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Highlights

• The velocity field of a grain boundary during anisotropic coarsening is
expressed.

• A novel anisotropic benchmark test case based on a shrinking ellipse is
showcased.

• The necessity of “torque” terms in the velocity field is demonstrated
through numerical simulations.
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Abstract

Grain growth in polycrystals is one of the principal mechanisms that take

place during heat treatment of metallic components. This work treats an aspect

of the anisotropic grain growth problem. By applying the first principles of ther-

modynamics and mechanics, an expression for the velocity field of a migrating

grain boundary with an inclination dependent energy density is expressed. This

result is used to generate the first, to the authors’ knowledge, analytical solution

(for both the form and kinetics) to an anisotropic boundary configuration. This

new benchmark is simulated in order to explore the convergence properties of

the proposed level-set finite element numerical model in an anisotropic setting.

Convergence of the method being determined, another configuration, using a

more general grain boundary energy density, is investigated in order to show

the added value of the new formulation.
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1. Introduction

During metal forming operations the microstructures of metallic components

are modified by a host of phenomena ranging from solid state transformations

to recrystallization [1]. Perhaps the most critical effect of these mechanisms is

the grain boundary motion they induce. Since the in-service properties of metal

pieces depend on the material’s microstructural characteristics (grain size, crys-

tal orientation, composition, etc. . . ) [2], it is important to study how these

boundaries evolve under thermo-mechanical loads. Crystalline interfaces mi-

grate differently during the different stages of annealing [1]: deformation, re-

covery, recrystallization and grain growth can take place. These dynamics have

been widely studied experimentally and numerically. Even so, the long charac-

teristic times associated with grain growth allow investigators to decouple its

effects from other processes. This is most likely the reason for which the theory

of grain growth is the most established in monographs on the subject.

Grain boundary motion during grain growth is thought to be driven by the

reduction of the interfacial free energy [3]. Classical models for grain growth

in polycrystals use homogenized grain boundary properties to describe crys-

tal interfaces (i.e. constant energy density, constant mobility, etc. . . ) [4–8].

However, at the mesoscopic scale, the grain boundary can be parameterized by

five macroscopic crystalline parameters: a boundary plane unit normal vector

and a misorientation element [2]. The main challenge in the current study of

grain boundary motion is the dependence of intrinsic properties such as the

grain boundary energy and mobility on these multiple structural parameters.

Notwithstanding the difficulty in determining both the energy and mobility of

a crystalline interface experimentally [9–13] or numerically [14, 15], the grain

boundary configuration space is itself highly non-Euclidean. Indeed, current

work towards elucidating the structure of this space has been oriented towards

defining five dimensional identification spaces [16] as well as defining higher

dimensional embeddings into the unit octonions for example [17].

In order to better predict microstructural evolution using numerical mod-
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els, the intrinsic properties of the crystalline interface must be taken into ac-

count. However, many nuances of models taking into account different aspects

of boundary variability can be developed. The authors have chosen to dif-

ferentiate three classes of models and will refer to them using the terminol-

ogy: isotropic, heterogeneous and anisotropic. In isotropic models, boundary

properties are defined as constants for the entire system. While being able to

reproduce mean value evolutions, such as mean grain size or even grain size

distributions, rather efficiently, local heterogeneities in microstructures, such as

the twin boundary, can not be modeled correctly [4–8]. Heterogeneous models

may employ homogenized intrinsic properties along each grain boundary but

differentiate different boundaries between each other [18–28]. As such, in a

polycrystalline setting, the misorientation dependence of boundary properties

can be modeled by these methods but not the inclination dependence. Fully

anisotropic approaches attempt to take into account the five parameter depen-

dence of grain boundary properties and as such constitute the most general of

the three types [29]. Anisotropic grain growth formulations are needed to de-

scribe more complex phenomena, such as torque effects, during annealing. The

anisotropic formulation may be seen as the most general of the three model

classes while the isotropic case, where the properties are homogeneous, is the

simplest.

Indeed, this type of model classification and nomenclature is necessary to

attempt to make sense of the existing literature on the subject. The term

“anisotropic” is very often used to refer to “heterogeneous” models. This

distinction is most important in cases such as studied by [30] where a fully

anisotropic grain boundary energy is used in conjunction with a “heterogeneous”

type model. In this reference, the authors use a numerical model that does not

account for the supplemental “torque” terms generated by their grain bound-

ary energy’s inclination dependence. As such, the terminology used is clearly

ambiguous. These types of studies elucidate the need for robust analytical test

cases for grain growth to help make sense of the capabilities of all the models

in the literature. One of the novelties of the current work is to propose a first
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analytical test case in an anisotropic grain growth setting for the community to

more easily discern which models can be classified as fully “anisotropic”.

Moving towards these fully anisotropic models, able to account for gen-

eral energy densities and mobilities, this work is constrained to treating the

anisotropic grain boundary energy density in a one boundary setting. As such,

the energy density function will be inclination dependent and the mobility will

remain constant. This constraint on the energy density is rather easily scaled up

to the polycrystalline case since a grain boundary, by definition, has a constant

misorientation in fully recrystallized microstructures and thus any property vari-

ation can be fully attributed to changes in the boundary plane. As such, the

developments here can be readily integrated into heterogeneous models, such

as [21, 25], in order to model anisotropic grain boundary energy densities. The

homogeneity of the mobility is another matter however. Very few investigations

deal with fully anisotropic mobilities mostly because the mobility of the bound-

ary is really a derived notion which does not have a clear definition. Indeed,

the grain boundary mobility, contrary to the thermodynamic definition of the

energy density, is a kinetic parameter which is often fitted to produce observed

migration rates. In this work a global grain boundary mobility definition will

be proposed in relation to a normalized rate of energy dissipation. However,

the question of using fully anisotropic and possibly tensorial values for the grain

boundary mobility is still an open one.

As such, this manuscript, starting from a differential geometry description

of the grain boundary and thermo-dynamical first principles, proposes an ex-

pression for the velocity of a migrating grain boundary in a general anisotropic

energy density setting. This velocity is then applied to the transport equation

of the level set method. Moreover, an analytical benchmark using a collapsing

ellipse subjected to special anisotropic conditions is developed and used to test

this new formulation. Subsequently, a finite element level set numerical model

is proposed to simulate this analytical test case. This new numerical model

is then used to compute dynamics in a more general boundary energy density

configuration.
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OX a topology on a set X

AX a smooth atlas on a set X

TpX the tangent space to the point p in the smooth manifold X

T ji X the (j, i)-tensor bundle defined on the smooth manifold X

Table 1: Some mathematical notation used in section 2

2. The interface model

The model presented here is developed using elements from the field of dif-

ferential geometry [31, 32]. While more rudimentary mathematics can treat

problems dealing with surfaces, the language of differential geometry seems like

the correct one to treat the anisotropic problem. The necessary mathematical

tools are introduced in AppendixA as a reference point. Table 1 briefly describes

some of the notation used in the following sections.

