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Abstract

In this paper, a new method for the simulation of evolving multi-domains problems will be presented. The method is
inspired by the front-tracking approaches where only the interfaces between domains are discretized. The presented method
maintains the discretization of the interior of the domains using an evolving triangular mesh (valid for a Finite Element (FE)
study) and treats the topological events such as the disappearance of domains or the creation of interfaces by means of selective
local remeshing operations. Geometric properties are only computed on the interfaces using local spline reconstructions and
interfaces are moved using a Lagrangian approach ensuring at all times the validity of the mesh. Accuracy and computational
cost of this method will be evaluated in the context of microstructural evolutions, specifically for grain growth mechanism
(GG) and it will be compared to a more classical front capturing approach based on a Level-Set (LS) description of grain
interfaces which have been proved to be a powerful method for this kind of simulations.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Multiple numerical models have been developed to simulate multidomain problems. In the context of the
Finite Element (FE) Method, the Level-set (LS) method its a powerful tool capable of accurately handle large
interface deformations and topological events with relative ease. The FE-LS numerical framework has been
successfully applied to predict the microstructural evolution of a polycrystalline material subjected to thermal
or thermomechanical processes, where phenomena as Grain Growth (GG) [1] and Recrystallization (ReX) could
appear [2–5]. However, the time needed to perform such simulations could go from some minutes for a domain
with hundreds of grains in 2D, to many days (even weeks) for a simulation involving hundreds of thousands of
grains in 3D.

Some optimizations could be applied to the FE-LS method with the objective of reduce the computational cost
(hence the CPU-Time) without reducing its accurateness [6,7]. However, these optimizations have a certain limit
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imposed by the nature of the FE method (discretization of the domain, interpolation degree and resolution) and the
LS method (reinitialization and treatment of vacuum regions).

Another numerical approach to simulate multidomain problems is the Voronoi implicit interface method (VIIM)
introduced in [8] and further discussed in [9] which uses a single unsigned level-set and a Voronoi approach to solve
the inconsistencies at the interface produced after affecting the level set field with a given velocity (by solving the
necessary equations of the related phenomena), over a fixed Eulerian mesh.

Alternatively to the FE-LS method, models based on the Lagrangian displacement of interfaces can be used as
in context of vertex approaches [10–14] or front-tracking methodology [15–19]. These methods explicitly describe
the interfaces in terms of vertices. For each increment, the velocity of the interfaces is computed and applied.
The application of these strategies is less demanding than for the FE-LS method, because the dimension of the
discretization and the computation is reduced by one dimension (only interfaces are discretized, while the grain
interior is not). Nonetheless difficulties of these approaches remain the complexity of handling all the possible
topological events, such as disappearance and appearance of new interfaces and domains or the contact between
crossing interfaces. Another issue of this method is that it is not possible to take into account in the computations,
physical mechanisms occurring inside the grains as there is not a discretization inside them.

In this paper, a new method for the simulation of evolving microstructures by curvature flow is presented. The
method is inspired by the front-tracking approaches in the sense that geometrical properties are only computed at
the interfaces and the migration of the grain boundaries is defined thanks to a Lagrangian scheme. However, The
presented method maintains the discretization of the bulk of the grains using an evolving triangular mesh, hence
the discretization will remain valid for a FE computation if needed (like in context of crystal plasticity or dynamic
recrystallization computations). The treatment of the topological events such as the disappearance of domains or the
creation of interfaces can be handled by means of selective local remeshing operations performed on the triangular
mesh.

The proposed numerical approach: TOpological REmeshing in lAgrangian framework for Large interface
MOTION (ToRealMotion, hereafter TRM) will be compared to the FE-LS approach using a classical front capturing
LS-FE framework [1,20–22]. These comparisons will be based on specific test cases for 2D-GG, using the same
approach and results presented in a previous work [7]. Given the application of the new model in this article,
the term domain will reference an individual grain in a microstructure, however, the new TRM approach can be
extended to any massively multi-domain problem immersed in a FE mesh.

2. Numerical method

2.1. Data structure: points, lines and surfaces

In the present numerical method multiple data structures have to be defined. These data structures are organized
following the geometric entity that they represent. This way, three classes of geometric entities are defined: Points,
Lines and Surfaces. Each one of these classes of entities contains its own data structure with a set of nodes and
elements (elements only in the case of Surfaces) that are used for its discretization on the triangular mesh.

Inspired by the classification of low-degree manifolds [23], a degree is attributed to each node of the FE mesh.
This degree depends on the class of the geometrical entity that they locally represent: Nodes representing a point
(P-Nodes) have a degree equal to 0, Nodes representing a line (L-Nodes) have a degree equal to 1 and Nodes
representing a surface (S-Nodes) have a degree of 2.

