not directly considered in this model, a post-processing step
is performed on results to observe grain elongations. In 2014 [108], Hallberg extended
its model to 3D modeling of DRX occurring in particle-containing Cu. These models
showed a good correlation with experimental data in terms of macroscopic flow stress
and mean grain size. In 2014 [109], Sitko developed a deterministic CA model cou-
pled to a probabilistic nucleation law for 2D modeling of DRX with validation on a
deformed copper. In this model, the CA space deformation is modeled by an elongation
of the domain along the selected axis. However, this technique transforms square sites
into rectangle ones, affecting proper interactions with other neighboring CA sites and
leading to non-physical elongated grains. All previously cited models lead to a good de-
scription of experimental data. However, they are all based on phenomenological laws
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for dislocation density evolutions, meaning that the texture evolution cannot be pre-
dicted. The crystal plasticity FE method (CPFEM) became a major tool for modeling
dislocation density evolutions inside grains. However, computational costs are prohib-
ited when using this kind of model, which generally limits the maximal true strain that
can be reached. In 2013, Chuan et al. [110] proposed to couple a stochastic CA model
with CPFEM for 2D modeling of DRX in a near-α titanium alloy and results showed
a good match with experimental data. In this model, a maximal true strain of 0.5 is
reached. Furthermore the initial grain size distribution was generated by the CA model
and was quite far from a real microstructure. Two years later, Popova et al. [111] also
proposed a coupling between a stochastic CA model and CPFEM to model 2D DRX
in hexagonal closed packed metals, particularly magnesium alloys, and the initial mi-
crostructure can be generated from EBSD data in order to lead to more convincing
results. In this model, a maximal true strain of 0.35 is reached. Recently, Madej et
al. [106] proposed a coupled CA model with FE method to model DRX in 2D. A ma-
jor advantage of this model is to tackle the problem of domain deformation, leading to
more physical results contrary to most of other CA models for DRX. A maximal true
strain of 0.25 is reached in this model. All these CA models coupled to CPFEM were
developed in 2D because of computational time limitations and algorithm complexity.
However, real microstructure evolutions are three-dimensional and results obtained with
simulations on 2D microstructures may not always be compared to 2D sections of real
3D microstructures. Recently in 2016 [101], Hongwei et al. proposed a coupling be-
tween a semi-stochastic CA model and CPFEM to model 3D DRX in titanium alloys.
The maximal true strain reached in this model is 0.4.

Deterministic approaches

Other kinds of full field model are based on deterministic approaches. Those are more
precise than stochastic approaches since they do not introduce probabilistic laws. How-
ever, they often lead to high computational costs when used with FE meshes since they
involve the resolution of partial differential equations. In deterministic approaches can
be found vertex, PF and LS approaches.

Vertex

The vertex method belongs to the front tracking approaches and was established at the
end of the 1980’s by several authors [112–114]. The basic idea of the vertex model
is that the minimization of the free energy can be achieved exclusively by the motion
of multiple junctions. Therefore in vertex models, the state of the microstructure is
given by the position and velocity of real nodes, also called vertices, placed at multiple
junctions. Boundary curvature was initially not considered in vertex models, but the
method was then improved by considering additional nodes, called virtual nodes, placed
along grain boundaries to be able to estimate the grain boundary curvature [113]. A
schematic representation of a microstructure with real and virtual nodes is presented on
Fig. 1.16.
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Fig. 1.16. Explicit representation of grain boundaries as used in the vertex approach.
The network is defined by real nodes on multiple junctions and virtual nodes on grain
boundaries.

The principle of vertex models for modeling GG is the following: let’s denote the posi-
tion~r and velocity~v of a grain boundary. A potential term noted E(~r) represents the total
surface energy and a dissipative term noted R(~r,~v) represents the energy dissipation due
to the movement of grain boundaries. These terms are given by :

E(~r) =
∫

γb(p)d p, (1.66)

R(~r,~v) =
1
2

∫ v(p)2

Mb(p)
d p, (1.67)

where p represents the curvilinear coordinates of the grain boundary and γb(p), v(p),
Mb(p) are the surface energy, normal velocity and mobility of the grain boundary at
the position p, respectively. The positions and velocities of all nodes are noted {~rn} and
{~vn}, respectively. Therefore the equations for the motion of the nodes are of dissipative
character and can be derived from the Lagrange equation :

∂R({~rn},{~vn})
∂~vi

+
∂E({~rn})

∂~ri
= 0. (1.68)

Solving this system during a time increment dt leads to new positions of nodes given by
:

~r(t +dt) =~r(t)+~vi(t)dt. (1.69)

In general, a benefit of vertex models, when compared to others, is the low memory
requirement for the implementation. However, a major drawback of vertex models, as
compared to MC or CA models, is the need to take all possible topology changes of a
microstructure into account. Therefore, a set of topological rules has to be incorporated
into the model. Typical topological changes used in a recent 2D vertex model [115] are
presented on Fig. 1.17. Lazar et al. [116] recently proposed an overview of topological
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operations that need to be handled in a 3D vertex model. A major drawback of these
topological rules is the required computational resources which can be high, especially
in 3D cases. Furthermore these rules are often based on criteria that have no physical
meaning. For instance, if a grain is growing but its size is below a critical size, the
topological rule can remove it without any reversibility.

Fig. 1.17. Some topological operations that need to be taken into account in 2D vertex
models [115].

Vertex models of DRX are not numerous in the literature and most of them only concern
GG mechanism. This is due to the modeling of nucleation that is a big issue in vertex
models due to topological events and the presence of nodes only at multiple junctions.
However in 2008, Piȩkoś et al. [117] extended for the first time vertex models in order
to take the effect of stored energy and nucleation into account. In 2015, a vertex model
for DRX was proposed by Mellbin et al. [53]. This model was developed in 2D and
to our knowledge, there is currently no vertex model able to model DRX in 3D. In
this model, grain boundary migration is driven by Eqs. 1.66, 1.67 and 1.68 introduced
previously and an additional term is considered in the potential term to account for
stored energy. The vertex model is coupled to a crystal plasticity algorithm in order to
model strain hardening and recovery. Furthermore, nucleation is assumed to occur only
at multiple junctions where the stored energy in any of the surrounding grains is higher
than a threshold energy. The creation of a new grain is possible thanks to the topological
change presented on Fig. 1.18.
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Fig. 1.18. Creation of a nucleus as considered in a vertex model of DRX [53].

The same model was applied in another work [115] for studying texture evolution dur-
ing hot rolling of copper. In 2017 [118], this model was still improved to account for
the Smith-Zener pinning effect due to the presence of second phase particles. Second
phase particles are modeled by adding additional vertices in the microstructure, which
means that their size cannot be controlled, nor evolve. Finally, this last model also uses
virtual nodes on grain boundaries to have a more explicit description of grain boundary
curvature.

Contrary to previously cited CA-CPFEM models, the crystal plasticity-vertex models
do not require mesh in simulations and consequently are a memory efficient method.
Furthermore, paralleling is quite easy to implement with this method, which explains
why DRX simulations were performed up to a true strain of 1.25 in [53]. Although
high strain levels can be achieved with this kind of model, many improvements are
still required to perform 3D simulations. Furthermore, since nodes only exist on grain
boundaries, many information, such as dislocation density fields, crystalline orientation
fields, or any other intragranular heterogeneity cannot be tackled.

Phase-Field

The PF method was first devoted to the modeling of dendrite formation [119,120], where
different phases, for instance solid/liquid have to be considered. Then, the PF approach
was applied to various problems in materials science, such as recrystallization and GG.
Recrystallization PF models are based on continuous functions of spatial coordinates
and time, called PF variables, representing the grains of the microstructure. Each grain
is described by a PF variable equal to 1 in the grain and 0 elsewhere (see Fig. 1.19(a)).
However, the transition from 0 to 1 leads to sharp gradients at boundaries resulting in
discontinuities and poorly conditioned problems. To obtain a continuous transition of
the PF variable at grain boundaries, the PF variable is generally smoothed at the grain
boundary as seen on Fig. 1.19(b): this concept is called diffuse interface [121] .
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(a) (b) 

Fig. 1.19. (a) Sharp and (b) diffuse interface descriptions related to the PF approach.

Two different kinds of PF approach exist in the literature: the first one, referred to the
continuum-field (CF) model, was proposed by Chen et al. [122] and Fan et al. [123]. The
second one, referred to the Multi-Phase-Field (MPF) model, was proposed by Steinbach
et al. [124] and Garcke et al. [125]. In both models, grain orientations are described us-
ing several PF variables. The major difference between CF and MPF models is due
to the fact that in CF models, the PF variables are treated independently and can have
any value at the diffuse interface without any restrictions. In MPF models, PF vari-
ables represent volume fractions, thus the sum of all PF variables at a given place of the
microstructure must verify the unity. However, a common point exists between all PF
models: they all employ a functional to describe the free energy of the system and PF
variables evolve in order to minimize this functional. The functional F is given by a
volumic integral of the local free-energy density.

Several PF models were proposed for recrystallization in the literature. In 2013, Moe-
lans et al. [126] extended the initial GG model of Chen et al. [122] to account for the
grain stored energy, which consists in adding an additional term in the functional. Fur-
thermore, authors used two additional parameters ηrex and ηdef to separate RX and NR
grains. This PF model was used for 2D modeling of SRX. Then in 2008, Takaki et
al. [127] proposed a MPF model for DRX in 2D where strain hardening and dynamic
recovery are modeled by phenomenological laws. One year later, Takaki et al. [128]
improved their model to improve the consideration of polycrystal deformation. In 2014,
Takaki et al. [129], further extended his model by considering an elasto-plastic FE
method to take non-uniform deformation fields into account, although the dislocation
density is still averaged in each grain and evolves with a phenomenological law. Since
PF models generally consider regular grids, it is common to use fast Fourier transform
(FFT) based algorithms for a high efficiency. Therefore in 2015, Chen et al. [130] pro-
posed a DRX model where a FFT-based crystal plasticity algorithm is used for modeling
strain hardening and dynamic recovery. Using this model, a maximal von Mises strain
of 0.1 was reached. In 2016, Zhao et al. [131] also used the PF method to model the 3D
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microstructure and a FFT based elasto-viscoplastic algorithm to model strain hardening
and dynamic recovery. In this work, a maximal true strain of 0.5 was reached.

PF models coupled to FFT methods generally reach only low strain levels, which can be
explained by the fact that FFT methods impose working with regular grids. In the model
of Zhao et al. [131], simulations up to a maximal true strain of 0.5 were performed but
in this model, the domain is only ”virtually” deformed, which leads to non physically
based results.

Level-set method

The Level-Set method is the approach considered at CEMEF for modeling of microstruc-
ture evolutions and is also the approach considered in this PhD work. This latter is in-
troduced and described in details in the next chapter.

Only few DRX models are based on the LS method. To our knowledge, the first LS
based DRX model was proposed in 2013 by Hallberg [132]. This 2D model of DRX
uses the LS approach for the representation of the microstructure and the modeling of
boundary migration, and it considers phenomenological laws to model strain hardening,
dynamic recovery and nucleation. Simulation results were in good agreement with ex-
perimental data in terms of macroscopic flow stress even if no comparisons were made
about grain size distributions and recrystallization kinetics.

Conclusion of full field models

Quite a large number of full field models for DRX and PDRX were already proposed in
literature. These models are based on different methods such as Monte Carlo, Cellular
Automata, Phase-Field, Vertex and Level-Set methods, which all have their advantages
and their drawbacks. Some methods, such as Monte Carlo and Cellular Automata, are
based on the consideration of regular grids, leading to relatively low computational
costs but also leading to many limitations when aiming to model large strains. Ver-
tex method is also a very efficient method for modeling of microstructure evolutions.
However, topological transformations (e.g. appearance and disappearance of grains)
are not straightforward to implement, in particular in 3D. Finally other methods such
as Phase-Field and Level-Set are quite complicated to implement and generally lead to
high computational costs due to the use of solvers for the resolution. However, since
grain boundaries are implicitly described with these methods, complex geometries can
be modeled. Furthermore, these methods are able to reach large strains when coupling
with an efficient meshing/remeshing tool. In order to model strain hardening and dy-
namic recovery during deformation, full field models are generally coupled either to
phenomenological laws or to a crystal plasticity formulation. The first possibility en-
ables to predict mean dislocation densities at high level of strains in a relatively short
time. The second possibility can be computationally expensive in the case of a FE
formulation. Furthermore it requires a good quality of mesh or grid all along the simu-

44



CHAPTER 1. LITTERATURE REVIEW

lation, which can still limit the maximal level of strain that can be reached. In practice,
the maximal strain level reached with models using a crystal plasticity formulation is
generally below 0.5, which is much lower than the typical strain applied in classical
industrial forming processes.
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Summary
DRX and PDRX occurring during and after hot deformation, respectively, play a pri-
mordial role as they control the final microstructure and therefore final properties of
metal alloys. Those recrystallization phenomena result from the combination of sev-
eral physical mechanisms. In single phase materials, those mechanisms are hardening,
recovery, grain boundary migration and nucleation. All these mechanisms occur in par-
allel in the material, explaining why it is a challenge to be able to predict locally the
microstructure evolutions.

Many kinds of model exist to describe microstructure evolutions due to DRX and PDRX.
Phenomenological models, in particular those derived from the JMAK model, were pro-
posed to describe recrystallization kinetics without a real understanding of the underly-
ing physical mechanisms. Phenomenological models are still very used nowadays, in
particular for coupling with a FE software since they can be used to predict mean quan-
tities (RX fraction, mean grain size) over an entire forged part within a few minutes.
On the other hand, full field models were developed to explicitly represent microstruc-
ture and physical mechanisms. Although these models are undoubtedly more accurate
and richer than phenomenological laws, they require high computational resources and
therefore cannot be easily coupled to a FE software. However, full field models keep be-
ing very attractive since they can provide a lot of information regarding for example the
grain size distribution, the dislocation density distribution, the crystallographic texture
and their evolution all along the simulation. As a compromise between phenomenolog-
ical and full field models, mean field models were proposed in the last decades to model
DRX and PDRX. They are based on an implicit description of the microstructure and
include analytical laws for each individual physical mechanism occurring during and
after deformation. However, mean field models are based on assumptions and basically
do not account for grain topology, which indirectly leads to poor predictions of the grain
size distributions.

In chapter 2, the formalism of Level-Set in a finite element framework considered in this
PhD work for full field simulations is presented. This formalism enables to simulate all
microstructure mechanisms in a single numerical framework. Furthermore, thanks to
the large number of previous developments already made on this formalism, some 3D
simulations of GG are performed and results are used to discuss predictions of two
existing analytical GG models, in particular during the transient regime.
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CHAPTER 2. THE LEVEL-SET METHOD IN A FINITE ELEMENT FRAMEWORK FOR MODELING OF
MICROSTRUCTURE EVOLUTIONS

Résumé en français
Ce chapitre introduit le formalisme champ complet développé au CEMEF et utilisé lors
de ma thèse pour la modélisation de la recristallisation. Ce formalisme est basé sur
la méthode Level-Set dans un contexte éléments finis, permettant une description im-
plicite des joints de grains. Cette description implicite permet d’immerger puis de suivre
le mouvement de géométries complexes, ce qui est un avantage considérable dans le cas
des évolutions microstructurales. La méthode Level-Set est donc tout d’abord présentée
puis les équations modélisant la cinétique des joints de grains sont introduites. De
plus, les différents outils développés au CEMEF ces dernières années afin d’accélérer
les temps de calcul sont également introduits. Dans un second temps, ce formalisme
est utilisé afin de modéliser la croissance de grains en trois dimensions. Plus parti-
culièrement, l’impact de la distribution initiale de tailles de grains sur l’évolution de
la microstructure durant le régime transtitoire est discuté. A partir de ces résultats
champ complet, deux modèles analytiques de croissance de grains de la littérature
sont améliorés afin de prendre en compte l’influence de la distribution initiale durant
le régime transitoire.
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In this chapter, the formalism for 3D full field modeling of microstructure evolutions,
considered in this PhD work, is firstly presented. This formalism, based on the Level-
Set method in a finite element framework, was established by Bernacki [52, 133] few
years ago and is the result of a large number of previous studies as well as PhD
work [77, 134–136]. Then, several full field simulations of grain growth were launched
based on this formalism and results were used to discuss and improve two existing grain
growth models in the state of the art during the transient regime.

2.1 Introduction to the Level-Set method for polycrys-
tals

The LS method was introduced for the first time in 1988 [137] as a numerical tool to
trace the spatial and temporal evolution of interfaces. Several authors extended this
method to interfaces with multiple junctions [138, 139] and a framework for modeling
the GG mechanism in metal alloys was proposed in [138]. Then, several authors used
the Level-Set method in a finite element (LS-FE) framework for modeling of GG in 2D
and 3D [52, 66, 103, 140–142]. This method was also extended to SRX by Scholtes et
al. [143]. Recently, the Smith-Zener pinning mechanism was successfully modeled in
2D and 3D using the LS-FE approach [143, 144]. The LS method has many common
points with the PF method, especially both methods avoid the difficulty of tracking in-
terfaces.

The principle of the LS method for modeling of polycrystals is the following: each grain
is, a priori, defined by a function ψ , called LS function. As a definition, a LS function
ψ of a grain, defined over a domain ω , corresponds to the distance from any point of ω
to the grain boundary. In other words, the grain boundary can be captured at any instant
by the zero-isovalue of the function ψ . This leads to the following expression of the LS
function ψ : {

ψ(x) = d(x,Γ),x ∈Ω,
Γ = {x ∈Ω,ψ(x) = 0}. (2.1)

Furthermore, this distance is generally signed, meaning that the distance is generally
taken as positive (ψ > 0) inside the grain and negative (ψ < 0) outside. As an illus-
tration, the LS function ψ of a 2D schematic grain is given at three different points of
space on Fig. 2.1.
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ψ = -d3 

ψ = +d1 

ψ = +d2 

Fig. 2.1. LS function ψ of a 2D schematic grain given at three different points of space.

2.1.1 Generation and immersion of a virtual polycrystal within a
finite element mesh

At early stage of full field simulations thanks to LS functions, a virtual polycrystal,
representative of a real microstructure, can be generated and immersed into a FE mesh
to constitute a Representative Volume Element (RVE). Several methods can be found
in literature for the generation of polycrystals in a FE mesh. These methods are based
either on experimental pictures or on more statistical methods. Recently, an interesting
review on the generation of virtual microstructures for metal alloys was published by
Madej [145].

Some authors have already immersed experimental pictures in a FE mesh thanks to an
implicit description of grain boundaries using LS or PF functions. In [131], an experi-
mental picture was interpolated on a homogeneous FE mesh and mesh was then refined
close to grain boundaries. Then LS functions were initialized with a reinitialization pro-
cedure. More recently in the PhD work of Scholtes [135], a new approach was proposed
based on developments of Shakoor et al. [146] for immersion of 2D and 3D polycrys-
tals using LS functions. These methods are able to tackle efficiently the immersion of
real polycrystals in a LS-FE framework. Of course it is also possible to immerse mi-
crostructures in a FE mesh thanks to a conform mesh strategy [147,148]. In this context,
a surface mesh of the grain boundaries is generally first considered and the volume mesh
is then generated inside grains based on surface meshes. This method has the particu-
larity to generate a mesh coincident with grain boundaries, which is interesting when
aiming to model polycrystal deformation. Furthermore, a very good description of grain
boundaries is generally obtained with this method, even with relatively large mesh sizes.
A major drawback of having a coincident mesh is the modeling of particular events such
as grain disappearance as well as nucleation, which are not straightforward to take into
considerations as already mentioned in vertex models.

Experimental data can be difficult to obtain, especially in 3D or when aiming to model
a very large number of grains. Therefore in this PhD work, statistical methods are used
for the generation of polycrystals in a FE mesh.
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Statistical methods such as Voronoı̈ and Laguerre-Voronoı̈ methods are widely used to
generate 2D and 3D virtual polycrystals in a FE mesh. In the same manner as with ex-
perimental data, two different mesh strategies (i.e. a conform or an implicit description
of grain boundaries) can be considered. In this PhD work, an implicit description of
grain boundaries using LS functions is considered since it enables to reach large level
of polycrystal deformation without having to deal with topological events encountered
when using a conform mesh.

The Voronoı̈ tessellation method [133, 149–151] consists in generating a diagram com-
posed of a set of Nv Voronoı̈ nuclei (Si). Then, a single Voronoı̈ cell Vi per nucleus is
defined following this rule: each Voronoı̈ cell is composed of all points closer to Si than
to any other nuclei :

Vi =

{
X ∈ Rd/d(x,Si) = min

1< j<Nv
d(x,S j)

}
, (2.2)

with d the space dimension. Thus, the number of grains Ng in the generated polycrystal
corresponds to the imposed number of Voronoı̈ nuclei Nv. A 2D schematic Voronoı̈
tessellation is represented on Fig. 2.2(a). A major drawback of the Voronoı̈ method
is related to the fact that even if it respects a given number of grains, it cannot respect
a given grain size distribution. Thus, a second method called Laguerre-Voronoı̈ exists
[150–153]. This method consists in generating a diagram where the locations of the cell
faces are constrained by a given non-intersecting spherical packing as illustrated in 2D
on Fig. 2.2(b). Thus, the diagram is composed of Nv weighted seeds (Si;Wi). Then, a
single Laguerre-Voronoı̈ Li is created per seed following this new rule: each Laguerre-
Voronoı̈ cell is composed of all points closer to Si than to any other nuclei, via the power
distance Π:

Li =

{
X ∈ Rd/Π(x,Si) = min

1< j<Nv
Π(x,S j)

}
, (2.3)

where Π(x,Si) = d(x,Si)
2 −W 2

i . The cell weights can be determined thanks to the
generation of a dense sphere packing with highest possible density which obeys the pre-
scribed grain size distribution [151, 152]. The weight Wi of the ith site is then related
to the radius of the corresponding sphere. A review about dense packing can be found
in [134, 151].
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(a)

   

(b)
1

Fig. 2.2. (a) A Voronoı̈ and (b) Laguerre-Voronoı̈ 2D tessellation.

The Voronoı̈ and Laguerre-Voronoı̈ methods were the two methods used during this
PjD work for the generation of polycrystals since they easily allow to immerse gener-
ated polycrystals in an unstructured FE mesh thanks to LS functions. Therefore, by
considering, a priori, one LS function per Voronoı̈/Laguerre cell (i.e. per grain), the LS
functions values are computed at every mesh node thanks to the relationship :

ψi(x) = min
j∈Graph(Si)

(αi j(x)) ∀i ∈ {1, ...,Nv}. (2.4)

In the Voronoı̈ method, (αi j(x)) represents the signed distance between a point X ∈ Ω

and the perpendicular bisector of [SiS j] :

αi j(x) =
1
2
||−−→SiS j||−

−−→
SiS j.
−→
SiX

||−−→SiS j||
. (2.5)

When using the Laguerre-Voronoı̈ method, the quantity (αi j(x)) is computed according
to this relationship :

αi j(x) =
1
2

(
||−−→SiS j||+

W 2
i −W 2

j

||−−→SiS j||

)
−
−−→
SiS j.
−→
SiX

||−−→SiS j||
. (2.6)

In order to limit the number of LS functions and thus the computational cost in our
simulations, a coloring/recoloring technique was recently developed and applied in this
LS-FE formalism [154]. This technique consists in gathering several grains in the same
LS function provided that they are far enough from each other. This way, the number
Nf of LS functions can be significantly lower than the number of grains (Nf << Ng)
and independent of the total number of grains all along the simulation. To illustrate
this technique, a 2D polycrystal is schematically presented on Fig. 2.3(a) with a num-
ber of 25 grains represented by only four LS functions. A major inconvenient to this
improvement is the possibility to have grain coalescence during boundary migration be-
tween two neighbor grains, as presented on Fig. 2.3(b). To avoid grain coalescence,
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Scholtes [135] proposed a swapping method in his PhD work aiming to dynamically
redistribute grains in other LS functions. All these features (i.e. coloring/recoloring as
well as swapping) are considered in this LS-FE framework.

(a) (b) 

Fig. 2.3. (a) 2D polycrystal composed of 25 grains represented by only four LS func-
tions. (b) A case of grain coalescence between two grains in white color. [135]

As an illustration, two polycrystals generated from statistical methods with a different
mesh strategy (conform and non-conform description of grain boundaries) are presented
on Fig. 2.4. A 3D polycrystal composed of 100 grains generated from the Voronoı̈
method with a coincident FE mesh is presented on Fig. 2.4(a). On the other hand, a
3D polycrystal composed of 184 grains generated from the Laguerre-Voronoı̈ algorithm
and immersed into a FE mesh thanks to 18 LS functions is presented on Fig. 2.4(b). It
is worth noticing that the number of mesh elements needs to be much higher in case of
non-coincident mesh to obtain a correct description of grain boundaries. An alternative
is to adapt the mesh size at grain boundaries, in order to reach a coarse mesh size inside
grains but a small mesh size at grain boundaries. This method is considered in 2D sim-
ulations due to the low computational cost of 2D remeshing operations [135]. However,
due to prohibitive costs of 3D remeshing operations, we preferred to consider in this
work a uniform isotropic unstructured FE mesh with a small mesh size everywhere in
the RVE, as illustrated on Fig. 2.4(b).
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(a) (b) 

Fig. 2.4. (a) 3D polycrystal composed of 100 grains where boundaries are coinci-
dent with the unstructured tetrahedral mesh [150], (b) 3D polycrystal composed of 184
grains generated using the Laguerre-Voronoı̈ method and immersed into an unstruc-
tured tetrahedral mesh using 18 LS functions.

2.1.2 Grain boundary migration
After the generation of the 2D or 3D polycrystal by initializing the LS functions, grain
boundaries can be displaced according to a velocity field ~vi by solving a set of transport
equations :  ∂ψi(x, t)

∂ t
+~vi.~∇ψi(x, t) = 0

ψi(t = 0,x) = ψ0
i (x)

∀i ∈ {1, ...,Nf} , (2.7)

where ψ0
i is the initial value of ψi. Furthermore the normal ~ni to the boundary as well as

the grain boundary curvature κi can be calculated in the considered framework thanks
to the relations :

~ni =
∇ψi

||∇ψi||
, (2.8)

κi =−∇ ·~ni, (2.9)

with ∇· the divergence operator. Therefore by combining Eqs. 1.1, 2.7, 2.8 and 2.9 and
by considering that LS functions satisfy the metric property ||∇ψi|| = 1 at least in a thin
layer around the grain boundary, a convective-diffusive equation is obtained to model
boundary migration of each considered grain in context of isotropic or anisotropic grain

54



CHAPTER 2. THE LEVEL-SET METHOD IN A FINITE ELEMENT FRAMEWORK FOR MODELING OF
MICROSTRUCTURE EVOLUTIONS

boundary energy and mobility : ∂ψi(x, t)
∂ t

−Mbγb∆ψi +
−→
ve

i .∇ψi = 0

ψi(t = 0,x) = ψ0
i (x)

∀i ∈ {1, ...,Nf} , (2.10)

with
−→
ve

i the velocity due to the jump in stored energy across the grain boundary. This
term can be computed thanks to different approaches [52,133,135,155]. To avoid kine-
matic incompatibilities and deal with the considered coloring/recoloring scheme, the
velocity term

−→
ve

i is evaluated here as common for all the LS functions and thanks to
the strategy described by Scholtes et al. (sections 3.2, 3.3 and Equation (8) of [143]
but where the corresponding mobility Mb is defined here as Mbδ ). The additional term
δ , related to strain rate dependence of grain boundary migration, was added in the ve-
locity term

−→
ve

i to tackle the assumption of stored energy averaged per grain. Indeed,
in reality, most of dislocations are located close to grain boundaries, generating high
stored gradients and therefore high velocities. However, in our case, the stored energy
is averaged per grain and the differences of stored energy across boundaries are conse-
quently underestimated, which can be corrected by adding this artificial parameter noted
δ . Since the quantity of stored energy depends on strain rate, this additional parameter
should be mainly dependent on strain rate. This correction was already made in few
mean field models by considering directly the product Mbτ as dependent on the strain
rate [49, 50, 156]. The grain boundary mobility Mb, appearing in the set of Eqs. 2.10
is calculated according to Eq. 1.7. Then the set of Eqs. 2.10 can be solved either us-
ing a spectral method relying on Fourier transforms in the context of regular Cartesian
grids [140, 141, 157] or by using a FE approach in the context of structured or unstruc-
tured mesh [52, 133]. Given that first method is not really adapted for large polycrystal
deformations as already mentioned in the chapter 1, we considered the second approach
in this work. A P1 solver is considered and a Streamline Upwind/Petrov-Galerkin for-
mulation is used for the stabilization of the solution. The Generalized Minimal Residual
Method is used as iterative method for the resolution of the linear system of equations.
Boundary conditions must be applied on the RVE frontiers ∂Ω during simulations. In
this work, the following Neumann boundary conditions are applied :

∇ψi.
−→m = sin(θ) ∀x ∈ ∂Ω, (2.11)

with−→m the unit outward vector normal to ∂Ω and θ the angle between the grain bound-
aries and RVE frontiers ∂Ω, defined as 90◦ in this work (null Neumann boundary con-
ditions). These boundary conditions play a role on the behavior of grain boundaries
interacting with ∂Ω, therefore large polycrystals (i.e. with a large number of grains) are
considered in simulations to limit the effect of boundary conditions on results.

