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ABSTRACT 

Recently, an original full field model working at the mesoscopic scale using 
the level set (LS) method in a finite element (FE) framework has been introduced. 
This approach has demonstrated its potential for the simulation of grain growth and 
recrystallization problems in the context of large deformations, allowing its use for 
industrial thermomechanical paths. This chapter illustrates the basis of this 
numerical framework, its evolutions since 20 years and very recent developments.  

 
 

Keywords: Recrystallization, Grain Growth, Full Field Methods, Level Set 
Approach, Industrial Processes 
 

INTRODUCTION 
 

Metal forming modeling can be predictive only if the strain rate, strain and 
temperature dependency of the flow behaviour are correctly described. The 
mechanical properties and behaviour of metallic materials mainly depend on the 
density and structure of dislocation network, this points out the need of 
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incorporating microstructure concepts into the numerical models. On the other 
hand, mastering grain size and dislocation density evolutions due to 
recrystallization (ReX) during industrial processes becomes necessary to fulfill 
more and more severe microstructure and properties specifications of the processed 
materials. This objective implies to correctly describe the main physical 
mechanisms occurring in metals during thermomechanical processing, notalbly 
dynamic recrystallization (DRX), postdynamic recrystallization (PDRX) - possibly 
including metadynamic recrystallization (MDRX) and static recrystallization 
(SRX) mechanisms - and grain growth (GG).  

However, microstructure predictions on multi-pass processes are very 
challenging due to the strong evolution of the microstructure topology from the 
beginning to the end of the process. The competition between boundary migration, 
recovery and nucleation leads to complex coupled effects. Minor variations of the 
process parameters (interpass and/or reheating times, temperature and strain rate 
values at each pass) may have huge effects on the way DRX and PDRX take place. 

In this context, macroscopic and homogenized models, i.e. phenomenological 
models such as those based on the well-known Johnson-Mehl-Avrami-Kolmogorov 
(JMAK) equations (Avrami 1939; Kolmogorov 1937; Johnson and Mehl 1939)  are 
widely used in the industry, mainly owing to their low computational cost. If this 
phenomenological framework is quite convenient, the validity range of these 
models, associated with a given set of material parameters is often limited to a given 
process and initial material state. To push these limits, mean field (MF) models, 
based on an implicit description of the microstructure by considering grains as 
spherical entities with an equivalent grain radius and/or an average dislocation 
density have been developed. Hillert (Hillert 1965) proposed the first model of this 
kind for GG. Then, Montheillet et al. (Montheillet, Lurdos, and Damamme 2009) 
and Cram (Cram et al. 2009) proposed a semi-analytical MF model for ReX. More 
recently, new MF models, proposing, in their formulation, richer description of the 
neighborhood of each grain have been proposed in order to improve the prediction 
of grain size distributions (Bernard et al. 2011; Beltran, Huang, and Logé 2015; 
Zouari, Bozzolo, and Logé 2016; Maire et al. 2018; Piot et al. 2018). Indeed, MF 
models generally provide acceptable predictions in terms of recrystallization 
kinetics and mean grain size evolution with very interesting computational cost. 
However, grain size distributions sourced from MF simulations are sometimes 
poorly described. Facing multi-pass processes, they rapidly reach their limits. 
Finally, the homogenization of the microstructure may prevent from capturing 
some local phenomena.  

In order to overcome these issues, lower-scale models (called full field -FF-
models) have been developed over the last decades with the aim to simulate 
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explicitly the microstructural evolution (Rollett and Raabe 2001; Piękoś et al. 2008; 
Chen 2002) and then to propose enhanced mean-field models (Maire et al. 2017; 
Scholtes, Ilin, et al. 2016). The idea behind these “mesoscale” simulations is that 
the morphology and the topology of the GB network play an essential role in 
microstructure evolution. In these approaches, simulations are performed on 
Representative Volume Elements (RVEs) where the microstructural features are 
explicitly represented. Boundary conditions applied to the RVE are representative 
of what suffered a material point at the macroscopic scale (thermal or 
thermomechanical cycle). 

In a full field context, simulations can be performed using probabilistic Monte 
Carlo Potts (MC) (Rollett et al. 1989; Radhakrishnan, Sarma, and Zacharia 1998, 
2008; L. Zhang et al. 2012; Wang et al. 2014), Celullar Automata (CA) (Raabe 
2002; Janssens 2010; Sieradzki and Madej 2013), MultiPhase Field (MPF) 
(Garcke, Nestler, and Stoth 1999; Moelans, Blanpain, and Wollants 2005; Esedoḡlu 
2016), Front-Tracking or Vertex (Harun et al. 2006; Couturier, Maurice, and 
Fortunier 2003) or Level Set (LS) models (Osher and Sethian 1988; Merriman, 
Bence, and Osher 1994; Zhao et al. 1996; Bernacki et al. 2007, 2008; Bernacki, 
Logé, and Coupez 2011; Jin et al. 2015; Scholtes, Boulais-Sinou, et al. 2016; Maire 
et al. 2017; Hallberg 2013; Elsey, Esedoḡlu, and Smereka 2009, 2010; Mießen et 
al. 2015; Bernacki et al. 2009; Resk et al. 2009; Logé et al. 2010). These numerical 
methods are currently used and developed by many researchers (J. Humphreys, 
Rohrer, and Rollett 2017) and regularly compared for particular metallurgical 
mechanisms (Harun et al. 2006; Jin et al. 2015) . 