The simplest data structure is given for a point, this geometric entity is represented by one P-Node and a set
of local geometric connections (at least 3 connections). These connections refer to the current linking of this point
to other points or other lines as shown in Fig. 1(a) and (d) , here the point P1 is connected to the point P2 and to
two lines L1 and L2 containing L-Nodes N2 and N10 respectively. Note that in Fig. 1(a) even if point P2 is directly
connected to L-Node N10 by the mesh, this does not mean that there exists a geometric connection between them,
otherwise N10 could not be a L-Node but a P-Node because it would have 3 geometric connections.

The data structure of geometric lines is a little more complex, a normal structure of a line consists of a set of
L-Nodes (containing at least 1 L-Node) and 2 optional limit points. Additionally, we have chosen to maintain an
order on each line, beginning with an initial point, then the ordered set of L-Nodes and ending with the final point.
This choice was made to ease the approximation of the lines by natural splines as it will be explained further.
Fig. 1(b) and (c) illustrate two examples of lines: lines L1 and L2, where L1 is a typical line with two points and 3
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Fig. 1. Discrete geometric connectivity immersed in a triangular mesh. (a) Mesh containing 21 Nodes: 3 P-Nodes (red), 5 L-Nodes (blue)
and 13 S-Nodes (yellow). (b) structure of line L1, (c) structure of line L2, (d) structure of point P1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Example of the data structure of point P1 from Fig. 1.

Node N1

Connections

Type Entity Node

Point connection P2 N21
Line connection L1 N2
Line connection L2 N10

Table 2
Example of the data structure of line L1 from Fig. 1.

Initial point P1

Node set

Local index Node

0 N2
1 N3
2 N4

Final point P3

L-Nodes and L2 a line with only one point and 2 L-Nodes, each line can be ordered either way, L1 from point P1

to P3 or inversely and L2 from P1 to L-Node N15 or inversely. Moreover, note that the connection P1 to P2 does
not represent a line because there is not a L-Node between them. While P − P Connections represent an interface
as well as geometric lines, they will be treated differently in the presented model.

Tables 1 and 2 summarize an example of the data structure of point P1 and line L1 from Fig. 1.
Finally the data set of geometric surfaces contains a non empty set of elements, a set of S-Nodes, a set of

limit lines and a set of limit points. Here, order has been chosen not to be relevant, thus all sets are unordered.
Fig. 2(a) shows the same discretization of Fig. 1(a) with additional element information and Fig. 2(b-d) show its
decomposition in surfaces S1, S2 and S3. Table 3 presents an example for the data structure of Surface S2.

2.2. Preprocessor : LS-TRM interface and geometric reconstruction

Considering the importance and the capabilities of the LS method, we have consider it useful to develop an
interface between this method and the presented model. This interface will treat any initial state described using
one or multiple LS fields to be used as an entry state on the TRM model. The interfaces will produce a body-fitted
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Fig. 2. Discrete geometric connectivity immersed in a triangular mesh. (a) Mesh of Fig. 1(a) with additional element information (b) structure
of surface S1, (c) structure of surface S2, (d) structure of surface S3.

Table 3
Example of the data structure of surface S2 from Fig. 2.

Element set Node set Point set Line set

E15 N11 P1 L1
E13 N13 P2
E16 N12 P3
E14 N14
E17
E18
E24
E19
E25
E26

mesh and a set of nodal data representing the degree of each node as explained at the beginning of Section 2.1.
Moreover, the body-fitted mesh and the nodal degree data will be used on the reconstruction of the geometric entities
presented also in Section 2.1. The idea behind this reconstruction is to allow the code to optimize operations such
as the computation of geometrical properties of the interface, which only need to be performed on line entities for
the presented 2D model.

2.2.1. Body fitted mesh
Normally, when using the LS method, interfaces are described implicitly as the zero iso-value of the considered

LS fields [2,24], each field is interpoled on the FE mesh allowing to identify each grain as a sequence of implicit
segments (usually different from the edges of the mesh), as a consequence, the mesh used to define the LS fields
is not directly suitable for the TRM model. First the LS data set must be used to obtain a body fitted mesh, where
the interpolated interfacial segments are also represented by the edges of the mesh. Previous works have been done
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Fig. 3. Example of behavior of the fitting procedure presented in [25,26] when performed over a triangular mesh with 3 LS fields linearly
interpolated, each color represents a phase. (a) initial state, interfaces are implicitly described, (b) state after applying the fitting algorithm,
nodes appear at the interface between 2 phases but not at the multiple junction. Vacuum regions are preserved and some void elements are
created.