After the resolution of the set of Eqs. 2.10, incompatibilities can occur between LS
functions, in particular at multiple junctions due to infinite curvature. These problems
are called here vacuum if LS functions are all negative at a given mesh node and over-
lapping if more than one LS function is positive at a given mesh node. To solve these
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incompatibilities, the following treatment proposed in [142] is applied at each mesh
node after solving the set of Eqs. 2.10 :

ψi(x) =
1
2

(
ψi(x)−max

j 6=i

(
ψ j(x)

))
. (2.12)

Although this treatment solves vacuum and overlapping, it leads to altered LS func-
tions, in particular close to grain boundaries. Another limitation intrinsic to the LS
method is related to the fact that after solving the set of Eqs. 2.10, the LS functions
lose their metric properties, meaning that the condition ||∇ψ||= 1 of each LS function
is no longer satisfied. This limitation is particularly important since if LS functions
loose their metric properties, the diffusive part in the set of Eqs. 2.10 is no longer
equivalent to the capillarity term. Therefore, after solving the set of Eqs. 2.10 and ap-
plying vacuum/overlapping treatment given by Eq. 2.12, the metric properties of the LS
functions must be recalculated, which is called the reinitialization procedure. To reini-
tialize the metric properties of the LS functions, one approach consists in solving the
Hamilton-Jacobi equation for each LS function until their respective metric properties
are restored [158–160]. However, this approach is rather inefficient computationally
and is very limiting in 3D simulations. Recently, Shakoor et al. [146] proposed a new
reinitialization method, called Direct Reinitialization with Trees (DRT) method. This
method was proved to be as accurate as the classical reinitialization methods, while be-
ing up to 20 times faster, even if a small percentage of error, in context of non-conform
mesh, is still accumulated at each reinitialization step and its use has to be as reduced
as possible [161]. The DRT method is the one considered in this LS-FE approach.

2.2 Full field simulations of grain growth and improve-
ments of two existing models in the state of the art

2.2.1 Introduction
Single-phase fully dense polycrystals can generally be described by a log-normal grain
size distribution [162–164], defined by 〈R〉 and a standard deviation (σR). The standard
deviation is related to the width of the grain radius dispersion around 〈R〉. During GG
mechanism, grain boundaries migrate under capillarity effects which results in an in-
crease of 〈R〉 and σR. It is well-known that during GG, grain size distribution evolves
to a steady-state [165]. However, the reported steady-states in literature often exhibit
large discrepancies, even for studies employing the same numerical models [166, 167].
A major reason given to these discrepancies is the use of a too small initial number of
grains in simulations. Therefore ultra-large scale GG simulations were recently pro-
posed in literature to discuss steady-state regimes of GG when considering a very high
number of grains. For instance in 2017, Baskaran et al. [168] studied the influence of the
heterogeneity of the initial grain size distribution on the growth rate using a FE based
front tracking approach. Authors performed full field simulations of GG considering 9
different initial grain size distributions and an initial number of 38000 grains. It was
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shown that distributions with the highest deviation evolve at the highest growth rate and
vice versa, but this study was based on 2D considerations. The same year, Miyoshi et
al. [169] reached a new step in terms of 3D-GG simulations by performing full field
simulations on polycrystals composed of 3 millions of initial grains, which is largely
higher than previous 3D-GG full field simulations in the state of the art. A MPF model
with 25603 grid points was used and authors showed the good ability of the B&T model
during the steady-state regime as well as the existence of a steady-state distribution dur-
ing GG. Finally in [141], Miessen et al. also performed 3D-GG large-scale full field
simulations, by considering 9593 grid points and a maximal number of 500 000 initial
grains. This model is based on the LS method and diffusive equations are solved using a
spectral method relying on FFT in the context of regular Cartesian grids. The influence
of the initial number of grains on the identification of the growth exponent in the B&T
model was highlighted and authors showed that variations of growth exponent are due
to the consideration of too small initial populations (< 50 000 grains).

These ultra-large scale models of GG are essential to discuss the validity of analyti-
cal GG models during the steady-state regime. However the transient regime is gen-
erally neglected in these studies and only the steady-state regime is discussed. In an
industrial point of view, the prediction of microstructure evolutions (i.e. mean grain
size as well as grain size distribution) during the transient regime (i.e. few hours)
are essential, and customized models can be proposed for predictions in this regime.
In this section the LS-FE formalism previously introduced is used to perform 3D full
field simulations of pure capillarity driven GG (i.e. with a velocity term

−→
ve

i equal to
zero in the set of Eqs. 2.10) without neglecting the transient regime, and considering
an initial number of 8000 grains. More particularly, the effect of non-uniform grain
size distributions on the growth rate are studied and two analytical GG models (i.e.
Hillert/Abbruzzese [47, 67–69] and Burke-Turnbull (B&T) [64] models) are discussed
and improved during the transient regime thanks to full field results. The material pa-
rameters of a 304L austenitic stainless steel are considered in simulations. It is worth
noticing that the initial number of grains considering in our simulations (≈ 8000) are
much lower to those recently consider in literature (> 500 000). However it must be
highlighted that our LS-FE formalism is not dedicated to the only GG mechanism, but
also aim to model large deformation of polycrystals, as detailed in the next chapter.
Therefore, a spectral method relying on FFT cannot be consider in our formalism, which
considerably increases computational costs and numerical issues while reducing the ini-
tial number of grains that can be modeled.

2.2.2 Initial polycrystal and material parameters
A 5h heat treatment at a constant temperature of 1323K for a austenitic 304L steel is
simulated. The pre-exponential factor M0 and activation energy for boundary migration
Qm considered in Eq. 1.7 are taken equal to 1.56e−1 m4.J−1.s−1 and 2.8e5 J.mol−1,
respectively, for the considered austenitic 304L steel [170]. By considering R = 8.3145
J.mol−1.K−1 and T = 1323K, the grain boundary mobility Mb calculated by Eq. 1.7
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and used in the set of Eqs. 2.10 is equal to 1.38e-12 m4.J−1.s−1. Furthermore, the
grain boundary energy γb used in the set of Eqs. 2.10 is taken equal to 0.6 J.m−2 [10].
The material is assumed to be free of second phase particles (no Smith-Zener pinning
effect). The numerical simulations are performed on a cubic RVE whose edge length
varies from 2.00 to 2.85 mm. Each simulation was performed on 60 Intel Xeon CPUs.
A 3D unstructured mesh composed of 2923 tetrahedral elements is used.

8 initial grain size distributions are considered to generate 8 initial polycrystals using the
Laguerre-Voronoı̈ approach (see Eq. 2.3). Each of them is defined by an initial mean
grain radius 〈R0〉 and standard deviation σR0. Their characteristics are summarized
in Tab. 2.1 (line 1-4). The distributions LNi with i ∈ {1, ...,7} follow a log-normal
distribution. The last one, referred to as BiM, is bimodal with modes λ1 = 50µm and
λ2 = 100µm. The initial number of grains in the RVE is close to 8000 while at least
1200 grains remain at the end of the heat treatment (see Tab. 2.1 and Fig. 2.7). The
RVE dimensions, the time steps and the mesh size are chosen so as to justify a good
convergence of results in terms of grain boundary kinetics [143, 154].

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM
Initial state (t = 0h)

〈R0〉 (µm) 62.0 66.0 74.3 75.3 82.2 89.4 99.0 75.2
σR0 (µm) 6.90 11.8 19.4 7.50 25.9 30.9 17.7 25.5
ln(σR0/〈R0〉) -2.20 -1.71 -1.35 -2.30 -1.14 -1.05 -1.71 -1.08
No. Grains 7920 7576 7474 8100 7460 7636 7588 7472

Final state (t = 5h)
〈Rf〉 (µm) 109 120 135 111 151 160 138 115
σRf (µm) 39.0 45.0 53.2 39.8 59.9 66.3 50.7 36.0
ln(σRf/〈Rf〉) -1.03 -0.98 -0.93 -1.03 -0.92 -0.88 -1.00 -1.16
No. Grains 1483 1278 1244 2552 1221 1341 2803 2092

Tab. 2.1. Characteristics of the initial (lines 1-4) and final (lines 5-8) grain size distri-
butions predicted by the full field simulations.

2.2.3 Full field simulation results
An histogram representing the instantaneous grain size distribution is generated every
minute of the simulated heat treatment. Each histogram is composed of 30 equally
spaced intervals delimited by 0 and 300µm. Next the term distribution curve is intro-
duced to denote a linear approximation of an histogram (i.e. of a grain size distribution).
The objective of these distribution curves is to simplify the representation of the grain
size distributions for future comparisons. Fig. 2.5 provides a schematic illustration of
the distribution curve obtained by piecewise linear approximation of an histogram while
Fig. 2.6 shows all the distribution curves predicted by the full field simulations for every
initial grain size distribution at the early (solid curves) and final (dashed curves) stages
of the simulation. These are confronted to the Hillert/Abbruzzese model predictions in
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the next section.
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Fig. 2.5. Distribution curve obtained by linear approximation of an histogram.

Table 2.1 (line 5-8) presents the characteristics of the final grain size distributions pre-
dicted by the full field simulations. The ratio ln(σRf/〈Rf〉) is observed to tend towards
the value -1.00 after 5h of treatment for every initial grain size distribution. Fig. 2.7
illustrates several RVEs of full field simulations at the beginning and at the end of the
heat treatment, for the LN1 and BiM initial grain size distributions. Among the RVEs
representing the log-normal grain size distributions, only the RVE obtained for the LN1
initial grain size distribution is depicted since this latter is representative of all the log-
normal initial grain size distributions. A preponderant blue color is observed at the
beginning of the heat treatment for the LN1 initial grain size distribution, meaning that
σR0 is small for this distribution and most grains have sizes close to 〈R0〉. In the BiM
initial grain size distribution, two preponderant blue and green colors are observed in
the RVE at the beginning of the heat treatment. These two colors depict the two modes
of the bimodal distribution, centered on grain size values of 50µm and 100µm.
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Fig. 2.6. Initial (solid curves) and final (dashed curves) distribution curves predicted
by the full field simulations for the different initial grain size distributions.
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Fig. 2.7. Grain boundary networks at initial and final stages of the simulation for the
LN1 and BiM initial grain size distributions. The color code corresponds to the equiva-
lent sphere radius of each grain.
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2.2.4 Confrontation of full field simulation results with Hillert/Abbruzzese
model

Hillert/Abbruzzese model

In 1965, Hillert/Abbruzzese proposed a mean field model [47, 67–69] for normal GG,
already introduced in the first chapter. This model was discussed in many studies. Sev-
eral authors [73,74,166,171] recently confronted the predictions of this model with full
field simulation results. Hillert/Abbruzzese model is considered to be more accurate
than phenomenological GG models such as the one of B&T [64], since it is based on a
discrete representation of the microstructure. This discrete microstructure is composed
of N classes of spherical grains having a radius Ri (i ∈ {1, ...,N}). Each grain class
evolves according to the Hillert/Abbruzzese equation introduced in first chapter (Eq.
1.30) :

dRi
dt

= βMbγb

(
1

Rcr
− 1

Ri

)
. (2.13)

For each initial grain size distribution, the number of grain classes in the Hillert/Abbruzzese
model was taken equal to the number of grains in the RVE of the corresponding full field
simulation (see Tab. 2.1). The parameter β is a geometrical dimensionless constant
which refers to the inherent approximations concerning the assumed idealized geome-
try in the Hillert/Abbruzzese model representation. In 3D, β is assumed to be close to
unity [47, 67–69]. Other authors have nevertheless reported values above unity, such as
Kamachali et al., who found β ' 1.25 [171]. In another work, Suwa et al. [166] also
found optimal β values around 1.1. In [74], authors recently discussed a linear rela-
tionship valid in 3D between the parameter β and the index 〈R〉2/〈R2〉 which aims to
account for the geometrical relations between the neighbor grains for any given initial
grain size distribution.

Hereafter, the notation Hi(β ) designates Eq. 2.13. So Hi(1) corresponds to the clas-
sical Hillert/Abbruzzese formulation [47, 67–69]. As it employs several grain classes,
this model has the advantage of being able to predict the grain size distribution evolu-
tion in addition to the 〈R〉 evolution. Previous works showed the ability of the classical
Hillert/Abbruzzese model to correctly capture the GG kinetics in 2D for different initial
grain size distributions [66]. In the same manner as for full field simulations, a grain
size distribution is generated every minute of the Hillert/Abbruzzese simulation. The
distribution curves are then deduced from the grain size distributions according to the
method illustrated on Fig. 2.5.

The notation L2
Hi represents the instantaneous L2 relative error measured between the

distribution curves predicted by the Hillert/Abbruzzese and full field models. This quan-
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tity is computed as follows :

L2
Hi(t) = 100×

√√√√√√√√√
N

∑
i=1

(
Si−S′i

)2

N

∑
i=1

(S′i)
2

, (2.14)

where, as illustrated on Fig. 2.8, the distributions are approximated by a linear inter-
polation and Si (resp. Si′) denotes the surface of the ith obtained trapezoid under the
Hillert/Abbruzzese (resp. the full field) distribution curve. Hereafter the notation 〈L2

Hi〉
designates the time average of the L2

Hi(t) errors for a given simulation :

〈L2
Hi〉=

1
Nincr

∑L2
Hi(t), (2.15)

where Nincr is the number of time increments (equal to 300 in this study, ∆t = 1min).
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Fig. 2.8. Computed L2
Hi error between the Hillert/Abbruzzese and full field distribution

curve.

Optimization of the Hillert/Abbruzzese model

The values of 〈L2
Hi〉 errors obtained with the Hi(1) model are depicted by blue bars on

Fig. 2.9. These errors remain globally constant and around 20% for all the initial grain
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size distributions. These results confirm the versatility of this model although a dif-
ference of 26% is observed for the LN4 and BiM initial grain size distributions. The
distribution curves predicted by the Hi(1) (blue curves) and the FF model (red curves)
are also compared at different stages of the heat treatment on Fig. 2.11. The kinetic of
GG obtained with the Hillert/Abbruzzese model seems to be slower than that obtained
with the FF model. This is observable on Fig. 2.11 at each instant of the simulation by
a time shift of the Hillert/Abbruzzese distribution curves with respect to the full field
distribution curves.
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Fig. 2.9. Comparison in terms of 〈L2〉 error on the distribution curves predicted by the
full field and Hillert/Abbruzzese models (see Eq. 2.15 for details).

As stated above, the value β = 1 proposed by Hillert/Abbruzzese relies on many as-
sumptions. For example Hillert/Abbruzzese considers that each shrinking grain has
four immediate neighbors just before disappearing. Furthermore he considers that the β
value is two times higher in 3D than in 2D where β = 0.5 according to Hillert/Abbruzzese
[47, 67–69]. Although these assumptions are judicious and justified, we propose to re-
calibrate this Hillert/Abbruzzese parameter based on the results of the full field simu-
lations. Thus, several simulations using Hillert/Abbruzzese model were performed by
varying the beta value from 0.5 to 2 by step of 0.01. We denote βopt the value of β in Eq.
2.13 that minimizes 〈L2

Hi〉 error for each initial grain size distribution. The values of βopt
are provided in Tab. 2.2. Red bars on Fig. 2.9 show the residual 〈L2

Hi〉 error obtained
with βopt. These residual errors were approximately reduced by half compared to the
classical value of β equal to 1. Furthermore the values of βopt are distributed around a
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mean value of 1.40 noted βfit (see green dots on Fig. 2.10).
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Fig. 2.10. Optimized values βopt and κopt obtained by inverse analysis from the full field
simulation results and fitting values βfit and κfit obtained by an average of the optimized
values.

To validate the calibrated value of β = 1.40, the distribution curves predicted by the
Hi(1.40) (green curves) and the full field models (red curves) are compared at differ-
ent stages of the heat treatment on Fig. 2.11. It is worth noticing that Hi(1.40) model
provides non negligible improvements for the prediction of the grain size distributions
compared to the initial Hi(1) model. Indeed, the time shift observed Fig. 2.11 between
full field and Hi(1) distribution curves is now rectified since this new value of β = 1.4 is
larger than the old one and thus logically increases the kinetic of GG. In a general way,
the shapes of the grain size distributions are also in good agreement with observations
made in [171]. Grain size distributions are observed to be initially sharp and then be-
come larger during the heat treatment. After 2.5h of treatment in the BiM initial case,
one single peak is observed on the distribution curve, which means that the two modes
merged in the first hours of the heat treatment.

In order to investigate further the theory of [74], we define κ0 as :

κ0 =
βopt

〈R〉2/〈R2〉(t=0)
, (2.16)
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where the index 〈R〉2/〈R2〉 is taken at the instant t = 0s of the treatment. This choice
was done since this value does not significantly evolve during a simulation. The differ-
ent values of κ0 computed for every initial grain size distribution are provided in Line
3 of Tab. 2.2. These ratios are not constant between each initial grain size distribution,
meaning that there is not a direct relationship between β and the index 〈R〉2/〈R2〉(t=0)
for our cases. However this index, which considers the geometrical characteristics of
neighbor grains, could be useful to enrich the classical Hillert/Abbruzzese model (see
Eq. 2.13).

Thus by replacing the β parameter in Eq. 2.13 by the product of an assumed constant pa-
rameter noted κ times the ratio 〈R〉2/〈R2〉, we can consider the following Hillert/Abbruzzese
model derived from the Darvishi Kamachali theory [74] :

Ṙi = κ
〈R〉2
〈R2〉Mbγb

(
1

Rcr
− 1

Ri

)
, (2.17)

where κ is a constant parameter. We performed several Hillert/Abbruzzese simulations
using this new formulation (see Eq. 2.17) and by varying the κ value from 1 to 2 with a
step of 0.01. We denote by κopt the value of κ that minimizes 〈L2

Hi〉 for each initial grain
size distribution. The κopt values are presented in Line 4 of Tab. 2.2. Grey bars on Fig.
2.9 show the residual 〈L2

Hi〉 error obtained with κopt. These residual errors are slightly
little smaller than those obtained with βopt. However this difference is not significant
enough to affirm that the model given by Eq. 2.17 gives better predictions than Hi(1.4)
model. Furthermore the κopt values are distributed around a mean value of 1.59 noted
κfit (see red dots on Fig.2.10) resulting also in a low 〈L2

Hi〉 error close to that obtained
with the Hi(βfit) model (see purple bars on Fig. 2.9). These similar errors are logically
due to the fact that the Hi(1.4) (Eq. 2.13) and the new Hillert/Abbruzzese formulation
(Eq. 2.17) give very close predictions since the index 〈R〉2/〈R2〉 does not change much
during all our simulations. Finally, the distribution curves obtained according to the new
Hillert/Abbruzzese formulation all overlay with those obtained according to the Hi(1.4)
model.

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM
βopt 1.32 1.32 1.28 1.43 1.41 1.39 1.52 1.53
βfit 1.40
κ0 1.35 1.36 1.38 1.43 1.57 1.58 1.57 1.72

κopt 1.48 1.47 1.53 1.53 1.67 1.63 1.69 1.7
κfit 1.59

Tab. 2.2. (Line 1-2) Optimized Hillert/Abbruzzese model parameter βopt calculated
by inverse analysis from the full field simulation results (see Eq. 2.13) and fitted
Hillert/Abbruzzese model parameter βfit obtained by averaging the values of βopt. (Line
3) Values of κ0 defined as the ratio between βopt and the initial index 〈R〉2/〈R2〉 at time
= 0s of every simulation. (Line 4-5) Optimized κ values (κopt) calculated by inverse
analysis from the full field simulation results (see Eq. 2.17) and fitted κ value (κfit)
obtained by averaging the values of κopt.
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Fig. 2.11. Distribution curves predicted by the full field (FF), Hi(1) and Hi(1.40) models
for the different initial grain size distributions.

67



CHAPTER 2. THE LEVEL-SET METHOD IN A FINITE ELEMENT FRAMEWORK FOR MODELING OF
MICROSTRUCTURE EVOLUTIONS

2.2.5 Confrontation of full field simulation results with Burke &
Turnbull model

Burke & Turnbull model

For materials with single mode grain size, describing the evolution of 〈R〉 could be in-
teresting as this quantity gives information concerning the global flow behavior of the
material. Especially the Hall-Petch relationship states that the Yield stress of metallic
materials can be expressed as a function of 〈R〉−0.5 [172]. Furthermore in such cases, the
initial grain size distribution can be unknown and consequently the Hillert/Abbruzzese
model can hardly be used. Thus, other mean field models can be used as a good alter-
native to describe the GG kinetics. In 1952, Burke and Turnbull (B&T) investigated the
physical mechanisms of GG. They particularly assumed that grain boundaries migrate
by atom transport toward their center of curvature, under a force due to their curved
shape. These findings gave rise to the B&T model [64] mentioned in the first chapter
(Eq. 1.29), which predicts a parabolic evolution of 〈R〉 as a function of the time t :

〈R〉2−〈R0〉2 = δMbγbt. (2.18)

Some authors [171] have found a value of δ close to 0.5 when the term 〈R0〉2 is ne-
glected as compared to 〈R〉2. This analytic mean field model has the advantage of being
extremely simple to use since it requires only a value for the product Mbγb and for the
initial mean grain size 〈R0〉.

The predictions of the B&T model are confronted with the full field simulation results,
using the following relative L2 error :

L2
B&T(%) = 100×

√√√√√√√√√
5h

∑
t=0

(〈R〉FF(t)−〈R〉B&T(t))
2

5h

∑
t=0
〈R〉2FF(t)

, (2.19)

where 〈R〉B&T and 〈R〉FF represent, respectively, the instantaneous values of 〈R〉 in the
B&T and full field models.

New formulation of the Burke & Turnbull model

The resulting L2
B&T measured between the classical B&T model predictions (Eq. 2.18)

and the full field simulation results are illustrated by blue bars on Fig. 2.12. It is worth
noticing that these L2

B&T are smaller than the 〈L2
Hi〉 calculated in the previous section.

Indeed L2
B&T relies on a single quantity which is the mean grain size of the material.

On the other hand 〈L2
Hi〉 reflects the difference of shape between the two distribution
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curves. Results show that L2
B&T is globally high for any initial case. Furthermore, L2

B&T
error globally increases when the ratio σR0/〈R0〉 decreases. This finding is actually
quite logical and can be easily explained. Indeed in the case of small σR0/〈R0〉 ratios,
the grain boundary kinetic slows down at the early stage of the treatment because most
grains have an initial radius close to 〈R〉. Consequently the increase of 〈R〉 takes longer
to initiate and a plateau or even a decrease could be observed at the beginning of the
thermal treatment. These typical evolutions occurring during the transient regime are
not straightforward to capture with the classical B&T model, which is more dedicated
to steady-state regimes. However the transient regime can last few hours in some ini-
tial configurations and the prediction of microstructure evolutions during this regime
is of prime importance for many industrials. Thus these results confirm the interest of
improving the classical B&T model during the transient regime. Recent numerical in-
vestigations in 2D have also pointed out that B&T model is not accurate for all σR0/〈R0〉
initial ratios [66] during the transient regime.
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Fig. 2.12. Comparison in term of L2 error on the 〈R〉 values predicted by the full field
simulations and the different B&T formulations (see Eq. 2.18 and Eq. 2.20 for more
details).

In order to make the classical B&T formulation more accurate, the first objective is to
determine whether there exists for each initial grain size distribution, other δ values,
noted δopt, that correctly describe the GG kinetics. These δopt values are obtained by
minimizing the L2

B&T for each initial grain size distribution. The resulting fitting curves
obtained by combining Eq. 2.18 and the δopt are depicted on Fig. 2.13 (dashed curves)
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for the LN4 and LN6 initial grain size distributions, having the smallest and highest
σR0/〈R0〉 ratios, respectively. It is observed that changing the values of δ does not cor-
rect the description of the transient regime. In particular for small σR0/〈R0〉 ratios, a
model such as B&T model cannot be accurate enough to describe these particular mean
grain size evolutions.
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Fig. 2.13. Evolution of 〈R〉/〈R0〉 during the heat treatment. Solid curves correspond
to the full field (FF) results, dashed curves represent the B&T predictions obtained by
combining Eq. 2.18 and δopt and dotted curves represent the B&T predictions obtained
by combining Eq. 2.20 and the set of parameters (αopt;nopt).

In order to also check the consistency of this law in the transient regime, the curves
log(〈R〉2-〈R0〉2)=f(log(t)) were plotted on Fig. 2.14 according to full field results. A
linear approximation of these curves is also added. We observed that the slopes of the
linear approximations are quite different for every initial grain size distribution as al-
ready observed in the work of [66], which means that the classical B&T formulation
cannot be sufficient to describe the kinetic of GG for every initial grain size distribution.
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Fig. 2.14. Evolution of log(〈R〉2-〈R0〉2) as a function of log(time) according to full field
results. Linear approximations are added in dashed lines.

Based on the previous observations, a new formulation of the B&T model was proposed
in [66] including a new fitting exponent n aiming to take into account the different slopes
observed on the Fig. 2.14 and the transient regimes observed on Fig. 2.13 :

〈R〉2−〈R0〉2 = αMbγbtn, (2.20)

where α is considered as a fitting parameter depending, in the same manner as the ex-
ponent n, on the initial grain size distribution characteristics. Thus the validity of the
classical B&T model (Eq. (2.18)) can be easily verified if the slope n is equal to 1 and
the fitted parameter α is equal to 0.5.

LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM
αopt 6.20e-6 6.00e-4 1.66e-2 4.50e-6 7.45e-2 1.22e-1 6.18e-4 35.0
nopt 2.13 1.69 1.37 2.11 1.24 1.20 1.64 0.56
αfit 8.67e-6 5.67e-4 1.22e-2 3.69e-6 7.32e-2 1.58e-1 5.66e-4 1.22e-1
nfit 2.06 1.67 1.39 2.13 1.23 1.16 1.67 1.18
ln(σR0/〈R0〉) -2.20 -1.71 -1.35 -2.30 -1.14 -1.05 -1.71 -1.08

Tab. 2.3. Line 1-2: Optimized B&T model parameters αopt and nopt obtained by inverse
analysis from the full field simulation results (Eq. 2.18). Line 3-4: Fitted mean field
model parameters αfit and nfit obtained by using the new formulations of Eq. 2.21. Line
5: Ratio of the initial grain size distribution characteristics.
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Inverse analyses were performed in order to obtain optimal values of αopt and nopt min-
imizing L2

B&T. These values are plotted on Fig. 2.15 and the corresponding L2
B&T are

illustrated by red bars on Fig. 2.12. Interestingly, the results of Tab. 2.3 and Fig. 2.12
show that there exists, for each initial distribution, a set of parameters (αopt;nopt) which
predicts very accurately the evolution of 〈R〉, with L2

B&T < 5%. Furthermore the LN6
initial grain size distribution presents the set of parameters (αopt;nopt) that is closest to
the B&T classical parameters (α = 0.5; n = 1). This distribution has the largest ratio
(σR0/〈R0〉 ' 0.35) of this study. It is worth noticing that increasing the ratio σR0/〈R0〉
should lead to a new set of parameters (αopt;nopt) even closer to the B&T parameters.
In [66], authors found in 2D a set of parameters (αopt;nopt) close to B&T parameters for
initial grain size distributions having a ratio σR0/〈R0〉 ' 0.45.

The predictions of 〈R〉 obtained by combining Eq. 2.20 with the set of parameters
(αopt;nopt) were plotted on the Fig. 2.13 (dotted curves) for the LN4 and LN6 initial
grain size distributions. It is clearly observed that the resulting curves obtained with Eq.
2.20 (dotted curves) are closer to full field predictions than resulting curves obtained
with Eq. 2.18 (dashed curves). However, the transient regime characterized by a de-
crease in 〈R〉 during the first hour of treatment is not well described yet.

It is worth noticing that the αopt and the nopt values increase and decrease respectively
with the σR0/〈R0〉 ratio (see Tab. 2.3). This trend was already observed in the study
proposed by [66]. These observations confirm that the ratio σR0/〈R0〉 is relevant for
describing the evolution of α and n. Furthermore, the sets of parameters (αopt;nopt) are
observed to be quasi identical for the two LN2 and LN7 initial grain size distributions
with the same σR0/〈R0〉 ratio. By plotting the parameters ln(αopt) and nopt as a function
of the ratio ln(σR0/〈R0〉) on Fig. 2.15, two linear relationships can be deduced for the n
and α model parameters :

ln(αfit) = 8.53ln
(

σR0

〈R0〉

)
+7.11, nfit =−0.78ln

(
σR0

〈R0〉

)
+0.34, (2.21)

where these two constant parameters are quite different from those obtained in [66]
probably due to the fact that this study is investigated in 3D. Combining Eq. 2.20 and
Eq. 2.21 results in the following improved B&T formulation :

〈R〉2−〈R0〉2 = 1224.15
(

σR0

〈R0〉

)8.53

Mbγbt
−0.78ln

( σR0

〈R0〉

)
+0.34

. (2.22)

Although the set (ln(α) = 3.56; n = 0.56) obtained for the BiM initial grain size distri-
bution predicts well the evolution of 〈R〉, it does not follow the trend obtained for the
log-normal initial grain size distributions (see Fig. 2.15). So the formulation of the B&T
model given by Eq. 2.22 is only accurate for log-normal initial grain size distributions.
By using α = αfit and n = nfit in Eq. 2.20, small L2

B&T are obtained (see beige bars on
Fig. 2.12). An interesting prospect of this study is to perform the same analysis for
different bimodal distributions.
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Summary
This first chapter introduced the LS-FE formalism considered for full field simulations.
Polycrystals are modeled using the LS method while boundary migration is performed
by solving a set of partial differential equations using the FE method. Some limita-
tions inherent to the LS method, such as vacuum, overlapping and loss of metric prop-
erties, were discussed and the considered treatments developed during previous stud-
ies [135, 138, 146] and considered in this formalism were presented.