2.1. An energetic embedded smooth manifold

Let M = (M,OM ,AM ) be a Riemannian n-manifold with metric m and

S = (S,OS ,AS) is a smooth s-manifold with n ≥ s. Let ϕ be a smooth

embedding from S to M

ϕ : S →M

S ≡homeo ϕ(S)
(1)

where ≡homeo describes a homeomorphism equivalence and Figure 1 provides

an illustration. The embedding also provides a map from the tangent bundle of

S to the tangent bundle of M called the push-forward, ϕ∗. Much in the same

manner, the embedding generates a map from the co-tangent bundles T 0
qM to

T 0
q S called the pull-back, ϕ∗.

Using the charts (U, x) ∈ AS and (V,Z) ∈ AM and using the convention by

which objects in M are indexed by Greek letters and objects in S are indexed

by Latin letters one can express the components of the pushforward of a vector

X ∈ TpS using its action on a function f ∈ C∞(M)
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Figure 1: Diagram of the embedding ϕ.

(ϕ∗X)f = (ϕ∗X)α
∂f

∂Zα

and

(ϕ∗X)f = Xi ∂(Zα ◦ ϕ)

∂xi
∂f

∂Zα

which, defining

ϕα :S → R

p→ Zα(ϕ(p))

leads to, through identification,

(ϕ∗X)α = Xi ∂ϕ
α

∂xi
(2)

Using the pull-back one may define the metric g on S and therefore turn S
into a Riemannian manifold (S, g) with

g(p) = (ϕ∗m)(ϕ(p)) (3)
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which, using the same charts as above and two vectors (X,Y ) ∈ Tp∈SS

g(X,Y ) = (ϕ∗m)(X,Y )

gijX
iY j = m(ϕ∗X,ϕ∗Y )

= mαβ(ϕ∗X)α(ϕ∗Y )β

= mαβ
∂ϕα

∂xi
∂ϕβ

∂xj
XiY j .

This results defines the components of the induced metric by identification

gij = mαβ
∂ϕα

∂xi
∂ϕβ

∂xj
(4)

This index notation will be used throughout the rest of this work with the

implicit condition that the indeces correspond to the charts used above unless

explicitly stated otherwise.

Now, let B be an internal property space. For example, B, when applied to

grain boundaries, would be the five-dimensional space created by the misorien-

tation and inclination parameters (M,n). Let

SB =
⋃

p∈S
(p,B) = S × B (5)

and define the trivial property bundle (SB,S, πB)

SB πB−→ S (6)

such that a section b ∈ Γ(SB) of the property bundle describes exactly the

properties of the s-manifold at each point. If one was to define an energy density

map

γ :B → R+
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then one could calculate the energy density at any point p ∈ S through the

property field as γ(b(p)). Given that (S, g) is now a Riemannian manifold, this

energy density can be integrated in order to give the total interface energy I of

the embedding as

I =

∫

S

(γ ◦ b)dS

The model developed here for the interface is thus a triple (S, ϕ, b) from

which, with an energy density map γ, the total energy of the interface may be

expressed. By design, this model puts no lower bound on s. Therefore, this

structural model is readily generalized to objects that are not strictly interfaces

but can be of lower dimension, such as lines if n ≥ 3. This is an important aspect

of this model, even if it might be out of the scope of this article, if ever one was

to attempt to attribute properties and therefore energies to other defects in the

polycrystal microstructure.

2.2. Interface thermodynamics

Consider a closed thermodynamic system made up of a Riemannian n-

manifold (M,m) of volume V , an embedded interface (S, ϕ, b) with a boundary

energy density map γ, in a heat bath at absolute temperature T , a system en-

tropy η and a homogeneous pressure field p. One defines an idealized case with

the following conditions:

• isothermal and isobaric heat treatment - T and p are constant

• the time is parameterized so that t ∈ [0; 1]

• and the system is closed

the change in the internal energy during the free evolution of the system is

defined as

dU

dt
=
dI

dt
+ T

dη

dt
− pdV

dt
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If one looks at the evolution of the Gibbs free energy:

dG

dt
=
dU

dt
+
d(pV )

dt
− d(Tη)

dt

=
dI

dt
+ V

dp

dt
− η dT

dt
,

which considering the isobaric and isothermal conditions,

dG

dt
=
dI

dt
(7)

such that the change in free energy is exactly equal to the change in interface

energy. Additionally, according to the second law of thermodynamics, the closed

system must tend to minimize its free energy G such that

dI

dt
≤ 0.

The principle of least action affirms that the energy dissipation must be

maximal and thus
dI

dt
must be minimal ∀t ∈ [0; 1].

Remark 1. The isobaric and isothermal conditions would seem rather restric-

tive for applications to material forming. However, given the additivity of the

terms considered here, the development of the
dI

dt
term is still relevant for cases

when the temperature and pressure do vary as long as any cross dependencies

can be considered negligeable

(
∂I

∂T
,
∂I

∂P

)
' 0. Indeed, models including defor-

mation or thermal effects can use the expression developed here while adding the

supplemental terms from the pressure and temperature evolutions. These effects

might render the description of the velocity of the grain boundary more complex

to obtain however. Even so, this simplified model can still find applications in

the forming process for annealing steps where the temperature and pressure can

be considered constants in time.

The flow of the interface, ∀t ∈ [0; 1], is defined as
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ψ :S × [0; 1]→M

(p, t) 7→ ψ(p, t)

ψ(p, 0) = ϕ(p)

thus the embedding S is defined.

As the interface evolves only its geometry changes. This means that the

misorientation remains constant. Following this statement, the property field

b should depend, in some manner, on the embedding. If we consider that the

boundary is parameterized by the misorientation-inclination pair, b = (M,n) ∈
B, the misorientation is invariant

dM

dt
= 0.

However, since the inclination n of the boundary is a geometrical charac-

teristic of the boundary it does change. The n field depends exclusively on the

embedding and they are related by means of the push-forward of the tangent

vectors to the interface. For any X ∈ TpS at any time t the value of n(ψ(p, t))

is in completely determined by





m(n, n) = 1

m(n, ψ∗X) = 0

or, in component form,





mαβn
αnβ = 1

mαβn
α ∂ψ

β

∂xi
Xi = 0

,

which leads to,

mαβn
α ∂ψ

β

∂xi
= 0, ∀i = 1, . . . , s
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In the context of the one boundary, and thus one misorientation, the follow-

ing simplification holds

γ

(
M,n

(
. . . ,

∂ψα

∂xi
, . . .

))
= γ

(
. . . ,

∂ψα

∂xi
, . . .

)
.