addressing this particular purpose: first, a remeshing technique allowing to adapt the mesh to the implicit interface
was presented in [25] and discussed further in [26] via a fitting algorithm, using a very similar approach as in [27].
This procedure is well adapted when the interface corresponds to the boundaries between two domains, nonetheless,
when the number of domains increases, multiple points (boundary between more than two domains) may appear,
the presence of these multiple points leads to the appearance of vacuum regions on the interpolated LS field, see
Fig. 3(a). If the remeshing procedure presented in [25] is applied under this circumstance, void elements instead
of multiple points will appear, see Fig. 3(b), note that some of the created nodes lie on the boundary between two
domains but not at the multiple junction.

A variant of this remeshing technique that solves this problem was presented in [7], here, a fitting and joining
algorithm (FJA) closes all vacuum regions within elements and then fit the interfaces at the edges, producing a
body-fitted mesh without vacuum. Fig. 4 illustrates the behavior of the algorithm when performed on a typical
multiple junction of three domains. Fig. 4(b) clearly shows how all the created nodes lie at the interface between
two domains except for one, which is at the multiple point between the three domains.

This reconstruction is here purely geometrical as its aim is to close vacuum regions around triple junctions and
not to give its exact position inside an element, as we have considered that the accuracy of the definition of a
multiple point should be defined by the element size and not by its undefined location over one single element.
Furthermore, one could give weights to each intersection in order to place the triple point in a more energetically
stable position if necessary. However for our TRM model this is not relevant as this procedure only serves as a part
of the pre-processor step.

Up to this point, the fitted mesh is sufficient for the TRM model, however, the mesh is optionally adapted using
local remeshing operations with the intention of increasing its quality (which is very poor at the boundaries after
the fitting see 4(b)), of course, these adaptations are done without disrupting the fitting of the mesh. The reader is
referred to [7] for further information. Fig. 4(c) shows the resulting body-fitted mesh after the adaptation procedure.

2.2.2. Nodal geometric tagging
Using a LS approach and a body-fitted mesh makes it possible to obtain the surface nodes by looping over all

the domain and extracting all the nodes for which at least one of the LS fields is zero. However, this information
is not sufficient. Triple points need to be identified before one attempts to reconstruct the analog data structure
presented in Section 2.1.

Once the body fitting mesh is obtained, a nodal tagging is performed. Each node will be tagged regarding its
geometric degree as explained at the beginning of Section 2.1. This is achieved by iterating over all the LS fields
stored on a node, if one of its LS fields is positive, this means that we are at the interior of a phase and a degree
equal to 2 (S-Node) must be attributed to that node. Then, if two of the LS fields are equal to zero and the rest are
negative, that node lies on a line and a degree equal to 1 (L-Node) is given to it. Finally, if more than 2 level set
fields are equal to 0 this node is a multiple point, hence obtaining at the end a degree of 0 (P-Node). Fig. 5 shows
an example of nodal geometric tagging over the body fitted mesh obtained at the end of Section 2.2.1.
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Fig. 4. Example of behavior of the fitting and joining procedure presented in [7] when performed over a triangular mesh with 3 LS fields
interpoled linearly, each color represents a phase. (a) initial state, interfaces are implicitly described, (b) state after applying the fitting and
joining algorithm, nodes appear at the interface between 2 phases and at the multiple junction. Vacuum regions disappear and all elements
belong to one phase. (c) Resulting mesh after the mesh adaptation procedure [7].

Fig. 5. Example of the nodal geometric tagging performed on a body fitted mesh. (a) considered topology and (b) resulting nodal tagging.

Once the tagging is complete, the level set information is not necessary any further, the interface is complete
and the new data set (body-fitted mesh and tagging) is ready to be sent to the TRM model for the geometric
reconstruction.

2.2.3. Point reconstruction
The point reconstruction is always the first step of the geometrical reconstruction process. Points are the entities

that hold lines together and that allow the computation of the apparent geometrical properties of the interface
at P-Nodes. Each node tagged as a P-Node will initiate the creation of a point entity, this node is automatically
attributed to the new created point. Concerning the connections of the point (explained in Section 2.1) as there are
no lines nor points created yet, connections will not be attributed on the creation process.

Once all points are created, point connections can be created. This is done by iterating over all points and
querying if its corresponding P-Node Ni is connected to any P-Node N j on the triangular mesh, if it is true, the
point of P-Node Ni will add N j as a connection.

2.2.4. Lines reconstruction
Once all points are reconstructed, the line reconstruction is performed, Section 2.1 shows that line entities

maintain an order denoted by where they appear on the line. This order is generated by performing a recursive
algorithm on the tagged L-Nodes of the mesh.