Of course, all the mentioned models have their own strengths and weaknesses. 
Probabilistic voxel-based approaches such as MC and some CA formulations are 
very popular. These models consider uniform grids composed of cells to model 
microstructure and stochastic laws to predict the motion of interfaces. These 
simulations are efficient in term of computational cost and the scalability is 
excellent. On the other hand, deterministic approaches, based on the resolution of 
partial differential equations, are more accurate in the description of the involved 
physical mechanisms although they are numerically more expensive. For instance, 
front-tracking or vertex approaches are based on an explicit description of 
interfaces in terms of vertices. Interfaces motion is imposed at each increment by 
computing the velocity of a set of points. A major difficulty of these approaches is 
related to the complexity of handling all the possible topological events, such as 
disappearance and appearance of new grains, which is not straightforward 
especially in 3D. Other deterministic approaches, also called front-capturing 
approaches, avoid these topological problems since they are based on an implicit 
description of the interfaces: the MPF and the LS methods. The major limitation of 
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these two methods is generally the computational cost when used in a finite element 
(FE) framework. 

LS simulations in context of regular grids and Fourier transform resolution, 
with very large number of grains, can be found for grain growth (Elsey, Esedoḡlu, 
and Smereka 2009; Mießen et al. 2015) and for static recrystallization (Elsey, 
Esedoḡlu, and Smereka 2010) modeling. When global or local meshing/remeshing 
operations have to be considered (large deformation, presence of second phase 
particles…), LS approach in context of unstructured finite element (FE) mesh, and 
reasonable number of grains can be considered (Logé et al. 2008; Bernacki et al. 
2008; Bernacki, Logé, and Coupez 2011; Hallberg 2013; Scholtes, Boulais-Sinou, 
et al. 2016; Maire et al. 2017). This explains the limited number of studies dedicated 
to the full field modeling of ReX in context of industrial hot metal forming. Indeed, 
the full field modeling of real thermomechanical paths generally implies to take 
into account all the concomitant physical mechanisms in context of large or very 
large deformations. 

In the following will be described how the FE-LS method was developed in the 
last twenty years in this context. First, the LS methodology in context of 
polycrystals will be briefly recalled. Second, algorithms for modeling ReX and GG 
in unstructured FE mesh will be described. Discussions concerning the anisotropy 
of grain boundary energy and how to take into accout second phase particles will 
be illustrated. Then, a typical procedure coming from an industrial 
thermomechanical path to the use of FE-LS to predict locally grain boundary 
migration will be described. Finally some current developments of the approach 
will be discussed. 

 
LEVEL-SET DESCRIPTION OF POLYCRYSTALS 

 
digital microstructure 

 
The LS method was introduced for the first time in 1988 (Osher and Sethian 

1988)  as a numerical tool to trace the spatial and temporal evolution of interfaces. 
Several authors have extended this method to interfaces with multiple junctions 
(Merriman, Bence, and Osher 1994; Zhao et al. 1996) and a first finite element LS 
framework (FE-LS) for modeling of SRX mechanism in metal alloys was proposed 
ten years ago (Bernacki et al. 2008; Logé et al. 2008; Bernacki et al. 2009; Resk et 
al. 2009). In the LS approach, each sub-domain G (grain) in a given domain Ω 
(polycrystal) is classically described implicitely by computing the signed distance 
function 𝜓(𝑥, 𝑡) representing the distance to the sub-domain boundaries Γ = ∂G 
(grain boundaries). In a P1 formulation, the function 𝜓(𝑥, 𝑡) is calculated at each 
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node on the FE mesh and is classicaly chosen, by convention, positive inside of the 
grain and negative outside as illustrated in the Figure 1: 

 

∀𝑡 (𝜓
(𝑥, 𝑡) = ±𝑑,𝑥,G(𝑡)-, 𝑥 ∈ 𝛺
G(𝑡) = {𝑥 ∈ 𝛺,𝜓(𝑥, 𝑡) = 0}

      (1) 

 
where d(.,.) corresponds to the Euclidean distance. The interface is implicitly given 
by the level 0 of the function 𝜓.  

 
Figure 1. LS description of a polyhedral grain (blue interface) in an unstructured FE mesh 

(in black). 

Using such an implicit description of the interfaces simplifies the definition of 
the FE mesh as it has not to be correlated to the grain boundary interfaces. 
Experimental image can be easily immersed in the FE mesh by calculating the 
distance functions to the grey levels of each grain interface as illustrated in Fig. 2.  

When only statistical data are known such as the mean grain size or the grain 
size distribution, digital material must be built thanks to representative 
microstructures (Rollett 2004). Voronoï or Laguerre-Voronoï tessellations can be 
used in order to respect the known data in the generated digital polycrystal made of 
polyhedral grains. Voronoï Tessellation Method (VTM) consists in generating 
randomly N Voronoï nuclei and defining each Voronoï cell as the region consisting 
of all locations in the space which are closer to the considered nucleus than any 
other nucleus. Despite the good geometric correlation between Voronoï 
tessellations and many cellular structures, VTM presents some limitations due to 
the impossibility to respect, for example, a given statistical volume distribution of 
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cells. Xu and Li (Xu and Li 2009) described the divergence between statistical 
properties of grains classically observed in an equiaxial polycrystal and results 
obtained with the VTM. One way to improve the classical VTM consists in using 
the so-called Laguerre–Voronoï Tessellation Method (LVTM), by assigning a 
radius, or weight, to each nucleus and to respect this distribution in the Voronoï 
Tessellation (Imai, Iri, and Murota 1985). It is important to highlight, that the 
principal difficulty of LVTM is common to the generation of polycrystal 
microstructure and of powder RVEs: to respect a given statistical size of spheres 
with the highest possible density. If this criterion seems natural for powder RVEs, 
it is also crucial for LVTM in order to limit the heterogeneities between the weight 
imposed and the volume of Voronoï cells finally obtained. This discussion is 
classically unclear in the literature but put in another way, respecting the grain size 
distribution for the Laguerre-Voronoi sphere packing is not the same thing that 
respecting the grain size distribution for the resulting Laguerre-Voronoï cells. 
Different approaches, gathered in the so-called Sphere Packing Methods (SPM), 
were developed since 40 years (Jodrey 1985; He, Ekere, and Cai 1999; Lochmann, 
Oger, and Stoyan 2006; Benabbou et al. 2009; Kansal, Torquato, and Stillinger 
2002; Bagi 2005; Cui and O’Sullivan 2003; Bagi 1993; Shi and Zhang 2008) and 
are classically divided in two families: the sequential addition models and the 
collective rearrangement ones. Both are intensively developed nowadays for 
polycrystal generation (Hitti et al. 2012; Ilin and Bernacki 2016b, 2016a; Quey and 
Renversade 2018; Depriester and Kubler 2019). 