For q = ψ(p, t) and with f ∈ C∞(M) the velocity field is defined as

(vf)(q) =
d

dt
(f ◦ ψ(p, ·))(t)

=
dψα

dt
(p, t)

∂f

∂Zα
(q)

= vα
∂f

∂Zα

such that, by identification

vα(ψ(p, t)) =
dψα

dt
(p, t). (8)

Using the statement in corollary A8.1, equation (8) and considering the

Levi-Civita connection ∇ of (S, g), knowing that
∂ψα

∂xi
= ∇iψα, the energy

dissipation may be defined as

dI

dt
=

∫

S

d

dt
(γdS)

=

∫

S

1√
det(g)

∂(γ
√

det(g))

∂∇iψα
∇ivαdS.

Expressing

∂(γ
√

det(g))

∂∇iψα
=
√

det(g)
∂γ

∂∇iψα
+ γ

∂
√

det(g)

∂∇iψα
,

using Jacobi’s formula to define the derivative of the determinant of matrix

and defining the components of an inverse metric tensor as (g−1)ij = gij , the

energy dissipation may be rewritten as
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dI

dt
=

∫

S

(
∂γ

∂∇iψα
+ γgiqmσα∇qψσ

)
∇ivαdS

One can define the boundary of S as ∂S and apply Stokes’ theorem such

that

dI

dt
=

∫

∂S

gikτ
k

(
∂γ

∂∇iψα
+ γgiqmσα∇qψσ

)
vαd∂S

−
∫

S

∇i
(

∂γ

∂∇iψα
+ γgiqmσα∇qψσ

)
vαdS

where τ is the outside pointing unitary normal field to ∂S.

In order to encapsulate the quantities of interest, we define the following

restricted vector fields, B ∈ Γ(TM|ϕ(∂S)) with components

Bα = mαβgikτ
k

(
∂γ

∂∇iψβ
+ γgiqmσβ∇qψσ

)

and A ∈ Γ(TM|ϕ(S)) with

Aα = mαβ∇i
(

∂γ

∂∇iψβ
+ γgiqmσβ∇qψσ

)
(9)

such that

dI

dt
(t) =

∫

∂S

m(B, v))|ψ(p,t)d∂S −
∫

S

m(A, v)|ψ(p,t)dS

Given the one interface restriction used in this work, the boundary of the

interface ∂S can only be either empty ∂S = ∅ or part of the boundary of the base

manifold ψ(∂S) ∈ ∂M. Using the ∂S = ∅ case, the boundary term disappears

and

dI

dt
= −

∫

S

m(A, v)dS,
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As such, the velocity of the boundary is that which minimizes the previous

expression. The bilinear form

〈·, ·〉 :Γ(TM|ψ(S,t))2 −→ R

(X,Y ) 7→
∫

S

m(X,Y )dS

defines an inner product on the Γ(TM|ψ(S,t)) space, turning it into a Hilbert

space. As such, using the Cauchy-Schwarz inequality, one may show that the

velocity field that minimizes the energy dissipation has the form

v = µA,
dI

dt
= −µ〈A,A〉

with µ ∈ R being classically the mobility of the boundary.

By replacing the interfacial energy dissipation term in equation (7) with

its equivalent expression −µ〈A,A〉 one determines a definition of the mobility

parameter as

µ = − 1

〈A,A〉
dG

dt
. (10)

The mobility is thus proportional to a normalized value of the energy dissi-

pation of the system. Thus, the mobility of the boundary appears as a kinetic

parameter related to the capacity of the system to dissipate energy in the form

of heat or work (by a contraction due to the excess volume of the boundaries for

example). As such, the mobility of the grain boundaries may have more to do

with the boundary conditions imposed on the system than just the properties

of the material.

2.3. From embeddings to level-set fields

Definition 2.1. A level-set map or function φ is a smooth scalar field over the

smooth manifold M such that, given an embedding ϕ : S →M

φ(ϕ(p)) = 0
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∀p ∈ S.

Most often, one defines the level-set function as a signed distance function

to the interface such that with

d :M ×M → R+

(p, q) 7→ min
C(p,q)

∫

C(p,q)

dC

where C(p, q) is any curve from p to q, one may then fix

φ(q) = ±d(q, ϕ(S)) := ±min
p∈S

d(q, ϕ(p))

where one makes a choice of sign over the domains that the interface sep-

arates. The evolution of the interface is simulated by solving the transport

equation

∂φ

∂t
+ v · ∇̃φ = 0

everywhere inM, where ∇̃ is the Levi-Civita connection on the Riemannian

manifold (M,m). One may replace the velocity field with the expression devel-

oped in the previous paragraphs after a suitable extension of the fields defined

on M|ψ(S,t) to the entire manifold. As such,

∂φ

∂t
+ µAα∇̃αφ = 0, (11)

Using the following identity

∇j∇iϕα∇̃αφ = −∇iϕα∇jϕβ∇̃β∇̃αφ,

derived from the orthogonality condition of tangent vectors and the gradient

of the level-set, one may express the transport equation in a fully level-set form
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∂φ

∂t
− µ

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφ = 0 (12)

where the full derivation is reported in AppendixB. Of course, some direct

analogies can be made with the derivations proposed in [3].

2.4. Constraints on the anisotropic grain boundary energy density function

Let D ∈ Γ(T 2
0M) be the symmetrized tensor such that

Dαβ := γmαβ +
1

2

(
∂2γ

∂∇̃βφ∂∇̃αφ
+

∂2γ

∂∇̃αφ∂∇̃βφ

)
(13)

where the tensor can be symmetrized because ∇̃α∇̃βφ is already symmet-

ric. Now, equation (12) is a purely diffusive equation with µD as a diffusive

coefficient tensor. As such, the well-posedness of the problem depends largely

on the positive definiteness of D. For solutions to be unique, one must have

∀ω ∈ Γ(T ∗M), ω 6= 0

D(ω, ω) > 0 (14)

and, therefore,

Dαβωαωβ > 0. (15)

Given the arbitrariness of ω, applying (15) to the basis vectors of the dual

tangent spaces at each point, one quickly obtains (not using the summation

convention)

Dααω
2
α > 0

Dαα > 0.
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More complex conditions exist for the off-diagonal components. For example,

for n = 2 and s = 1, one can show that

|D12| < min
(ω1,ω2)

1

2

∣∣∣∣
D11ω1ω1 +D22ω2ω2

ω1ω2

∣∣∣∣

which admits a unique minimum

|D12| <
√
D11D22. (16)

As such, given that the D tensor depends entirely on the grain boundary

energy function γ, these constraints are actually directly transferable to the γ

function. Thus, in order to preserve uniqueness of the grain boundary flow, the

anisotropy of the γ function is restricted to maps which satisfy these conditions.