Based on this LS-FE formalism, 3D-GG full field simulations were performed and re-
sults were used to discuss two analytical GG models during the transient regime: the
Hillert/Abbruzzese and B&T models. More particularly, the influence of the initial
grain size distribution characteristics on microstructure responses during the transient
regime are discussed thanks to full field simulations considering an initial number of
8000 grains. It is worth noticing that these results were published in 2016 [173] and
from this date, a new step in 3D-GG full field simulations was reached with the con-
sideration of polycrystal of more than 500 000 grains [141, 169]. In [169], large-scale
GG simulations were used to validate the ability of the classic B&T formulation during
the steady state regime but the transient regime was not considered. In [141], authors
showed that the classic B&T formulation is always consistent if the considered number
of grains is high enough in the RVE, but since the GG simulation times are very high,
the transient regime is not really studied. Even if the transient regime is not directly
studied in these studies, these ultra large-scale GG models are primordial to understand
the behavior of polycrystals at steady-state regimes of GG.

Results showed that Hillert/Abbruzzese model is versatile since it considers the initial
grain size distribution of the microstructure. However this model relies on a first-order
parameter β which needs to be finely calibrated in the transient regime. Numerical
full field investigations have highlighted a new value for β , which is globally constant
around 1.4 for all initial distributions in this regime. We have finally demonstrated that
the calibrated Hillert/Abbruzzese model predicts finely 〈R〉 and the evolution of the dis-
tribution curves during the transient regime, even for the BiM distribution.

The classical B&T model does not take the initial grain size distribution into account,
which makes it inaccurate during the transient regime. Based on full field simulation
results, a new B&T formulation given in Eq. 2.22 was proposed in this regime. This
new formulation proved to be able to predict accurately the evolution of 〈R〉 for any log-
normal initial grain size distribution, regardless of σR0 and 〈R0〉. On the other hand, this
new model is not universal and needs to be improved in order to consider other kinds of
initial grain size distribution, like bimodal distributions.

A main advantage of the LS-FE approach is the ability to model complex geometries,
even at large deformations. Therefore in the next chapter, the LS-FE approach is ex-
tended for 3D modeling of DRX and PDRX at high strain levels and with relatively low
computational costs.
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CHAPTER 3. MODELING OF DYNAMIC AND POST-DYNAMIC RECRYSTALLIZATION BY COUPLING A
FULL FIELD APPROACH TO PHENOMENOLOGICAL LAWS

Résumé en français
Le formalisme champ complet utilisé au CEMEF et présenté dans le chapitre précédent
était jusqu’à présent dédié aux seuls mécanismes de croissance de grains et recristalli-
sation statique. Dans ce chapitre, une extension de ce formalisme afin de modéliser
les mécanismes de recristallisation dynamique et post-dynamique est présentée. Ces
mécanismes sont modélisés en couplant la méthode Level-Set pour le suivi des joints de
grains avec des lois phénoménologiques pour décrire les mécanismes d’écrouissage,
restauration et germination. Contrairement à d’autres modèles de la littérature, ce
modèle ne considère pas de plasticité cristalline afin de limiter son coût numérique.
Un avantage majeur de ce modèle est lié au fait qu’il est capable d’atteindre de grandes
déformations en trois dimensions et avec des temps de calcul relativement faibles. Fi-
nalement une comparaison entre ce nouveau modèle champ complet et un modèle champ
moyen de la littérature permet de mettre en évidence les limites actuelles des modèles
champ moyen.
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This chapter presents a full field model of dynamic and post-dynamic recrystallization
in 3D polycrystals, with an accurate description of grain topology at large deforma-
tions. This model is based on the Level-Set method in a finite element framework as
introduced in chapter 2. Topological evolutions are simulated based on a kinetic law
linking the velocity of the boundaries to the thermodynamic driving forces. Recrystal-
lization is modeled by coupling a Level-Set approach to phenomenological laws describ-
ing strain hardening, recovery and nucleation. Although the proposed formalism does
not consider crystal plasticity because of its computational costs, it enables to reach
outstanding dynamic recrystallization computations in a front-capturing finite element
framework comparatively to the state of the art.

3.1 Introduction
Literature already provides a large number of papers on full field modeling of DRX
as presented at the end of the first chapter. However, a major drawback of these mod-
els is the difficulty to handle grain topology and morphology for large deformations
[106, 130], which is a major limitation since many industrial processes go well fur-
ther in deformation. Furthermore, crystal plasticity is generally used in DRX full field
models since it predicts accurately the local evolution of dislocation density at the poly-
crystalline scale [101,110,111,115]. However, the use of crystal plasticity often leads to
prohibitive computational costs. Finally, most of DRX full field models are developed
in 2D because of numerical issues and computational costs [53, 106, 111]. Microstruc-
ture evolutions present a three-dimensional character, therefore results obtained from
2D models may not be representative of a real process. Some limitations of 2D models
are related to the location of nuclei, their initial size or growth rates.

In the present work, we proposed a 3D model based on the Level-Set finite element
framework (LS-FE) introduced in chapter 2. This model is proposed in context of un-
structured tetrahedral mesh to model the DRX and PDRX phenomena with application
to 304L steel. This latter is able to describe grain topology at large deformations (for
instance ε > 2) with relatively low computational costs. The equations proposed and
validated in a mean field model [49, 50] are used in this model to simulate nucleation,
work hardening and recovery while the LS approach coupled to a remesher provides an
accurate tracking of grain boundaries all along the simulation. The next section of this
chapter introduces the modeling of the grain boundaries network and grain boundary ki-
netic. This section is followed by the presentation of the main constitutive equations for
strain hardening, dynamic recovery and nucleation. Then, a sensitivity study of optimal
model parameters (mesh size, initial number of grains, deformation step, time step and
critical nucleus radius) on microstructure responses of the model is investigated. The
subsequent section presents a comparison between our full field model and the mean
field model of Beltran et al. [50] introduced in first chapter.
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3.2 Modeling of dynamic and post-dynamic recrystal-
lization

3.2.1 Initial polycrystal
As already seen in the chapter 2, the generation of polycrystals can be performed di-
rectly from experimental pictures or from statistical numerical methods such as Voronoı̈
and Laguerre-Voronoı̈ methods (see from Eq. 2.2 to Eq. 2.6). For GG simulations
performed in the chapter 2, we made the assumption that the microstructure was free
of stored energy to consider only grain growth due to capillarity effects. However, for
modeling of DRX and PDRX, a stored energy field must be considered. Therefore, at
the initial stage of the simulation, an energy field noted E, considered constant per grain
and representative of a 304L steel, is initialized in the unstructured finite element mesh.
This energy field can be generated either according to a particular distribution (Gaus-
sian, log-normal, bimodal) or from experimental data. Furthermore, the energy field can
be related to a dislocation density field ρ according to the following relationship :

E = τρ, (3.1)

where τ represents the unit dislocation line and is considered as material dependant. As
already mentioned in previous chapters, a NR grain denotes a grain that is present from
the first stage of simulation while a RX grain denotes a new grain appearing during the
simulation. Thus, at initial stage of simulations, the polycrystal is only composed of NR
grains.

3.2.2 Grain boundary migration
As detailed in chapter 1, grain boundaries migrate during a process at a high tempera-
ture, due to the jump in stored energy across grain boundaries and due to grain boundary
curvature. Modeling of grain boundary migration in the LS-FE formalism was already
presented in chapter 2 and is performed by solving the set of Eqs. 2.10.

3.2.3 Strain hardening and recovery
During plastic deformation, dislocation density increases in the microstructure due to
strain hardening, resulting in an increase of the stored energy. However, a part of dis-
locations can also annihilate due to dynamic recovery. All these mechanisms were de-
tailed in chapter 1. The modeling of strain hardening and recovery can be considered at
different scales: at a local scale with crystal plasticity [53,111,130] or at a macroscopic
scale with phenomenological laws [76,174,175]. In this model, phenomenological laws
are considered to limit the computational cost of the 3D simulations, thus none resolu-
tion of a mechanical problem is considered. The deformation is simply modeled by
applying a normal velocity on different faces of the RVE so as to respect a given strain
rate and a velocity gradient. Each mesh node is thus displaced according to these veloc-
ities. During deformation, the faces of the RVE remain plane (homogeneous material
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assumption) and the volume conservation of the RVE is ensured (incompressible mate-
rial). Furthermore to ensure a good mesh quality, remeshing operations are performed
every 0.2 of strain.

Considering Ng grains in the microstructure, the averaged dislocation density field ob-
tained from Eq. 3.1 in each grain i noted ρi, is assumed to evolve according to the
Yoshie-Laasraoui-Jonas law [76], as used in the model of Beltran et al. (Eq. 1.44) :

∂ρi

∂ε
= K1−K2ρi, (3.2)

where ε denotes the strain level, K1 and K2 are two constants representing the strain
hardening and dynamic recovery term, respectively. At each time increment, this differ-
ential equation is solved with an Euler explicit method, i.e. :

ρ(t+∆t)
i −ρi

t

∆ε
= K1−K2ρi

t , (3.3)

where ∆ε is equal to ε̇×∆t with ∆t the time step, leading to the final equation :

ρ(t+∆t)
i = K1∆ε +(1−K2∆ε)ρi

t . (3.4)

When a grain boundary migrates, the swept volume is almost free of defects. This
phenomenon is traduced by a decrease of the dislocation density in growing grains.
Thus a minimal dislocation density ρ0, which is material dependant, is attributed to
swept volumes. Then the new dislocation density is averaged in each grain following
the equation :

ρ(t+∆t)
i V (t+∆t) = ρi

tV t +∆V ρ0, (3.5)

where ∆V represents the swept volume between the instants t and (t +∆t). Fig. 3.1
shows the evolution of a dislocation density field in a 2D schematized grain between t
and (t +∆t) due to strain hardening, dynamic recovery and grain boundary migration.
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ρt, St

Grain boundary at t

Grain boundary at t + ∆t

ρt
′
, St

ρ0, ∆S

ρt+∆t, St+∆t ρt
′
, St

(a) (b)

(c)(d)

Eq. 3.4

Eq. 3.5

Eq. 2.10

Fig. 3.1. 2D scheme illustrating the evolution of a dislocation density field of a single
grain due to strain hardening and dynamic recovery (from (a) to (b)), grain boundary
migration (from (b) to (c)) and decrease of dislocation density due to boundary migra-
tion (from (c) to (d)) between the instants t and (t +∆t) of the simulation.

PDRX is taken into account after deformation by modeling boundary migration given
by the set of Eqs. 2.10 and the decrease of dislocation density due to boundary migration
given by Eq. 3.5. Furthermore, the static recovery due to annihilation of dislocations is
taken into account here using the same recovery law as used in the model of Beltran et
al. (Eq. 1.45) :

ρ̇i =−Ksρi, (3.6)

where Ks is a temperature dependant parameter which represents the static recovery
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term and a superposed dot denotes differentiation with respect to time. During PDRX,
no nucleation of new grains is considered, thus the following section on nucleation only
concerns DRX.

The mean flow stress σi in the ith grain is computed during deformation from its average
dislocation density ρi using the Taylor’s equation (Eq. 1.47). Then the macroscopic flow
stress σ is calculated as a volume average of the flow stresses in all grains :

σ =
∑σiVi

∑Vi
. (3.7)

3.2.4 Nucleation
When enough energy is accumulated in the material due to plastic deformation, some
dislocation networks can develop within grains and tend to form new RX grains called
nuclei, mainly located at grain boundaries [5]. In this model, nucleation is modeled by
the SIBM mechanism, as considered in models of Cram & Zurob [70] and Beltran [50]
introduced in first chapter. Different criteria need to be verified locally in order to obtain
a substructure that becomes a nucleus: a mobile high-angle grain boundary has to be
formed by the nucleation event, a high stored energy gradient across the grain boundary
must be present in order to provide enough positive driving pressure for counter the
capillarity effects applied on the nucleus. In the considered framework, since γb is
assumed isotropic, only the stored energy and the critical nucleus radius are taken into
account for nucleation event.

Nuclei location

The adopted strategy concerning the creation of new nuclei in a FE-LS framework is
based on the recent developments of Scholtes et al. [143]. In the considered model, we
assume that new nuclei of critical radius rcr only appear close to grain boundaries. This
restriction is taken into account by forcing the centers of new nuclei inside a layer ±L
around grain boundaries, where L = rcr (see Fig. 3.2 for more details).
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2L 

. 
. 

. 
. 

Spherical nuclei allowed to appear

Spherical nuclei prohibit to appear

Grain boundary

Fig. 3.2. Examples of nuclei that are allowed (green color) and prohibit (red color) to
appear depending on the distance from the grain boundary to their centers.

Critical stored energy for nucleation

In the considered model, we assume that a new nucleus can appear if the averaged stored
energy in its appearance surface reaches a critical value ρcr. This restriction is taken
into account by averaging the energy in the volume occupied by the nucleus before its
appearance, and by verifying if this averaged energy reaches ρcr. (see Fig. 3.3 for more
details). If this condition is verified and if its position satisfies the condition presented
previously, the new nucleus can be created with a stored energy ρ0 and a radius rcr.
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2L 

. 

. 
. 

. 

Spherical nuclei allowed to appear

Spherical nuclei prohibit to appear

ρ = 4ρcr

ρ = ρcr/2

Grain boundary

Fig. 3.3. Examples of nuclei allowed (green) and prohibit (red) to appear depending on
whether the averaged stored energy in the volume occupied by each nucleus before its
appearance reached the critical dislocation density ρcr.

To compute the critical dislocation density ρcr, the method used in [50] and already pre-
sented in first chapter is reproduced: a first value of ρcr is estimated thanks to Eq. 1.54
and an iterative calculation is performed according to Eq. 1.55, where the parameter K3
is replaced here by the product Mbδτ , leading to :

ρcr =

(
20K1γbε̇
3Mbδτ2

)1/3

, (3.8)

ρcr =

 −2γbε̇
K2

Mbδτ2

ln
(

1− K2

K1
ρcr

)


1/2

. (3.9)

The influence of the temperature on ρcr is taken into account in Eq. 3.9 thanks to the
parameters K2 and Mb while the influence of the strain rate on ρcr is taken into account
in Eq. 3.9 thanks to the parameters K1, K2, ε̇ and δ . It is assumed that ρcr increases
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when decreasing temperature or increasing strain rate.

Nucleus critical radius

When a new nucleus appears in the microstructure, its critical radius must be high
enough so that its stored energy counters the capillarity forces applied by the neigh-
boring grains. This corresponds to the condition when the stored energy of the material
is large enough to overcome the capillarity effects exerted by neighboring grains on the
nucleus. This condition is approximated from the so-called Bailey-Hirsch criterion [36]
already discussed in the first chapter (Eq. 1.8) and obtained by solving the equilibrium
equation between force due to stored energy and force due to capillarity effects, i.e :

Pe = Pc, (3.10)

τ(ρcr−ρ0) =
2γb

rcr
. (3.11)

By neglecting ρ0, it leads to :

rcr = ω
2γb

ρcrτ
, (3.12)

where ω > 1 is a security factor ensuring that the created nucleus has a required driving
force for growth. Indeed the Eq. 3.12 with ω = 1 is based on the assumption that a new
nucleus is perfectly spherical but in the present model, depending on the mesh size, the
nucleus cannot be perfectly spherical, which justifies the use of the security factor ω .
The value of ω is investigated in the following.

Nucleation rate

The nucleation rate V̇ representing a volume of nuclei per unit of time, is calculated
according to a variant of the proportional nucleation model of Peczak and Luton [176] :

V̇ = KgΦ∆t, (3.13)

where Kg is a probability coefficient related to the thermomechanical conditions, i.e.
the temperature and the effective plastic strain rate and Φ represents the total boundary
surface (in a necklace-type nucleation) or total volume (in a bulk-type nucleation) of
grains verifying ρi > ρcr.

For better understanding of the coupling between LS method and recrystallization gov-
erning laws, a flow chart summarizing the resolution method of the present model for a
given process time is presented on Fig. 3.4.

84



CHAPTER 3. MODELING OF DYNAMIC AND POST-DYNAMIC RECRYSTALLIZATION BY COUPLING A
FULL FIELD APPROACH TO PHENOMENOLOGICAL LAWS

DRX ?
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Lagrangian deformation of the RVE

Update of energy fields due to
boundary migration

to energy gradients
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END

Update of Φ, V̇ and rcr

Nucleation

Hardening and dynamic recovery using YLJ law
ρ̇ = (K1 −K2ρ)ε̇

Static recovery
ρ̇ = −Ksρ
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Fig. 3.4. Scheme describing the resolution method of the present model for a given step
time tinc, strain rate ε̇ and temperature T .
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3.3 Sensitivity study of the model
This model considers many parameters which have to be correctly initialized in order
to model as accurately as possible the microstructure mechanisms, while keeping rela-
tively low computational costs. This section is dedicated to a sensitivity study of initial
parameters leading to converged results of DRX and PDRX.

3.3.1 Dynamic recrystallization
An identification of the optimal mesh size, initial number of grains, deformation step
and critical nucleus radius of the DRX model leading to converged results while keep-
ing low computational costs is done in this section.

Mesh size
A single nucleus is considered and the mesh size is calibrated so as to obtain a good
description of this nucleus in terms of surface and volume. The isotropic mesh size must
be small enough to correctly describe the nucleus mean curvature but also reasonable
in order to limit the computational cost. Thus four spherical nuclei of radius 20µm are
generated using four different mesh sizes and results are presented on Fig. 3.5. The
quantity ξ corresponds to the ratio between the nucleus radius rcr and the mesh size
and is reported below each nucleus on Fig. 3.5. The quantity Ev corresponds to the L1

error between the volume of the generated nucleus of radius rcr (presented on Fig. 3.5)
and the volume of a real sphere of radius rcr. The error between the surfaces is also
measured and noted Es. These values are reported below each nucleus on Fig. 3.5.

(a) ξ = 1.0, Ev =
31%, Es = 27%

(b) ξ = 1.5, Ev =
7.7%, Es = 7.1%

(c) ξ = 2.1, Ev =
4.3%, Es = 4, 3%

(d) ξ = 2.6, Ev =
2.8%, Es = 2.5%

Fig. 3.5. Four nuclei generated according to different mesh sizes. ξ corresponds to the
ratio between the nucleus radius rcr and the mesh size. Ev (resp. Es) corresponds to the
L1 error between the volume (resp. surface) of the generated nucleus and the volume
(resp. surface) of a sphere of same radius.

It is observed that in each case, the Ev error is close to the Es error. The nucleus pre-
sented on Fig. 3.5(a) has large Ev and Es errors (31% and 27%, respectively). The three
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other nuclei presented on Fig. 3.5(b), (c) and (d) give Ev and Es errors lower than 10%,
leading to a better description of the nuclei in these three cases. A ratio ξ ' 2 between
the nucleus radius and the mesh size is chosen as a good compromise between a min-
imum number of mesh elements into the nucleus and low Ev and Es errors. Thus, the
future number of mesh elements in the full field simulations is always chosen so as to
respect a ratio ξ ' 2.

Initial number of grains
Several full field simulations of DRX were performed using the considered model for a
temperature of 1273K and a strain rate of 0.01s−1 during 300s. The deformation of the
RVE is idealized at each increment by updating all mesh node coordinates at the instant
t +∆t thanks to the relations :

xt+∆t = xt ,

yt+∆t = (1+ ε̇∆t)yt ,

zt+∆t = (1− ε̇∆t)zt ,

(3.14)

with (xt ;yt ;zt) and (xt +∆t ; yt +∆t ; zt +∆t) the coordinates of a mesh node at the
instants t and t +∆t respectively, considering the (0,~x,~y,~z) Cartesian coordinate system
(see Fig. 3.6), ε̇ the strain rate following the direction of solicitation (i.e. direction~z)
and ∆t the time increment. These equations lead to an idealized channel-die case, where
the six faces remain plane during the simulated process. Computations were performed
on three nodes of 24 CPU processors each in order to compare computational costs.
The variation of the initial number of grains is done by keeping the same initial mean
grain radius (' 60µm) and by varying the RVE size (from 0.14mm3 to 0.34mm3). The
security factor ω (Eq. 3.12) is taken equal to 2, leading to a critical nucleus radius of
7µm. The mesh size is fixed to 3µm in order to validate the ratio ξ ' 2. The deforma-
tion step is taken low enough (2%) to ensure a good convergence of simulation results.
Microstructures are presented on Fig. 3.6 and results in terms of RX fraction, mean
grain radius (weighted by grain volume), mean dislocation density (weighted by grain
volume), computational cost, grain radius distribution and dislocation density distribu-
tion are plotted on Fig. 3.7. The distributions are plotted at a true strain ε = 1. Only
grains from 0 to 12 µm were considered on Fig. 3.7(e) since these grains represent more
than 99% of the total number of grains in the microstructure. It is clearly observed that
a total of 8 grains in the initial microstructure leads to results as close as with a num-
ber of 20 or 40 grains (see Fig. 3.7). Indeed our nucleation model considers a random
nucleation on high energy grain boundaries. So during the DRX mechanism when all
grains have a sufficient energy, nuclei appear everywhere at grain boundaries and the
total number of grains rapidly increases in the microstructure, reducing the influence
of the initial number of grains in this case. Two simulations with two different initial
number of grains (8 and 27 grains) and exactly the same initial grain radius distribution
and energy distribution are presented on Fig. 3.6. It is clearly observed at ε = 1.5 that
the volumic fractions of nuclei are similar in the two cases. Thus it is assumed that the
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accuracy of the results is sufficient here with an initial number of 8 grains.

1e-7 1.1e-4 2.2e-4 3.3e-4 4.4e-4 

Energy ( J.mm-3 ) 
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(a) ε = 0
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(b) ε = 1.5

~x

~y

~z

0.3mm

(c) ε = 0

~x

~y

~z

(d) ε = 1.5
1

Fig. 3.6. Two simulations using two different initial number of grains: 8 inital grains
for a true strain ε = 0 (a) and ε = 1.5 (b). 27 initial grains for a true strain ε = 0 (c)
and ε = 1.5 (d). The simulated process is a channel-die configuration at 1273K and a
strain rate of 0.01s−1 during 150s.

Furthermore, using 8 initial grains instead of 40 initial grains reduces the computational
cost by a factor of 9, which is a non negligible time saving (see Fig. 3.7(d)). An initial
number of 3 grains was also tested. However, this small number of grains led to arte-
facts (important influence of the boundary conditions, a too small number of grains to
respect precisely the input grain size distribution and an insufficient total grain bound-
ary surface for the appearance of new grains after few time increments) and therefore to
non-physical results, in particular concerning the distributions (see Fig. 3.7(e) and (f)).
Thus, a minimum initial number of 8 grains is chosen for future simulations.
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Fig. 3.7. Sensitivity of the initial number of grains on polycrystal results. The simulated
process is a channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.
The mean values are weighted by grain volume for a better representativeness of the
curves at the onset of recrystallization.
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Deformation step
The strain hardening and dynamic recovery laws are directly related to the deformation
step (see Eq. 3.2). Therefore a fixed time step is not enough to ensure convergence
for any strain rate since the deformation step is given by the product between the time
step and the strain rate. Thus, the idea of this section is to look for a deformation step
that leads to converged results and then to use this ideal deformation step to deduce the
associated time step.

According to the previous study, the initial number of grains is now fixed to 8 grains.
The security factor ω and the mesh size are still fixed and equal to 2 and 3µm, respec-
tively. To investigate the optimal deformation step, several simulations were done for
four deformation steps (2%;5%;10%;20%). The same results as in the previous sec-
tion (i.e. RX fraction, mean grain radius (weighted by grain volume), mean dislocation
density (weighted by grain volume), computational cost, grain radius distribution and
dislocation density distribution) were investigated on Fig. 3.8. When the deformation
step decreases, all results converge toward the same trends. Furthermore, the computa-
tional cost is reduced by a factor of about 2 between 2% and 5% of deformation step
while keeping close results (see computational cost on Fig. 3.8(d)). Thus a deformation
step of 5% is chosen as a good compromise for all the future simulations.

Critical nucleus radius
The initial number of grains and deformation step are fixed to 8 and 5% respectively,
and the influence of the critical nucleus radius, more particularly the security factor
noted ω and used in Eq. 3.12, is thereafter investigated. Four different values of ω are
tested (1;1.5;2;3) leading to the use of four different mesh sizes in order to respect the
ratio ξ ' 2. The same results as in the previous section (i.e. RX fraction, mean grain
radius (weighted by grain volume), mean dislocation density (weighted by grain vol-
ume), computational cost, grain radius distribution and dislocation density distribution)
were investigated on Fig. 3.9. First, it is observed that the final mean grain radius 〈R〉vol
and the grain radius distribution are highly influenced by the critical nucleus radius rcr.
This observation is important because it means that the final mean grain radius can be
directly influenced by the security factor ω . By observing the four other curves, it is
clearly observed that a security factor of 1 does not lead to converged results. This is due
to the fact that a security factor of 1 leads to a critical nucleus radius too low to counter
capillarity effects exerted by neighboring grains and thus the new nuclei do not survive,
which explains the observed kinetic of RX fraction. In contrast, the two security factors
of 1.5 and 2 lead to a good convergence of all presented results. Finally, a security factor
of 3 does not lead to converged results in terms of RX fraction and 〈ρ〉vol because the
critical nucleus radius is too large using this value and therefore results predicted by the
model might be non-physical. Thus a security factor of 1.5 is chosen as the optimal
value for the future simulations.
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Fig. 3.8. Sensitivity of the deformation step on polycrystal results. The simulated pro-
cess is a channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.
The mean values are weighted by grain volume for a better representativeness of the
curves at the onset of recrystallization.
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Fig. 3.9. Sensitivity of the critical nucleus radius on polycrystal results. The simulated
process is a channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.
The mean values are weighted by grain volume for a better representativeness of the
curves at the onset of recrystallization.
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3.3.2 Post-dynamic recrystallization
Time step
The second convergence study concerns the ideal time step (∆t) used for PDRX simula-
tions. If the displacement of a grain boundary is too high during ∆t, the kinetic cannot
be correctly captured. Thus, a solution is to adapt ∆t as a function of a maximum dis-
placement of grain boundaries. Let’s consider the maximum displacement of a grain
boundary dmax in a microstructure between t and (t +∆t). This latter is given by the
maximum velocity vmax in the microstructure between these two instants multiplied by
the time increment ∆t :

dmax = vmax×∆t. (3.15)

Furthermore, the highest value for vmax is reached if the smallest possible grain having
the highest possible mean energy is surrounded by the largest possible grain having the
lowest possible mean energy. Thus by using classical approximations for grain mean
curvature, vmax is estimated as follow :

vmax 'Mb

(
2γb

〈R〉 +∆E
)
, (3.16)

where ∆E = Emax - Emin. In context of anisotropy of Mb and/or γb, the same methodology
could be used by using in Eq. 3.16 the maximum values of these physical parameters.
Finally by combining Eqs. 3.15 and 3.16, the max displacement dmax is estimated at
each step time by :

dmax 'Mb

(
2γb

〈R〉 +∆E
)
×∆t. (3.17)

Then, it is necessary to find the ideal maximum displacement of grain boundaries in
order to define the time step ∆t at each increment thanks to Eq. 3.17. In this study,
we define the ideal maximum displacement dmax as a percentage of mesh size and this
choice is validated in the following.

Validation of the criterion for time step

To be representative of the PDRX mechanism, we assume four different simulations
each representing a nucleus growing in a matrix (see Fig. 3.10). Each simulation is
related to particular thermomechanical conditions (i.e. a couple of T and ε̇) leading
to a given critical nucleus radius rcr (by using Eq. 3.12) and leading to a maximum
dislocation density field in the matrix computed by the ratio K1/K2 which is the steady-
state dislocation density according to Eq. 3.2 (since K1 and K2 depend on T and ε̇).
Furthermore, a dislocation density field ρ0 = 1e11 m−2, which is material dependant,
is defined into the nucleus. We note RP the ratio between the jump in stored energy
(∆E) across the boundary and the capillarity effect (2γb/rcr). For each case, the mesh
size is chosen so as to keep the ratio ξ between the nucleus radius and the mesh size

93



CHAPTER 3. MODELING OF DYNAMIC AND POST-DYNAMIC RECRYSTALLIZATION BY COUPLING A
FULL FIELD APPROACH TO PHENOMENOLOGICAL LAWS

approximatively equal to 2 as demonstrated in the DRX sensitivity study of the previous
section.

(a) t = 0s (b) t = 50s
  1e-7 

5e-4 

Energy ( J.mm-3 ) 

1.25e-4 

2.5e-4 

3.75e-4 

Fig. 3.10. Growth of a nucleus immersed in a matrix. The critical nucleus radius is
equal to 5.2µm. The energy in the nucleus and in the matrix are 1.47e-7 J.mm−3 and
4.9e-4 J.mm−3, respectively.

Different percentages of mesh size from 10% to 40% are investigated as maximum
displacement dmax. In every case, the evolution of the nucleus radius obtained by the
numerical simulation is confronted to the analytical solution presented below :

r(t+∆t) = rt +Mb∆t
(

∆E− 2γb

rt

)
, (3.18)

The L2 errors between the analytical solution and the numerical results are plotted on
Fig. 3.11 for each case corresponding to a particular couple of thermomechanical con-
ditions.

First, it is observed on Fig. 3.11 that the lowest errors are obtained for cases where the
jump in stored energy across the grain boundary is dominant (i.e. highest values of RP).
This observation is logical and can be easily explained. The jump in stored energy term
computed in the simulation is exact whereas the nucleus mean curvature is estimated by
the Laplacian of the distance function and thus is mesh size dependant. Furthermore,
as the mesh size is actually isotropic and non-refined around the grain boundary, a non-
negligible error can appear on the capillarity term in the simulation. Thus when the
jump in stored energy across the boundary is preponderant compared to the capillarity
effects (i.e. high values of RP), the error made on the estimation of the mean curvature
is of second order in the velocity term and lower errors are observed with respect to the
analytical solution.