If a node is connected to a multiple point in 2D, the latter will be considered as the end or the beginning of the
line (depending on the stage of the recursive algorithm).

The reconstruction procedure initiates by defining a queue of L-Nodes to be attributed, this queue corresponds
at this stage as all tagged L-Nodes. The first L-Node of the queue is considered as the initial node for the
recursive algorithm which will search for adjacent L-Nodes that still appear on the queue. The procedure is repeated
recursively on the adjacent nodes till one of the neighbors is tagged as a P-Node (which has a corresponding point
already created). Each time a node is treated, it is erased from the queue of L-Nodes available. Moreover, the
Points found will be stored as members of the lines and they will be taken into account for the calculations of the
geometrical properties of the interface.
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Fig. 6. Example of construction of a line in 2D. (a) L-Node N0 is chosen as the initial node of the recursive algorithm, each treated L-Node
launches the procedure on each adjacent L-Node not treated till it founds an adjacent P-Node. Only some relevant elements are plotted. (b)
Local node patch of Node N0, when treating N0, N1 initiates a recursive thread while N3 launches another. (c) Local node patch of node
N5, the second thread launched by N3 is stopped by the presence of P-Node N15.

For the example shown in Fig. 6(a), two lists of nodes are created by two corresponding recursive threads, each
thread is launched by the presence of a L-Node in the local neighborhood of node N0 (see Fig. 6(b)) that still appear
on the queue. The recursion stops once one of the neighbor nodes is a P-Node as in Fig. 6(c), where the coupled
point P1 of the P-Node N5 is added to the list as a final point. Two lists are then created, the first is composed of
the L-Nodes i1, i2, i5 and point P1 and the second by i3, i6, i5 and point P2. The line will then be defined as the
concatenation of the inverse first list, the initial node N0 and the second list of L-Nodes, its initial point will be
defined as the point found by the first thread while its final point as the point found by the second thread.

By performing this algorithm, each L-Node of the mesh is identified and affected to a specific line having in
account its relative position to other nodes on the same line. This information will be used to choose a patch of
nodes that will serve as the support for an approximation/interpolation of the interface.

Once all lines created, the missing connectivity of the point entities can be created. This is done by iterating
over all lines, creating a connection between its initial/final point and the current line. Note that this is a dual link:
lines store the points that are attached to it and points store to which lines it is attached, this strategy enables to
perform quick connection searches on both ends (points and lines).

2.2.5. Surface reconstruction
Surface reconstruction was developed similarly to the line reconstruction algorithm. Here, a queue containing all

S-Nodes from the mesh is initially created, then a recursive algorithm identifies S-Nodes and elements belonging
to the same domain while storing limit lines and limit points found.

Take for example the state presented in Fig. 7, a set of S-Nodes (yellow) and a set of L-Nodes (blue) has been
tagged and one line L1 (green) has been identified by the process presented in Section 2.2.4. Here two domains
separated by L1 need to be identified. Initially, the first S-Node of the queue is chosen to initiate the recursive
algorithm, this initial S-Node is inserted to a new (empty) Surface S1 along with its element patch giving end to
the first iteration. The next iteration computes a new set GnewSN of S-Nodes to be added to S1, this set of S-Nodes
is composed of the set of nodes appearing on the element set of S1 (Elements(S1)), minus the set of nodes already
inserted in S1 (Nodes(S1)):

E LT s = Elements(S1) (1)

where function Elements(S1) extracts the elements present in surface S1.1

G N E =
{

Nodes(Elti ) ∀ Elti ∈ Elts
}

(2)

1 Function Elements(Enti t y) extracts the Elements present in Enti t y, where Enti t y can be a surface or a node. When extracting the
elements from a node N , the result will be the set of elements surrounding N .
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Fig. 7. Example of construction of a surface in 2D, L-Nodes — blue, S-Nodes — yellow, Line L1 — green, elements in the queue —
gray, elements attributed to Surface S1 — orange. (a) an Initial S-Node is chosen, (b) the L-Node is inserted in Surface S1 along with
its element patch, (c) and (d) the new S-Nodes of the inserted elements are also inserted to S1. Each new S-Node inserts its un-attributed
elements (those that do not belong to any surface) to S1. (e) the first element having a node belonging to line L1 inserts it to the limit lines
of S1. (f) the recursion stops as there are not new S-Nodes to insert in the next iteration. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

GSN E =
{

Ni/Ni ∈ G N E wi th T ype(Ni ) = SNode
}

(3)

where function Nodes(Elti ) extracts the nodes belonging to Elti ,2 T ype(Ni ) extracts the type of the node Ni
(P-Node, L-Node or S-Node), G N E are the nodes used to form the set of elements E LT s, and GSN E are the
S-Nodes present in G N E extracted with the expression T ype(Ni ) = SNode.