While determining the space of functions that satisfy these relations would be

a valuable discovery for the community, this kind of development is out of the

scope of this article.

3. An elliptical benchmark

To the authors’ knowledge, no analytical test case exists for the anisotropic

one boundary setting of grain growth. Indeed, while the shrinking sphere is

a viable benchmark for the isotropic case and the “Grim Reaper” [33] is very

useful for testing heterogeneous models, no equivalent configuration has been

developed for more general grain boundary energy densities. Theoretical stud-

ies have proven that minimal energy surfaces can be constructed for virtually

any inclination dependent energy density function using Wulff shapes [34], the

kinetics with which these shapes should evolve, in a isolated grain undergoing

coarsening for example, are completely unknown. Thus, these semi-analytical

benchmarks remain incomplete cases for numerical testing. This section is de-

voted to generating such a completely analytical solution to the problem with

constrained kinetics as well as definite morphology.
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Figure 2: Ellipse embedding of the circle C into M

3.1. The setting

Consider a circle C = ([0; 2π],OC ,AC) as a smooth manifold with the circle

topology and smooth structure and the Riemannian manifoldM = (R2,Ostd,Astd,m)

equipped with the standard topology and differentiable structures and the flat

metricm. Using the chart ([0; 2π], θ) ∈ AC and the Cartesian chart (R2, (x, y)) ∈
Astd one may construct the following elliptical embedding

ϕ :[0; 2π] −→ R2

θ 7→ (a cos θ, b sin θ)

where (a, b) ∈ R2 and Figure 2 illustrates this embedding.

All of the relevant geometrical information may thus be extracted from the

embedding. The pushforward of the tangent space

∂ϕx

∂θ
= −a sin θ

∂ϕy

∂θ
= b cos θ

and the induced metric tensor

17

                  



gij = mαβ∇iϕα∇jϕβ .

However, given that the circle C is really a one dimensional space, all tensors

are comprised of only one component. As such, for the remainder of this section

the index notation is suppressed while the transformation behavior of each of

the components is ensured. The notation ∂θ is also used as a simple derivative

with respect to θ.

g = (∂θϕ
x)2 + (∂θϕ

y)2

such that

g = a2 sin2 θ + b2 cos2 θ (17)

The Levi-Civita connection ∇ is thus defined by

∇g = 0

∂θg − 2Γg = 0

Γ =
1

2g
∂θg

where Γ is the only Christoffel symbol. Therefore,

Γ =
(a2 − b2) cos θ sin θ

a2 sin2 θ + b2 cos2 θ

3.2. A solution

Now consider the boundary energy

γ(θ) = G : g (18)
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where G is technically a (2, 0)-tensor field of C whose only component is

actually a constant in this chart. As such, using equations (2.2) and (9) the

velocity field of the minimizing energy flow is

vα = µmαβ∇i
(

∂γ

∂∇iψβ
+ γgiqmσβ∇qϕσ

)

where, replacing with the expression for γ in equation (18), one has

vα = µmαβ∇i
(
∂Gskgks
∂∇iψβ

+Gskgksg
iqmσβ∇qϕσ

)

= µmαβ∇i
(
2Gsimβζ∇sϕζ +Gskgksg

iqmσβ∇qϕσ
)

and using the fact that C only has one dimension,

vα = µmαβ∇
(
2Gmβζ∇ϕζ +Gg(g−1)mσβ∇ϕσ

)

= 3µG∇∇ϕα

where, given,

∇∇ϕα = ∂2θϕ
α − Γ∂θϕ

α

one arrives at


 vx

vy


 = −3µG


 a cos θ

b sin θ


− (a2 − b2) cos θ sin θ

a2 sin2 θ + b2 cos2 θ


 −a sin θ

b cos θ




However, any tangential terms in the velocity, such as the second term in

the above equation, have no influence on the flow of the interface such that the

flow generated by the velocity field above is equivalent to the flow generated by


 vx

vy


 = −3µG


 a cos θ

b sin θ




19

                  



Thus, turning ϕ into a flow ϕ : [0; 2π]× [0; 1]→ R2, one has

dϕα

dt
(θ, t) = −3µGϕα(θ, t)

for which there is only one solution

ϕα(θ, t) = ϕα(θ, 0)e−3µGt

leading to


 ϕx(θ, t)

ϕy(θ, t)


 = e−3µGt


 a cos θ

b sin θ




Now given that the minimizing energy flow of the embedding is just the

original embedding multiplied by a time dependent function, the flow is actually

simply shrinking the ellipse in a homothetic manner to the center (0, 0) point

of M. Thus, assuming a > b, the eccentricity e is a constant of the flow

e =

√
1−

(
ϕy(π2 , t)

ϕx(0, t)

)2

=

√

1−
(
e−3µGtb
e−3µGta

)2

=

√
1−

(
b

a

)2

and the scalar velocity of any point of the ellipse is

v(θ, t) =
√

(vx)2 + (vy)2 = 3µGe−3µGt
√
a2 cos2 θ + b2 sin2 θ

with, in particular,

v(0, t) = 3µGe−3µGta

v(
π

2
, t) = 3µGe−3µGtb

The procedure for performing this test case is illustrated in flow chart form

in Figure 3.

20

                  



Figure 3: Illustrative flow chart of the analytical test case procedure
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4. The numerical model and test case applications

In order to numerically simulate grain boundary configurations, a numerical

model capable of representing boundary dynamics must be developed. As such,

the following paragraphs are devoted to first reporting on the level set [35, 36]

finite element method applied to this kind of boundary transport. Subsequently,

the analytical shrinking ellipse test case is simulated and convergence of the

numerical model is studied. Finally, a more general grain boundary energy is

applied to a circular case in order to compare the classical isotropic formulation

for the velocity field with the expression proposed in this work. For the purpose

of scalability of the presented results, all cases will be tested on a dimensionless

context. Of course, the presented tests can be scaled to realistic physical times

in the context of microstructural evolutions by the use of the proper units of µ

and γ.

4.1. The finite element model

In order to solve the minimizing energy flow for the level set function using

the Finite Element (FE) method, the problem must first expressed in a weak

form, then it can be discretized in both time and space.

Consider the transport equation (12) and the definition in equation (13)

where the relevant fields have already been extended from the smooth manifold

S to the enclosing manifold M and µ is known. With any test function ω ∈
H1(M) a weak form of the equation can be derived as

∫

M

∂φ

∂t
ωdM −

∫

M
µDαβ∇̃α∇̃βφωdM = 0

∫

M

∂φ

∂t
ωdM +

∫

M
∇̃α(µDαβω)∇̃βφdM −

∫

∂M
∇̃α(µDαβω∇̃βφ)d∂M = 0

such that

∫

M

∂φ

∂t
ωdM +

∫

M
µDαβ∇̃αω∇̃βφdM +

∫

M
µ∇̃βDβαω∇̃αφdM = 0 (19)
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With respectively three distinct terms: the time derivative, a diffusive term

and a convective contribution.