 

 
Figure 2. (left) 2D micrograph obtained by EBSD (each grain being plotted with a different gray 
level) and (right) immersion of the experimental micrograph in a FE mesh thanks to a LS strategy 
and adaptive anisotropic remeshing around the grain boundaries. 

 
Interestingly, both Voronoï or Laguerre-Voronoï tessellation can be directly 

described analytically in FE-LS framework thanks to, respectively, Eq. (2) and Eq. 
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(3) where 𝑁!  corresponds to the number of grains, 𝑆" denotes the Voronoï sites and 
𝑟" the corresponding weight if Laguerre-Voronoï tessellation is considered. 

6
𝛼𝑖𝑗(𝑥) =

1
2 7𝑆𝑖𝑆𝑗
8888888⃗ 7− 𝑆𝑖𝑆𝑗########⃗ ∙𝑆𝑖𝑥######⃗

%𝑆𝑖𝑆𝑗########⃗ %
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐺, 𝑗 ≠ 𝑖,

𝜓"(𝑥, 0) = min
𝑗∈⟦1,𝑁𝐺⟧,𝑗≠𝑖

:𝛼𝑖𝑗(𝑥); , 1 ≤ 𝑖 ≤ 𝑁𝐺.
  (2) 
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8888888⃗ 7+
𝑟𝑖2−𝑟𝑗2

%𝑆𝑖𝑆𝑗########⃗ %
@− 𝑆𝑖𝑆𝑗########⃗ ∙𝑆𝑖𝑥######⃗

%𝑆𝑖𝑆𝑗########⃗ %
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐺, 𝑗 ≠ 𝑖

𝜓"(𝑥, 0) = min
𝑗∈⟦1,𝑁𝐺⟧,𝑗≠𝑖

:𝛼𝑖𝑗(𝑥); , 1 ≤ 𝑖 ≤ 𝑁𝐺.
  (3) 

 
This procedure presents the interest of being very simple to implement. 

However, its numerical cost is not negligible as it involves an 𝑁!( algorithm at each 
integration point of the FE mesh. A numerical improvement (Hitti et al. 2012) 
consists in taking into account the dual of the Voronoï (resp. Laguerre-Voronoï) 
tessellation which corresponds to the Delauney (resp. weighted Delauney) 
triangulation which enables to limit the research of the minimum in Eqs. (2) and (3) 
to the Graph of each site in the obtained triangulation. Fig.3 illustrates, in LS 
context, polycrystals respecting an experimental grain size distribution thanks to a 
Laguerre-Voronoï tessellation. 

 

 
Figure 3. LS description in an unstructured FE mesh of a 304L polycrystal made of equiaxed 
grains generated thanks to a Laguerre-Voronoï tessellation: (left) 2D context with a polycrystal 
of 10000 grains described with 5 GLS and (right) 3D context with a polycrystal of 80.000 grains 
described with 17 GLS. The color code corresponds to the GLS identifier after applying the 
coloration technique described below. 
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Theoretically, each grain of a polycrystal must be represented by its own LS 
function. In order to reduce the computation time and memory storage, several non-
neighboring grains in the initial microstructure (separated by a certain number of 
grains 𝛿) can be grouped to form Global Level Set (GLS) functions thanks to Graph 
coloration technique. However, the grains belonging to the same function can no 
longer be distinguished. As a consequence, when two child grains of a GLS grow 
and meet each other, numerical coalescence occurs, i.e. both grains merge to form 
a single grain. Thus different strategies can be found in order to avoid or at least 
minimize numerical coalescence events: the initial separation 𝛿 can be chosen small 
enough to limit the computation time and sufficiently high to avoid a significant 
amount of coalescence (Cruz-Fabiano, Logé, and Bernacki 2014), a complete 
optimal coloration can be performed at each time step, or re-coloration algorithms 
can be considered at each time step (Krill III and Chen 2002; Elsey, Esedoḡlu, and 
Smereka 2009; Scholtes et al. 2015).  
 
Meshing adaptatation 
 

In context of polyhedral cells, FE meshing of digital microstructures is quite 
straightforward, and consists, classicaly, in discretizing cells facets, and then the 
volume within each cell (Quey, Dawson, and Barbe 2011). This procedure is 
commonly used if the simulation domain is subjected to small deformations. 
Moreover, for real polycrystals, observed using Scanning Electron Microscopy 
(SEM) or 3D X-ray imaging techniques (Ludwig et al. 2009; Proudhon et al. 2016), 
a Voronoï/Laguerre-Voronoï mesh is not accessible. While there has been much 
research done on meshing methods for real 3D microstructures (Young et al. 2008; 
Y. Zhang, Bajaj, and Sohn 2005), the generalization of these methods to massively 
multiphase materials such as polycrystals is not straightforward (Rollett et al. 2004; 
Brahme et al. 2006). The main challenge is linked to multiple junctions, namely 
interfaces between more than two grains where respecting experimental data and 
achieving high mesh element quality can be complex. 