GnewSN = GSN E \ Nodes(S1) (4)

the nodes in GnewSN are colored in white in each frame of Fig. 7. Once these nodes are computed, they are inserted
in Surface S1 and extracted from the queue.

The set of nodes filtered Gother from G N E in Eq. (3) (Gother = G N E \ GSN E ) are the nodes having a
T ype(Ni ) = P Node or T ype(Ni ) = L Node, these nodes are used to add their coupled geometric entity (line
or point) to S1 as a limit entity as explained in Section 2.1.

2 Function Nodes(Enti t y) extracts the nodes present in Enti t y, where Enti t y can be a point, a line, a surface or an element.
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Fig. 8. Parametric piece-wise curve of a NPS approximation. Local curvatures are captured; The interface is capable to correct itself over
time into a smooth interface if dt is low.

The new set of S-Nodes GnewSN enables also to compute the new elements to be inserted in S1: the set of
elements G Elt of their element patch that do not belong already to S1:

G Elt =
{

Elements(Ni ) ∀ Ni ∈ GnewSN
}
\ Elements(S1). (5)

Finally the recursion stops once the set GnewSN is void, meaning that there are no more S-Nodes to treat for that
surface/phase as in Fig. 7(f). Note that the queue of S-Nodes is still not empty, hence the recursion restarts with
the first node of the queue (which necessary belongs to a new surface S2). This process is repeated till the queue
is empty.

Once all surfaces, lines and points are created, the preprocessing is complete.

2.3. Computation of geometrical properties: Curvature and normal

One of the objective of the presented TRM method is to allow a more efficient way to calculate some geometrical
properties by looping only over the nodes belonging to the interface.

With the basis of the data structure presented in Section 2.1 and the preprocessing procedure presented in
Section 2.2, it is possible to approximate each geometric line to the analog parametric curve given by its ordered
list of nodes. The choice of the mathematical approach for the approximation will be given with the aim of the
desired information (curvature and normal). Having this in mind, one approach has been taken into account: Natural
Parametric Splines (NPS) [28] which allow to capture the local variations of normal and curvature with a piece-wise
polynomial of third degree.

2.3.1. Natural parametric splines
A spline is defined as a function constructed piece-wise which is totally constrained by applying certain

conditions to the external limits of each sub-region. The choice of the conditions will change the behavior of
the parametric interpolation; in our case we will limit our study to natural splines: a fitted surface for which the
continuity of the first and the second derivative is assured at every node in addition to the conditions for the most
outer nodes where the second derivative is imposed to zero. In our algorithm we have chosen to compute the splines
using each node of a given line as the geometrical support.

The main difference of the NPS approach with other methods (for example a moving least square (MLS) approach
as in [29,30]) is that the curvature and the normal are calculated locally without over smoothing the interface,
allowing to capture the small variations of curvature from node to node with a relative high precision. However,
the solution over time for a velocity proportional to the curvature could be unstable for high values of time step
dt , but if dt is sufficiently low, the interface should find a position that minimizes the surface energy at all points
(see Fig. 8).

The stability of the TRM model using natural parametric splines will be discussed in Section 4.2.

2.4. Selective remeshing operations : preserving topology

One of the main features of the presented TRM model is its remeshing procedure. Section 2.1 presented the
data structure employed by the TRM model, this data structure needs to be maintained at all times to ensure all
geometric computations over the defined geometric entities. Of course when a remeshing procedure is performed,
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Fig. 9. Example of node collapsing. (a) initial state, elements to disappear are colored green (b) state after collapsing. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

the mesh is changed and the sets defining each geometric entity have to evolve to new valid sets. Therefore, the
remeshing procedure must take into account the local data structure of the nodes and elements involved in each
remeshing operation.

Local remeshing operations are generally employed by mesh adaptation techniques in order to improve the
local overall mesh quality Q of an element patch computed over different criteria (shape, volume, mesh size etc.).
Generally, the element patch is replaced by another element patch with a better quality. Currently, there are two ways
of implementing a remeshing procedure : the first implements a so called star-connection algorithm, which performs
several attempts of reconnecting a local subset of elements until its minimum quality criterion is achieved [25]. The
second uses the separate definition of local remeshing operations (vertex smoothing, node collapsing, edge splitting,
edge swapping etc.) to be performed on the mesh, depending on its local requirements (edge size, element shape
etc. ) [31,32] allowing to have more control over the operations performed on the mesh but penalizing the variety of
solutions to a given triangulation and in general, being more complex in terms of programming. We have opted for
the latter because our main interest is to have control over the local topology at a given point, hence, the purpose of
this section is to introduce some remeshing operations along with the restrictions to some of the local geometries
defined on the triangular grid. Here the notion of mesh quality Q will be computed as a factor of the shape and the
size of the elements using the same approach as in [25], however it has to be noted that the selective remeshing
procedure is not only driven by the local overall mesh quality Q of an element patch but also by the local topological
degree of the nodes of the patch.