Furthermore for a given nucleus size, the errors are observed dependant on the per-
centages of mesh size displacement (see Fig. 3.11). It is observed that the minimum
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errors are globally obtained for the mesh size displacements of 10%, 20% or 30%. For
a very small displacement, the error due to the reinitialization of the LS functions can
be relatively high compared to the small displacement of the grain boundary, which
can globally leads to inaccurate results. This aspect can explain that the 10%-case is
globally less accurate than the 20%-case. For a large displacement (i.e. 40% of mesh
size), the value of displacement seems too high during a single step time and thus the
kinetic cannot be correctly captured. Indeed, our FE methodology remains of first or-
der in time and important displacement during one time step can lead to non-physical
results. Finally, 10%, 20% or 30% of mesh sizes give better results than 40% of mesh
size. However, for reasons of computational costs, we retain a maximum displacement
of mesh size dmax equal to 30% for the future PDRX simulations.

rcr=3.4µm
RP=2.05

rcr=5.2µm
RP=2.13
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RP=1.65
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RP=1.65
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Fig. 3.11. L2 Error on the equivalent mean grain radius evolution between the full field
simulations and the scheme defined by Eq. 3.18. rcr is the critical nucleus radius. Rp is
the ratio between the velocity due to capillarity effects and the velocity due to the jump
in stored energy across the boundary. Each color corresponds to a specific displacement
of mesh size performed at each increment of the model.

3.4 Comparison with predictions of a mean field model

3.4.1 Dynamic recrystallization
This full field model is based on same phenomenological laws as an existing mean field
model [49,50] for nucleation, hardening and recovery. However, contrary to mean field
models, this full field model presents the advantage to fully describe, in time and space,
the grain boundary network thanks to the LS approach. Therefore, the idea of this sec-
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tion is to compare this full field model with the mean field model of Beltran et al. [50]
introduced in first chapter, in order to observe the influence of respecting the topology
of the microstructure.

The governing laws of hardening, recovery and nucleation mechanisms are identical in
the two considered mean field and full field models. The main limitation of the mean
field model remains in the grain topology and the direct interactions between grains
which is approximated while being explicitly considered in the full field model. Thus,
we assume logically that the full field model is more accurate than the mean field model
in the following comparisons.

The thermomechanical conditions considered in the two models are a hot deformation
of a 304L steel at 1273K and 0.01s−1. The duration process is 300s in order to achieve
a steady-state regime. In the same manner as previous simulations, a channel-die com-
pression test is considered in the following full field simulation. The set of parameters
used in the governing laws of the two models as well as the characteristics of the initial
microstructures are representative of the considered 304L steel and are summarized in
Tabs. 3.1 and 3.2, respectively [50, 170, 177]. Since simulations are also performed
on an austenitic 304L steel, the values of M0, γb and Qm are identical to those used
in 3D-GG simulations of chapter 2. A number of 8 initial classes is considered in the
mean field model since this low number of initial classes showed same results as a large
number of initial classes. The characteristics Ri and ρi of these 8 classes are identical
to the characteristics of the 8 initial grains considered in the full field simulation. The
number of grains Ni in each class of the mean field model is chosen in order to respect
the input distribution.

K1 K2 Kg Ks M0 δ γb τ Qm
Unity m−2 m/s s−1 m4/(J.s) J/m2 J/m J/mol
Values 1.1e15 3.3 3.28e-8 0.001 1.56e-1 1.07 0.6 1.47e-9 2.8e5

Tab. 3.1. Set of parameters used in governing laws of both mean field and full field mod-
els for the considered 304L steel [50, 170, 177]. The deformation conditions associated
to these parameters are the following: T = 1273K; ε̇ = 0.01s−1.

〈R〉 σR 〈ρv〉 σρ
Unity µm µm m−2 m−2

Values 60 10 6.5e13 1.25e13

Tab. 3.2. Characteristics of the initial microstructure generated by the Laguerre-
Voronoı̈ tessellation algorithm and the associated energy field constant per grain gen-
erated from a Gaussian distribution.

The full field simulation was performed on 3 nodes of 24 CPU processors. Four dif-
ferent instants of the full field simulation are presented on Fig. 3.12 with a color code
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corresponding to the energy field constant per grain. The initial RVE measures 0.2mm3

and is composed of 8 grains at the early stage of the simulation while around 9000 grains
are present in the RVE at the end of the simulation.

1e-7 1.1e-4 2.2e-4 3.3e-4 4.4e-4 

Energy ( J.mm-3 ) 

(a) ε = 0 (b) ε = 1

(c) ε = 2

(d) ε = 3
1

Fig. 3.12. Four instants of a DRX simulation using the present full field model. The
simulated process is a channel-die compression at 1273K at a strain rate of 0.01s−1

during 300s. Initial microstructure is composed of 8 grains while around 9000 grains
are present at the end of deformation. Color code corresponds to the energy field con-
stant per grain.
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Homogenized results in terms of mean dislocation density (weighted by grain volume)
〈ρ〉vol, mean grain radius 〈R〉, mean grain radius (weighted by grain volume) 〈R〉vol and
RX fraction are confronted between the two models on Fig. 3.13. First it is observed
that the evolutions of the mean grain radius 〈R〉 predicted by the two models are similar
during all the process duration (see Fig. 3.13(c)) and final values are slightly higher than
the critical nucleus radius (rcr = 5.2µm). The decrease of 〈R〉 at the onset of recrystal-
lization (ε ' 0.4) is very fast and thus difficult to capture (see Fig. 3.13(c)), thus the
mean grain radius (weighted by volume) 〈R〉vol is also plotted on Fig. 3.13(d). During
the first minutes of process (up to ε = 1), the kinetics in terms of RX fraction, 〈R〉vol and
〈ρ〉vol are quasi similar between the two models (see Fig. 3.13(a), (b), (d)). However, at
a true strain ε > 1, the kinetics are always faster for the full field results, meaning that
the number of nuclei appearing in the microstructure is always larger in the full field
case. A first cause explaining this difference can be the evolution of grain boundary
surfaces from equiaxed to ellipsoidal shape, increasing the surface of grain boundaries
and consequently increasing the nucleation rate in the full field case (Eq. 3.13).

Another cause explaining this difference can be a wrong estimation of the quantities γRX
and γNR presented on Fig. 1.12 and used in the discussed mean field model. Therefore
these two quantities were estimated from the full field simulation and compared with
those computed in the mean field model. To estimate these quantities in the full field
simulation, the surface fraction of each NR grain in contact with a RX grain is calculated
and averaged to get the quantity γNR and vice versa for γRX. These values are measured
at each instant of the full field simulation and are compared to the mean field model on
Fig. 3.13(e) and (f). First, the increase of γNR observed on Fig. 3.13(e) is quite similar
for the two models. Furthermore, this evolution is very fast from the moment where
nuclei appear (ε ' 0.4). This fast increase is logical since nuclei mainly appear at grain
boundaries, thus most of NR grains are in contact with RX grains as soon as nucleation
starts. The decrease of γRX observed on Fig. 3.13(f) is perfectly similar for the two
models up to a true strain ε ' 0.9. After this instant, the decrease of γRX is much faster
in the mean field model. The quantity γRX is used in the mean field model to calculate
the growth rate of nuclei, thus a faster decrease of γRX in the mean field case is a cause
of the slower evolution of the RX fraction, 〈ρ〉vol and 〈R〉vol predicted by the mean field
model (see Fig. 3.13(a), (b) and (d)).
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Fig. 3.13. Comparisons of the macroscopic results obtained during a DRX process using
the present full field model and the mean field model of Beltran et al. [50] introduced
in first chapter. Compared results are: (a) RX fraction, (b) mean dislocation density
(weighted by grain volume), (c) mean grain size, (d) mean grain size (weighted by grain
volume), (e) averaged surface fraction of NR grains in contact with RX grains and (d)
averaged surface fraction of RX grains in contact with NR grains. The simulated process
is a channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.

Grain radius distributions and dislocation density distributions predicted by the two
models are also compared at four instants of the simulations (see Fig. 3.14 and Fig.
3.15). The grain radius distributions are represented in volume fraction since after few
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seconds of deformation, the number of nuclei is much higher than the number of initial
grains. Thus a number fraction is not a discerning method to follow at the same time
the small and large grains. The class width of histograms is 3µm for the grain radius
distributions and 5e13m−2 for the dislocation density distributions.

The grain radius distributions predicted by the two models have still some similarities at
a true strain ε = 1 (see Fig. 3.14(b)). However, at a true strain ε = 2, a volume fraction of
large grains is observed in the mean field simulation whereas in the full field simulation,
the microstructure is fully recrystallized and these large grains have disappeared (see.
Fig. 3.14(c) and (d)). This difference is still due to the quantity γRX which decreases
faster in the mean field case, leading to a slowly growth of RX grains at the expense
of the NR grains. Finally, a vertical asymptote is observed in mean field predictions
at a true strain ε = 3 at the steady-state regime whereas a more spread distribution is
observed in the full field prediction (see Fig. 3.14(d)). This issue was already discussed
in [83] and in chapter 1 and is due to the particularity of the boundary migration equa-
tion (Eq. 4.3) and the consideration of the same HEM for each grain.

Concerning the dislocation density distributions, the shapes of the curves are close at
the three instants ε = 1, ε = 2 and ε = 3 of process (see Fig. 3.15(b), (c) and (d)). At
each instant, the curve predicted by the full field simulation has a more pronounced peak
compared to that predicted by the mean field simulation.
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Fig. 3.14. Comparisons, at different instants, of the grain radius distributions ((a) to
(d)) obtained during a DRX process using the present full field model and the mean
field model of Beltran et al. [50] introduced in first chapter. The simulated process is a
channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.
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Fig. 3.15. Comparisons, at different instants, of the dislocation density distributions ((a)
to (d)) obtained during a DRX process using the present full field model and the mean
field model of Beltran et al. [50] introduced in first chapter. The simulated process is a
channel-die compression at 1273K, at a strain rate of 0.01s−1 during 300s.

3.4.2 Post-dynamic recrystallization
A PDRX simulation is then considered using the two models in order to compare the
results. To avoid accumulating differences from DRX, the initial state of the microstruc-
ture used in both models corresponds to the final state microstructure obtained after a
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DRX simulation using the present full field model. The PDRX process is simulated
by considering a 304L steel maintained at 1273K during 25min. The first two minutes
of PDRX are presented on Fig. 3.16. It is observed a large decrease of energy in the
material during the first minutes of PDRX. After these few minutes, the preponderant
mechanism is the capillarity driven GG mechanism since the energy is low in the mate-
rial and thus only the mean curvature of grains plays a primordial role on the pressure
acting on grain boundaries.

1e-7 1.1e-4 2.2e-4 3.3e-4 4.4e-4 

Energy ( J.mm-3 ) 

(a) t = 0

(b) t = 1min

(c) t = 2min

Fig. 3.16. Three instants of the PDRX simulation using the present full field model. The
simulated process is a heat treatment at 1273K during 25min. Initial microstructure is
composed of 9000 grains while around 600 grains are present at the end of the heat
treatment. Color code corresponds to the mean energy per grain.
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Comparisons of mean dislocation density (weighted by grain volume) 〈ρ〉vol, mean
grain radius 〈R〉 and mean grain radius (weighted by grain volume) 〈R〉vol predicted
by the two models are presented on Fig. 3.17. The results obtained according to the two
models are close. The evolutions of the curves are very pronounced at the early stage
of the simulation since the energy is still high in the material. After few minutes, the
energy is much more low in the material (see Fig. 3.16) and thus the grain boundary
kinetic slows down, which is characterized by a slow evolution of 〈R〉 and 〈R〉vol after
this instant on Fig. 3.17(b) and (c).
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Fig. 3.17. Comparisons of the macroscopic results obtained during a PDRX simulation
using the present full field model and the mean field model of Beltran et al. [50] intro-
duced in first chapter. Compared results are: (a) mean dislocation density (weighted by
grain volume), (b) mean grain size and (c) mean grain size (weighted by grain volume).
The simulated process is a heat treatment at 1273K during 25min.

The grain radius distributions and dislocation density distributions are also presented
and compared on Figs. 3.18 and 3.19. After 10 min of PDRX, the grain radius distribu-
tions are still very close between the two simulations (see Fig. 3.18(b)). However, after
20 min of PDRX, a single higher peak is appearing on the grain radius distribution of
the mean field simulation (see Fig. 3.18(c)) and this peak is still observed after 25min
of PDRX (see Fig. 3.18(d)). In the full field simulation, this single higher peak is not
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observed during the simulation. Globally, it is observed that the grain radius distribu-
tion is correctly described by the mean field model. Concerning the dislocation density
distributions, the results are identical in the two simulations since the energy quickly
decreases in the material and thus after 10min of PDRX, all the grains have the same
low energy and a single narrow peak is observed in the two models (see Fig. 3.19).
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Fig. 3.18. Comparisons, at different instants, of the grain radius distributions ((a) to
(d)) obtained during a PDRX process using the present full field model and the mean
field model of Beltran et al. [50] introduced in first chapter. The simulated process is a
heat treatment at 1273K during 25min.
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Fig. 3.19. Comparisons, at different instants, of the dislocation density distributions ((a)
to (d)) obtained during a PDRX process using the present full field model and the mean
field model of Beltran et al. [50] introduced in first chapter. The simulated process is a
heat treatment at 1273K during 25min.
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Summary
In this third chapter, a robust 3D model based on the LS-FE framework and coupled to
analytical laws was presented. It is able to model DRX and PDRX occurring during and
after hot deformation of metal alloys, respectively. The advantages of the considered
model are large: (i) the model enables to perform 3D simulations; (ii) strain hardening,
static and dynamic recovery are simulated thanks to phenomenological laws coming
from a pre-existing mean field model [49, 50], which is not as accurate as with a crys-
tal plasticity FE formulation, but considerably reduces the computational costs of the
simulations; (iii) the considered 3D model is able to describe the grain boundary net-
work using the LS method, even at large deformations (for instance ε > 1) in order to
reproduce industrial processes and (iv) a sensitivity study has largely minimized com-
putational costs, allowing the integration of the model in an industrial context through
the DIGIMU R© software package.

Results of DRX and PDRX simulations using this new numerical framework were also
confronted with the prediction of a mean field model introduced in first chapter [49,50].
Results showed that the mean field model provides a poor description of the RX frac-
tion and grain size distributions during hot deformation (i.e. during DRX regime). This
difference reinforces the idea that the proposed full field model is much more power-
ful than a mean field model since it explicitly takes the grain boundary network into
account. After hot deformation (i.e. during the PDRX regime), the whole results pre-
dicted by the mean field model, including the grain size distribution, are close to the full
field predictions.

Differences between both mean field and full field predictions were explained by dif-
ferent reasons: first grains remain spherical all along the deformation in mean field
simulations, whereas they evolve toward an ellipsoidal shape in full field simulations,
increasing nucleation rate. Then some differences were observed on the term γRX, de-
creasing the kinetic in mean field case. Finally, the issue of grain size distributions
predicted by mean field models was already discussed in [83] and in chapter 1. It is
due to the grain boundary equation considered in mean field models and to the fact
that each grain is immersed into the same HEM, imposing the same evolution for each
grain. Smagghe [71] recently tackled this limitation by making each grain evolves with
a random-selected grain as neighbor in his mean field model.

The next chapter proposes a new approach for mean field modeling of DRX and PDRX.
This new approach tackles assumptions of existing mean field models discussed in this
chapter by considering the evolution of grain shape from spherical to ellipsoidal one
and by considering a particular neighborhood (composed of several selected grains as
neighbors) for each grain.
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CHAPTER 4. A NEW TOPOLOGICAL APPROACH FOR THE MEAN FIELD MODELING OF DYNAMIC
AND POST-DYNAMIC RECRYSTALLIZATION : THE NHM

Résumé en français
Dans ce chapitre, un nouveau modèle champ moyen pour la modélisation de la re-
cristallisation dynamique et post-dynamique est présenté. Ce modèle, appellé ”NHM”
pour NeighborHood Model, contourne les hypothèses des modèles champ moyen stan-
dards en considérant un voisinage qui s’approche de la réalité. De plus, NHM modélise
l’évolution de la forme des grains par des ellipsoı̈des au cours de la déformation. Un
avantage considérable de ce modèle est lié au fait qu’il est basé sur les mêmes lois con-
stitutives que le modèle champ complet précedemment introduit, pour les mécanismes
d’écrouissage, restauration et germination. De ce fait, le champ complet peut être utilisé
comme référence afin de valider les améliorations apportées au champ moyen. De plus,
étant donné que le champ moyen est très peu couteux numériquement, il peut être utilisé
afin d’identifier de manière rapide par analyse inverse, les paramètres communs aux
deux modèles. Les deux améliorations majeures de ce nouveau modèle sont détaillées
dans la première partie de ce chapitre. Une étude de sensibilité est ensuite présentée afin
de mieux comprendre l’influence des différents paramètres d’entrée sur les résultats.
Finalement, les prédictions de NHM sont comparées aux prédictions du modèle champ
complet. Les prédictions en termes de valeurs moyennes (taille de grain moyenne, frac-
tion recristallisée, contrainte macroscopique etc.) et distributions de tailles de grains
sont très proches entre les deux modèles, ce qui tend à valider cette nouvelle approche.
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In this chapter, a new approach called ”NHM” for NeighborHood Model is proposed
for mean field modeling of dynamic and post-dynamic recrystallization. A first benefit of
the NHM compared to the state of the art is based on a more precise description of the
immediate vicinity and of the shape of each grain to describe microstructure evolution
all along the hot deformation process. Another benefit of the NHM is related to the
fact that constitutive equations (and consequently model parameters) are the same as
used in the full field model of chapter 3, therefore the full field model can be used as a
reference to validate the improvements made in the NHM. Furthermore the NHM can
also be used to identify quickly by inverse analysis the model parameters used in both
the NHM and the full field model. The NHM is first presented. Then, results provided by
the NHM are compared to predictions of the full field model presented in chapter 3 and
those of a former mean field formulation, in terms of recrystallization kinetics and grain
size distributions. Predictions of the NHM are very close to full field predictions and the
progress when compared to former the former mean field model formulation is obvious.
Furthermore, the limitation of mean field models concerning the non-realistic shape of
grain size distributions during dynamic recrystallization is solved in the NHM.

4.1 Introduction
Mean field models were introduced in first chapter as a compromise between phe-
nomenological laws and full field models. In chapter 3, the proposed full field model
was compared to the mean field model of Beltran et al. introduced in first chapter [50]
using same constitutive laws and same model parameters (therefore only the microstruc-
ture representation differs). Is was conclude that this mean field model provides poor
predictions in terms of recrystallization kinetics as well as grain size distributions. In
particular prediction of grain size distributions is a major limitation inherent to many
mean field models [48–50, 70] and already discussed in [71]. The many reason, al-
ready mentioned in chapters 1 and 3, is related to the fact that in real microstructures,
each grain evolves depending on its own neighborhood, which is not the case in mean
field models where each grain is immersed into the same HEM and follow the same
evolution. Furthermore, kinetics of recrystallization are generally slower in mean field
models due to the fact that grains remain spherical during the deformation while their
surface should increase in reality, increasing the stored energy and the nucleation sites.
Therefore, in this work a new topological approach for the mean field modeling of DRX
and PDRX is proposed. Hereafter, this new model is called ”NeighborHood Model
(NHM)”. The NHM is based on the same constitutive equations for DRX and PDRX
as used in the full field model presented in chapter 3. The major novelty of the NHM is
based on the consideration of a particular neighborhood for each grain instead of con-
sidering the whole average microstructure as HEM. In addition, the grain shape changes
from spherical to ellipsoidal shape during deformation in the NHM, to take the increase
of grain boundary surface into account. These two major improvements are first pre-
sented in this chapter. Then, the results of simulations related to hot deformation of a
304L austenitic steel provided by the NHM, the mean field model of Beltran et al. [50]
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and the full field model of chapter 3 are compared.

4.2 Mean field modeling of dynamic recrystallization

4.2.1 Constitutive laws
Initial microstructures in mean field models are represented by spherical grains, each
having a dislocation density ρi and a grain size Ri. As detailed in the first chapter, in
several existing models [50,68], the concept of grain classes is used to reduce computa-
tional costs. This consists in gathering several similar grains in one single entity called
” grain class”, that is defined by a grain radius Ri, a dislocation density ρi and a number
of grains Ni in the considered class. The main drawback to this consideration is that all
the grains belonging to the same class follow the same behavior during the simulation.
This concept of classes is used in the NHM to reduce computational costs. However,
in this chapter, it is referred to grains instead of grain classes in order to facilitate the
understanding of the NHM principle.

As already mentioned in previous chapters, a RX grain denotes a grain appearing during
the simulation while a NR grain denotes a grain present from the first stage of simula-
tion. Furthermore, a RX grain having just appeared is called nucleus. The constitutive
laws for strain hardening, dynamic recovery and nucleation considered in the NHM are
exactly the same as used in the full field model of chapter 3. Therefore the evolution of
the average dislocation density ρi in each ith grain during deformation is modeled by the
Yoshie-Lasraoui-Jonas law [76] using Eq. 3.2 (also given by 1.44 in the first chapter),
the critical dislocation density ρcr is calculated using Eqs. 3.8, 3.9 (also given by Eqs.
1.54, 1.55 in the first chapter), the critical radius of nuclei noted rcr is calculated from
the modified Bailey-Hirsch criterion using Eq. 3.12 (originally expressed by Eq. 1.8 in
the first chapter) and the nucleation rate V̇ representing a volume of nuclei per unit time,
is calculated according to Eq. 3.13. However, boundary migration is not modeled by the
same law since the local curvature cannot be computed without an explicit description
of the microstructure in the NHM. Grain boundary migration is generally described in
mean field models by the following equation :

dRi

dt
= Mb

(
τ(〈ρ〉surf−ρi)+βγb

(
1

Rcr
− 1

Ri

))
, (4.1)

leading to the following volume variation for the ith grain :

∆Vi =
dRi

dt
Si∆t, (4.2)

where Si is the boundary surface of the ith grain. In the second chapter, we showed that
a value of β equal to 1.4 leads to more accurate results. Mb and γb are assumed to be
isotropic (i.e. identical for all grain boundaries) as considered in the full field model
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of chapter 3. To be coherent with the DRX full field models of chapter 3 and to tackle
the assumption of averaged energy per grain, the parameter δ related to the strain rate
dependence of grain boundary migration is also considered here (see chapter 2 section
1.2 for more explanations about this parameter), leading to the following relationship :

∆Vi = Mb

(
δτ(〈ρ〉surf−ρi)+βγb

(
1

Rcr
− 1

Ri

))
Si∆t. (4.3)

4.2.2 Neighborhood choice during DRX
In a real microstructure, each grain is surrounded by a number of neighbors (see Fig.
4.1(a)). This microstructure is described in mean field models by spherical grains (see
Fig. 4.1(b)), each grain having a radius Ri and a dislocation density ρi. However a strong
assumption made in mean field models [48, 50, 70] is that each grain has no neighbors
but is surrounded by a HEM (see Fig. 4.1(c)). To be more realistic, the new proposed
approach tackles this first limitation by considering a particular neighborhood for each
grain, composed of a certain number of grains that are appropriately chosen (see Fig.
4.1(d)).

(a) (b) 

(d) (c) 

Ri, ρi 

HEM 
<R> 
<ρ> 
 Ri, ρi 

Fig. 4.1. Representation of the microstructure in mean field models. (a) EBSD picture of
an austenitic steel 304L microstructure, (b) representation of a microstructure in mean
field models as a set of spherical grains, (c) standard mean field approach: each grain
is surrounded by a homogeneous equivalent medium (HEM) composed of all grains in
the microstructure and (d) the NHM: each grain is surrounded by a certain number of
grains that compose its neighborhood.
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Representation of a grain’s neighborhood in the NHM

Grain i 

1 – θ(i) 

θ(i)  

θa(i)  

θb(i)  

Fig. 4.2. Representation of a grain in the NHM during the DRX regime. Each grain
i has a surface fraction θ(i) in contact with RX grains represented in red color and a
surface fraction (1− θ)(i) in contact with NR grains represented in blue color. θ(i)
is also subdivided into two quantities θa(i) and θb(i) representing the surface fraction
occupied by nuclei in dashed line and other RX grains in full line, respectively.

As already considered in the full field model of chapter 3, necklace nucleation result-
ing from the SIBM mechanism, is considered here since this is the kind of nucleation
observed in 304L during DRX [178,179]. Hereafter, the quantities θ(i) and (1-θ)(i) de-
note the surface fraction of the ith grain in contact with RX and NR grains, respectively.
The description of a grain with its neighborhood in the NHM is presented in 2D on Fig.
4.2. To enrich this description, the quantity θ(i) is subdivided into two other quantities
noted θa(i) and θb(i) representing the surface fraction of any ith grain in contact with
nuclei and with other RX grains, respectively.
The 2D schematic surface of a grain i having RX grains appeared on its boundary is
represented on Fig. 4.3(a). The quantity S1(i) represents the boundary surface between
the grain i and RX grains while S2(i) represents the boundary surface of the grain i that
is not in contact with RX grains. In this case, the boundary surface Si of the grain i
should be defined by Si = S1(i) + S2(i) and the surface fraction θ should be defined by
θ = S1(i)/(S1(i) + S2(i)) on Fig. 4.3(a). However, in mean field models [48, 50, 70] a
surface such as the one presented on Fig. 4.3(a) is hard to consider, thus it is common to
keep working with the assumption of spherical grains as represented on Fig. 4.3(b). In
the NHM, the assumption of spherical grains presented on Fig. 4.3(b) is also considered.
The quantity S3(i) is defined as the total intersection surface between the considered
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grain i and RX grains on its boundary (see Fig. 4.3(b)). Therefore the surface fraction
θ is estimated in the NHM by :

θ(i)'
(

S3(i)
S2(i)+S3(i)

)
. (4.4)

S1(i) S2(i) S3(i) 

Grain i θ 
Grain i 

θ 

(a) (b) 

(c) 

Fig. 4.3. Schematic representation of (a) the surface of the grain i with RX grains on its
boundary (b) the surface of the grain i as it is considered in the NHM (c) a 3D portion of
a grain boundary with three nuclei as neighbors. The intersections are approximated by
several circles in green color. S1(i) represents the boundary surface between the grain
i and RX grains, S2(i) the boundary surface of the grain i that is not in contact with RX
grains, S3(i) the total intersection surface between the grain i and RX grains, estimated
by a sum of circles in the NHM.

By doing the assumption that the grain i is large compared to RX grains, intersection
surfaces between one RX grain and the grain i are approximated by circles in the NHM
as represented on Fig. 4.3(c). Furthermore by doing the assumption that all RX grain
sizes are approximated by the mean RX grain size 〈RRX〉 with their center belonging to
the boundary of i, each intersection can be finally defined by a circle of radius 〈RRX〉
having a surface equal to π〈RRX〉2. If NRX(i) denotes the number of RX grains appeared
in the considered grain i, S3(i) can be estimated by πNRX(i)〈RRX〉2, and θ can be finally
approximated by :

θ(i)'
(

πNRX(i)〈RRX〉2
Si

)
. (4.5)
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The number of RX grains NRX(i) appeared in the grain i increases during the simulation
while the RX mean grain size 〈RRX〉 and the grain surface Si are quasi-constant. To
avoid values of θ(i) higher than 1, the final equation for θ(i) is defined as :

θ(i)'min
(

πNRX(i)〈RRX〉2
Si

,1
)
. (4.6)

Number of neighbors per grain

The numbers of neighbors occupying the θa(i), θb(i) and (1 - θ)(i) surface fractions of
any ith grain are noted Nθa(i), Nθb(i) and N(1−θ)(i), respectively.

The number Nθa(i), representing the number of nuclei in the ith grain at the latest time
increment, is directly known at any instant of the simulation from Eq. 3.13. The rea-
soning leading to Eq. 4.6 can also be considered for the nuclei and leads to :

θa(i)'min
(

πNθa(i)r
2
cr

Si
,1
)
. (4.7)

As such, θb(i) is deduced using the following relationship :

θb(i) = θ(i)−θa(i). (4.8)

Assuming that Eq. 4.7 is also available for θb, the number of RX neighbors Nθb(i) of
any ith grain can be estimated by the following relation :

Nθb(i)'
(

θb(i)Si

π〈RRX〉2
)
. (4.9)

The number of NR neighbors N(1−θ)(i) must also be estimated. As an approximation,
the number of grains on the surface fraction (1−θ)(i) can be estimated using a law from
literature for describing steady-state or quasi steady-state microstructures. Several kinds
of law were proposed in the literature to estimate the number of neighbors of grains in
steady-state or quasi steady-state 3D microstructures. DeHoff and Liu [180] proposed a
linear relationship between the number of neighbors and the mean tangent diameter of
grains in 3D microstructures, validated experimentally by Liu et al. [181]. Abbruzese
and Campopiano [182] proposed a quadratic relationship between the number of neigh-
bors and the normalized equivalent sphere radius of a grain in 3D microstructures. This
relationship was validated by experimental investigations [181,183] and numerical stud-
ies [184–186]. All the resulting curves are presented on Fig. 4.4(a). The curves are
globally close to each other. To reinforce this relationship, an additional GG numerical
simulation was performed in 3D using the full field model of chapter 3. An equiaxed
microstructure with an average grain size of 100µm was generated using a Laguerre-
Voronoı̈ algorithm [151] and a heat treatment at 1373K for 30min was simulated on a
304L steel. The resulting microstructure is composed of 2000 grains and the number of
neighbors of each individual grain is plotted as a function of its normalized equivalent
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sphere radius on Fig. 4.4(b) while the average number of neighbors is plotted as a func-
tion of the normalized equivalent sphere radius on Fig. 4.4(a). The curve on Fig. 4.4(a)
resulting from the full field simulation is close to the other experimental and numerical
curves of the literature, which reinforces the idea that a general polynomial equation
can correctly estimate the number of grain neighbors as a function of their normalized
equivalent sphere radius in steady-state or quasi steady-state 3D microstructures. This
polynomial dependence is used in the NHM to estimate the number of grain neighbors
N(1−θ)(i) at a given stage of the deformation process. This relationship is given in Eq.
4.10.