In this numerical framework, the Riemannian manifold M is meshed using

an unstructured simplicial grid generated using Gmsh [37]. Thus, the smooth

Riemannian manifold M is approximated by a C1 by parts manifold M̄ and

any initially smooth field is approximated by a field whose component functions

are in H1 (i.e. a P1 field). As such, the level set field is approximated by a

linear by parts (inside each cell) field φ̄. The details of the algorithm used to

compute the distance function can be found in [38].

Thus, given a boundary energy map γ : B → R+, with B the boundary

property space, the C1 geometry dependence of γ can easily be evaluated at

each node of the mesh M̄. Considering that B is only parameterized by the

normal to the boundary n for a given boundary, both values for γ and
∂2γ

∂∇φ2
can be evaluated everywhere on the mesh. As such, the level set field induces

a natural discretized extension of both γ and
∂2γ

∂∇φ2 from ϕ(S) to the entire

discretized space M̄. Outside the interface the γ field has no physical meaning.

However, this extension is necessary for solving the problem in a FE setting.

The interpolated values of the fields at the interface ϕ(S) are also guaranteed

to be the correct values given the linear by parts interpolation of φ̄. Figure 4

illustrates the construction for a circle and a particular choice of γ(n).

The ∇̃ · D is computed numerically on the mesh using a Superconvergent

Patch Recovery method inspired from [39] to obtain P1 fields. As such, both the

diffusive tensor D and the convective velocity are introduced explicitly into the

formulation so as to create linearised approximations of the equation (19). Thus,

solving the problem is completely linear without need for non-linear solvers or

algorithms.

In this work a Generalized Minimal Residual (GMRES) type solver along

with an Incomplete LU (ILU) type preconditionner, both linked from the PetsC

open source libraries, are used unless specified otherwise. The system is assem-

bled using typical P1 FE elements with a Streamline Upwind Petrov-Galerkin

(SUPG) stabilization for the convective term [40]. The boundary conditions
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(a) The level set field φ

(b) The boundary energy field γ

Figure 4: Image of the φ and γ fields defined on an unstructured mesh. The iso-zero value

of the level set is represented in black and γ = 2 + cos(4 arccos(X · ∇φ)) where X is the unit

vector field in the direction of the x axis.
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used are classical von Neumann conditions which guarantees the orthogonality

of the level sets to the boundary of the domain. The discretization of time is

obtained using a fully implicit backward Euler method with time step ∆t.

Because the resolution of the transport equation does not conserve the dis-

tance property of the level set field, the solution is reinitialized using the al-

gorithm developed in [41]. Also, since the geometry of the interface evolves

after each time increment, all the other fields must also be recomputed from the

reinitialized level set at each step of the simulation. The complete procedure

for the minimizing interface energy flow simulation is reported in Algorithm 1.

Algorithm 1 Minimizing Interface Energy Flow

1: Data: Initial Embedding, M̄, ∆t, tend

2: Compute the initial Level Set and unit normal fields

3: Calculate γ and D fields and their derivatives

4: t = 0

5: while t < tend do

6: Assemble the FE system

7: Solve the FE system

8: t = t+ ∆t

9: Reinitialize the Level Set and unit normal fields

10: Update the γ and D fields and their derivatives

11: end while

4.2. The shrinking ellipse

One now has an embedding and a way to represent it as a level set field φ on

an unstructured mesh. One also has the FE formulation needed to simulate the

dynamics of the minimizing energy flow of the interface. However, the boundary

energy γ = G : g is not readily computable on the finite element mesh since it

does not explicitly depend on the normal to the interface. Using equation (17)

such that
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g = (b2
a2

b2
sin2 θ + b2 cos2 θ)

= b2(
a2

b2
sin2 θ + cos2 θ)

which, if one considers r(t) =
a(t)

b(t)
, which should remain constant throughout

the simulation if looking at the large and small axes of the ellipse a(t), b(t) at

each instant, then γ can easily be extended throughout the mesh using

ny

nx
= r tan θ

θ = arctan

(
1

r

ny

nx

)

with

γ(θ, t) = b(t)2(r(t)2 sin2 θ + cos2 θ)

Given the definition of the level set field, φ takes maximal values at the

points within the ellipse furthest away from the interface, i.e. the center of the

ellipse. Seeing as b(t) is the smallest of both ellipse axes and the level set is

minimal distance valued, the value of the level set at the center of the ellipsis

should be the value of the small axis. Therefore

b(t) = max
q∈M

φ(q, t) (20)

Also, implicit in the calculations in the previous section is the fact that

∂2γ

∂∇̃αφ∂∇̃βφ
= 2γmαβ (21)

so that knowing the extension of the boundary energy γ is sufficient for

calculating Dαβ = 3γmαβ .
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Thus the boundary energy field γ can be computed at each iteration of the

simulation. Using µG = 1, the simulation can be run on any arbitrary mesh

with arbitrary mesh size h using any time step ∆t.

Figure 5 illustrates the time evolution of the level set field for an isotropic

unstructured 1 × 1 mesh with h = 3e − 3, ∆t = 5e − 4, a(t = 0) = 0.2 and

r = 2. A sensitivity analysis has been conducted with respect to the isotropic

mesh size h and time step ∆t whose results are reported in Figures 6, 7, 8 and

9. The data is evaluated by looking at the time evolution of both b and a as

well as their time derivatives Vb =
db

dt
and Va =

da

dt
. The b value is evaluated

using equation (20) while the a(t) parameter is evaluated at each time step by

a = a(t = 0) + φ(x = a(t = 0), y = 0) (22)

The values are compared with their analytical analogs in order to compute

errors. The convention in the legend is that bared quantities are measured while

non-bared quantities are the analytical counterparts.

Each simulation can be given a scalar error value by computing the L2 error

between the analytical evolution of b(t) and the measured values

eL2 =

∫ tend

0

(b(t)− b̄(t))2dt

which can be approximated using a trapezoidal rule. Figure 10 depicts the

evolution of the logarithm of this L2 error with respect to both h and ∆t.

Figures 6, 7, 8, 9 and 10 clearly establish convergence of the method towards

the analytical solution as both the time step ∆t and mesh size h become smaller.

While it may seem that the simulation is actually less accurate in predicting

the larger axis a, this can actually be attributed to the method of calculating ā

described in equation (22) which is much less precise than the measure of b.