2.4.1. Selective node collapsing
Node collapsing is one of the most used algorithms when attempting to coarsen a mesh. Even when using the

star-connection algorithm, the majority of iterations performed are equivalent to node collapses within an element
patch. A Node collapse is performed when two connected nodes are below a certain distance δc the one from
the other. The value of δc that triggers a node collapse is usually a percent of the local mesh size desired. Fig. 9
illustrates the mechanism of a node collapse performed to node N4 over node N1 (N1 collapses N4), here elements
E11 and E12 are deleted.

In our TRM model, node collapse should be avoided when the operation cannot determine to which geometric
entity the remaining node will belong. To do this, the operation is performed based on the topological degree
hierarchy T explained in Section 2.1:⎧⎨⎩T (N ) = 0 ∀ N/T ype(N ) = P Node

T (N ) = 1 ∀ N/T ype(N ) = L Node
T (N ) = 2 ∀ N/T ype(N ) = SNode

where N is a given node and T (N ) is the topological degree of N . Node collapse is then allowed to be performed
to N j over Ni (Ni collapses N j ) if T (N j ) ≥ T (Ni ), meaning that P-Nodes can collapse all type of nodes, L-Nodes
can only collapse S-Nodes and L-Nodes, and S-Nodes can only collapse S-Nodes. In all cases, the remaining node
maintains its own degree and its own coupled geometric entity.

Additionally, two more conditions have to be meet when collapsing L-Nodes: two connected L-Nodes can
collapse if they belong to the same geometric line (see Fig. 10) and if they are consecutive within the line (see
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Fig. 10. Node Collapsing on surface. Some nodes are within the collapsing zone of Ni : Two S-Nodes (yellow) will collapse, one L-Node
(blue) cannot collapse and one P-Node (red) cannot collapse. Ni cannot collapse P-Nodes (topological degree), Ni can collapse L-Nodes
but N j does not belong to the same line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 11. Node Collapsing on surface. Some nodes are within the collapsing zone of Ni : four L-Nodes (blue) Na , Nb , Nc and Nd . Only
Nodes Nb and Nc can collapse as they are consecutive to Ni within the same line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11). Similarly, if a L-Node N j connected to a P-Node Ni , Ni can collapse N j if the coupled point of Ni appears
as a limit point on the coupled line of N j and if they are consecutive within the line.

2.4.2. Selective edge splitting
Contrary to node collapsing, edge splitting is often used on the procedure of refining a mesh, it is performed by

the insertion of a new node, the creation of some new elements and the re-connection of the element patch involved
after the insertion. Similarly to the node collapse procedure, edge splitting is often driven by the size of the edges,
splitting all edges having a distance greater than a predefined parameter δs . Fig. 12 shows one example of an edge
splitting performed in the edge N10− N2, the element patch involved before and after the splitting is colored green.

Edge splitting is allowed for every edge on the mesh on our TRM model but having certain conditions: in order
to maintain a given coherence on the description of the geometric entities defined on the mesh, the inserted node
has to present a coherent type and to be added to the right geometric entity. Three possible cases are considered:

• when splitting a connected P-P edge (an edge with two P-Nodes as vertices where each point appears on
the list of connections of the other point as presented in Section 2.1) the inserted node Nnew will be of type
T ype(Nnew) = L Node and a line must be created, the line will have the two points from the two P-Nodes as
limit points and one L-Node (Nnew) on its structure. Nnew will be inserted at the center of the edge.
• When splitting a P-L edge (an edge with one P-Node and one L-Nodes as vertices) or a L-L edge (an edge

with two L-Nodes as vertices) that are connected3 on one geometric line, the inserted node Nnew will be of

3 Connected nodes does not mean that they share an element on the finite element mesh but that they belong to the same line and are
consecutive within the line, see Figs. 10 and 11 for examples of non-connected nodes.
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Fig. 12. Example of edge swapping. (a) initial state, the edge N2 − N10 will be split, elements involved in the procedure are colored green
(b) state after splitting. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Example of edge splitting of a L-L edge within a geometric line, connection within the geometric line is displayed green, the
parametric approximation of the line is displayed in cyan. (a) initial state, the edge Nprev − Nnext will be split, (b) state after splitting,
Node Nnew is placed at the midpoint of the parametric approximation of the line between nodes Nprev and Nnext . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

type T ype(Nnew) = L Node and will be inserted on its corresponding position on the line data structure.
Additionally, Nnew will be inserted on the midpoint4 of the parametric approximation of the line between its
previous and next nodes (L-Node or P-Node) on the line. An example for this case is shown in Fig. 13
• For every other case, the inserted node Nnew will be of type T ype(Nnew) = SNode and will be inserted on

the corresponding geometric surface at the center of the edge.