N(1−θ)(i) =
(
4.06×ω2

i +4.22×ωi +4.71
)
× (1−θ(i)), (4.10)

where ωi is the normalized grain radius defined by Ri/〈RNR〉.
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Fig. 4.4. Number of neighbors as a function of the normalized equivalent sphere radius.
All investigations were done on steady-state or quasi steady-state microstructures. a)
Each blue dot represents a grain coming from simulations using the full field model of
chapter 3 (b) Different curves issued from the literature and from the full field model.
Those are obtained by least-square regression or by an average per topological classes.

Thus the total number of neighbors of any ith grain noted Ntot(i) is given by :

Ntot(i) = Nθa(i)+Nθb(i)+N(1−θ)(i). (4.11)

Criteria for choosing grain neighbors

As soon as the quantities Nθb(i) and N(1−θ)(i) are estimated for any ith grain thanks to
Eqs. 4.9 and 4.10, respectively, the neighbors are chosen according to the following
criteria :
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• the neighbors in Nθa(i) are the nuclei appeared on the grain boundary of the ith

grain during the last time step.

• The neighbors in Nθb(i) are chosen among the RX grains of the microstructure.

• The neighbors in N(1−θ)(i) are chosen among the NR grains of the microstructure.

The choice of the neighbors in Nθb(i) and N(1−θ)(i) is made by weighted each grain by
its volume in order to be representative of real microstructures.

A bijection is imposed between a grain and its neighbors, meaning that if the ith grain
has the jth grain as neighbor, the jth grain has also the ith grain as neighbor. Thus when
the ith grain grows of a quantity ∆V(i, j) with respect to the jth grain, the jth grain shrinks
of a quantity -∆V(i, j) with respect to the ith grain in order to ensure the bijective as well
as volume conservation.

It is also worth noticing that the surface fractions θ(i) and (1−θ)(i) are only used to
identify the respective numbers of neighbors Nθb(i) and N(1−θ)(i). Even so, after the
random selection of the neighbors in Nθ (i) and N(1−θ)(i), a small error can exist on the
fractions θ(i) and (1− θ)(i). However, this is not a strong assumption since a grain
boundary surface is never exactly spherical in reality.

Reformulation of boundary migration equation

Since this new approach considers a particular neighborhood for each grain, the Eq. 4.3
for grain boundary migration presented in the first section has to be reformulated. First,
the volume change of the ith grain is computed according to the following equation in
the NHM :

∆Vi =
Ntot(i)

∑
j=1

∆V(i, j), (4.12)

where ∆V(i, j) is the volume variation between the ith grain and its jth neighbors, defined
by the equation :

∆V(i, j) = Mb

(
δτ(ρ j−ρi)+βγb

(
1
R j
− 1

Ri

))
SiΨ(i, j)∆t, (4.13)

where ρ j and R j denote the dislocation density and grain radius of a neighbor j of the ith

grain. Ψ(i, j) is the radius fraction of a neighbor j with respect to other grain neighbors of
i, aiming to redistribute the volume variation of the ith grain on its neighbors depending
on their size. This quantity is estimated by the following relation :

Ψ(i, j) = R j/
Ntot(i)

∑
k=1

Rk. (4.14)
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Two flow charts summarizing the main algorithm of the NHM as well as the implemen-
tation performing boundary migration are presented for a single time step on Fig. 4.5(a)
and (b), respectively.

(a) (b)

Fig. 4.5. Flow charts representing (a) one time step of the main algorithm and (b) the
way to perform boundary migration in the NHM.

4.2.3 Modeling of grain elongation
To our knowledge, mean field models of the literature [48–50] assume that the grains
remain spherical all along the deformation process. However, it is well-known that the
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grain shape evolves during deformation. In the case of necklace type nucleation, the
assumption of grains remaining spherical all along the deformation process is a strong
assumption that can affect the nucleation rate. Indeed, the nucleation rate V̇ depends
on the grain surface (Eq. 3.13) which can be underestimated when elongated grains
are supposed spherical. Full field models have the advantage of explicitly describing
the grain shape evolution during deformation. To investigate the effect of grain shape
evolution on the recrystallization kinetics, several DRX simulations were performed
using full field model of chapter 3. These latter were performed at two strain rates
(0.01s−1 and 0.1s−1), with and without the topological deformation of the RVE. In
both cases the dislocation density evolution as well as nucleation and grain boundary
migration are modeled in the same manner. It is worth noticing that the simulation
presented on Fig. 4.6(c) makes no physical sense but is only used here to illustrate the
potential effect of grain shape evolution on the recrystallization kinetics during DRX
with a necklace nucleation. Two snapshots of the simulations performed at a strain rate
of 0.01s−1 with and without considering the topological deformation of the RVE are
presented on Fig. 4.6. RX fraction, mean grain size, mean grain size (weighted by grain
volume) and mean dislocation density (weighted by grain volume) are presented as a
function of strain on Fig. 4.7 for the studied strain rates.

 ε = 0 ε = 1 (a) (b) 

(c) 

Grain radius (μm) 

20 

5 

8.75 

12.5 

16.25 

ε = 1 

Fig. 4.6. Microstructure evolution during a full field simulation of DRX performed
at a strain rate of 0.01s−1 (a) at the initial stage of the simulations (b) at ε = 1 with
representing the topological deformation of the RVE (c) at ε = 1 without the topological
deformation of the RVE.

120



CHAPTER 4. A NEW TOPOLOGICAL APPROACH FOR THE MEAN FIELD MODELING OF DYNAMIC
AND POST-DYNAMIC RECRYSTALLIZATION : THE NHM

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ε

R
X

fr
ac
ti
on

topological def - ε̇ = 0.01s−1 topological def - ε̇ = 0.1s−1

no topological def - ε̇ = 0.01s−1 no topological def - ε̇ = 0.1s−1

(a)

0 0.5 1 1.5 2
0

20

40

60

ε

〈R
〉(
µ
m
)

topological def - ε̇ = 0.01s−1 no topological def - ε̇ = 0.01s−1

topological def - ε̇ = 0.1s−1 no topological def - ε̇ = 0.1s−1

(b)

0 0.5 1 1.5 2
0

20

40

60

ε

〈R
〉 vo

l
(µ
m
)

topological def - ε̇ = 0.01s−1 no topological def - ε̇ = 0.01s−1

topological def - ε̇ = 0.1s−1 no topological def - ε̇ = 0.1s−1

(c)

0 0.5 1 1.5 2
0

1 · 1014

2 · 1014

3 · 1014

4 · 1014

5 · 1014

ε

〈ρ
〉 vo

l
(m

−
2
)

topological def - ε̇ = 0.01s−1 no topological def - ε̇ = 0.01s−1

topological def - ε̇ = 0.1s−1 no topological def - ε̇ = 0.1s−1

(d)

Fig. 4.7. Comparisons of the results obtained with the full field model of chapter 3,
with and without representing the topological deformation of the RVE. The conditions
of deformation are a temperature of 1273K and two different strain rates of 0.01s−1 and
0.1s−1. The model parameters are those of a 304L steel.

The consideration of the topological deformation of the RVE has a clear influence on
the evolutions of the RX fraction, mean grain size (weighted by grain volume) and
mean dislocation density (weighted by grain volume). This can be explained by the fact
that when the topological deformation of the RVE is modeled, the grain shape evolves
from equiaxed to elongated, which increases the grain boundary surface and thus the
nucleation rate (Eq. 3.13). The following section aims to enrich the NHM by modeling
evolution of grain shape from spherical to ellipsoidal shape during a dynamic process,
in order to take the increase of boundary surface into account.

In this section, grains are assumed to evolve toward an ellipsoidal shape during the
deformation process. Thus, for each ellipsoidal grain i, a local coordinate system
(~e1

i,~e2
i,~e3

i) that is aligned in the three main directions of the ellipsoid is considered.
Three values (a(i),b(i),c(i)) represent the three principal semi-axis lengths of the el-
lipsoidal grain i in its local coordinate system (~e1

i,~e2
i,~e3

i). Furthermore each grain
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is associated with an orientation matrix Mi to express the canonical coordinate system
(~x,~y,~z) in the local coordinate system (~e1

i,~e2
i,~e3

i). Therefore, each grain i is now de-
fined in the NHM by three semi-axes (a(i),b(i),c(i)), a dislocation density ρi and a
rotation matrix Mi. Thus its volume can be deduced by Vi = (4/3)πa(i)b(i)c(i) and its
equivalent sphere radius by Ri = [(3Vi)/(4π)]1/3.

Considering any kind of solicitation, the macroscopic strain tensor E applied on the
material in the canonical coordinate system (~x,~y,~z) can be written as follows :

E =

( )Exx Exy Exz
Eyx Eyy Eyz
Ezx Ezy Ezz

.

Therefore the local strain tensor Li in the coordinate system of a given ellipsoidal grain
i can be obtained by the following relation :

Li = MiEMt
i . (4.15)

The obtained local strain tensor Li can be written :

Li =

( )ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

.

This local strain tensor can be used in the considered ellipsoidal grain to update its three
semi-axes (a(i),b(i),c(i)). However the obtained strain tensor Li is not necessarily
diagonal and shear strain can be observed. In order to keep the grains ellipsoidal, only
the terms in Li that are in the diagonal are considered. This assumption means that
if only shear strain components are observed in the local strain tensor Li of a grain i,
its three semi-axes (a(i),b(i),c(i)) do not change. If ε is small enough at each time
increment, the evolution of (a(i),b(i),c(i)) can be expressed as follows :

a(i)(t+∆t) = a(i)t(1+ ε11),

b(i)(t+∆t) = b(i)t(1+ ε22),

c(i)(t+∆t) = c(i)t(1+ ε33).

(4.16)

When a grain grows due to boundary migration (Eq. 4.3), its three semi-axes (a(i),b(i),c(i))
must also be updated. In this model, growth of a grain is assumed isotropic, thus the
three semi-axes (a(i),b(i),c(i)) of a grain i having undergone a variation volume are
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updated following the relations :

a(i)(t+∆t) = a(i)t×3

√
V (t+∆t)

i
V t

i
,

b(i)(t+∆t) = b(i)t×3

√
V (t+∆t)

i
V t

i
,

c(i)(t+∆t) = c(i)t×3

√
V (t+∆t)

i
V t

i
,

(4.17)

where V t
i and V (t+∆t)

i are the volume of the grain i at the instants t and (t +∆t), respec-
tively.

The evolution of principal lengths of a grain i during deformation leads to an increase
of its boundary surface. The grain boundary surface of any ellipsoidal grain can be cal-
culated using incomplete elliptic integral of the first and second kind. However to make
it simpler and to decrease the computational cost, the surface of a grain i is estimated
using the relation [187] :

Si ' 2π(a(i)pb(i)p +a(i)pc(i)p +b(i)pc(i)p)1/p, (4.18)

where p =ln(3)/ln(2). This equation gives the surface of a general ellipsoid with a
relative error < 1.42%. With this approach, the grain boundary surface of all grains in-
creases during deformation and the constitutive equation of nucleation rate (Eq. 3.13) is
affected. This leads to an acceleration of the nucleation kinetics. Thanks to this new for-
mulation, it is also possible to perform a DRX simulation from an initial microstructure
composed of elongated grains, by defining particular initial values of (a(i),b(i),c(i))
for each grain i.

4.2.4 Comparison with DRX full field predictions
In the present section, the DRX full field model of chapter 3 is used to discuss the NHM
results. As already said, this full field model is based on the same constitutive laws that
are used in the NHM for strain hardening, recovery and nucleation. The only difference
between the full field model and the present NHM is that the microstructure is explicitly
described in the full field methodology which means that the comparison between both
indicates if the new microstructure description proposed in the NHM is accurate. An
illustrated case of a DRX simulation using the full field model is presented on Fig. 4.8.
The simulated process is a channel-die compression on a 304L steel at a temperature of
1273K and a strain rate of 0.01s−1.
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a  ε = 0 b  ε= 0.5 

c  ε= 1 d  ε= 1.5 

Fig. 4.8. Illustrated case of a DRX simulation using the full field model of chapter 3.
The simulated process is a channel-die compression on a 304L steel at a temperature of
1273K and a strain rate of 0.01s−1.

The results in terms of RX fraction, mean grain radius, mean grain radius (weighted
by grain volume) and mean dislocation density (weighted by grain volume) obtained
from the mean field model of Beltran et al. [50], the NHM and full field simulations are
compared on Fig. 4.9. The evolution of the RX fraction and mean grain size (weighted
by grain volume) obtained with the model of Beltran et al. [50] are quasi-linear for the
two considered strain rates (see Figs. 4.9(a) and (c)). With the present NHM, the RX
fraction follows an Avrami evolution (i.e. with a ”S” shape, see Fig. 4.9(a)), which is
commonly observed in experimental investigations of DRX [156, 188]. Furthermore,
evolutions of RX fraction, mean grain size (weighted by volume) and dislocation den-
sity (weighted by volume) described with the NHM are quite close to those described
by the full field model. Finally, the evolution of the mean grain size (see Fig. 4.9(b)) is
correctly described with both the NHM and mean field model of Beltran et al. [50]. It
is also observed that the recrystallization kinetics are always faster in the full field case.
This observation can be due to the fact that the surface S1(i) is approximated by the sur-
face S3(i) in the NHM and model of Beltran et al. [50] with S3(i)< S1(i) (see Fig. 4.3),
whereas S1(i) is explicitly taken into account in the full field case. Thus the total bound-
ary surface Φ considered in the nucleation rate (Eq. 3.13) is always underestimated in
the NHM and model of Beltran et al. [50], leading to slower kinetics of recrystallization.

As already mentioned, a known drawback of pre-existing mean field models if that
they provide grain size distributions which do not match with experimental ones. The
grain size distributions obtained with the full field model, the NHM and the model
of Beltran et al. [50] are compared on Fig. 4.10. These distributions are compared
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at four strain levels ε = 0.5, ε = 1, ε = 1.5 and ε = 2. The grain size distributions
described by the NHM are globally close to grain size distributions obtained with the
full field model. Furthermore, the grain size distributions obtained with the NHM are
quite wide and spread, which is characteristic of experimental distributions observed
during DRX [189]. The grain size distributions obtained with the model of Beltran
et al. [50] are more tight, which is the characteristic shape observed in the grain size
distributions predicted by standard mean field models [48, 50, 70] as already discussed
previously.
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Fig. 4.9. Comparison of the results obtained by three different models: the full field
model of chapter 3, the mean field model of Beltran et al. [50] introduced in first chap-
ter and the NHM proposed in this chapter. The simulated process is a channel-die
compression at 1273K, at two different strain rates of 0.01s−1 and 0.1s−1.
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Fig. 4.10. Comparison of the grain radius distributions obtained with the full field model
of chapter 3, the mean field model of Beltran et al. [50] and the NHM. The simulated
process is a channel-die compression at 1273K during 200s at two strain rates 0.01s−1

and 0.1s−1 and interrupted at different strain levels ((a) to (d)).

As already mentioned, the great advantage of mean field models is their low computa-
tional costs. This gives them the possibility to be coupled with macroscopic FE simula-
tions to predict microstructure evolutions throughout the processed product. Therefore,
the computational cost of a single simulation is very important in order to perform a
large number of simulations in a relatively short time. The computational cost of a
NHM simulation mainly depends on the number of grain classes. Therefore, several
simulations using the NHM were performed at a temperature of 1273K and a strain
rate of 0.01s−1, considering three different initial number of grain classes (8, 16 and
24 grain classes) but the same initial mean grain size. Resulting RX fraction, computa-
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tional cost, mean grain radius (weighted by grain volume) as well as mean dislocation
density (weighted by grain volume) evolutions are presented on Fig. 4.11. The obtained
results are not really dependant on the initial number of classes (see Fig. 4.11(a), (c) and
(d)). However, the computational cost seems to increase quite linearly with the initial
number of classes (see Fig. 4.11(b)). Thus, a number of 8 initial grain classes is a good
compromise between low computational cost and converged results. It is worth men-
tioning that for this case, the number of classes at the end of the simulation is around
90.
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Fig. 4.11. Sensitivity study of the initial number of grain classes on results obtained
with the NHM: (a) recrystallized fraction (b) computational cost (c) mean grain radius
(weighted by grain volume) (d) mean dislocation density (weighted by grain volume).
Simulations were performed at a strain rate of 0.01s−1 and a temperature of 1273K.

The number of grain classes in a simulation, and consequently the computational cost,
is also affected by the deformation step. Therefore several simulations using the NHM
were performed at the same thermomechanical conditions, with an initial number of 8
grain classes and by considering different deformation steps (∆ε = 0.01, ∆ε = 0.025
and ∆ε = 0.05). Results in terms of RX fraction, computational cost, mean grain radius
(weighted by grain volume) as well as mean dislocation density (weighted by grain vol-
ume) are presented on Fig. 4.12. The RX fraction evolution predicted by the NHM with
the three different deformation steps are quite similar (see Fig. 4.12(a)). However, the
final value of the mean dislocation density (weighted by grain volume) and mean grain
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size (weighted by grain volume) predcited by the NHM with a deformation step of 0.05
is a bit different from those predicted with a deformation step of 0.01 or 0.025, the latter
being close to each other. It is also observed that the computational cost is very depen-
dant on the deformation step (see Fig. 4.12(c)). A simulation using a deformation step
of 0.025 leads to computational costs significantly lower than using a deformation step
of 0.01. The influence of the deformation step on the computational cost comes from
the fact that the deformation step has a strong influence on the apparition of new classes
during the simulation. During nucleation, a new class is created at each deformation
step, thus the smaller the deformation step, the more new classes are created during
the simulation. A deformation step of 0.025 is retained as a good compromise between
converged results and low computational costs. The time step is deduced by dividing
the deformation step by the considered strain rate. However for very low strain rates,
prohibitive time steps can be obtained. To avoid this problem, a maximal time step of
5s is considered in simulations.
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Fig. 4.12. Sensitivity study of the deformation step on results obtained with the NHM:
(a) recrystallized fraction (b) computational cost (c) mean grain radius (weighted by
grain volume) (d) mean dislocation density (weighted by grain volume). Simulations
were performed at a strain rate of 0.01s−1 and a temperature of 1273K.

Finally, since the computational cost depends on the strain level, the Fig. 4.13 presents
the evolution of the number of increments as well as the cumulated computational cost
as a function of the true strain during a simulation at a temperature of 1273K and a strain
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rate of 0.01s−1 using the NHM. A number of 8 initial classes as well as a deformation
step of 0.025 were considered in the simulation. First the evolution of the number of
increments is linear up to a strain level of 1.2 and then evolves faster. This increase is
due to the strategy adopted in the model of Beltran et al. [50] and used in the NHM. The
latter consists in adapting the deformation step in order to avoid grains with a negative
volume, which can appear with Eq. 4.13 in the NHM. This adaptation means that each
deformation step can be discretized in several increments during the simulation. The
cumulated computational cost also increases as a function of the true strain during the
simulation. This evolution is slow up to a strain level of 1.2 since the number of classes
is still low at the beginning of the simulation. Then the evolution of the computation
cost increases faster up to the end of the simulation. This increases is due to the fact that
the number of increments as well as the number of classes are constantly increasing all
along the simulation. The global computational cost of the NHM simulation is still very
low (' 8s) at ε = 3, which is quite promising.
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Fig. 4.13. Number of increments and cumulated computation cost as a function of the
true strain obtained during a simulation using the NHM at a strain rate of 0.01s−1 and
a temperature of 1273K. A number of 8 initial grain classes and a deformation step of
0.025 were considered.
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4.3 Mean field modeling of post-dynamic recrystalliza-
tion

4.3.1 Constitutive laws

Grain boundary migration

The grain boundary migration is modeled during the PDRX regime thanks to Eqs. 4.12,
4.13 and 4.14.

Recovery mechanism

The dislocation density is supposed to decrease during the PDRX regime by static re-
covery. The decrease of the average dislocation density in the ith grain is modeled by the
same static recovery equation as used in the mean field model of Beltran et al. [50](Eq.
1.45) and in the full field model of chapter 3 (Eq. 3.6).

Nucleation

In general, PDRX is composed of a static (where nucleation may take place) and meta-
dynamic (no nucleation, just grain boundary migration) regimes. In this model and
similarly to the mean field model of Beltran et al. [50] and the full field model of chap-
ter 3, only metadynamic recrystallization is considered in the PDRX regime, hence no
nucleation events take place and we considered that last nuclei appeared at the end of
the DRX regime. Several authors already showed a good prediction of PDRX without
considering nucleation during this regime [50, 190].

4.3.2 Neighborhood choice during PDRX
The choice of neighbors during PDRX is similar to that made during the DRX regime.
Since nucleation is not considered during the PDRX regime, the surface fraction θa does
not exist for the PDRX regime and therefore (θ = θb) as it can be seen on Fig. 4.14.
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Grain i 

1 – θ(i) 

θ(i)  

Fig. 4.14. Representation of a grain in the NHM during the PDRX regime. Each grain
i has a surface fraction θ (i) in contact with RX grains represented in red color and a
surface fraction (1−θ )(i) in contact with NR grains represented in blue color.

4.3.3 Comparison with PDRX full field predictions
To investigate the efficiency of the NHM during the PDRX regime, simulations were
performed and compared using both the NHM and the full field model of chapter 3.
The first simulation is composed of a channel-die compression on a 304L steel at a
temperature of 1273K and a strain rate of 0.01s−1 during 200s in order to reach a fully
recrystallized state. After deformation, the steel is maintained at 1273K during 1000s
to simulate PDRX.

Results are presented on Fig. 4.15 in terms of RX fraction, mean grain size, mean
grain size (weighted by grain volume) and mean dislocation density (weighted by grain
volume). It is observed that results predicted by the NHM during the PDRX regime
are very close to those predicted by the full field model. This good correlation between
the two models in the PDRX regime is due to the good prediction of results in the
DRX regime, since evolution in the DRX regime has a large influence on predictions
in the PDRX regime. Furthermore, the grain size distributions predicted by the two
models at the final stage of the PDRX regime are presented on Fig. 4.16. The grain size
distribution predicted by the NHM is very close to that predicted by the full field model.
However, a lower number of classes remains in the NHM at the end of the simulation,
which explains the lower number of peaks in the distribution predicted by the NHM.

131



CHAPTER 4. A NEW TOPOLOGICAL APPROACH FOR THE MEAN FIELD MODELING OF DYNAMIC
AND POST-DYNAMIC RECRYSTALLIZATION : THE NHM

200 400 600 800 1,000 1,200 1,400
0

0.2

0.4

0.6

0.8

1

DRX PDRX

Time (s)

R
X

fr
ac
ti
on

Full field - ε̇ = 0.01s−1

NHM - ε̇ = 0.01s−1

(a)

200 400 600 800 1,000 1,200 1,400
0

20

40

60
DRX PDRX

Time (s)

〈R
〉(
µ
m
)

Full field - ε̇ = 0.01s−1

NHM - ε̇ = 0.01s−1

(b)

200 400 600 800 1,000 1,200 1,400
0

20

40

60
DRX PDRX

Time (s)

〈R
〉 vo

l
(µ
m
)

Full field - ε̇ = 0.01s−1

NHM - ε̇ = 0.01s−1

(c)

200 400 600 800 1,000 1,200 1,400
0

1 · 1014

2 · 1014

3 · 1014

4 · 1014

5 · 1014

DRX PDRX

Time (s)

〈ρ
〉 vo

l
(m

−
2
)

Full field - ε̇ = 0.01s−1

NHM - ε̇ = 0.01s−1

(d)

Fig. 4.15. Comparison of the results obtained by the full field model presented in the
previous chapter and the the NHM proposed in this chapter. Compared results are:
(a) recrystallized fraction (b) mean grain size, (c) mean grain size (weighted by grain
volume) and (d) mean dislocation density (weighted by grain volume). The simulated
process is a channel-die compression at 1273K, at a strain rate of 0.01s−1 for 200s
following by a hold at this same temperature for 1000s.
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Fig. 4.16. Comparison of the grain radius distributions predicted by the full field model
presented in the previous chapter and by the NHM at the final stage of the PDRX regime.
The simulated process is a channel-die compression at 1273K at a strain rates 0.01s−1

for 200s following by a hold at this same temperature for 1000s.
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Another interesting case to be studied is a half-fully recrystallized microstructure fol-
lowing by a hold to simulate a PDRX process. This case is particularly interesting since
the microstructure is non-fully recrystallized and therefore it can be seen whether in-
teractions between NR and RX grains are correctly taken into account in the NHM. To
investigate this case, a channel-die compression is simulated using both the NHM and
full field models, at 1273K and a strain rate of 0.01s−1 during 130s to reach a half-fully
recrystallized state. Then the microstructure are maintained at this same temperature
during 1000s to simulate PDRX. Results are presented on Fig. 4.17 in terms of RX
fraction, mean grain size, mean grain size (weighted by grain volume) and mean dis-
location density (weighted by grain volume). Is it still observed that averaged results
predicted by the NHM are very close to those predicted by the full field model, meaning
that the description of the neighborhood considered in the NHM during PDRX regime
is a good approximation of full field models. The grain size distributions predicted by
the two models at the final stage of the PDRX regime are also presented on Fig. 4.18.
A good prediction of the grain size distribution is still observed with the NHM when
compared to that predicted by the full field model.
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Fig. 4.17. Comparison of the results obtained by the full field model presented in the
previous chapter and the NHM proposed in this chapter. Compared results are: (a) re-
crystallized fraction (b) mean grain size, (c) mean grain size (weighted by grain volume)
and (d) mean dislocation density (weighted by grain volume). The simulated process is
a channel-die compression at 1273K, at a strain rate of 0.01s−1 for 130s following by a
hold at this same temperature for 1000s.
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Fig. 4.18. Comparison of the grain radius distributions predicted by the full field model
presented in the previous chapter and by the NHM at the final stage of the PDRX regime.
The simulated process is a channel-die compression at 1273K at a strain rates 0.01s−1

for 130s following by a hold at this same temperature for 1000s.
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Summary
In this chapter, a new topological approach called ”NHM” for NeighborHood Model is
proposed for the mean field modeling of DRX and PDRX. The latter is based on two
main improvements as compared to the state of the art: (i) the consideration of a par-
ticular neighborhood for each grain and (ii) the modeling of grain shape evolution from
spherical to ellipsoidal shape during a dynamic process, in order to take the increase of
boundary surface into account.

On a first hand, the results obtained by the NHM during the DRX regime were compared
to those obtained by a former mean field model [50] and non-negligible improvements
were observed in terms of average quantities as well as grain size distributions. Further-
more, a sensitivity study performed during the DRX regime showed that the NHM is
interesting in terms of numerical costs, which gives the opportunity to simulate the mi-
crostructure evolutions on an entire forged part issued from a FE calculation in few days.

On a second hand, multi-pass deformation routes (DRX + PDRX) were performed with
the NHM and compared to full field predictions in terms of averaged quantities as well
as grain size distributions. Two cases were simulated: the first case is composed of a
DRX regime up to a fully recrystallized microstructure following by a holding at the
same temperature during few minutes to simulate a PDRX regime. The second case
is composed of a DRX regime up to a half-fully recrystallized microstructure also fol-
lowing by a holding at the same temperature during few minutes to simulate a PDRX
regime. In both cases, the NHM correctly predicts averaged quantities (RX fraction,
mean grain size and mean dislocation density) as well as grain size distributions when
compared to full field predictions. Despite large advances in terms of predictions as
compared to former mean field formulations, some improvements concerning the choice
of neighbors can still be done based on experimental investigations.

A major advantage of NHM is related to the fact that it is based on the same constitutive
equations as used in the full field model of chapter 3. Therefore, since NHM simu-
lations are relatively fast, it can helps to identify some model parameters by inverse
analysis and these latter can then be used in the full field model. In the next chapter, a
procedure of identification of the four model parameters is presented. While the strain
hardening K1 and dynamic recovery K2 parameters are identified based on stress-strain
curves, the two others parameters related to strain rate dependence of boundary migra-
tion δ and to nucleation Kg need to be identified by inverse analysis on microstructural
quantities. Therefore in this case, the NHM is primordial and allows to identify all Kg
and δ parameters in few minutes based on experimental data.
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Chapter 5

Identification of DRX model
parameters for the 304L steel and
comparison between model predictions
and experimental results.
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CHAPTER 5. IDENTIFICATION OF DRX MODEL PARAMETERS FOR THE 304L STEEL AND
COMPARISON BETWEEN MODEL PREDICTIONS AND EXPERIMENTAL RESULTS.

Résumé en français
Dans ce chapitre, des essais de compression à hautes températures ont été éffectués sur
un acier 304L. Ceux-ci sont présentés afin de mettre en place une méthode de calibration
robuste des deux modèles champ complet et champ moyen précédemment introduits.
Les courbes contrainte-déformation obtenues permettent de déterminer les paramètres
d’écrouissage et de restauration. Par ailleurs, les observations microstructurales per-
mettent d’identifier par analyse inverse grâce au modèle champ moyen les paramètres
liés à la mobilité des joints de grains et à la germination. Après identification de ces
quatre paramètres pour différentes conditions thermomécaniques, les résultats prédits
par les deux modèles sont comparés aux données expérimentales pour un nouveau cou-
ple de conditions thermomécaniques. Une très bonne prédiction des modèles est alors
observée. Les distributions de tailles de grains sont également comparées aux données
expérimentales et des populations de très petits grains observées sur les cartographies
expérimentales ne sont pas correctement prédites par les modèles. Ceci est principale-
ment relié au fait que les germes sont insérés avec une taille critique. Une discussion
afin de remédier à ce problème est évoquée à la fin de ce chapitre.
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In chapters 3 and 4, a new full field model and the NHM were proposed for modeling
dynamic and post-dynamic recrystallization. In these two chapters, as a first approxi-
mation, model parameters identified by inverse analysis using the mean field model of
Beltran et al. for a 304L steel were taken from literature [50]. Even though dynamic
recrystallization is modeled through the physical mechanisms taking place, the identi-
fied parameters cannot be considered as model independent, because the identification
process uses the implemented model. It is therefore necessary to identify the material
parameters set using the new proposed models. In a first part of this chapter, compres-
sion tests performed at high temperatures on a 304L steel are presented. Then based
on the obtained flow curves and microstructure evolutions, the four model parameters
were identified at different temperatures and strain rates: stress-strain curves were used
to identify the strain hardening (K1) and dynamic recovery (K2) parameters while mi-
crostructure evolutions were used to identify the strain rate dependence of boundary
migration given by the parameter (δ ) as well as nucleation parameter (Kg). Finally, the
results issued from the NHM and the full field model after calibration were compared to
experimental ones.