Once a mesh has been generated as explained above, modeling large plastic 
strains and subsequent microstructure evolutions in FE framework is also very 
challenging. As a consequence, many researchers have chosen to avoid the use of 
conform meshes (i.e. where grain boundaries are explicitly meshed), and instead 
use implicit interface methods such as LS and MPF. While results using explicit 
interface methods are either restricted to limited deformations or based on a full 
reconstruction of the computational mesh at each time step (Hallberg 2013), 
implicit interface methods allow modeling of a wider range of metallurgical 
phenomena where large deformations are considered (Bernacki et al. 2009; 
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Scholtes et al. 2015; Scholtes, Boulais-Sinou, et al. 2016; Maire et al. 2017). 
However, this numerical strategy generally requires fine FE meshes at the grain 
interfaces to reach acceptable accuracy with regards to ReX and GG modeling. The 
absence of a conform mesh at grain boundaries generally requires a finer 
discretization. Of course, global isotropic refinement of the mesh or high order 
interpolation of LS functions can be used to reach a desired accuracy in the interface 
description, however, these strategies lead to a significant increase of computation 
resources. Adaptive local isotropic or anisotropic remeshing is therefore generally 
preferred. Different ways exist to generate locally adapted meshes to zero-isovalue 
of LS but, classicaly, metric field and topological meshers based on local mesh 
topology optimizations are used (Gruau and Coupez 2005; Coupez, Digonnet, and 
Ducloux 2000; Shakoor, Bernacki, and Bouchard 2015). Concerning metric 
calculations, the most common approach consists in using a posteriori error analysis 
in order to obtain an optimal mesh for a given number of nodes (Almeida et al. 
2000; Coupez 2011). However, this approach can be non-optimal in polycrystal 
cases when an important number of LS functions must be considered. When 
describing strictly disjoint objects by LS functions, a simple solution consists in 
adapting the mesh thanks to a posteriori error estimator to 𝜙(𝑥, 𝑡) =
𝑚𝑎𝑥",𝜓"(𝑥, 𝑡)-. However, such an approach, used in (Scholtes et al. 2015; Maire 
et al. 2016), is not straightforward when the different objects considered are not 
strictly disjoint, which is the case in  polycrystalline microstructures, as the 𝜙 
function is then not derivable at the grain boundary network.  

 
Alternatively, automatic geometrical methods can be used for the generation of 

local refined isotropic or anisotropic meshes adapted to polycrystals, based on the 
normal and/or mean curvature of the grain interfaces (Hitti et al. 2012; Bernacki et 
al. 2009). Fig. 4 illustrates a 2D exemple where anisotropic metric is considered 
thanks to a geometric approach (Bernacki et al. 2009) for an InconelÒ 718 
microstructure: the mesh is adapted to the grain interfaces (generated statistically 
with a Laguerre-Voronoï approach) and to second phase particles (SPP) interfaces 
immersed after thresholding of a SEM image. Fig 5 illustrates a 3D 304L case 
where a posteriori metric is adopted (Scholtes et al. 2015). 
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Figure 4. 2D InconelÒ 718 microstructure exemple where local anisotropic metric is considered 
for the FE mesh generation thanks to a geometric approach (Bernacki et al. 2009). The mesh is 
adapted to the grain interfaces (generated statistically with a Laguerre-Voronoï approach) and 
to delta phase interfaces immersed thanks to a SEM image. The color code corresponds to the 
GLS functions. 

 
Figure 5. 3D equiaxed microstructure exemple where where local anisotropic metric is 

considered for the FE mesh generation thanks to a posteriori approach (Scholtes et al. 2015). 
The mesh is adapted to the grain interfaces (generated statistically with a Voronoï tessellation). 
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Interestingly, recent results have shown that the use of local meshing 
refinement could be questionable in 3D concerning the reduction of numerical cost 
comparatively to the use of static fine mesh (Scholtes 2016). Indeed, the numerical 
cost of frequent remeshing operations in 3D can also be very expensive. New 
strategies, maintaining the benefits of the classical Eulerian LS framework, while 
enforcing the conformity of the FE mesh to implicit interfaces in order to limit the 
use of very fine mesh at grain interfaces appears as an interesting alternative for 3D 
calculations (Florez et al. 2019).  

 
Classical isotropic framework for LS modeling of ReX and GG 
 

In the LS method, the evolution of 𝜓(𝑥, 𝑡)	is given by the following 
transport equation (Osher and Sethian 1988): 
 

F
)*!(,,.)