2.4.3. Selective edge swapping
Edge swapping is another remeshing operation that changes the connectivity of the mesh but contrary to node

collapsing and edge splitting, it does not insert nor deletes a node. This operation is very useful when the mesh is
subjected to large displacements or shearing, as it allows to unblock very distorted meshes [33,34].

In the presented TRM model, edge swapping is forbidden wherever it destroys any boundary connection (This
is for example if two L-Nodes belong to the same line and are consecutive).

2.4.4. Selective vertex smoothing
Vertex smoothing is the most simple remeshing operator, it consists of moving nodes to a location where the

quality Q of the local patch is improved (usually taken as the patch varycenter). Fig. 15 shows one example of
a vertex smoothing operation performed over node N4, the local patch involved in the operation is colored green.
This example illustrates how this simple operation can dramatically improve the mesh quality shape of the elements
involved.

4 Here the midpoint corresponds to the scalar mean value of the parametric variable between the next and previous node.
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Of course, vertex smoothing in our procedure is not allowed on nodes Ni with a degree T (Ni ) ≤ 2 as
this procedure would change the position of points and lines, reducing the precision of the upcoming geometric
computations. A variant of the vertex smoothing operator called selective vertex gliding will be introduced further,
to be performed on L-Nodes allowing to have a better discretization on domain boundaries.

2.4.5. Selective vertex gliding
Here a new operator is introduced in order to improve the discretization of geometric lines. This operator “glides”

L-Nodes over the parametric approximation of the line to the midpoint between its previous and next nodes (L-Node
or P-Node) on the line. The intention behind this operator is to allow nodes to be equidistant on a line, reducing
instabilities and ensuring the same precision over each parametric segment. The choice of gliding each node using
the midpoint, instead of redistributing all nodes over the line at the same time enables to reduce the possible flipping
of some of the elements of the boundary in which case the operation is discarded.

Fig. 16 shows an example of vertex gliding when performed on some of the L-Nodes (blue) of a given line using
its parametric approximation (cyan).

2.5. Lagrangian movement

Once a velocity has been computed on the mesh, whether it is issued from a geometric property obtained with
the help of the interface approximation explained in Section 2.3 or not, each node Ni of the mesh is allowed to be
moved to a new position u⃗i in a Lagrangian way using the velocity vector field v⃗ and a given time step dt .

u⃗i =
⃗u0
i + v⃗i · dt. (6)

where ⃗u0
i is the position of the node Ni before its displacement.

Mesh conformity (in a FE sense) must be ensured at all times in our TRM model, this is why it is necessary to
check every movement to avoid flipping on the concerned element patch. Fig. 17 shows one example of element
flipping on Element E4 when node N4 is moved to a location outside its element patch.

Even though this behavior is very rarely encountered by the proposed TRM model with standard parameters, a
very big dt or very small mesh sizes could cause a more regular appearance of this mechanism. When a flipping
is encountered by the TRM model, it responds by iteratively dividing by half the magnitude |v⃗| and checking if
the movement still produces a flipping. When a valid configuration is obtained the movement is saved and the
algorithm continues to the next node. Even if this procedure changes the behavior of the Lagrangian movement, it
allows to do not damage the mesh while moving, moreover, as the corrections are made locally and for very few
displacements, precision should not be highly influenced.

3. Grain growth modeling

The simulation of microstructural evolutions are given by the addition of complex and different mechanisms as
GG [1,20–22,35], Recrystallization (ReX) [1–4,24,36,37] or Zener Pinning (ZP) [16–18,38]. Here we will consider
only GG in order to test and compare the TRM model to other more classical approaches.

During grain growth the velocity v⃗ at every point on the interfaces can be approximated by the following equation:

v⃗ = −Mγ κ n⃗, (7)

where M is the mobility of the interface, γ the grain boundary energy, κ the local curvature in 2D and trace of the
curvature tensor in 3D and n⃗ the outside unit normal to the grain interface. Isotropic conditions will be consider
hereafter: M is only dependent on the temperature and γ is constant.