5.1 Thermomechanical testing
Thermomechanical tests performed on 304L steel samples are presented in this section.
Among the classical mechanical tests, compression was chosen since this is the closest
to industrial processes (especially forging). Different sets of conditions were chosen
in terms of temperature and strain rate to investigate flow behaviors and microstructure
evolutions. The steps of the compression tests are presented on Fig. 5.1: (A) the sample
is put in the heated oven so its temperature increases, (B) the sample is kept at a high
temperature for 30min to ensure the homogeneity of the desired temperature, (C) com-
pression test is performed for a given strain rate and up to a given level of strain, (D)
After plastic deformation the sample is quenched with the smallest possible delay (i.e.
around 2s) to limit post-dynamic evolutions.

T  

t 

(A) Heating    (C) Plastic deformation  

(B) Homogenization of temperature (D) Quenching 

(A) 

(C) (B) 

(D) 

Fig. 5.1. Thermomechanical path used for the hot compression tests.
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5.1.1 Compression process
The heating step is performed by using an oven with a power of 2000W. The maximal
temperature that can be reached is around 1473K while the heating speed is around
773K per hour in average. The temperature gradient is controlled at any instant thanks
to two sensors at the bottom and top of the oven. As soon as the oven reaches the desired
temperature, the sample is inserted and is maintained during 30min before compression
to make sure that the desired temperature is homogeneous inside the sample. After com-
pression, the oven goes up and the sample is manually pushed into water to minimize
post-dynamic evolutions. Since the quenching is performed manually, the duration be-
tween the end of deformation and cooling is around 2s, which will be considered to be
short enough to avoid any significant post-dynamic evolution for the applied strain rate
range.

The deformation step is performed by using a compression machine MTS Landmark
370-25. Compression is performed by controlling the displacement of the upper tool
as a function of time, while the bottom tool remains static. The maximal force that
can be reached is around 250kN while the maximal velocity of the upper tool is around
100mm/s. Lower and upper tools are made of the super-alloy Udimet 720 that keeps
suitable mechanical properties at high temperatures. Furthermore, a silicon nitride
(Si3N4) ceramic insert is also added on the tools extremities. A small quantity of molyb-
denum disulphide (MoS2) is also added on the tools as lubricant to reduce friction and
sticking at interfaces between the tools and the sample. The hot compression framework
is schematized on Fig. 5.2.

Oven 

Ceramic layer Udimet 720 

Sample 

Thermal 

insulator Machine 

cylinder MTS 

Landmark 

Fig. 5.2. Compression framework for the dynamic tests.
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5.1.2 Sample geometries
Two different sample geometries were used for the compression tests: cylindrical and
double-cone samples as presented on Fig. 5.3. Cylindrical samples were used for iden-
tifying the stress-strain curves and also for the microstructure analyses at low strain
levels. Double-cone samples were used to analyze the microstructure states of the 304L
steel at higher strain levels. An advantage of the double-cone samples is the ability to
obtain a strain gradient along the radius while keeping a quasi-constant strain rate.

ø 8.5 mm 

12mm 

(a)

1
0

.2
 m

m
 3

.8
 m

m
 

ø 22.1 mm 

ø 18.4 mm 

ø 6.5 mm 

(b)
1

Fig. 5.3. Sample geometries used for compression tests: (a) cylindrical and (b) double-
cone.

5.1.3 Finite element simulations
During compression tests, the strain and strain rate fields are heterogeneous inside sam-
ples due to friction at interfaces with tools, but also due to the geometry of double-cone
samples. Microstructure investigations will be performed only at selected points of sam-
ples. In order to estimate the strain and strain fields and properly choose the areas to be
analysed, compression tests were simulated using the Forge R© finite element software
to establish a link between boundary conditions imposed on the upper tool (ε̇,ε) and
local thermomechanical history (ε̇VM,εVM) at each point of the deformed sample. Here
ε̇ and ε stand for the macroscopic strain rate and the true strain, respectively, and ε̇VM
and εVM are the von Mises equivalent plastic strain rate and equivalent plastic strain,
respectively, calculated by the relations :

ε̇VM =

√
2
3

ε̇i j : ε̇i j, (5.1)

εVM =
∫ t

0
ε̇VMdt, (5.2)

where ε̇i j are the components of the strain tensor. The procedure to perform FE simula-
tions is the following: a 2D axisymmetric model is first built up in the software. Then,
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samples with an initial height noted h0 (h0 = 12mm for cylindrical and 10.2mm for
double-cone samples), are compressed up to a final height noted hf (hf = 8.2±0.05mm for
cylindrical and 4.5±0.15mm for double-cone samples, in accordance with final heights
obtained during experimental tests). The true strain ε , considered to quantify the macro-
scopic deformation of sample, is deduced at any instant of the simulation by the follow-
ing relation :

ε(t) = ln
(

h(t)
h0

)
, (5.3)

where h(t) is the height of the sample at time t. The macroscopic strain rate ε̇ imposed
on a sample between two instants t1 and t2 can be deduced from the relation :

ε̇(1−2) =
dε

dt(1−2)
=

v(1−2)

h1
, (5.4)

where h1 is the height of the sample at the instant t1 and v(1−2) is the constant velocity
of the upper tool between t1 and t2. In this work, we tried to perform each compression
test at a constant strain rate, therefore the tool velocity was piecewise constant, but fre-
quently reduced during compression to compensate for the sample height reduction, so
as to respect the imposed macroscopic strain rate.

A Hensel Spittel constitutive equation [191], representative of the considered 304L steel,
is used in simulations :

σ = Aem1T εm2 ε̇m3εm4/ε , (5.5)

where σ , ε and ε̇ are respectively stress, strain and strain rate and T is the temperature in
Celsius, m1 =−0.00383 defines the material’s sensitivity to temperature, m2 = 0.01246
and m4 = −0.02413 define the material’s sensitivity to strain, m3 = 0.09912 defines
the material’s sensitivity to the strain rate and A = 8905.35 is an additional fitting pa-
rameter. These values were extracted from the Forge R© database. Elastic behavior is
omitted in these simulations. To model friction at interfaces between samples and tools,
a Coulomb’s law is considered in the software. Friction coefficients were estimated by
inverse analysis minimizing the error between experimental and numerical barrel shape
obtained at end of compression process. We found a mean friction coefficient of 0.6 and
this value was used for all the simulations.

After compression tests, microstructure is observed at different points of samples. For
the cylindrical samples, the observation zone is located in the middle of the sample
(Point A on Fig. 5.4). For the double-cone samples, two observations zones, located in
the middle and at a distance to one third of the center (Points B and C on Fig. 5.5, re-
spectively) are considered. As an illustration, the final stage of a simulated compression
test performed on a cylindrical sample at T = 1273K and ε̇ = 0.008s−1 is presented on
Fig. 5.4. The εVM and ε̇VM fields are presented on Fig. 5.4(a) and (b), respectively. It is
observed that the maximal εVM value is reached at the point A and is around 0.65. Fur-
thermore the ε̇VM value at this instant of simulation and at this point is around 0.016s−1,
which is two times higher than ε̇ .
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εVM 

A A 

(a) (b) 
4 mm 4 mm 

ε VM (s
-1) 

Fig. 5.4. Finite element simulations performed on a cylindrical sample at T = 1273K
and ε̇ = 0.008s−1 at the final stage of the simulation (hf ' 2/3h0). Presented fields are
(a) equivalent plastic strain and (b) equivalent plastic strain rate.

A simulated compression test performed at T = 1273K and ε̇ = 0.01s−1 on a double-cone
sample is also presented on Fig. 5.5 at the final stage of the simulation. At this instant,
the εVM value at point B is around 1.35 while that at point C is around 1. Furthermore,
the ε̇VM value at point B is around 0.015s−1 while that at point C is around 0.01s−1.

B B C C 

(a) (b) 5 mm 5 mm 

εVM ε VM (s
-1) 

Fig. 5.5. Finite element simulations performed on a double-cone sample at T = 1273K
and ε̇ = 0.01s−1 at the final stage of the simulation. Presented fields are (a) equivalent
plastic strain and (b) equivalent plastic strain rate.

The FE simulations are also used to make sure that ε̇VM is quasi-constant at points A, B
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and C all along the compression tests. Therefore, the evolutions of ε̇VM and εVM at these
three points are plotted over time on Fig. 5.6(a) and (b), respectively. It is observed that
the evolution of εVM is quasi linear in the three cases while the evolution of ε̇VM is quite
winding. The values of ε̇VM are most of time between 0.01 and 0.02s−1 at the three
points and are spread around a mean value of 0.014s−1. We assumed in this work that
ε̇VM is almost constant over time in the three cases and equal to 0.014s−1. Thus, for
each given set of equivalent plastic strain rate ε̇VM and temperature T , three levels of
εVM were investigated (0.65, 1 and 1.35).

Different relations between the macroscopic strain rates ε̇ imposed on the compression
machine and the equivalent plastic strain rates ε̇VM obtained at the three points A, B and
C by simulations are reported in Tab. 5.1.
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Fig. 5.6. Evolution of (a) equivalent plastic strain and (b) equivalent plastic strain rate
at the three points A, B and C obtained by finite element simulations of hot compression
tests, as presented on Figs. 5.4 and 5.5.

cylindrical sample (point A) double-cone sample (points B and C)
ε̇(s−1) 0.008 0.04 0.08 0.01 0.05 0.1

ε̇VM(s−1) 0.014 0.07 0.14 0.014 0.07 0.14

Tab. 5.1. Relations between different imposed macroscopic strain rates ε̇ and equivalent
plastic strain rates ε̇VM at the three points A, B and C. Since ε̇VM slightly varies during
a simulation (Fig. 5.6), values presented here are averaged on time. These results are
obtained by finite element simulations, as presented on Figs. 5.4, 5.5 and 5.6.

To summarize, the macroscopic thermomechanical conditions applied for the all exper-
imental compression tests are reported in Tab. 5.2. The ranges of temperatures and
macroscopic strain rates were chosen to be close to industrial processes conditions. For
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each test, the equivalent plastic strain rates ε̇VM in samples at points A, B and C were
reported in Tab. 5.1.

ε̇(s−1)
0.008 0.01 0.04 0.05 0.08 0.1

T (K)
1273 X X X X X X
1323 X X
1373 X X

X: Tests performed only on cylindrical samples.
X: Tests performed on both double-cone and cylindrical samples.

Tab. 5.2. Sets of thermomechanical conditions in terms of macroscopic strain rates and
temperatures applied for the compression tests.

5.1.4 Repeatability study
Several compression tests performed on cylindrical samples were doubled in order to
investigate the repeatability of results. The obtained stress-strain curves are presented
on Fig. 5.7 where the true stress σ is plotted as a function of the true strain ε . The
oscillations observed on the curves are related to the changes in the upper tool velocity
to keep a quasi-constant macroscopic strain rate. For each set of thermomechanical
conditions, both curves are close to each other, in particular at the lower temperatures,
confirming the repeatability of the compression tests. Therefore, only single tests will
be done for the other thermomechanical conditions.
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1
Fig. 5.7. Compression tests for different sets of thermomechanical conditions to investi-
gate the repeatability of the compression framework.
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5.2 Identification of strain hardening (K1) and dynamic
recovery (K2) parameters

The method for the identification of K1 and K2 is based on stress-strain curves. There-
fore the stress-strain curves obtained during the compression tests on 304L steel cylin-
drical samples are first presented. Then, the method of identification of K1 and K2 is
introduced and all identified K1 and K2 parameters values are given.

5.2.1 Stress-strain curves

Influence of strain rate on mechanical behavior

The stress-strain curves obtained from the compression tests on cylindrical samples at T
= 1273K and different macroscopic strain rates are presented on Fig. 5.8(a). For a better
analysis of these curves, the elastic parts were removed on Fig. 5.8(b) and a smoothing
was made using 7th order polynomial functions. Few cylindrical samples were deformed
up to 0.7 of true strain but these samples were not used for microstructure investigations.

The true stress decreases when decreasing the macroscopic strain rate, which is the clas-
sical trend observed in hot deformation of metal alloys. The yield stress and peak stress
also decrease with decreasing macroscopic strain rate.
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Fig. 5.8. Stress-strain curves obtained from compression tests on cylindrical samples at
different macroscopic strain rates and same temperature (1273K). (a) Raw curves and
(b) 7th order polynomial fitted curves.

Influence of temperature on mechanical behavior

The influence of temperature on the flow behavior of 304L steel was investigated by
performing compression tests on cylindrical samples deformed at T = 1273K, 1323K
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and 1373K and ε̇ = 0.08 and 0.1s−1. The corresponding raw and smoothed stress-strain
curves are plotted on Fig. 5.9(a) and 5.9(b), respectively.

The increase of temperature leads to a decrease of the true stress, yield stress and peak
stress, which is the classic dependence observed during hot deformation of metals.
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Fig. 5.9. Stress-strain curves obtained from compression tests on cylindrical samples at
different temperatures and close macroscopic strain rates. (a) Raw curves (b) 7th order
polynomial fitted curves.

Relations between peak stress, flow stress and Zener-Hollomon parameter

It was previously observed that increasing macroscopic strain rate or decreasing temper-
ature leads to an increase of peak stress and yield stress. The Zener-Hollomon parameter
Z described in the first chapter was introduced to describe the effect of temperature and
macroscopic strain rate on the flow behavior of a metal alloy. Three Arrhenius-type
equations were proposed by Sellars et al. [192–194] to correlate the stress σ with the
Zener-Hollomon parameter Z :

Z = A1σn, (5.6)

Z = A2eβ×σ , (5.7)

Z = A3[sinh(ασ)]m, (5.8)

where Eq. 5.6 is preferred for low strains, Eq. 5.7 is preferred for high strains and
Eq. 5.8 is employed for a wide range of strains. Several authors already investigated
the dependence of the true stress on Z using these equations. For instance in [195], a
dependence between the peak stress and Z was shown using these equations. In [196],
a dependence between the true stress at steady-state and Z was also shown using these
equations. In order to investigate the validity of Eq. 5.6 in the case of the 304L steel
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studied here, the values of yield stress σ0 were estimated from Fig. 5.8 and 5.9 and
plotted as a function of ln(Z) on Fig. 5.10(a). In the same manner, the values of peak
stress σp are identified and plotted as a function of ln(Z) on Fig. 5.10(b). A linear
dependence of σp and σ0 on the the quantity ln(Z) is observed, which is consistent with
Eq. 5.6. The linear equations issued from Fig. 5.10 are reported below :

σ0 = 13.038× ln(Z)−234.84, (5.9)

σp = 19.729× ln(Z)−317.82, (5.10)

where Eq. 5.9 is used in the following to estimate σ0 values for all thermomechanical
conditions applied in this work.
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Fig. 5.10. Relation between the Zener-Hollomon parameter and (a) yield stresses (b)
peak stresses obtained from compression tests on cylindrical samples.

5.2.2 Method for the identification of K1 and K2

The identification of K1 and K2 is based on two steps: first the method introduced by
Jonas in [197] is used to obtain a first estimation of K1 and K2. Then an inverse anal-
ysis method is used to refine the identified parameters values. These two methods are
explained and then applied on all stress-strain curves to identify K1 and K2 parameters
values for each set of applied thermomechanical conditions. However, the procedure is
only detailed on the stress-strain curve obtained at T=1273K and ε̇ = 0.1s−1.

1st step: Jonas method

Jonas et al. [197] proposed an approach to identify K1 and K2 from a stress-strain curve.
The method is explained and applied below to the stress-strain curve obtained from the
compression test at 1273K and 0.1s−1. If irregularities and/or fluctuations are observed
on the stress-strain curve, a fitting and/or smoothing can be beforehand required. The
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raw as well as smoothed (σ − ε) curves are presented on Fig. 5.11(a) and (b) respec-
tively. In these two curves, the linear part was cut out. The yield stress is around 80MPa
while the saturated stress is around 155MPa.
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Fig. 5.11. Stress-strain curves obtained from compression of a cylindrical 304L steel
sample at a temperature of 1273K and a macroscopic strain rate of 0.1s−1. The ”elas-
tic” portion was removed. The yield stress σ0 is around 80MPa. Raw curve (dots) is
superimposed onto the smoothed curve (full line).

The true stress σ in a material subjected to uniaxial loading can be related to the mean
dislocation density in the microstructure 〈ρ〉 according to the Taylor’s equation [198] :

σ = σ0 +MTαµb
√
〈ρ〉, (5.11)

where σ0 is the uniaxial flow stress in the material under the absence of dislocation in-
teractions, also considered as being the yield stress, α is a material-dependent constant
that is mostly defined by the type of the formed substructure [199] (α = 0.15 will be
used in this work in accordance with the work of Bäcke [200]), MT is the Taylor factor
relating the shear flow stress of a single crystal to the uniaxial flow stress of a polycrys-
tal (MT ' 3 for f.c.c and b.c.c metals submitted to tension or compression [201], MT =
3 will be used in this work), µ is the shear modulus at the deformation temperature (es-
timated from [202]) and b is the norm of the Burgers vector (b=2.5e-10m for 1/2<110>
dislocations in the considered 304L steel [203]). The term MTαµb was estimated to be
5N.m−1 at 1273K for the considered 304L steel. We assume here that the evolution of
the mean dislocation density 〈ρ〉 follows Eq. 5.12 (originally proposed by YLJ [76]) :

∂ 〈ρ〉
∂ε

= K1−K2〈ρ〉, (5.12)

with the maximum mean dislocation density value reached during deformation which
is defined by the ratio of the strain hardening and dynamic recovery parameters K1/K2.
Thus the saturated stress noted σs resulting from the balance between the production of
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dislocations (strain hardening) and dislocation annihilation (dynamic recovery) can be
expressed as :

σs = σ0 +MTαµb
√

K1/K2. (5.13)

In work of Jonas [197], the term σ0 was neglected in Eq. 5.13 contrary to what is done
in this work. By coupling the YLJ law (Eq. 5.12) with Taylor’s equation (Eq. 5.11), the
following relation can be obtained :

∂θ
∂ε

=
MTαµb

2
√ρ

(K1−K2ρ), (5.14)

where θ = (σ −σ0) . Then by multiplying 5.14 by θ , the following relation is obtained,

θ
∂θ
∂ε

=
(MTαµb)2

2
(K1−K2ρ). (5.15)

By combining Eq. 5.15 with Eq. 5.11, it leads to,

θ
∂θ
∂ε

=
(MTαµb)2K1

2
− K2θ 2

2
. (5.16)

Finally, by using Eq. 5.13 in Eq. 5.16, the following relation is obtained,

θ
∂θ
∂ε

= 0.5K2(σs−σ0)
2−0.5K2θ 2. (5.17)

It is observed that Eq. 5.17 is a linear equation of θ
∂θ
∂ε

as a function of θ 2. The slope

of this linear equation is −0.5K2 and the y-intercept is 0.5K2(σs−σ0)
2. Therefore by

plotting the quantity θ
∂θ
∂ε

as a function of the quantity θ 2 using data issued from a
stress-strain curve, the resulting slope and the y-intercept can be used to identify K2 as
well as σs. The corresponding plot of the smoothed stress-strain curve of Fig. 5.11(b)
is shown on Fig. 5.12. A linear trend clearly appears, which can be fitted with the equa-
tion -4.277x + 25314. From that it can be deduced that K2 = -4.277/-0.5 ' 8.6 and σs =√

25314/0.5K2 +σ0 ' 157 MPa.
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Fig. 5.12. The quantity θ
∂θ
∂ε

is plotted as a function of the quantity θ 2 using data from
the smoothed stress-strain curve presented on Fig. 5.11.

Then knowing K2 and σs, K1 can be deduced from Eq. 5.13 by :

K1 =

(
σs−σ0

MTαµb

)2

×K2, (5.18)

and it comes that K1 ' 2e15 m−2.

2nd step: Inverse analysis

An inverse analysis method is then used to refine the values of K1 and K2 obtained in
the 1st step by the Jonas method. This refinement is particularly important if the linear
trend is not clearly observed with the Jonas method.

The inverse analysis method is detailed here on the stress-strain curve of Fig. 5.11. Only
the part of the curve which is defined by strain hardening and dynamic recovery must
be used, i.e. beyond the yield stress and before nucleation occurs. Nucleation will be
assumed to occur at 80% of the peak strain value εp.

This inverse analysis method consists in combining the YLJ equation (Eq. 5.12) with
the Taylor’s equation (Eq. 5.11) to obtain the following relation :

σ = σ0 +MTαµb
√

(ρ0−K1/K2)e(−K2ε)+K1/K2. (5.19)

Although the dislocation density at the onset of plastic deformation, noted ρ0, is very
low and can be neglected compared to the term K1/K2 in Eq. 5.19, we preferred to
keep this term in this study. Then, the set of parameters (K1;K2) that fit the portion
of the stress-strain curve between the yield stress and the beginning of nucleation (i.e.
80% of the peak strain value) is identified by inverse analysis from Eq. 5.19 using
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the solver of the Excel R© software and the initial values of K1 and K2 identified in the
previous section, i.e. K1 ' 2e15m−2 and K2 ' 8.6 for the presented example. The new
parameters K1 ' 1.5e15m−2 and K2 ' 6 are obtained. The fitted stress-strain curves
are plotted on Fig. 5.13 using the set (K1;K2) identified by the Jonas method and after
refinement by inverse analysis. The fit is clearly improved when using inverse analysis
in addition to Jonas method, in particular at the early stage of deformation range that is
used for the parameter identification.
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Fig. 5.13. Comparison between the raw experimental stress-strain curve and the ones
recalculated using K1 and K2 parameters obtained with Jonas method and after inverse
analysis refinement. Thermomechanical conditions are T =1273K and ε̇=0.1s−1.

The major advantage of starting with the Jonas method is related to the fact that K2 is
identified independently of K1 contrary to the inverse analysis method where K1 and K2
are identified together. However a drawback of the Jonas method is that depending on
the quality of the stress-strain curve, the linear trend can be more or less explicit and can
affect the identification of K1 and K2, therefore refining parameters with inverse analysis
method appeared to be primordial.

Identified parameter values

The procedure for parameter value identification presented above (Jonas + inverse anal-
ysis method) was performed on all stress-strain curves. The identified values of K1 and
K2 are presented in Tab. 5.3. Furthermore, the resulting recalculated stress-strain curves
obtained by using the identified K1 and K2 values in Eq. 5.19 are compared to the exper-
imental curves on Fig. 5.14. Globally, the fitted curves are very close to experimental
ones, which confirms the ability of this method to properly identify K1 and K2.
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T (K) ε̇(s−1) K1(m−2) K2
1273 0.1 1.5e15 6
1273 0.08 2.2e15 8.1
1273 0.05 1.65e15 5.9
1273 0.04 1.63e15 7.3
1273 0.01 1.32e15 6.8
1273 0.01 1.07e15 5.4
1273 0.008 1.45e15 7.2
1273 0.008 1.42e15 7.7
1323 0.01 1.0e15 8.1
1323 0.008 1.1e15 12.1
1373 0.008 1.3e15 13.3
1373 0.008 1.2e15 13.7

Tab. 5.3. Strain hardening (K1) and dynamic recovery (K2) parameters identified at
different sets of thermomechanical conditions by coupling Jonas method and inverse
analysis method.
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Fig. 5.14. Fitted curves obtained by coupling the Jonas method and inverse analysis
refinement are represented in dashed lines and are superimposed to the experimental
ones in full lines. These fitted curves are obtained by combining Eq. 5.19 with iden-
tified K1, K2 values presented in Tab. 5.3. (a) Comparisons at same temperatures, (b)
comparisons at close macroscopic strain rates and different temperatures.

Physically, strain hardening is assumed to be only dependent on the strain rate while
dynamic recovery is supposed to be dependent on both strain rate and temperature.
Therefore K1 is plotted as a function of macroscopic strain rate on Fig. 5.15(a) and
K2 is plotted as a function of Z on Fig. 5.15(b). The strain hardening parameter K1
seems to be linearly correlated to ε̇ while a logarithmic relationship can describe the
dependence of the dynamic recovery parameter K2 on the Zener-Hollomon parameter
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Z. These correlations, described by Eqs. 5.20 and 5.21, are used in the following to
interpolate the values of K1 and K2 for any set of thermomechanical conditions within
the explored range (from 1273 to 1373K and 0.01 to 0.1s−1, approximately).

K1 = (69× ε̇ +12)×1e14, (5.20)

K2 =−1.4× ln(Z)+40. (5.21)
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Fig. 5.15. Dependence of (a) the strain hardening parameter K1 as a function of the
macroscopic strain rate and (b) the dynamic recovery parameter K2 as a function of the
Zener-Hollomon parameter.

Sensitivity study

The influence of the quantity ρ0 and of the product MTαµb on the identified values of
K1 and K2 was tested. To do that, different values of ρ0 and MTαµb were tested and K1
and K2 were identified for each configuration using the inverse analysis method. The
stress-strain curve obtained at T =1273K and ε̇=0.1s−1 was considered. The obtained
values of the parameters K1 and K2 are reported in Tab. 5.4, where the L2 errors calcu-
lated between the raw experimental and the fitted stress-strain curves in the domain of
identification are also reported.
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ρ0(m−2) MTαµb(N.m−1) K1(m−2) K2 L2 (%)
1e11 6 1e15 6 2.2
1e11 5.5 1.2e15 6 2.2
1e11 5 1.5e15 6 2.2
1e11 4.5 1.8e15 6 2.2
1e11 4 2.3e15 6 2.2
2e12 4 1.5e15 5.9 2.3
1e12 4 1.5e15 6 2.3
5e11 4 1.5e15 6 2.2
5e10 4 1.5e15 6 2.2
1e10 4 1.5e15 6 2.2

Tab. 5.4. Identification of K1 and K2 values for different values of ρ0 and MTαµb, and
corresponding L2 errors between raw experimental and fitted stress-strain curves.

An increase by 20% of the product MTαµb (from 5 to 6) has an important impact on
the K1 value (decrease by 33%). A decrease by 20% of the MTαµb value (from 5 to
4) leads to an increase of K1 value by 53% which is far from being negligible. On the
other hand the K2 parameter does not seem to be affected by the MTαµb value. The L2

errors are constant when the MTαµb value changes, meaning that for all tested values
of MTαµb, a good fit of the experimental stress-strain curve can be obtained. However,
since the K1 parameter is considered in other constitutive laws such as the computation
of the critical dislocation density (Eq. 3.9), it is primordial to choose a value of MTαµb
as physical as possible.

The initial dislocation density ρ0 has no influence on the identified parameters values
(Tab. 5.4) as long as ρ0 is at least 1000 times smaller than the ratio K1/K2. For the tested
ρ0 values, the L2 errors are quasi-constant whatever the ρ0 value. If ρ0 is neglected, the
same parameters values as obtained with ρ0 = 1e10 are obtained.

The yield stress σ0 considered in this sensitivity study was around 80MPa. However,
depending on the quality of the stress-strain curve, it can be quite difficult to evaluate its
value. Therefore a sensitivity study was also performed on the yield stress by choosing
other values around 80MPa and by observing the new values of K1 and K2 obtained by
the inverse analysis method and reported in Tab. 5.5. The L2 errors measured between
the raw experimental and the fitted stress-strain curves in the domain of identification
are also reported in Tab. 5.5. It turns out that an error on the lecture of σ0 has a weak
influence on the identified value of K2, but a strong influence on K1. This behavior is
quite logical since σ0 defines the early stage of plasticity, where the dislocation density
is low and therefore the effect of dynamic recovery is neglected as compared to that of
strain hardening. Therefore, a modification on the σ0 value is mainly corrected by the
strain hardening parameter K1. An increase of σ0 by 25% (from 80 to 100MPa) leads
to a decrease by about 50% of the K1 value but only by 12% of the K2 value. The L2

error is slightly affected by σ0 but keeps being around 2%, meaning that a good fit can
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be always obtained whatever the tested σ0 value. However, since the choice of σ0 has
a strong influence on the identified K1 value and since K1 is used in other constitutive
laws of models, it is important to choose σ0 as accurately as possible.

σ0(MPa) K1(m−2) K2 L2(%)
100 7.3e14 5.3 2.2
88 1.2e15 6.1 1.8
80 1.5e15 6 2

Tab. 5.5. Identification of K1 and K2 for different values of flow stress σ0 and corre-
sponding L2 errors between experimental and fitted stress-strain curves.

5.3 Identification of the parameter describing the strain
rate dependence of boundary migration (δ ) and of
the nucleation parameter (Kg)

The identification of δ and Kg parameters, mainly used in Eqs. 2.10, 3.13 and 4.3, is
made by inverse analysis based on microstructure quantities. Microstructure quantita-
tive analysis is first presented, then, the inverse analysis method based on the NHM is
described and finally all the identified values of δ and Kg are presented and discussed.