For ellipses with ratio r = 2 one may expect the numerical formulation to

give adequate approximations of the minimizing energy flow with a convergence

rate of approximately 3 in space and 1.5 in time. However, one may remain
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(a) t = 0 (b) t = 0

(c) t = 5e− 3 (d) t = 5e− 3

(e) t = 1e− 3 (f) t = 1e− 3

Figure 5: Time evolution of the level set φ and boundary energy γ fields for the ellipse

shrinkage test case. The iso-zero value of the level-set field is in black. The mesh size is

h = 3e− 3 and the time step is ∆t = 5e− 4 and the ellipse axes ratio is r = 2.
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(a) Both a and b as a function of simulated time t

(b) Both Va and Vb as a function of simulated time t

Figure 6: Sensitivity of the trajectory and velocity to the mesh size h parameter study with

∆t = 5e− 4, r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both ea and eb errors committed on the positions as a function of simulated time

t

(b) Both eVa and eVb errors committed on the velocities as a function of simulated

time t

Figure 7: Sensitivity of the errors to the mesh size h parameter study with ∆t = 5e−4, r = 2

and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both a and b as a function of simulated time t

(b) Both Va and Vb as a function of simulated time t

Figure 8: Sensitivity of the trajectory and velocity to the time step ∆t parameter study with

h = 3e− 3, r = 2 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) Both ea and eb errors committed on the positions as a function of simulated time

t

(b) Both eVa and eVb errors committed on the velocities as a function of simulated

time t

Figure 9: Sensitivity of the errors to the time step ∆t parameter study with h = 3e− 3, r = 2

and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) ln(eL2) = f(ln(h))

(b) ln(eL2) = f(ln(∆t))

Figure 10: Evolution of the ln(eL2 ) as a function of h (for ∆t = 5e−4) and ∆t (for h = 3e−3)

with r = 2, a(t = 0) = 0.4 in a 1× 1 domain.
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dubious in terms of ellipses with even stronger axis ratios r > 2. Figures 11,

12 and 13 report some results that have been obtained for r = {8

3
, 4, 5, 8} using

h = 3e− 3, ∆t = 5e− 4, a(t = 0) = 0.4 and a 1× 1 domain.

While, in a qualitative sense, in Figure 11 the simulations give sensible re-

sults. For the ratios tested here, the level set fields remain elliptical while

shrinking. However, in a quantitative sense, in Figures 12 and 13 one may ob-

serve that the errors committed during the simulation increase with increasing

ellipse ratio r. Indeed, the mesh size used for these simulation is not suffi-

cient to accurately describe the curvatures of the ellipses in the highest ratio

cases. These simulations prove that in order to describe strong geometrical fea-

tures and their evolution accurately, the mesh size must be sufficiently refined.

The results could be greatly improved by using adaptive remeshing algorithms

throughout the simulations to capture the strongest features of the geometry.

In any case, the numerical parameters (h,∆t) must be adapted to the geometry

of the problem in order to obtain sensible results.

Overall, the numerical formulation is adept at simulating the shrinking el-

lipse test case and converging towards the analytical solution when refining the

discretization.

4.3. A more general anisotropic case

While no doubt relevant to the evaluation of the numerical formulation for

the minimizing energy flow, the ellipse shrinkage case cannot truly distinguish

between a velocity that does not include the anisotropic terms

Dαβ
iso = γmαβ

and one that does

Dαβ
aniso = γmαβ +

∂2γ

∂∇̃αφ∂∇̃βφ
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r =
8

3

r = 4

r = 5

r = 8

t = 0 t = 5e− 3 t = 1e− 2

Figure 11: Time evolution of the level set φ for the ellipse shrinkage test case for different

ellipse ratios. The iso-zero value of the level-set field is in black. The mesh size is h = 3e− 3

and the time step is ∆t = 5e− 4.
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(a) b as a function of simulated time t

(b) r as a function of simulated time t

Figure 12: Sensitivity of the trajectory and measured ratio r̄ to the initial ratio r parameter

study with h = 3e− 3, ∆t = 5e− 4, and a(t = 0) = 0.4 on a 1× 1 size mesh.
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(a) eb errors committed on the positions as a function of simulated time t

(b) eVb the errors committed on the velocities as a function of simulated time t

Figure 13: Sensitivity of the errors to the ellipse ratio r parameter study with h = 3e − 3,

∆t = 5e− 4 and a(t = 0) = 0.4 on a 1× 1 size mesh.
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even if one does compute a boundary energy density field that depends on

the geometry γ(∇̃φ). This is because of equation (21) where, for the boundary

energy used in the ellipse shrinkage, case Daniso = 3Diso which can be rectified

in practice by a scaling of the mobility or of the time parameter. So, while the

ellipse shrinkage case would differ by a factor of 3 in comparing the cases, the

geometry of the interface flow would be the same.

As such, in order to observe the added benefits of including the anisotropic

term to the formulation, one may study a test case where the analytical solution

is unknown but the anisotropic term modifies the velocity differently then the

isotropic term. One may then compare simulations where the Diso is used to

results where the Daniso is employed for the same boundary energy density

functions γ and the same initial geometries.

Considering, with cos(λ) = nx,

γ(λ) = 1 +
1

377
(cos(6λ)− 9 cos(2λ))

one may show that the positive definiteness of the D tensor is assured for

any boundary. Figure 14 illustrates the components of the Daniso tensor as a

function of λ. Graphically, Dxy
aniso is strictly inferior to the required limit.

Having the grain boundary energy function γ and thus being able to calculate

Daniso, one may consider once again the circle C = ([0; 2π],OC ,AC) and the

Riemannian manifoldM = (R2,Ostd,Astd,m). However, the initial embedding

ϕ is more direct

ϕ :[0; 2π] −→ R2

θ 7→ (R cos θ,R sin θ)

where R ∈ R+/{0} is the radius of the embedded circle. The initial condi-

tions for both the level set field and the grain boundary energy field as well as

its derivatives are represented in Figure 15 for R = 0.4.
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Figure 14: Components Dxx
aniso, Dyy

aniso and Dxy
aniso as a function of λ ∈ [0, 2π]. The limit

expressed in the inequality (16) is also shown for comparison as limDxy .
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(a) γ (b) Dxx
aniso

(c)
∂γ

∂λ
(d) Dyy

aniso

(e)
∂2γ

∂λ2
(f) Dxy

aniso

(g) φ

Figure 15: Initial values of the level set field φ, boundary energy field γ, its derivatives and

the components of Daniso. The iso-zero value of the level set is in black.
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The test case was run for both Diso and Daniso on a 1 × 1 size isotropic

mesh with h = 3e− 3 and ∆t = 5e− 4. The results of the form evolution of the

circle as well as the evolution of the grain boundary energy field are presented in

Figure 16. The Diso and Daniso tensors generate very different boundary flows.

While the Diso case tends to remain circular until disappearing, the Daniso case

takes on a very distinctive form. The persistence of circularity of the Diso case

is most likely due to the very small variations in the boundary energy of the

order of only 3%.