).
+ 𝑣(𝑥, 𝑡) 	 ∙ ∇𝜓"(𝑥, 𝑡) = 0

𝜓"(𝑥, 𝑡 = 0) = 𝜓"0(𝑥)
,				∀𝑖 ∈ ⟦1, 𝑁!12⟧.     (4) 

 
where �⃗�(𝑥, 𝑡) is the velocity field and 𝑁!12 the number of GLS functions. It is 
generally assumed for metals that the kinetics of grain boundary migration at the 
mesoscopic scale can be described as (F. J. Humphreys and Hatherly 2004): 
 

�⃗� = 𝑀𝑃𝑛8⃗ ,     (5) 
 

where 𝑀 is the grain boundary mobility, 𝑃 is the net driving pressure i.e. the net 
driving force per unit area, and 𝑛8⃗  is the outward unit normal to the GB. In context 
of deterministic full field approaches and neglecting torque terms (Fausty et al. 
2018), the net pressure is classically defined as: 
 

𝑃 = 𝜏⟦𝜌⟧ − 𝛾𝜅,        (6) 
 

where 𝜏 is the dislocation line energy, ⟦𝜌⟧	is the dislocation density jump across the 
interface, 𝛾 is the GB energy and 𝜅 is the mean GB curvature (i.e. the curvature in 
2D and the sum of main curvatures in 3D). That is the GB motion is governed by 
the stored energy gradient across the GBs and by capillarity. The isotropy 
hypothesis remains here to consider 𝑀	as being only dependant on temperature and 
𝛾 as being constant. Assuming that ‖∇𝜓"(𝑥, 𝑡)‖ = 1, ∀𝑖 ∈ ⟦1, 𝑁!12⟧, i.e. 𝜓" remain 
distance functions all along the simulation, after substituting Eq.(6) into Eq.(5) and 
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Eq.(5) into Eq.(4), and by considering the following properties of distance functions 
with the chosen sign convention: 
 

𝑛8⃗ " = −∇𝜓" ‖∇𝜓"‖Y = −∇𝜓" ,			𝜅" = ∇ ∙ 𝑛8⃗ " = −Δ𝜓" ,  (7) 
 

one can solve a set of 𝑁!12 convective-diffusive equations to take into account 
Eq.(5) for all the grains of the considered polycrystal (Bernacki, Logé, and Coupez 
2011): 
 

⎩
⎨

⎧
)*!(,,.)

).
−𝑀𝛾Δ𝜓"(𝑥, 𝑡) + �⃗�"

⟦3⟧ ∙ ∇𝜓"(𝑥, 𝑡) = 0
𝜓"(𝑥, 𝑡 = 0) = 𝜓"0(𝑥)
𝑣"
⟦3⟧ = 𝑀𝜏⟦𝜌⟧"𝑛8⃗ "

,				∀𝑖 ∈ ⟦1, 𝑁!12⟧.    (8) 

 
Generally, a particular numerical treatment must be imposed to avoid kinematic 
incompatibilities after the resolution of Eq.(8). Indeed, voids can appear at multiple 
junctions and must be treated. A classical solution consists in correcting the GLS 
functions as follows (Merriman, Bence, and Osher 1994):  
 

𝜓["(𝑡, 𝑥) =
4
(
:𝜓"(𝑡, 𝑥) − max56"

,𝜓5(𝑡, 𝑥)-; , ∀𝑖 ∈ ⟦1, 𝑁!12⟧.  (9) 

 
The effect of Eq. (9) is schematized in Fig. 6. An alternative could also consist 
(Zhao et al. 1996) in closing void regions thanks to an energy minimization 
principle enforced by a Lagrange multiplier related to a constraint added to Eq.(4). 
 

 
Figure 6. Global treatment to eliminate non-physical vacuum regions on a FE discretization: two 
colored LS (a) with a vacuum region in between them, (b) result after applying Eq. (9). Three 
colored LS : (c) with  a vacuum region (d) result after applying Eq. (9). 
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A major drawback of the LS formulation lies in the fact that after the 
resolution of Eqs. (8) and (9), the GLS are no longer distance functions ‖∇𝜓"‖ ≠
1. This is particularly problematic when a specific remeshing technique depending 
on the distance property is used at the interface as described in the previous section. 
In addition, the convective-diffusive formulation proposed in Eq.(8) requires a 
distance function at least in a thin layer around the interface in order to compute 
properly the curvature driven mechanism. Finally, the conditioning of the transport 
problem also depends on the regularity of the LS function (Bernacki et al. 2009). 
For these reasons, the GLS functions need to be reinitialized. Restoring the metric 
property at the instant 𝑡	is equivalent to solving the following eikonal equation: 
 

`
‖∇𝜓"(𝑥, 𝑡)‖ = 1, 𝑥 ∈ Ω
𝜓"(𝑥, 𝑡) = 0, 𝑥 ∈ Γ"(𝑡)

				∀𝑖 ∈ ⟦1, 𝑁!12⟧.   (10) 