5.3.1 Microstructure investigations
After performing compression tests on cylindrical and double-cone 304L samples, the
microstructure is characterized. Thanks to the FE simulations previously introduced,
the sets of three equivalent plastic strain levels εVM corresponding to thermomechanical
conditions (i.e. temperatures T and equivalent plastic strain rates ε̇VM) at points A, B
and C are reported in Tab. 5.6.

The first step, before performing microstructure characterization, is to prepare metalo-
graphic sections by cutting and polishing the compressed samples. The microstructures
are then observed using the Electron BackScatter Diffraction (EBSD) technique to mea-
sure quantities such as RX fractions, mean grain sizes and to get grain size distributions.

H
HHH

HHT
ε̇VM 0.014s−1 0.07s−1 0.14s−1

1273K (0.65; 1; 1.35) (0.65; 1; 1.35) (0.65; 1; 1.35)
1323K (0.65; 1; 1.35)
1373K (0.65; 1; 1.35)

Tab. 5.6. Sets of three equivalent plastic strain levels εVM corresponding to the observed
microstructure at different values of equivalent plastic strain rate ε̇VM and temperatures
T . The ε̇VM and εVM values were obtained from FE simulations.
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Samples preparation

Cylindrical and double cone samples are cut according to the schemes of Figs. 5.16(a)
and 5.16(c), respectively. Then the sections schematized on Fig. 5.16(b) and Fig.
5.16(d) are polished.

A 

B C 

R 

R/3 

(a) (b) 

(c) (d) 

Fig. 5.16. Cutting plane of (a) cylindrical and (c) double-cone samples. Microstructure
is then observed at (b) the middle of the section (point A) for cylindrical samples and
(d) the middle and at one third from center (points B and C) for double-cone samples.

The polishing step is primordial in order to get a surface quality satisfying the EBSD
technique requirements. The polishing procedure applied on the considered 304L steel
samples is the following :

• 30s using a SiC paper P600 with a normal force of 2daN to obtain a plane surface
and eliminate the hardening due to cutting.

• 60s using a SiC paper P1200 with a normal force of 2daN to eliminate hardening
created by the previous step.

• 2min using a diamond solution of 6µm.

• 2min using a diamond solution of 3µm.

• 2min using a diamond solution of 1µm.

• 2min of chemical mechanical polishing using a solution of colloidal silica (OPS)
with a normal pressure of 1.5daN in order to obtain a very clean surface for ob-
servations. In the surface is not clean enough, this last step is repeated as long as
it is necessary.
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EBSD analysis

The electron microscope used for microstructure characterization is a Zeiss Supra 40
FEG SEM (Field Emission Gun Scanning Electron Microscope), equipped with several
detectors. In this work, the Electron Backscatter Diffraction (EBSD) detector was
mostly used. EBSD provides crystalline orientation maps and is largely used when
aiming at quantifying microstructure quantities such as the RX fraction and the grain
size distribution. The EBSD acquisition setup is as follows. The polished 304L steel
sample section is placed in the SEM with a tilt angle of 70◦ as presented on Fig. 5.17(a).
The electron beam scans the surface of the sample over a regular grid (here square
grid) with a fixed step size. The EBSD detector is a 2D detector that produced an
image of the intensity fluctuations of backscattered electrons (BSE) in space. Those
fluctuations arise from diffraction of the backscattered electrons which fulfil the Bragg
condition with respect to the atomic planes. The diffraction diagram is composed of
bands (each one corresponding to a different diffracting pane) called Kikuchi bands as
presented on Fig. 5.17(b) [204]. The band positions are automatically detected via the
Hough transform of the diagram and the angles between band pairs are measured. Then,
an algorithm is applied to determine the crystallographic orientation that minimizes
the mismatch between the measured band angles and the ones recalculated from the
postulated orientation. The crystal orientation is thus theoretically determined for each
point of the scan grid (actually, experimental data sets present a certain rate of non-
indexed points, most often corresponding to diffraction diagrams of bad quality, along
grain boundaries for example). MTEX toolbox [205] was used for the post-treatment of
all EBSD orientation maps presented in the following.

Electron beam 

Sample 

70° 

EBSD detector 

Kikuchi bands 

(a) (b)
1

Fig. 5.17. (a) Schematic illustration of the EBSD pattern in a SEM and (b) example of
EBSD pattern made of Kikuchi bands [204].

Grain size measurements

In the EBSD map analyses performed in this work, a grain is defined as a cluster of at
least 3 pixels disoriented by less than 10◦. As an illustration, the microstructure of the
304L steel at the initial state is presented on Fig. 5.18(a). Twin boundaries, represented
as red lines on Fig. 5.18(a), are particular boundaries defined by a misorientation of 60◦
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around the crystallographic direction <111> in the considered 304L steel, like in any
FCC material. In the grain detection, twin boundaries are considered as internal grain
defects. Fig. 5.18(b) shows the grain boundary network used to detect grains, therefore
excluding twin boundaries.

The same EBSD map is also shown within an orientation color-coding defined in the
standard triangle on Fig. 5.18(d); the color refers in this case to the crystallographic
direction that is parallel to the scanned section normal (so called Z direction). The ori-
entation data of this map are also shown in the form of pole figures on Fig. 5.18(c).
These pole figures show the stereographic projection of {001}, {110} and {111} plane
normals in the sample frame along the Z direction. The color code is given in ”multiple
of random density” with a maximal value around 1.6, which shows that no dominant
orientation exists in the initial microstructure.

(a) (b) 

(d) 

z 

X 

Y 

(111) 

(110) (001) 

(c) 

[1 11] 

[011] [001] 

X 

Y 

X 

Y 

X 

Y 

MRD 

Fig. 5.18. Microstructure generated from EBSD data with grain boundaries represented
in black color and defined by a minimum disorientation of 10◦. (a) Twin boundaries are
represented in red color, (b) grain boundary network, excluding twin boundaries, (c)
pole figures with color code given in ”multiple of random density”, (d) orientation map
within a color coding showing the crystalline direction parallel to the section normal (Z
direction), defined in the standard triangle.
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The grain size measurement is made by calculating each grain area converted into the
equivalent circle radius by the relationship :

Ri =

√
Si

π
, (5.22)

where Ri and Si are the equivalent circle radius and the grain surface of the ith grain,
respectively. Then, the mean grain size is calculated as :

〈R〉= 1
N

N

∑
i=1

Ri, (5.23)

where N is the number of considered grains. The mean grain size (weighted by grain
surface) 〈R〉surf can also be calculated by the following relationship :

〈R〉surf =
1

Stot

N

∑
i=1

RiSi. (5.24)

The 2D distributions of all grains sizes obtained from EBSD maps at point B after
compression tests on double-cone samples are presented on Fig. 5.19. At this point,
εVM reaches 1.35 at the end of compression tests.
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(b) T=1273K, ε̇VM=0.07s−1, εVM = 1

]0.5;1] ]4.5;5] ]8.5;9] ]12.5;13] ]16.5;17] ]20.5;21]
0

0.1

0.2

0.3

0.4

Grain radius (µm)

N
u
m
b
er

fr
ac
ti
on

(c) T=1273K, ε̇VM=0.014s−1, εVM = 1
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(d) T=1323K, ε̇VM=0.014s−1, εVM = 1
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(e) T=1373K, ε̇VM=0.014s−1, εVM = 1

Fig. 5.19. 2D distributions in number fraction of all grain sizes obtained from EBSD
maps at point B at the end of hot compression tests on the 304L double-cone samples.
The εVM value reaches 1.35 at this point at the end of the compression tests.

Quantification of intra-granular disorientations

The presence of dislocations in strain-hardened grains induces intragranular crystal lat-
tice rotations which can be measured by EBSD if the dislocation density is high enough.
It is worth mentioning here that intragranular misorientations can only be converted into,
or interpreted in terms of, geometrically necessary dislocations (GNDs). The other dis-
locations, so-called statistically stored, have indeed no cumulative effect on the crystal
lattice orientation.
Based on EBSD data, different criteria can be used to quantify intra-granular misorien-
tations, as detailed below.

• The Kernel Average Misorientation (KAM) is defined at each pixel as the mean
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disorientation between this pixel and its neighbors located at a given distance :

KAM(i) =
1
n

n

∑
j=1

θi j, (5.25)

where n is the number of neighbor pixels of i and θi j is the disorientation between
pixels i and j. The neighbor pixels leading to a disorientation grower than 10◦

with the considered pixel are omitted.

The neighborhood choice can be limited to the 1st neighbors as presented on Fig.
5.20 but can also be extended to the 2nd or nth neighbors.

Pixel  

j = 1 

Pixel i 
Pixel  

j = 2 

Pixel  

j = 3 

Pixel  

j = 4 

θij 

Fig. 5.20. 1st neighbor pixels for calculation of KAM.

The major drawback of the KAM parameter is that it highly depends on the mea-
surement step size and on the neighborhood extent.

• The Grain Average Misorientation (GAM) is defined in each grain as the aver-
age disorientation between all pairs of neighbor pixels in the grain :

GAM =
1
N

1
n

N

∑
i=1

n

∑
j=1

θi j, (5.26)

where n is the number of first neighbor pixels of i and N is the number of pixels
in the grain. Thus, the GAM provides information about the grain average GND
density. However, since it is calculated based on the disorientation between ad-
jacent pixels, it depends on the distance between them, i.e. on the measurement
step size, like the KAM.

• The Grain Orientation Spread (GOS) is also used to estimate the GND density
in each grain of the microstructure. This latter is obtained by calculating the
disorientation between each pixel and the mean grain orientation, and then by
averaging all these values :

GOS =
1

N−1
1
N

N

∑
i=1

N

∑
j=1

θi j, i 6= j. (5.27)
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Therefore, the GOS, like the GAM, has a constant value per grain, i.e. is a grain
property. The advantage of this parameter is that it is not dependent on the mea-
surement step size, contrary to the KAM and GAM values.

EBSD maps showing KAM, GAM and GOS values after hot compression to εVM = 1
at T =1273K and ε̇VM=0.07s−1 are presented on Fig. 5.21.

(a) (b) 

(c) 

Fig. 5.21. EBSD maps obtained from a 304L steel sample compressed to εVM=1 at
T =1273K and ε̇VM=0.07s−1. (a) Kernel Average Misorientation map, (b) grain Average
Misorientation map and (c) grain Orientation Spread map. (Units: degrees)
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Fig. 5.22. (a) GOS and (b) GAM distributions issued from an EBSD map whose the set
of thermomechanical conditions is a temperature of 1273K, an equivalent plastic strain
rate equal to 0.07s−1 and an equivalent plastic strain equal to 1 (same EBSD dataset
as on Fig. 5.21).

RX grains have globally a low dislocation density, leading to low intragranular disori-
entation levels, and therefore low GAM and GOS values. Thus, GAM or GOS criteria
introduced previously could generally be used to separate the RX and NR grains. The
GOS and GAM distributions issued from the EBSD map of Fig. 5.21 are plotted on
Fig. 5.22 in order to discuss the choice of GOS or GAM criterion for separating NR
and RX grains. Since two different kinds of grain, RX and NR, are present in the mi-
crostructure, the GOS and GAM distributions should be composed of two modes each
corresponding to RX and NR grain populations. Hence, dissociating the two modes en-
ables to determine the RX and NR area fraction. In the GOS distribution (Fig. 5.22(a)),
the two modes are not clearly depicted and their separation is quite complex. On the
other hand, the GAM distribution (Fig. 5.22(b)) has two distinct modes and a threshold
value around 1◦ can be chosen to distinguish RX from NR grains. In the following, the
GAM criterion will be used to quantify RX fractions.

To further validate the choice of the GAM criterion, GAM distributions at the same
temperature T and equivalent plastic strain rate ε̇VM that used for Fig. 5.22 but at three
different levels of effective plastic strain εVM (0.65, 1 and 1.35) are plotted on Fig. 5.23.
Two grain populations are also clearly observed on Fig. 5.23(c) with a GAM threshold
around 1◦, equal to that identified on Fig. 5.22. On Fig. 5.23(a), the two populations are
nevertheless not clearly visible since the fraction of RX grains is still very low at this
strain. However, since there is no objective reason to choose a different GAM threshold,
the value of 1◦ will also be used for separating the two populations on this map. The
EBSD maps showing the NR and RX grains separated thanks to a GAM threshold of 1◦

are also presented on Fig. 5.23. The GAM criterion will actually be coupled to a grain
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size criterion in order to force the very small grains (with a radius lower than 1.5µm in
this case) to be automatically considered as RX grains.

Strain level 
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Fig. 5.23. Identification of RX grains using a GAM threshold of 1 at three different
values of equivalent plastic strain (a) εVM = 0.6, (b) εVM = 0.95 and (c) εVM = 1.35.

Results

EBSD maps are presented on Fig. 5.24 for each compression test with the RX grains
in green color. The GAM thresholds were identified for each set of thermomechani-
cal conditions and were equal to 1◦(±0.1) for all maps. The RX fraction noted X is
calculated at any εVM value by the relationship :

X =
∑

NRX
i=1 Si

Stot
, (5.28)

where Si is the surface of the ith RX grain, Stot is the total map surface and NRX is the
total number of RX grains.
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Fig. 5.24. Microstructures (EBSD maps) of 304L steel samples compressed at different
temperatures and strain rates to different equivalent plastic strain levels, with RX and
NR grains represented in green and red colors, respectively. (a) εVM = 0.6, (b) εVM =
0.95 and (c) εVM = 1.35.
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By applying Eq. 5.28 on all EBSD maps, the RX fractions were estimated and reported
on Fig. 5.24. Furthermore, RX fractions are also reported as a function of the equivalent
plastic strain on Fig. 5.25(a). At a given level of equivalent plastic strain εVM, the RX
fraction increases when increasing T and decreases with increasing ε̇VM, as expected.
Furthermore, the RX fraction increases with εVM. The 2D mean radius values of RX
grains noted 〈RRX〉 are also reported on Fig. 5.25(b). This quantity 〈RRX〉 increases
with T and decreases with increasing ε̇VM, also as expected. Furthermore, 〈RRX〉 is
almost constant for a given set of thermomechanical conditions, whatever the applied
εVM. A slight increase with strain is only observed at higher temperatures, which can be
explained by a higher mobility of grain boundaries promoting the growth of RX grains.
Finally, the 2D overall mean grain radius noted 〈R〉 are reported on Fig. 5.25(c). This
quantity 〈R〉 increases with T and decreases with increasing ε̇VM. Furthermore, 〈R〉
decreases with increasing εVM, which is consistent with the increase of RX fraction as
seen on Fig. 5.25(a) and the consumption of the large initial grains.
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Fig. 5.25. (a) Recrystallized fraction, (b) 2D mean RX grain radius and (c) 2D overall
mean grain radius measured in 304L microstructures as a function of εVM for different
sets of thermomechanical conditions.
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5.3.2 Identification procedure for δ and Kg

Inverse analysis using the NHM

The Kg parameter accounting for nucleation and the δ parameter accounting for the
dependence of the grain boundary migration on strain rate were identified by inverse
analysis using the NHM based on the microstructure quantities obtained from the EBSD
maps shown above, following the procedure schematized on Fig. 5.26. For each set of
thermomechanical conditions reported in Tab. 5.6 except that at 1323K and 0.014s−1

(kept for the discussion of the NHM after its calibration), K1 and K2 values are first
estimated using Eqs. 5.20 and 5.21. Then, NHM simulations are launched in order to
identify, by inverse analysis, the parameters values Kg and δ that fit best the microstruc-
ture quantities of: RX fraction, 〈R〉surf and 〈RRX〉surf. To be consistent with the NHM
during inverse analysis procedure, 2D mean grain sizes obtained from experimental
data were converted into 3D mean grain sizes using the Saltykov method [206]. Fur-
thermore the overall mean grain sizes and the recrystallized mean grain sizes are here
weighted by grain surface fraction since at the early stage of nucleation, a large number
of very small RX grains appears in the microstructure, which decreases instantaneously
the mean grain sizes to very small values. However, these high numbers of RX grains
only represent a small surface fraction of the total microstructure, therefore to obtain
more representative values of grain sizes and avoid an instantaneous decrease, mean
grain sizes weighted by grain surfaces were used. Finally, it is worth noticing that RX
fractions calculated from EBSD maps are surface fractions and are compared with RX
volume fractions obtained from 3D simulations.

Identified parameter values

The obtained values of δ and Kg identified from all EBSD maps on points A, B and C
are reported in Tab. 5.7. The parameter value δ appears to be only dependent on ε̇VM,
which is quite logical since this latter accounts for the heterogeneity of dislocations
inside grains. Thus to observe the evolution of δ , the values of δ are plotted as a
function of ε̇VM on Fig. 5.27(a). A linear trend is observed with the following equation
:

δ = 17.4× ε̇VM +0.8. (5.29)

The parameter Kg is dependent on both T and ε̇VM, although the effect of temperature
on Kg seems much lower than the effect of strain rate. Kg values increase with increasing
T and ε̇VM, which has a physical sense since nucleation is thermally activated and its
probability increases with the quantity of dislocations. The values of Kg are plotted as
function of Z on Fig. 5.27(b) but a dependence of Kg on Z is not clearly observed.
The main reason is that Z increases with strain rate but decreases with temperature.
To exclude the effect of the dislocation density on the nucleation rate considered in Kg,
values of Kg were subdivided by ε̇VM and were plotted as a function of Z on Fig. 5.27(c).
In this case, a linear dependence can be identified between the ratio Kg/ε̇VM and Z, with
the following equation :

Kg = (−7×10−17×Z +4.2×10−6)× ε̇VM. (5.30)
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Start 

Read thermomechanical conditions: 
(Temperature, strain rate, time...) 

Read material parameters 
    (K1, K2, δ, Kg) 

Read initial microstructure 

NHM 

Compute L2 error between experimental 
and NHM results in terms of : 
<R>surf , <RRX>surf , RX fraction 

Is error minimized ? 

Display δ and Kg  

End 

Update δ and Kg  

Fig. 5.26. Inverse analysis procedure for the identification of the NHM parameters Kg
and δ .
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This equation is used to interpolate values of Kg for any sets of thermomechanical con-
ditions in the considered range (from 1273 to 1373K and 0.01 to 0.1s−1 approximately).

T (K) ε̇VM (s−1) δ Kg (m.s−1)
1273 0.14 3.3 1.8e-7
1273 0.07 2 1.7e-7
1273 0.014 1.2 5e-8
1373 0.014 1 6.3e-8

Tab. 5.7. Values of δ and Kg parameters identified by inverse analysis on microstructure
data using the NHM.
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Fig. 5.27. Representation of (a) the δ parameter as a function of strain rate, (b) the Kg
parameter as a function of the Zener-Hollomon parameter and (c) the ratio Kg/ε̇VM as
a function of the Zener-Hollomon parameter.
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5.4 Comparison between experimental data and results
issued from the NHM after calibration

The ability of the NHM to be fitted on experimental data is investigated in this part.
Therefore the comparison between experimental data and NHM after calibration is pre-
sented on Fig. 5.28. These results are presented in terms of RX fraction, mean grain
radius (weighted by surface), mean RX grain radius (weighted by surface), and macro-
scopic stress. The RX fraction is correctly fitted by the NHM, whatever the set of ther-
momechanical conditions. The comparison of mean grain radius is globally quite good
but is a little bit overestimated by the NHM, except at 1373K where it is underestimated.
Concerning the comparison of mean RX grain radius, results are satisfactory even if is
a little bit underestimated by the NHM. Finally, the true stress evolution of the NHM
is also quite close to the experimental one, even if the decrease in flow stress after the
peak stress at a temperature of 1273K and a strain rate of 0.014s−1 is less pronounced
with the NHM than in experimental data.

The fact that grain sizes are generally overestimated by the NHM can be explained
by the security factor ω=1.5 used in the critical radius formulation (Eq. 3.12), which
consequently increases the RX grain size. Indeed, this security factor is used to ensure
the stability of the nuclei but defines the spatial resolution of the model. In the NHM it
is not necessary since the stability of the nuclei is ensured directly through the critical
size of the grain which respects the Bailey-Hirsch criterion. However, in the full field
model, this security parameter is necessary because the calculation of the local curvature
depends on the mesh size and therefore local curvature may be overestimated sometimes
and the nuclei may shrink. Since both models, full field and the NHM, are built up with
the same equations and parameters, we made the choice to keep this security factor in
both the NHM and full field models since it allows to identify the parameters of full
field model using the NHM while avoiding high calculation time. However, to highlight
the fact that results issued from the NHM are better without using this security factor,
the inverse analysis procedure was repeated with ω=1 and comparisons between the
NHM and experimental data are presented in appendix A (Fig. 1), in terms of averaged
quantities. It is worth noticing that experimental data are correctly fitted by the NHM
without using this security factor (i.e. ω = 1), in particular mean grain sizes issued from
the NHM (Fig. 1 from (c) to (f)) are now close to experimental data.
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Fig. 5.28. Comparison between experimental data and results issued from the NHM
after calibration: (a) and (b) recrystallized fraction, (c) and (d) mean grain radius
(weighted by grain surface), (e) and (f) mean recrystallized grain radius (weighted by
grain surface) and (g) and (h) true stress.
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In order to discuss the NHM after calibration in the considered range of temperatures
and strain rates (1273 to 1373K and 0.01 to 0.1s−1, approximately), experimental data
obtained at T =1323K and ε̇VM=0.014s−1 are compared with the NHM predictions on
Fig. 5.29. The parameters K1 and K2 used in the NHM at this set of thermomechanical
conditions were identified from Eqs. 5.20 and 5.21, respectively, while the parameters
δ and Kg were identified from Eqs. 5.29 and 5.30, respectively. Results predicted by the
NHM are very close to experimental data, in particular for the RX fraction, the overall
mean grain radius and the true stress. Concerning the mean RX grain radius, this latter
is overestimated by the NHM. The reason is mainly due to the consideration of the secu-
rity factor as already explained previously. Globally, these results show the versatility of
the NHM to predict microstructure quantities in the considered range of thermomechan-
ical conditions. In this context, an interesting prospect would be to perform additional
compression tests out of the considered range of thermomechanical conditions, in order
to investigate whether Eqs. 5.20, 5.21, 5.29 and 5.30 can be used to extrapolate the four
model parameters.
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Fig. 5.29. Comparison between experimental data and the NHM predictions at
T =1323K and ε̇VM=0.014s−1 in terms of (a) recrystallized fraction, (b) mean grain
radius (weighted by grain surface), (c) mean recrystallized grain radius (weighted by
grain surface) and (d) true stress.
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5.5 Comparison between experimental data and results
issued from the NHM and the full field model after
calibration

The comparison between experimental data and results issued from by the NHM and
the full field model after calibration is presented on Fig. 5.30 for two sets of thermo-
mechanical conditions: T1=1273K; ε̇1=0.14s−1 and T2=1373K; ε̇2=0.014s−1. Results
are presented in terms of (a) RX fraction, (b) overall mean grain radius (weighted by
grain surface), (c) mean RX grain radius (weighted by grain surface) and (d) true stress.
Results issued from the NHM are close to those of the full field model. These results
are interesting because they prove the consistency of both models, which means that the
NHM can be used to identify with short computation times the full field model parame-
ters.
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Fig. 5.30. Comparisons between experimental data (dots) and those issued from the
NHM (dashed lines) and the full field model (full lines) after calibration. (a) recrystal-
lized fraction, (b) mean grain radius (weighted by grain surface), (c) mean recrystal-
lized grain radius (weighted by grain surface) and (c) true stress.

2D grain size distributions issued from the NHM and the full field model after calibra-
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tion are also presented and compared to the experimental ones, for the two same sets of
thermomechanical conditions: (T =1273K ; ε̇VM=0.14s−1) on Fig. 5.31 and (T =1373K
; ε̇VM=0.014s−1) on Fig. 5.32. All distributions are presented for three levels of equiv-
alent plastic strain: (a) εVM=0.65, (b) εVM=1 and (c) εVM=1.35. Since the NHM con-
siders 3D grains and an implicit microstructure, the inverse Saltykov method was used
to transform 3D distributions into 2D distributions. In the case of the full field model,
grains are also in 3D but the microstructure is explicit, therefore ten slices were ex-
tracted from the RVE and a 2D grain size distribution was built-up from each slice.
Then the ten obtained 2D distributions were cumulated to obtain a 2D global distribu-
tion, as presented on Fig. 5.33 from (a) to (c).

The grain size distributions issued from the NHM are close to those of the full field
model, which confirms the conclusions of chapter 4. However, some differences remain
between the distributions issued from both models and the experimental ones. Small
grains are always more numerous in experimental distributions compared to those from
the models. This is due to the fact that in models, nuclei are inserted with a critical radius
to make sure they survive whereas in experimental microstructures, a large number of
very small RX grains is observed, a certain part of those grows and another disappears.
This defines the spatial resolution of the models. Several alternatives may be tested to
improve the spatial resolution of the NHM. For example one could consider a higher
nucleation rate with a distribution of the nuclei size for which only part of them would
survive because of capillarity forces, as used by Cram et al. [70]. Another possibility
would be to omit the capillarity term exerted on nuclei in Eq. 4.13 in order to insert
them with a very small size, the capillarity term being added later on each nucleus that
reached the critical size. Finally, although in this work we chose to keep coherency
between the full field and NHM models by keeping the same equations and the same
parameters in both models, another alternative would be to decrease nuclei size in the
NHM by using a security factor values ω = 1 instead of 1.5. The grain size distributions
issued from the NHM when using the two different security factors ω = 1 and ω = 1.5 are
presented and compared to experimental ones in appendices B and C for two different
sets of thermomechanical conditions (Fig. 2 and 3). The NHM results are better when
using a security factor ω = 1, in particular at T =1373K and ε̇VM = 0.014s−1. Globally,
it is worth noticing that grain size distributions issued from the NHM have a realistic
shape, which is a major novelty compared to pre-existing mean field models [48–50].
Decreasing nuclei size in full field simulations is more complex because it leads to
a decrease in mesh size and an increase in calculation time. Therefore an additional
prospect would be to improve the consideration of nuclei in full field models.
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Fig. 5.31. Comparison between experimental 2D grain size distributions and those
issued from the NHM and the full field models at different values of equivalent plastic
strain of (a) εVM = 0.65, (b) εVM = 1 and (c) εVM = 1.35 applied at T=1273K and
ε̇VM=0.14s−1.
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Fig. 5.32. Comparison between experimental 2D grain size distributions and those
issued from the NHM and the full field models at different values of equivalent plastic
strain of (a) εVM = 0.65, (b) εVM = 1 and (c) εVM = 1.35 applied at T=1373K and
ε̇VM=0.014s−1.
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Finally, different slices were extracted from the 3D full field simulation RVEs at differ-
ent εVM and are compared to EBSD maps on Fig. 5.33. The microstructures obtained
by full field simulations are presented from (a) to (c) while the experimental ones are
presented from (d) to (f). This kind of comparison is rare in the state of the art and
only averaged quantities are generally compared. However, the major advantage of
such comparisons is to figure out which should be the next model improvements for a
still better prediction of microstructure mechanisms occurring during and after defor-
mation. For instance, the RX grain size is uniform in the simulated microstructures ((a)
to (c)) contrary to experimental microstructures. This limitation can be explained by
the fact that all nuclei are inserted in simulations with the same initial size given by the
Bailey-Hirsch condition. Another reason can be related to the fact that many nuclei are
inserted simultaneously at each time increment in simulations, which can slow down
their growth. The recrystallized grain shape is much more tortuous in experimental mi-
crostructures whereas more regular shapes are obtained with simulations. This arises
from the assumption of uniform grain boundary energies and mobilities as well as the
consideration of a uniform average dislocation density in each grain in the full field
model. Despite those remarks, the comparison is quite satisfactory, and it shows the
capacity of full field models to predicted realistic microstructures.
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(a) Full field, εVM = 0.65 (d) Experimental, εVM = 0.65

(b) Full field, εVM = 1 (e) Experimental, εVM = 1

(c) Full field, εVM = 1.35 (f) Experimental, εVM = 1.35
1

Fig. 5.33. Comparisons between 2D microstructures obtained by slicing 3D full field
simulations ((a) to (c)) and 2D experimental microstructures ((d) to (f)) obtained after
compression tests at T =1273K and ε̇VM=0.014s−1.
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Summary
In this chapter, different compression tests were performed on 304L steel samples at
high temperatures and different strain rates. The flow behavior of the alloy, more pre-
cisely the stress-strain curves, were first obtained for different sets of thermomechanical
conditions (T, ε̇). Then using these stress-strain curves, the model parameters of strain
hardening K1 and dynamic recovery K2 were identified at different temperatures and
strain rates. Those values were correlated to the thermomechanical conditions to iden-
tify laws allowing for further interpolating these two parameters at any temperature and
strain rate in the considered range (from 1273 to 1373K and 0.01 to 0.1s−1, approxi-
mately) of thermomechanical conditions. Furthermore, the evolution of the K1 and K2
parameters with strain rate and temperature is in agreement with physical interpreta-
tions: strain hardening increases with strain rate while dynamic recovery increases with
increasing temperature or decreasing strain rate.

Then the microstructures of the 304L steel samples submitted to the various thermome-
chanical conditions were characterized using the EBSD technique. Orientation maps
were quantitatively analysed to get recrystallized fractions, mean grain sizes and grain
size distributions. In parallel, the compression tests were simulated using the FORGE R©
finite element software to identify the exact local thermomechanical conditions corre-
sponding to each map location in the samples.

Then these microstructure quantities were used to identify the two other model parame-
ters, i.e. nucleation parameter Kg and parameter related to the strain rate dependence of
boundary migration δ . This identification is made by inverse analysis using the NHM.
It is worth reminding that both the full field model and the NHM are based on the same
constitutive equations and consequently have the four same model parameters. Thus
parameters can be identified very quickly by inverse analysis using the NHM and then
be used in either the full field model or the NHM for DRX simulations.