However, the most efficient of the two simulations in terms of energy dis-

sipation is thus the closer to reality since the principle of minimal action is in

effect. Thus, the parameter of most relevance to comparing the two simulations

is the energy efficiency of the geometry obtained in each step of the simulation,

defined here as

Λ =

(∫
C
γdC∫

C
dC

)−1
.

with respect to the smooth manifold C.
Figure 17 shows the evolution of the computed energy efficiency Λ for both

simulations. Clearly, the energy efficiency of the form developed by the Daniso

flow is better than that of the Diso flow from the start of the simulation to the

disappearance of the boundary. While not being a direct proof of the validity of

the Daniso formulation, these test cases show that the full Daniso formulation is

definitely more adept then the Diso formulation for the minimizing energy flow

problem.
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t = 0

t = 2.5e− 3

t = 5e− 3

t = 7.5e− 3

Diso Daniso

Figure 16: Time evolution of the grain boundary energy field γ and the iso-zero value of the

level set for the circle shrinkage test case run with Diso and Daniso. The iso-zero value of the

level-set field is in black. The mesh size is h = 3e− 3 and the time step is ∆t = 5e− 4.
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Figure 17: Computed energy efficiency Λ as a function of time t for circle shrinkage test cases

run with Diso and Daniso.
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5. Conclusions

This work has contributed to developing a framework for simulating anisotropic

grain growth for which three main components have been presented: Firstly a

new comprehensive mathematical procedure has been stablished from a differ-

ential geometry point of view for the local instant velocity of migration of an

interface subjected to anisotropic conditions. Here an important result is given

in equation 10. where the mobility µ is related to the capacity of the system to

dissipate energy. This means that the faster the system can dissipate energy, the

faster a given configuration is able to evolve (i.e the faster the interfaces move

towards a lower energy state). Furthermore, the fundamental mathematical

framework from which all relations have been derived represents a step towards

an exhaustive understanding of the behaviour of interfaces subjected to realistic

anisotropic effects. As, even though many assumtions have been made in the

present work, the model offers more flexibility regarding the implementation of

anisotropic terms by defining their nature in a more representative mathemati-

cal space.

Secondly, an anisotropic analytical benchmark case based on a shrinking

ellipse has been proposed. Indeed, the previous lack of an analytical bench-

mark has hampered the comparison of the different models proposed for the

anisotropic grain growth problem in the community. Wulff shapes have been

used to provide the converged solution of idealized interfaces subjected to vir-

tually any inclination dependent energy density function. Nonetheless, these

solutions do not account for the kinects of an interface evolving to a lower en-

ergetic state. In this work a new benchmark providing information about the

evolving shape and the rate of change of an analytical shrinking ellipse has been

developped. This test case can be a complementary (if not a more meaningfull)

approach to compare models aiming to treat fully anisotripic grain growth.

Thirdly, a new numerical framework in the context of FE-LS models able to
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take into account truly anisotropic properties was developed and tested against

the presented analytical benchmark, obtaining convergence of the method to-

wards the analytical solution as both the time step ∆t and mesh size h become

small. Additional tests where performed to evaluate the limits of the numeri-

cal approach for more demanding configurations, obtaining lower accuracy (and

even divergence for the more extreme cases) when increasing the elliptical ratio.

This behaviour can be explained since higher elliptical ratios generate higher

values of curvature (hence higher gradients of properties) at the vertex of the

major axis of the ellipse. Moreover, for large values of r, the minor axis of the

ellipse is described by fewer elements, also potentially miscalculating certain val-

ues. Additionally, a more generic test case was performed, using a more general

energy density in a circle configuration the authors have shown the improvement

that the current formalism delivers as compared to the classical formulations.

To the authors’ knowledge, no other investigations have treated this issue in

such an applied setting.

Future studies will be dedicated to generalizing this formalism to the poly-

crystal case where multiple junctions may be found in great number [21, 28].

Moreover, the presented work was developed using several physical terms as

invariants, such as the temperature and pressure. Incorporation of the varia-

tion of these physical conditions constitutes a non-trivial challenge. However,

the community at large generally includes these dependencies into the mobility

term which could be undertaken without too much effort in this model. Given

the dimensionless nature of the mathematical framework, one may attempt to

generate a 3D analogue to the ellipse case using the same numerical model. This

new model may also serve as a foundation for including an anisotropic tensorial

mobility value into the calculations by way of the base manifold’s metric tensor

m. Moving away from the level-set method, the formalism may also be applied

to front tracking approaches [42]. Additionally, the conditions expressed in the

inequality (14) seem to be general and could possibly be used to discriminate

between valid and invalid anisotropic grain boundary energy densities.
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AppendixA. Tools and Definitions

Even if the theory found in this section could be found in other specialized

texts [31, 32], this section is included here for the convenience of the reader.

For the readership specializing in physical metallurgy will, most likely, not be

familiar with the terminology and the aforementioned developments may need

a recurrent lecture of the definitions presented here.

Definition A1. A smooth n-manifold M = (M,O,A) is a triplet comprised

of a set M , a given topology O on the set M and a smooth atlas A made up of

smooth charts.

The Cn manifold description of interfaces is chosen because it is technically

the minimal structure with which one must endow a space in order to define

derivatives. One could of course weaken the smooth condition to a C2 or perhaps

even C1 constraint, however, for the sake of simplicity, smoothness (C∞) is

considered here.

Notation. Let C∞(M) is the set of all smooth functions that can be defined on

the smooth manifold M.

For the following definitions let M be a smooth manifold.

Definition A2. The tangent space TpM at the point p ∈M is the vector space

comprised of elements X such that there exists C a smooth curve of M

C : R→M

t 7→ C(t)

with C(0) = p and

X : C∞(M)→ R

f 7→ Xf :=
d

dt
(f ◦ C)(0)

The elements of the tangent space, X, are also called tangent vectors. Indeed,

the elements of the tangent space to a point in the manifold and the classical

notion of tangent vectors in Euclidean space are related. As an example using
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these definitions, if one chooses a chart (U, x) ∈ A such that p ∈ U and a function

f ∈ C∞(M) then and element X ∈ TpM acts on f through its equivalent curve

C

Xf =
d

dt
(f ◦ C)

=
d

dt
(f ◦ x−1 ◦ x ◦ C)

which, using the multidimensional chain rule brings one too

Xf =
d

dt
(xi ◦ C)∂i(f ◦ x−1)

where xi is the ith component function of the chart x, ∂i is the derivative

operator of a multidimensional function with respect to its ith component and

the Einstein summation convention is in effect, which will be implied from here

on unless stated otherwise.