 
Different approaches exist to solve this equation including the well-known Fast 
Marching Method introduced by Sethian (J. A. Sethian 1996) which propagates a 
front from the interface and ensures directly a gradient equal to unity. Though this 
approach has been extended to unstructured meshes (Kimmel and Sethian 1998), 
its implementation becomes complicated when it comes to consider anisotropic 
triangulations (James A Sethian and Vladimirsky 2003) and parallel efficiency is 
poor. 
In (Sussman, Smereka, and Osher 1994), a Hamilton–Jacobi (H–J) formulation 
equivalent to Eq.(10) was proposed in order to correct iteratively the level set values 
around the interface by solving a partial differential equation (PDE). This method 
is massively used in the LS modeling of ReX and GG (Agnoli et al. 2014; Cruz-
Fabiano, Logé, and Bernacki 2014; Bernacki, Logé, and Coupez 2011; Hallberg 
and Bulatov 2019). It requires the definition of a purely numerical parameter known 
as a fictitious time step for reinitialization and the ratio between the desired 
reinitialized thickness and this parameter gives the number of required increments. 
Coupled convection-reinitialization (CR) methods emerged wherein the LS 
function is automatically reinitialized during the resolution of the transport equation 
(Coupez 2007; Bernacki et al. 2008, 2009). Their main advantage lies in the fact 
that only one solver is needed for the simulation instead of two for the classical H–
J technique. The signed distance function can also be replaced by any smooth 
function which satisfies the metric property, at least in a thin layer around the 
interface.  
Finally, a natural way to reinitialize GLS functions consists in using a brute force 
algorithm to perform a complete reconstruction of the distance function. This 
technique works in two steps: discretize the interface (zero-isovalue of the LS func- 
tion) into a collection of simple elements and, for every node, compute the distance 
to all elements of the collection and store the smallest value which becomes the 
updated value of the distance function. Though it guarantees optimal accuracy, this 
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Direct Reinitialization (DR) technique is generally reported as being greedy in 
terms of computational requirements (Sussman, Smereka, and Osher 1994; Elias, 
Martins, and Coutinho 2007; Jones, Baerentzen, and Sramek 2006). It is 
nevertheless worth mentioning that these works generally address only regular grids 
or hierarchical meshes (Fortmeier and Martin Bücker 2011). Recently, a new direct 
fast and accurate approach usable in unstructured FE mesh has been proposed 
(Shakoor et al. 2015). This method takes advantage of a space-partitioning 
technique using k-d tree and an efficient bounding box strategy enabling to 
maximize the numerical efficiency for parallel computations. Discussions 
concerning the residual errors inherent to this approach is also discussed in (Florez 
and Bernacki 2019).  
 
 By extrapolating the shape of the velocity term, �⃗�"

⟦3⟧	of Eq.(8), for the 
interface between grain 𝐺" and 𝐺7, the corresponding velocity �⃗�"7

⟦3⟧ can be written 
as:  

𝑣"7
⟦3⟧ = 	𝑀𝜏⟦𝜌⟧"7𝑛8⃗ "7 .        (11) 

 
Classically in LS or MPF approaches, a constant stored energy is considered in each 
grain (Bernacki et al. 2008, 2009; Logé et al. 2008; Resk et al. 2009; Scholtes, 
Boulais-Sinou, et al. 2016; Hallberg 2013; Elsey, Esedoḡlu, and Smereka 2009; 
Maire et al. 2017). Then, for each interface between grain 𝐺" and 𝐺7,  it is assumed 
that: 
 

𝜏⟦𝜌⟧"7 = 𝑒7 − 𝑒",    (12) 
 
where 𝑒" and 𝑒7 are the mean stored energies in the grains 𝐺" and 𝐺7, respectively.  
 
These averages can directly come from either constant approximative values where 
only a gradient of the stored dislocations between the nuclei and the non-
recrystallized grains is considered as in (Bernacki et al. 2008; Bernacki, Logé, and 
Coupez 2011; Elsey, Esedoḡlu, and Smereka 2009), or simplified mechanical 
formulations as in (Maire et al. 2017). They can also be evaluated thanks to an 
existing dislocation field in the FE mesh of the calculation domain Ω as in (Maire 
et al. 2016; Bernacki et al. 2009; Logé et al. 2008; Hallberg 2013; Scholtes, Boulais-
Sinou, et al. 2016) or come from a dislocation density field measured from 
experimental data, immersed in the FE mesh and averaged per grain  as in (Agnoli 
et al. 2015; Villaret et al. 2019). 
 

Special attention has to be paid to the velocity field �⃗�⟦3⟧	in the vicinity of 
multiple junctions as emphasized in (Bernacki et al. 2008). In fact, rather than 



Chapter title 15 

dealing with �⃗�"
⟦3⟧	per grain as described in Eq.(8) and considering the contributions 

of each neighbor as in Eq.(11), a global common velocity can be built in the 
calculation domain and used for each convection-diffusion system. 3D results 
obtained this way are summarized in Fig. 7 for a complex thermomechanical path 
applied onto 304L stainless steel. The microstructure is initially generated by a 
Laguerre-Voronoï strategy as detailed in (Hitti et al. 2012). The system of equations 
(8) is solved by considering Eqs (9), (11), (12), an optimized graph recoloration 
technique (Scholtes et al. 2015), a direct reinitialization technique (Shakoor et al. 
2015) and the simplified mechanical framework detailed in (Maire et al. 2017). 

 
Anisotropy of grain interface energy 
 

GG thermodynamics are relatively complex due to the “macroscopic” 
dimensionality of the grain boundaries (Sutton and Balluffi 1995). When dealing 
with heterogeneous phenomena (thermal twinning, plastic localization, onset of 
fracture, etc.), material heterogeneities must be taken into account. As such, 
calculations used to predict microstructure after thermomechanical processing must 
be improved and enriched to take into account local properties such as non-uniform 
or anisotropic grain interface energy. The five-dimensional space of grain 
boundaries is non-Euclidean and partitioned into symmetric subspaces due to the 
inherent crystallography of the material. The topology of the grain boundary space 
makes it difficult to define a metric (Morawiec 2009; Olmsted 2009) which makes 
any multivariate calculus one wishes to perform, such as that required by the finite 
element method (FEM). It must be highlighted that if GG studies with non-uniform 
grain boundary energy are numerous (Yu, Nosonovsky, and Esche 2009; Grest, 
Srolovitz, and Anderson 1985; Sieradzki and Madej 2013), the difficulties 
concerning a clear description of the grain boundary energy and accounting for its 
successive derivatives which have an impact of the capillarity driving pressure 
remains an unsolved issue in the state of the art.  