After identification of all four parameters, the same simulations were performed using
the NHM and full field models and the results were compared to experimental data. A
good agreement was obtained between both models and between simulated results and
experimental data. 2D slices were also taken out from 3D full field simulations and
compared to experimental EBSD maps. Results are quite promising even though some
improvements, such as the consideration of non-uniform grain boundary energy and
mobility, or the consideration of non-uniform stored energy intragranular fields could
help getting more realistic topologies. Using crystal plasticity calculations is the most
obvious way to account for intragranular heterogeneities, but would be quite expensive
from the computation time point of view.
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Chapter 6

Conclusions and prospects

Context
This work was dedicated to the development of new approaches for modeling dynamic
and post-dynamic recrystallization in three-dimensions, at large deformations and with
relatively low computational costs. A huge number of models already exists in the
state of the art, at three different main scales: phenomenological laws aiming to predict
averaged quantities, mean field models which are based on an implicit description of
microstructures and full field models which explicitly describe microstructures. Each
of these modeling scales has its own advantages and drawbacks and should be used
depending on the requirements. For instance thanks to their low computational costs,
phenomenological laws as well as mean field models can easily be coupled to a finite
element software in order to predict averaged quantities (e.g. mean grain size, recrys-
tallized fraction) on an entire forged part. On the other hand, full field simulations
generally lead to prohibitive computational costs, which do not allow them to be cou-
pled with finite element software. However, since full field models are based on an
implicit description of the microstructure, they are useful to study local phenomena.

The DIGIMU R© software package is developed and commercialized by the Transvalor
company in collaboration with the CEMEF research center. This software is based on a
full field approach aiming to predict microstructure evolutions occurring during metal-
lic material processing. More particularly, this software uses the Level-Set method in
a finite element context. Even if this formalism is not the most rapid among all full
field approaches, it has the major advantage of being versatile, therefore it can describe
all microstructure mechanisms in a single and robust numerical framework. Further-
more, since this formalism is based on an implicit description of grain boundaries, it
can describe three-dimensional complex geometries all along processes, even at large
deformations. The DIGIMU R© software package version pre-existing to this PhD work
was able to handle only the mechanisms of grain growth and static recrystallization, and
was limited to two-dimensional simulations.
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Achievements
The first part of this study was dedicated to the improvement of two analytical grain
growth models thanks to full field simulations. Existing analytical models for grain
growth presented a good ability to predict microstructure evolutions in the steady-state
grain growth regime. However, the transient regime is generally neglected in these
models, but this regime can be primordial within an industrial context. The transient
regime mainly depends on the characteristics of the initial grain size distribution. There-
fore, full field grain growth simulations were performed considering different initial
grain size distributions to investigate the ability of the classical Hillert/Abbruzzese and
Burke & Turnbull analytical models to reproduce results in the transient regime. The
Hillert/Abbruzzese model showed a good ability to describe microstructure evolutions
during grain growth, whatever the initial grain size distribution. However, a fitting pa-
rameter of the grain boundary migration equation was recalibrated to be even closer
to full field results. The Burke & Turnbull model was not able to model correctly mi-
crostructure evolutions during the transient regime, whatever the initial grain size dis-
tribution. Therefore, a new Burke & Turnbull formulation was proposed, taking the
characteristics of the initial grain size distributions into account. This new Burke &
Turnbull formulation showed a good ability to model microstructure evolutions during
the transient regime, for any log-normal initial grain size distribution.

After showing the efficiency of using full field simulations to improve analytical mod-
els of grain growth, the focus was placed on full field modeling of dynamic and post-
dynamic recrystallization which are more complex phenomena involving plasticity and
stored energy driving forces. Three main criteria must be fulfilled: the new full field
model must be able to run in three-dimensions, must provide low computational costs
(necessary for an industrial use) and must be able to handle large deformations represen-
tative of industrial processes. Several conclusions were drawn from a large review of the
existing full field approaches for dynamic and post-dynamic recrystallization. Phase-
Field and Level-Set methods showed a good ability to model three-dimensional complex
geometries even et large deformation when coupling with a good meshing/remeshing
tool, which explains our choice of the Level-Set method. Some authors coupled the
Level-Set or Phase-Field method with fast Fourier transform to perform large scale
simulations in relatively low computational costs. However, the use of fast Fourier
transform also requires regular grids, thus limiting the maximal deformation that can be
reached. Therefore, after this review, the Level-Set method in a finite element frame-
work appeared to be a justified choice for modeling of dynamic and post-dynamic re-
crystallization in three-dimensions. Many models are coupled to a crystal plasticity al-
gorithm for modeling of strain hardening and dynamic recovery mechanisms appearing
during deformation. However, since the use of crystal plasticity still leads to prohibitive
computational costs and is not straightforward to implement, we preferred to start with
phenomenological laws for describing the dislocation density evolution in our model.

The full field modeling of dynamic and post-dynamic recrystallization is really interest-
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ing, in particular for the investigation of particular configurations such as heterogeneity
of grain sizes, solicitations directions and heterogeneity of stored energy. Although a
large number of improvements made in previous studies enables to perform full field
simulations of dynamic and post-dynamic recrystallization within few hours using the
Level-Set method in a finite element framework, computational costs are still too high
to predict microstructure evolutions on an entire forged part. Therefore, mean field ap-
proaches appear as a good compromise between full field models and phenomenological
laws. However, existing mean field models were still based on many assumptions that
need to be tackled. In the fourth chapter, a new mean field approach called ”NHM” for
NeighborHood Model was proposed for modeling of dynamic and post-dynamic recrys-
tallization. This approach tackles some assumptions of pre-existing mean field models
by achieving two major improvements; this was done with the help of full field simula-
tions. The two major improvements are: the consideration of a particular neighborhood
for each grain and the consideration of the grain shape evolution from spherical to ellip-
soidal one during deformation. Another major advantage is related to the fact that both
the full field model and the NHM proposed in this work are based on the same consti-
tutive equations for strain hardening, recovery and nucleation of recrystallized grains.
Therefore, the same model parameters are considered and the NHM can be used to iden-
tify the model parameters very quickly by inverse analysis, parameters that can then be
used either in the NHM or in the full field model.

The last chapter is dedicated to the calibration of the NHM and the full field model.
Jonas [197] already proposed a method for the identification of the strain hardening K1
and dynamic recovery K2 parameters based on the analysis of stress-strain curves, be-
tween the yield stress and the onset of dynamic recrystallization. However, this method
is more or less accurate depending on the quality of the experimental curve. Further-
more, no method existed concerning the identification of the two other parameters δ
(dependence of the grain boundary migration on strain rate) and Kg (nucleation) since
these two are related to our models. Therefore, a new calibration procedure was pro-
posed to identify all four model parameters based on compression tests performed on
304L steel samples. The identification of K1 and K2 is based on the analysis of stress-
strain curves using the Jonas method coupled to an inverse analysis algorithm. Then
the identification of δ and Kg is made by inverse analysis using the NHM and based on
experimental microstructure quantities. After calibration, results issued from both the
full field model and the NHM were compared together and to experimental data in terms
of averaged quantities and grain size distributions. Results demonstrate a good ability
of both models to fit and predict experimental data in the considered range of ther-
momechanical conditions. Two-dimensional sections extracted from the representative
elementary volumes of full field simulations also show reasonable agreement with ex-
perimental electron backscatter diffraction maps, even though this comparison showed
that some model improvements are still necessary to get more realistic recrystallized
grain shapes and grain size distributions.
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Prospects
A major prospect is the coupling of the full field model proposed in this work with a
crystal plasticity algorithm. Simulation results considering crystal plasticity could be
compared to those obtained with the actual full field model to investigate the assump-
tion/simplification related to the use of phenomenological laws for strain hardening and
dynamic recovery. Previous studies [207] as well as an ongoing PhD work [208] at
CEMEF aim at developing a robust framework for this coupling. Such implementation
is not straightforward and many aspects need to be discussed on this topic. Indeed in
the actual full field model, the stored energy is averaged per grain, therefore the jump
in stored energy is easily computed at grain boundaries. When using a crystal plasticity
algorithm, a local stored energy is obtained at every mesh element (or mesh node in
the P1 formulation). Then to calculate the jump in stored energy across the boundary,
this energy can be either averaged per grain as considered in the actual model or av-
eraged per boundary, which is supposed to be the more accurate. However, averaging
per boundary raises several questions, in particular to compute jump in stored energy at
triple junctions. A recent paper discussed this topic [155]. Other questions such as the
attribution of a particular orientation to nuclei were also discussed in [207] but need to
be further improved according to the state of the art.

Despite of large improvements made to accelerate the full field simulations, a major part
of process time is lost into the reinitialization procedure as well as in solving transport
equations. An interesting prospect would probably be to develop an hydride method
between Level-Set and Vertex approaches. Nodes would then be considered on grain
boundaries and multiple junctions as in the Vertex method, while Level-Set functions
would be considered to manage physical fields and grain boundary migration. An on-
going PhD work [209] at CEMEF aims to implement this hydride method. This aspect
could potentially limit drastically the numerical cost of a classical non-conform Level-
Set finite element strategy by increasing the resolution precision while avoiding local
remeshing. An illustration of this hybrid method in two-dimensions is represented on
Fig. 6.1 with a velocity field accounting for capillarity effects (i.e. which depends on
the grain boundary curvatures).
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Fig. 6.1. Illustration of the hybrid method in 2D, by coupling Level-Set and Vertex
approaches, as considered in the PhD work of Florez [209] at CEMEF. Velocity field is
represented by blue arrows at every node of grain boundaries.

In most of mean field models for dynamic and post-dynamic recrystallization, grains are
defined by an equivalent sphere radius and averaged dislocation density. In this work,
a first step was reached with the NHM where three semi-axes of ellipsoid grains and a
particular neighborhood were additionally considered per grain, which considerably re-
fines results. A next improvement in the NHM would be to consider a crystallographic
texture, for instance by considering a Taylor factor per grain. Based on such factor, it
would be possible to make each grain harden differently during deformation. Another
perspective would also be to consider a sub-grains population per grain, aiming to model
for instance bulk nucleation. In this context, the work of Cram and Zurob [70] is very
interesting and could be used as a first step in this prospect.

Finally many prospects concern experimental investigations. Comparisons between the
NHM, the full field model and experimental data were made at the end of chapter 5
after calibration of the two models and comparison was good in the considered range
of thermomechanical conditions. For the sake of an industrial use, additional tests out-
side the considered range of conditions would be beneficial to also enlarge the validity
range of the laws describing the dependence of the model parameters on thermome-
chanical conditions. Furthermore, calibration and comparison were only performed for
the dynamic recrystallization regime since no tests were performed with a post-dynamic
holding time during this PhD work. A prospect would be then naturally to perform post-
dynamic tests and propose a calibration method to identify the static recovery parameter
Ks.
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Appendix A: Influence of the safety fac-
tor on averaged quantities
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Fig. 1. Comparison between experimental data (dots) and NHM predictions after cali-
bration using two different safety factor values for nucleus size: ω = 1 (full lines) and
ω = 1.5 (dashed lines). Results are presented in terms of: (a) and (b) recrystallized
fraction, (c) and (d) mean grain radius (weighted by grain surface), (e) and (f) mean
recrystallized grain radius (weighted by grain surface) and (g) and (h) true stress.



Appendix B: Influence of the safety fac-
tor on grain size distributions
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Fig. 2. Comparison between 2D grain size distributions from experimental tests and
those predicted by NHM after calibration using two different safety factor values for
nucleus size: ω = 1 and ω = 1.5. Results are presented at three different equivalent
plastic strain: (a) εVM = 0.65, (b) εVM = 1 and (c) εVM = 1.35. The corresponding set
of thermomechanical conditions is T=1373K and ε̇VM=0.014s−1.



Appendix C: Influence of the safety fac-
tor on grain size distributions
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Fig. 3. Comparison between 2D grain size distributions from experimental tests and
those predicted by NHM after calibration using two different safety factor values for
nucleus size: ω = 1 and ω = 1.5. Results are presented at three different equivalent
plastic strain: (a) εVM = 0.65, (b) εVM = 1 and (c) εVM = 1.35. The corresponding set
of thermomechanical conditions is T=1273K and ε̇VM=0.14s−1.
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[67] K. Lücke, R. Brandt, G. Abbruzzese, Normal and Abnormal Grain Growth as
Transient Phenomena, Tech. rep. (1998).
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[144] A. Agnoli, N. Bozzolo, R. E. Logé, J.-M. Franchet, J. Laigo, M. Bernacki,
Development of a level set methodology to simulate grain growth in the pres-
ence of real secondary phase particles and stored energy Application to a
nickel-base superalloy, Computational Materials Science 89 (2014) 233–241.
doi:10.1016/j.commatsci.2014.03.054.

[145] L. Madej, Digital/virtual microstructures in application to metals engineering A
review, Archives of Civil and Mechanical Engineering 17 (4) (2017) 839–854.
doi:10.1016/J.ACME.2017.03.002.

[146] M. Shakoor, B. Scholtes, P.-O. Bouchard, M. Bernacki, An efficient and parallel
level set reinitialization method Application to micromechanics and microstruc-
tural evolutions, Applied Mathematical Modelling 39 (23-24) (2015) 7291–7302.
doi:10.1016/j.apm.2015.03.014.

[147] M. A. Groeber, M. A. Jackson, DREAM.3D: A Digital Representation Environ-
ment for the Analysis of Microstructure in 3D, Integrating Materials and Manu-
facturing Innovation 3 (1) (2014) 5. doi:10.1186/2193-9772-3-5.

[148] S. Dancette, A. Browet, G. Martin, M. Willemet, L. Delannay, Automatic pro-
cessing of an orientation map into a finite element mesh that conforms to grain
boundaries Related content Automatic processing of an orientation map into a
finite element mesh that conforms to grain boundaries, Modelling Simul. Mater.
Sci. Eng 24 (2016) 55014–55028. doi:10.1088/0965-0393/24/5/055014.

[149] M. S. Wu, J. Guo, Analysis of a Sector Crack in a Three-Dimensional Voronoi
Polycrystal With Microstructural Stresses, Journal of Applied Mechanics 67 (1)
(2000) 50. doi:10.1115/1.321151.

202

http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://dx.doi.org/10.1016/j.jcp.2009.07.020
http://stacks.iop.org/0965-0393/25/i=8/a=084002?key=crossref.7b10358b1260b7dd657f45f41186536e
http://stacks.iop.org/0965-0393/25/i=8/a=084002?key=crossref.7b10358b1260b7dd657f45f41186536e
http://dx.doi.org/10.1088/1361-651X/aa8676
http://dx.doi.org/10.1088/1361-651X/aa8676
http://linkinghub.elsevier.com/retrieve/pii/S0021999184711053
http://linkinghub.elsevier.com/retrieve/pii/S0021999184711053
http://dx.doi.org/10.1006/jcph.1994.1105
http://dx.doi.org/10.1006/jcph.1994.1105
https://www.sciencedirect.com/science/article/pii/S0927025616302142
https://www.sciencedirect.com/science/article/pii/S0927025616302142
http://dx.doi.org/10.1016/J.COMMATSCI.2016.04.045
http://linkinghub.elsevier.com/retrieve/pii/S0927025614002158
http://linkinghub.elsevier.com/retrieve/pii/S0927025614002158
http://linkinghub.elsevier.com/retrieve/pii/S0927025614002158
http://dx.doi.org/10.1016/j.commatsci.2014.03.054
https://www.sciencedirect.com/science/article/pii/S1644966517300328
https://www.sciencedirect.com/science/article/pii/S1644966517300328
http://dx.doi.org/10.1016/J.ACME.2017.03.002
http://linkinghub.elsevier.com/retrieve/pii/S0307904X15001638
http://linkinghub.elsevier.com/retrieve/pii/S0307904X15001638
http://linkinghub.elsevier.com/retrieve/pii/S0307904X15001638
http://dx.doi.org/10.1016/j.apm.2015.03.014
http://link.springer.com/10.1186/2193-9772-3-5
http://link.springer.com/10.1186/2193-9772-3-5
http://dx.doi.org/10.1186/2193-9772-3-5
http://iopscience.iop.org/article/10.1088/0965-0393/24/5/055014/pdf
http://iopscience.iop.org/article/10.1088/0965-0393/24/5/055014/pdf
http://iopscience.iop.org/article/10.1088/0965-0393/24/5/055014/pdf
http://iopscience.iop.org/article/10.1088/0965-0393/24/5/055014/pdf
http://dx.doi.org/10.1088/0965-0393/24/5/055014
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1413944
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1413944
http://dx.doi.org/10.1115/1.321151


BIBLIOGRAPHY

[150] R. Quey, P. Dawson, F. Barbe, Large-scale 3D random polycrystals for the fi-
nite element method: Generation, meshing and remeshing, Computer Meth-
ods in Applied Mechanics and Engineering 200 (17-20) (2011) 1729–1745.
doi:10.1016/j.cma.2011.01.002.

[151] K. Hitti, P. Laure, T. Coupez, L. Silva, M. Bernacki, Precise generation of com-
plex statistical Representative Volume Elements (RVEs) in a finite element con-
text, Computational Materials Science 61 (2012) 224–238. doi:10.1016/j.

commatsci.2012.04.011.

[152] Z. Fan, Y. Wu, X. Zhao, Y. Lu, Simulation of polycrystalline structure with
Voronoi diagram in Laguerre geometry based on random closed packing of
spheres, Computational Materials Science 29 (3) (2004) 301–308. doi:10.

1016/j.commatsci.2003.10.006.

[153] H. Telley, T. M. Liebling, A. Mocellin, The Laguerre model of grain growth
in two dimensions I. Cellular structures viewed as dynamical Laguerre tes-
sellations, Philosophical Magazine B 73 (3) (1996) 395–408. doi:10.1080/

13642819608239125.

[154] B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, M. Bernacki,
New finite element developments for the full field modeling of microstructural
evolutions using the level-set method, Computational Materials Science 109
(2015) 388–398. doi:10.1016/J.COMMATSCI.2015.07.042.

[155] D. N. Ilin, N. Bozzolo, T. Toulorge, M. Bernacki, Full field modeling of re-
crystallization: Effect of intragranular strain gradients on grain boundary shape
and kinetics, Computational Materials Science 150 (April) (2018) 149–161.
doi:10.1016/j.commatsci.2018.03.063.

[156] M. Zouari, R. E. Loge, O. Beltran, S. Rousselle, N. Bozzolo, Multipass forg-
ing of Inconel 718 in the delta-Supersolvus domain: assessing and model-
ing microstructure evolution, in: EUROSUPERALLOYS, Giens, France, 2014.
doi:10.1051/matecconf/20141412001.

[157] M. Elsey, S. Esedoglu, P. Smereka, Large-scale simulation of normal grain
growth via diffusion-generated motion, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 467 (2126) (2011) 381–401.
doi:10.1098/rspa.2010.0194.

[158] A. L. Cruz Fabiano, Modelling of crystal plasticity and grain boundary migration
of 304L steel at the mesoscopic scale, Ph.D. thesis, Mines ParisTech (2014).

[159] A. Agnoli, Origin of inhomogeneous grain growth in Inconel 718 forgings, Ph.D.
thesis, Mines ParisTech (2013).

203

http://linkinghub.elsevier.com/retrieve/pii/S004578251100003X
http://linkinghub.elsevier.com/retrieve/pii/S004578251100003X
http://dx.doi.org/10.1016/j.cma.2011.01.002
http://dx.doi.org/10.1016/j.commatsci.2012.04.011
http://dx.doi.org/10.1016/j.commatsci.2012.04.011
http://dx.doi.org/10.1016/j.commatsci.2012.04.011
http://dx.doi.org/10.1016/j.commatsci.2012.04.011
http://dx.doi.org/10.1016/j.commatsci.2012.04.011
http://linkinghub.elsevier.com/retrieve/pii/S0927025603002209
http://linkinghub.elsevier.com/retrieve/pii/S0927025603002209
http://linkinghub.elsevier.com/retrieve/pii/S0927025603002209
http://dx.doi.org/10.1016/j.commatsci.2003.10.006
http://dx.doi.org/10.1016/j.commatsci.2003.10.006
https://www.tandfonline.com/doi/full/10.1080/13642819608239125
https://www.tandfonline.com/doi/full/10.1080/13642819608239125
https://www.tandfonline.com/doi/full/10.1080/13642819608239125
http://dx.doi.org/10.1080/13642819608239125
http://dx.doi.org/10.1080/13642819608239125
https://www.sciencedirect.com/science/article/pii/S0927025615004528
https://www.sciencedirect.com/science/article/pii/S0927025615004528
http://dx.doi.org/10.1016/J.COMMATSCI.2015.07.042
http://dx.doi.org/10.1016/j.commatsci.2018.03.063
http://www.matec-conferences.org/10.1051/matecconf/20141412001
http://www.matec-conferences.org/10.1051/matecconf/20141412001
http://www.matec-conferences.org/10.1051/matecconf/20141412001
http://dx.doi.org/10.1051/matecconf/20141412001
http://dx.doi.org/10.1098/rspa.2010.0194
https://pastel.archives-ouvertes.fr/pastel-01069080
https://pastel.archives-ouvertes.fr/pastel-01069080


BIBLIOGRAPHY

[160] Y. Jin, B. Lin, M. Bernacki, G. Rohrer, A. Rollett, N. Bozzolo, Annealing twin
development during recrystallization and grain growth in pure nickel, Materials
Science and Engineering: A 597 (2014) 295–303. doi:10.1016/j.msea.2014.
01.018.

[161] S. Florez, Progress report: A new FE framework for the modeling of complex
moving interfaces, Tech. rep., MINES ParisTech (CEMEF) (2018).

[162] M. Fatima Vaz, M. Fortes, Grain size distribution: The lognormal and the gamma
distribution functions, Scripta Metallurgica 22 (1) (1988) 35–40. doi:10.1016/
S0036-9748(88)80302-8.

[163] B. Raeisinia, C. W. Sinclair, A representative grain size for the mechanical re-
sponse of polycrystals, Materials Science and Engineering A 525 (1-2) (2009)
78–82. doi:10.1016/j.msea.2009.06.045.

[164] T. Luther, C. Könke, Polycrystal models for the analysis of intergranular crack
growth in metallic materials, Engineering Fracture Mechanics 76 (15) (2009)
2332–2343. doi:10.1016/j.engfracmech.2009.07.006.

[165] J. K. Mason, E. A. Lazar, R. D. MacPherson, D. J. Srolovitz, Geometric and topo-
logical properties of the canonical grain-growth microstructure, Physical Review
E 92 (6) (2015) 063308. doi:10.1103/PhysRevE.92.063308.

[166] Y. Suwa, Y. Saito, H. Onodera, Parallel Computer Simulation of Three-
Dimensional Grain Growth Using the Multi-Phase-Field Model, Materials Trans-
actions 49 (4) (2008) 704–709. doi:10.2320/matertrans.MRA2007225.

[167] S. G. Kim, D. I. Kim, W. T. Kim, Y. B. Park, Computer simulations of two-
dimensional and three-dimensional ideal grain growth, Physical Review E 74 (6)
(2006) 061605. doi:10.1103/PhysRevE.74.061605.

[168] A. Baskaran, D. Crist, D. Lewis, Effect of initial variance of microstructures
on grain growth under mean curvature, Modelling and Simulation in Materials
Science and Engineering 25 (6) (2017) 065010. doi:10.1088/1361-651X/

aa763c.

[169] E. Miyoshi, T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, T. Aoki,
Ultra-large-scale phase-field simulation study of ideal grain growth, npj Compu-
tational Materials 3 (1) (2017) 25. doi:10.1038/s41524-017-0029-8.

[170] M. El Wahabi, J. Cabrera, J. Prado, Hot working of two AISI 304 steels: a com-
parative study, Materials Science and Engineering: A 343 (1-2) (2003) 116–125.
doi:10.1016/S0921-5093(02)00357-X.

[171] R. Darvishi Kamachali, I. Steinbach, 3-D phase-field simulation of grain growth:
Topological analysis versus mean-field approximations, Acta Materialia 60 (6-7)
(2012) 2719–2728. doi:10.1016/j.actamat.2012.01.037.

204

http://linkinghub.elsevier.com/retrieve/pii/S0921509314000392
http://linkinghub.elsevier.com/retrieve/pii/S0921509314000392
http://dx.doi.org/10.1016/j.msea.2014.01.018
http://dx.doi.org/10.1016/j.msea.2014.01.018
https://www.sciencedirect.com/science/article/pii/S0036974888803028
https://www.sciencedirect.com/science/article/pii/S0036974888803028
http://dx.doi.org/10.1016/S0036-9748(88)80302-8
http://dx.doi.org/10.1016/S0036-9748(88)80302-8
http://dx.doi.org/10.1016/j.msea.2009.06.045
http://dx.doi.org/10.1016/j.engfracmech.2009.07.006
http://dx.doi.org/10.1016/j.engfracmech.2009.07.006
http://dx.doi.org/10.1016/j.engfracmech.2009.07.006
https://link.aps.org/doi/10.1103/PhysRevE.92.063308
https://link.aps.org/doi/10.1103/PhysRevE.92.063308
http://dx.doi.org/10.1103/PhysRevE.92.063308
http://dx.doi.org/10.2320/matertrans.MRA2007225
https://link.aps.org/doi/10.1103/PhysRevE.74.061605
https://link.aps.org/doi/10.1103/PhysRevE.74.061605
http://dx.doi.org/10.1103/PhysRevE.74.061605
http://stacks.iop.org/0965-0393/25/i=6/a=065010?key=crossref.fac50653ba5bc8ea3e3ebd3035cf2c03
http://stacks.iop.org/0965-0393/25/i=6/a=065010?key=crossref.fac50653ba5bc8ea3e3ebd3035cf2c03
http://dx.doi.org/10.1088/1361-651X/aa763c
http://dx.doi.org/10.1088/1361-651X/aa763c
http://www.nature.com/articles/s41524-017-0029-8
http://dx.doi.org/10.1038/s41524-017-0029-8
http://www.sciencedirect.com/science/article/pii/S092150930200357X
http://www.sciencedirect.com/science/article/pii/S092150930200357X
http://dx.doi.org/10.1016/S0921-5093(02)00357-X
http://dx.doi.org/10.1016/j.actamat.2012.01.037
http://dx.doi.org/10.1016/j.actamat.2012.01.037
http://dx.doi.org/10.1016/j.actamat.2012.01.037


BIBLIOGRAPHY

[172] N. Petch, The cleavage strength of polycrystals, The Journal of the Iron and Steel
Institute 174 (1953) 25–28.

[173] L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino Muñoz, M. Bernacki,
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Résumé 
 

Les propriétés finales des alliages 

métalliques sont directement liées à la 

microstructure de fin de mise en forme. Les 

mécanismes de recristallisation dynamique 

(DRX) et post-dynamique (PDRX) jouent un 

rôle important sur les évolutions 

microstructurales intervenant pendant et 

après les étapes de déformation à chaud. 

Dans ce contexte, un défi majeur pour les 

industriels et les chercheurs est de prédire la 

microstructure obtenue en fonction des 

conditions de mise en forme. Cela implique 

de bien connaître les mécanismes de DRX et 

PDRX et leur cinétique. 

 

Les modèles en champ complet permettent 

de modéliser explicitement la microstructure 

des alliages métalliques et ses possibles  

évolutions à l’échelle du polycristal. Ces 

modèles sont précis comparativement aux 

modèles œuvrant aux plus grandes échelles, 

mais ils sont généralement très couteux en 

termes de temps de calcul. Les modèles à 

champ moyen sont quant à eux basés sur 

une description implicite de la microstructure, 

conduisant à des temps de calcul 

considérablement réduits, mais ils reposent 

sur un grand nombre d’hypothèses, 

notamment topologiques. 

 

Cette thèse propose un nouveau modèle 

champ complet de DRX/PDRX et croissance 

de grains, capable de fonctionner en 2D 

comme en 3D, et une nouvelle approche en 

champ moyen, s'appuyant sur ces simulations 

en champ complet. La nouvelle approche 

champ moyen prend notamment mieux en 

compte les effets topologiques pour une 

meilleure prédiction des distributions de 

tailles de grains. Ce travail inclut une 

procédure de calibration et une validation des 

deux modèles s'appuyant sur une campagne 

d’essais expérimentaux sur un acier 

austénitique 304L. 

 

Mots Clés 

Modèle en champ complet, modèle en champ 

moyen, level-set, recristallisation, métallurgie 

numérique, acier 304L 

 

 

Abstract 
 

Final properties of metal alloys are directly 

related to their microstructure, inherited from 

the processing route. Dynamic (DRX) and 

post-dynamic recrystallization (PDRX) 

mechanisms play a primordial role in 

microstructure evolutions occurring during 

and after hot-deformation. Within this context, 

predicting microstructures depending on the 

applied thermomechanical conditions is a 

major challenge for both industrials and 

researchers. This requires a good knowledge 

of recrystallization mechanisms and kinetics.  

  

Full field models are based on an explicit 

description of the microstructure of a metallic 

alloy, and its possible evolutions at a 

polycrystalline scale. These models are 

accurate compared to models operating at 

larger scales, but they generally lead to 

prohibitive numerical costs. On the other 

hand, mean field models are based on an 

implicit description of the microstructure, 

leading to considerably reduced numerical 

costs, but they are based on many 

assumptions, notably with regards to 

topology.  

 

The outcome of this PhD work is a new full 

field model of DRX/PDRX and grain growth, 

working in 3D as well as in 2D, and a new 

DRX/PDRX mean field approach which better 

accounts for topological effects, and provides 

better predictions for grain size distributions. 

This work also includes a calibration 

procedure and a validation of these two new 

models, using experimental data obtained 

from compression tests performed on the 

304L austenitic steel. 

 

 

 

 

Keywords 
 

Full field model, mean field model, level-set, 

recrystallization, numerical metallurgy, 304L 

steel 

 