Theorem A1. One may construct an orthonormal basis for TpM with the

vectors

{
∂

∂xi
, i = 1, . . . , n

}
defined as

∂

∂xi
f := ∂i(f ◦ x−1) (A.1)

As such, for any element of X ∈ TpM, one may define its components

{Xi ∈ R, i = 1, . . . , n} in this basis, using

Xi =
d

dt
(xi ◦ C)(0) (A.2)

where C is the curve associated with X. As such, its decomposition is written

X = Xi ∂

∂xi
(A.3)

Seeing as TpM is a vector space, it admits a dual space.
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Definition A3. The dual vector space T ∗pM or co-tangent space to the tangent

space TpM is the space of linear maps ω such that

ω : TpM→ R

X 7→ ω(X)

More generally, the local tensor spaces are constructed from the tangent

space and its dual.

Definition A4. The space of (q, s)-tensors, (q, s) ∈ N2 , at p ∈ M is defined

as

T qp,sM := T ∗pM⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s

⊗ TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸
q

where ⊗ is the tensor product of spaces.

From the tangent spaces at each point of M the tangent bundle can be

constructed.

Definition A5. Let TM be defined as

TM =
⋃

p∈M
(p, TpM)

such that the tangent bundle (TM,M, π) is defined as

TM π−→M

where π is a continuous surjective map.

Analogously, the (q, s)-tensor bundles (T qsM,M, πs,q) are defined in the

same manner.

Definition A6. A section of a bundle (E,B, π) is a continuous map σ such

that

σ : B → E

π(σ(p)) = p
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Colloquially, the sections of the tangent bundle are called vector fields and

in the same manner sections of the tangent bundles are called tensor fields.

Notation. Γ(T qsM) is the space of all smooth sections of the bundle (T qsM,M, πs,q).

Definition A7. A Riemannian n-manifold (M, g) is a smooth n-manifold M
equipped with a symmetric (0, 2)-tensor field g ∈ Γ(T 0

2M), called a metric, such

that ∀p ∈M g(p) is a positive-definite tensor.

The positive definiteness of g means that for any X ∈ TpM, X 6= 0

g(p)(X,X) > 0

∀p ∈M .

Riemannian manifolds are of general interest since the metric structure de-

fines inner products on the tangent spaces. As such, a Riemannian manifold

is convenient for defining lengths of curves and more general measures of vol-

ume. Indeed, this metric structure is what allows one to define the Riemannian

integral on the manifold.

Definition A8. A differential q-form ω on a smooth manifold is a completely

anti-symmetric (0, q)-tensor field.

Corollary A8.1. The volume form dM of an oriented Riemmannian n-manifold

(M, g) is the differential q-form such that for a given chart (U, x) ∈ A the vol-

ume form may be expressed as

dM =
√

det(g)dx1 ∧ · · · ∧ dxn

where det(g) is the determinant of the matrix composed by the components of

g in the chart (U, x), {dxi, i = 0, . . . , n} is the dual basis of the co-vector space

and ∧ is the exterior product of differential forms.

Using this machinery, any function can be integrated over the manifold. One

is also able to define a relatively straightforward connection on the space called

the Levi-Civita connection.
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Definition A9. A connection ∇ over a bundle (E,B, π) is a set of linear maps

∇ :Γ(T qsB)→ Γ(T qsB ⊗ T ∗B)

that respect the Leibniz rule, f ∈ C∞(B), σ ∈ Γ(T qsB), τ ∈ Γ(T ji B)

∇(fσ) = σ ⊗ df + f∇σ (A.4)

∇(τ ⊗ σ) = ∇τ ⊗ σ + τ ⊗∇σ (A.5)

where df is the classic differential of a smooth function df =
∂f

∂xi
dxi.

Corollary A9.1. From a given connection ∇, one may construct a covariant

derivative

∇· :Γ(TB)× Γ(T qsB)→ Γ(T qqB)

∇·(X,σ) = ∇Xσ = (∇σ)(X)

where, when working in a chart, one may use

(∇Xσ)k...j... = (∇σ)k...j...iX
i = ∇iσk...j...X

i

Definition A10. The Levi-Civita connection ∇ on a Riemannian manifold

(M, g) is the unique connection on the tensor bundles which satisfies

∇g = 0

and has no torsion.

Definition A11. The push-forward ϕ∗ of a map ϕ from S to M, two smooth

manifolds, is the linear map such that

ϕ∗ : TS → TM
(p,X) 7→ (ϕ(p), ϕ∗X)

(ϕ∗X)f := X(f ◦ ϕ)

for f ∈ C∞(M)
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Definition A12. The pull-back ϕ∗ of a map ϕ from S to M, two smooth

manifolds, is the linear map such that

ϕ∗ :T 0
qM|ϕ(S) → T 0

q S

(ϕ(p), σ) 7→ (p, ϕ∗σ)

(ϕ∗σ)(X(1), . . . , X(q)) = σ(ϕ∗X
(1), . . . , ϕ∗X

(q))

AppendixB. Level-set setting for interface dynamics

The second term on the transport equation (11) can be expanded using the

definition in equation (9)

Aα∇̃αφ = mαβ∇i
(

∂γ

∂∇iϕβ
+ γgiqmσβ∇qϕσ

)
∇̃αφ

= mαβ

(
∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕζ +∇i(γgiqmσβ∇qϕσ)

)
∇̃αφ

simplifying this equation one obtains

Aα∇̃αφ = mαβ ∂2γ

∂∇jϕζ∂∇iϕβ
∇i∇jϕζ∇̃αφ+ giq∇iγ∇qϕα∇̃αφ− γPαβ∇̃β∇̃αφ

(B.1)

being P ∈ Γ(T 2
0M|ϕ(S)) a tangential projection tensor field

Pαβ = gij∇jϕα∇iϕβ = mαβ − nαnβ (B.2)

in addition, the second derivative term in equation (9) can be reduced to

∂φ

∂t
+ µ

(
−
(

∂2γ

∂∇̃βφ∂∇̃αφ
+

∂γ

∂∇̃αφ
mκβ∇̃κφ

)
P ξβP

σ
α ∇̃σ∇̃ξφ+ Pαβ∇̃βγ∇̃αφ− γPαβ∇̃α∇̃βφ

)
= 0

Considering nα∇̃α∇̃βφ = 0, the terms that involve a contraction between the

tangential projection tensor field and the second derivative of the level set can

be redefined as

52

                  



Pσα ∇̃σ∇̃ξφ = (δσα − nσ∇αφ)∇̃σ∇̃ξφ

= ∇̃α∇̃ξφ

and

Pαβ∇̃α∇̃βφ = mαβ∇̃α∇̃βφ

= ∆φ

being ∆ the classical Laplacian operator in M. As such, one obtains the sim-

plified level set transport equation

∂φ

∂t
+−µ

(
γmαβ +

∂2γ

∂∇̃βφ∂∇̃αφ

)
∇̃α∇̃βφ = 0 (B.3)
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