Several anisotropic full field grain growth frameworks also exist based on LS 
and MPF approaches (Miyoshi and Takaki 2017; Chang et al. 2017; Chang and 
Moelans 2014; Mallick and Vedantam 2009; Jin et al. 2015; Hallberg 2014; 
Hallberg and Bulatov 2019; Elsey, Esedoḡlu, and Smereka 2013; Fausty et al. 2018; 
Fausty, Bozzolo, and Bernacki 2019). Of particular note is the relatively new MPF 
formulation used in (Miyoshi and Takaki 2017), which allows for both the 
definition of heterogeneous grain boundary energies and mobilities, and the MPF 
method applied in (Chang et al. 2017), which shows very interesting results in 
special dual grain boundary microstructures. However, both formulations suffer 
from inherent numerical instabilities when increasing the heterogeneity of the 
system. Concerning the LS method, (Elsey, Esedoḡlu, and Smereka 2013) define a 
grain boundary energy “per grain” and then use an adhoc averaging  
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(a)  
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(c)  
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(d)  

(e)  

(f)  
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(g)  

(h)  
 

Figure 7. Complex thermomechanical path for a 304L stainless steel. In each picture from 
(a) to (h), the red circle describes the corresponding position in the thermomechanical path (t(s) 
in abscissa and T(°C) in ordinate, zigzag lines symbolize deformation steps, straight lines 
symbolize annealing steps) and the microstructure predicted at the same time with the grain 
boundary network colored by the stored energy. (a) corresponds to the initial state, (b) 
corresponds to the beginning of DRX with appearance of few nuclei at the existing grain 
interfaces, the defomation (𝜀̇ = 0.01𝑠%&)	is applied along the z-direction, (c) corresponds to the 
end of the first deformation; (d) and (e) described the post-deformation evolution during an 
increase of temperatue, MDRX, SRX and GG mechanisms occur; (f) and (g) describe a second 
deformation (𝜀̇ = 0.1𝑠%&) along the x-direction with a second DRX evolution and finally (h) 
described the final state obtained after quenching. 

 
operation to define the energy at the interface between two grains. They then solve 
the grain growth problem isotropically using the highest grain boundary energy 
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followed by a mathematical procedure to correct the evolution of the grain 
boundary network to take into account the presence of multiple boundary energies. 
 

This approach was also studied and validated in (Jin et al. 2015). However, 
this framework is almost exclusively geometric and, at the triple junctions, the 
authors define a seemingly arbitrary junction energy in order to obtain the correct 
behavior of the system. The authors in (Hallberg 2014) use another method which 
imposes isogonic point triple junctions and solves curvature driven grain growth 
for heterogeneous grain boundary energies. Other very recent work (Hallberg and 
Bulatov 2019) goes so far as to simulate on regular grids the full anisotropic case 
(misorientation and inclination dependent grain boundary energy) using a LS 
formulation close to the one proposed in (Fausty et al. 2018) in FE context. In 
(Fausty, Bozzolo, and Bernacki 2019), the formulation proposed in (Fausty et al. 
2018) is applied to single phase 2D polycristals to explore the sentivity of this 
numerical framework to variations in its numerical parameters as well as the effect 
that different grain boundary energy functions can have on the development of a 
material microstructure. 
 
 In conclusion, a reasonable questioning can still emerge from all the cited 
literature concerning the dependence of the grain boundary energy to the inclination 
of the boundary as well as the misorientation rotation axis. For example, the impact 
of the torque terms generated by inclination dependent grain boundary energies are 
systematically neglected. They cannot be simply expressed by the contraction of 
gradient of the grain boundary energy function on the normal given the tangentiality 
of this gradient field to the grain boundary surface far away from boundary 
junctions. As such, supplemental terms depending on both 𝛾 and the boundary 
geometry should probably be developed and integrated in the coming years in the 
existing full field formulations to aspire to a fully anisotropic formulation for grain 
growth. 
 
Static second phase particles 
 

As described by the well-known Smith-Zener model (Smith 1948; F. J. 
Humphreys and Hatherly 2004), precipitates act as obstacles to the displacement of 
the grain boundaries and may hinder grain growth. Under certain conditions, 
Second Phase Particles (SPP) can pin the microstructure, leading eventually to a 
limiting mean grain size (MGS), which is characteristic of the Smith-Zener pinning. 
This phenomenon is widely used by metallurgists to control the grain size during 
the forming process of many alloys, including superalloys. Predictive tools are then 
needed to model accurately this phenomenon and thus optimize the final grain size 
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and in-use properties of the materials. Classical laws predicting the limiting MGS 
(Manohar, Ferry, and Chandra 1998), noted 𝑅f8, have the following form: 

 
𝑅f8 = 𝐾 9̅

;"
,     (13) 

 
where 𝑟 and 𝑓 describe, the mean radius and volume (surface in 2D) fraction of 
SPP, respectively. K and m are two parameters that fluctuate according to the 
assumptions made to obtain the equation (Manohar, Ferry, and Chandra 1998; 
Agnoli et al. 2014).  Since thirty years, numerous full field modeling of the Smith-
Zener phenomenon have been proposed, including MC/CA framework (Srolovitz 
et al. 1984; Anderson et al. 1989; Hassold, Holm, and Srolovitz 1990; Gao, 
Thompson, and Patterson 1997; Kad and Hazzledine 1997; Phaneesh et al. 2012), 
front tracking or vertex (Weygand, Brechet, and Lépinoux 2001; Couturier, 
Maurice, and Fortunier 2003), MPF (Chang, Feng, and Chen 2009; Tonks et al. 
2015; Moelans, Blanpain, and Wollants 2006; Chang and Moelans 2015) and LS 
(Agnoli et al. 2012, 2015, 2014; Scholtes et al. 2015; Villaret et al. 2019).   
 

Concerning the LS framework, the idea to consider inert SPP in a FE 
framework has been first proposed to perform 2D GG (Agnoli et al. 2012) and 2D 
static recrystallization (Agnoli et al. 2014) simulations for InconelÒ 718. SPP are 
inserted in the FE mesh thanks to statistical decription or experimental data and the 
local curvature of the grain boundaries in contact with SPP is constrained. This 
approach enables to consider SPP with no assumption on their size or morphology, 
isotropic and anisotropic particle/grain interface energies (incoherent or coherent 
interfaces) can be simply considered by applying the appropriate boundary 
conditions. The dragging effect is naturally modeled by the modification of the local 
curvature when the grain boundary encounters the particles, which implies that no 
assumption is made on the dragging force exerted by the particles. This approach 
was used to support the idea that the phenomenon reported as abnormal grain 
growth in InconelÒ 718 could be explained by the growth of lower energy grains 
in a pinned microstructure and as such be a particular case of static recrystallization. 
Thanks to these simulations, the sensitivity of this phenomenon to the initial stored 
energy distribution could be studied (Agnoli et al. 2015). Optimization of 
parameters K and m of of Eq.(13)  thanks to a full field simulations campaign and 
first 3D LS simulations were proposedin (Scholtes, Ilin, et al. 2016) and (Scholtes 
et al. 2015), respectively. Recently comparisons with MC simulations and 
experimental data have been made for ODS steels (Villaret et al. 2019). Figure 8 
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illustrates a 3D GG LS simulations for InconelÒ 718 with an idealized spherical 
population of SPP (𝑓 = 3%), until reaching a final stable microstructure. 

 
Industrial applications 
 
 As emphasized in the introduction, full field modeling of ReX and GG in 
context of industrial thermomechanical conditions is rare in the state of the art and 
first cases were proposed recently thanks to a LS-FE framework available in the 
DIGIMUÒ software package. The following describes briefly the global 
microstructure simulation approach used in this software allowing a multiscale 
modeling of ReX phenomenon from material identification to industrial-like 
process simulations. 
 

A precise knowledge of the thermomechanical history of the process is 
required to make relevant microstructural predictions at given integration points. 
Macroscopic simulations must be performed with a specific attention given to 
mechanical and thermal boundary conditions, as well as friction modelling. As the 
velocity gradient is a particularly unstable value in simulations, mesh must be fine 
enough to obtain smooth evolutions at the position of interest concerning the 
mesoscopic simulations. In case of high temperature gradients at the macroscale 
boundaries, adapting the mesh is essential to describe accurately the temperature 
field evolution. Some typical calculations in this context are described in (Micheli, 
Maire, Moussa, et al. 2019) for a 2D cogging and a 3D close die forging simulations 
and in (Micheli, Maire, Cardinaux, et al. 2019) for a 2D hot plate rolling process. 
Once the temperature and strain rate fields are known from the macroscopic 
simulation, material caracterization can begin.  

 
A material parameter identification procedure (reducted mobility, 

hardening, recovery and ReX parameters) based on experimental tests, mean field 
and full field calibration simulations is proposed in the DIGIMUÒ software 
package. Indeed, material parameter identification is unavoidable to obtain accurate 
microstructural predictions, whatever the type or the complexity of the used model. 
The question is how much experiments must be performed to obtain a broad enough 
description of the material. The identification of a set of parameters for a non 
physical model will require as many experiments as for a physical model, but the 
range of validity of the physical model will be much better than the range of validity 
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of the non physical one. Details on such identification procedure can be found in 
(Maire et al. 2019; Micheli, Maire, Moussa, et al. 2019). 
 
Conclusions and perspectives 
 

In the last decades, full field approaches have been extensively developed 
to simulate microstructure evolution during forming processes. Modeling at the 
mesoscopic scale can give insight into the understanding of complex 
microstructural phenomena but it can also be used to optimize/calibrate higher scale 
models (like mean field models or phenomenological ones). These simulations 
allow describing the material microstructure features in a natural way. The recent 
improvements done to reduce the high computation times typical of such models 
make possible nowadays their use for industrial applications. Within this context, 
the development of numerical models able to predict microstructure evolution, at 
the mesoscopic scale is of prime importance. These digital models will allow being 
very reactive to new markets with confidence in the proposed manufacturing routes 
and parameters.  

Furthermore, scientific perspectives in terms of understanding and 
modeling of metallurgical phenomena and development of the LS methodology are 
then as ambitious as the industrial perspectives in terms of applications. As current 
improvement of this approach, one can cite works dedicated to i) reducing the 
numerical cost (Florez et al. 2019), ii) the enrichment of the driving pressure 
description by considering richer physical description of the grain boundary energy 
(Fausty, Bozzolo, and Bernacki 2019; Hallberg and Bulatov 2019) and of the grain 
boundary mobility (Murgas et al. 2019), iii) the modeling or other mechanisms 
leading to interfaces boundary motion such as spherodization of lamellar 
microstructures (Polychronopoulou et al. 2017) or more globally diffusive 
solid/solid phase transformation (Bernacki et al. 2019; Alvarado et al. 2019).  
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Figure 8. 3D GG LS simulations for InconelÒ 718 with an idealized spherical population 

of second phase particles (f=3%). SPP are described in white, the grain boundary network is 
described with a color code corresponding to the grain size until a stable configuration. From 
top to bottom and left to right: time evolution during the thermal treatment from the initial 
configuration to the stable grain boundary network. The last image corresponds to a zoom of a 
SPP (in red) interacting with one GB (in green). 
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