In this section, two numerical models will be taken into account for the modeling of GG by capillarity using
Eq. (7), the first will use the implicit description and evolution of grain boundaries by the resolution of PDEs
over LS fields in a FE context [20,21,37], and the other will use the presented TRM model composed of the
presented formalisms: the data structure and preprocessor of Sections 2.1 and 2.2, the approach for the computation
of geometric properties of Section 2.3, the remeshing strategy of Section 2.4 and the Lagrangian description and
evolution of grain boundaries of Section 2.5.
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3.1. Level-set approach

The simulation of GG by capillarity using the level set approach is done by the substituting Eq. (7) for an
advection equation per level-set field φi :

∂φi

∂t
− Mγ κ n⃗ · ∇⃗φi = 0 (8)

this equation can also be used in the context of anisotropic conditions of M and γ as in [39].
Complex microstructure topologies make Eq. (8) particularly difficult to solve by usual convective approaches.

The local curvature κ involves second derivatives of the level-set function φi , whose computation may not be very
precise or highly unstable. This is why an alternative solution has been developed by rewriting Eq. (8) by adding an
additional assumption: the LS fields φi remain at all times signed distance functions (|∇⃗φi | = 1). This hypothesis
allows to transform Eq. (8) into a diffusive equation of the form:

∂φi

∂t
− Mγ∆φi = 0 (9)

Eq. (11) is in general much more stable than Eq. (8) which avoids the direct estimation of κ .
Finally, additional optimizations to the modeling of GG have been developed over the years, allowing more

precise and fast computations [2,24,25,40–43]. These optimizations along with a general algorithm for the complete
modeling of GG are summarized in [7].

3.2. Topologic remeshing and lagrangian movement approach

Here the main procedure for the modeling of GG using the TRM model will be presented, nonetheless, once
again, the presented algorithm can be modified in order to simulate other different multi-domain problems by
changing the velocity equation used in this context. Multiple topological changes on the polycrystal structure (grain
disappearance and quadruple point dissociation) usually encountered on GG will be taken into account on the
modeling algorithm.

3.2.1. Velocity computation and interface migration
After obtaining a valid data structure for the whole polycrystal topology by means of the procedure explained

in Section 2.2 the model is ready to initiate the simulation of the migration of grain boundary interfaces. Initially,
the algorithm performs the calculation of the local curvature κ and the local normal vector n⃗ with the help of the
approximation by splines explained in Section 2.3. These geometrical values can be used on Eq. (7) to obtain a
value for the local velocity vector v⃗ for every node of the interface, i.e. for every P-Node and every L-Node in our
structure.

With the local velocity v⃗ obtained on the grain boundary, it is possible to move the grain boundary network by
using the procedure explained in Section 2.5 over every node at the interface.

3.2.2. Remeshing strategy
Till now, the steps explained in Section 3.2.1 can be done iteratively to try to obtain the general behavior of

the grain boundary migration, however, after a few iterations, the mesh could get stained as only the nodes of the
interfaces are moving (the element flipping prevention will eventually discard all displacements). Hence there is a
need for a general remeshing strategy that improves the mesh quality and prevents a mesh stagnation to happen.
This remeshing strategy not only has to change the mesh structure of S-Nodes, but also L-Nodes and P-Nodes. For
this, all the selective remeshing operators presented in Section 2.4 will be used:

Node collapse and edge splitting: edge size control
If we consider for example a Grain shrinking, interfaces (lines) given for that grain will decrease its length

until they completely disappear, nodes (L-Nodes and P-Nodes) on the interface need to be gradually remeshed
(collapsed) in order to allow the interface length diminution. Consider now the opposite case, where a grain is
growing, some interfaces of that grain are going to increase its length and in order to maintain a certain accuracy
on its approximation, it will be needed to insert some nodes in it, this operation can be made via the edge splitting
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remeshing operation performed on an edge of the line. Now, not only interfaces need to be remeshed, also volumes
are shrinking and expanding, hence some remeshing operations are needed within the grains too, node collapsing
and edge splitting will be also available on these regions to control the size of the edges.

A global node collapse strategy is performed over all nodes driven by a collapsing distance field δc which we
have chosen to be dependent of the degree of the nodes involved on the collapsing. Note that when a node collapsing
is performed on one node Ni , this node will query all its neighbors nodes N j for their distance di j to Ni (|Ni N j |),
if this distance di j > δc(Ni , N j ) and the collapsing is able to be done (see conditions in Section 2.4.1) the operation
is performed. In our model we have chosen to make some relations for the values of δc:⎧⎪⎪⎨⎪⎪⎩

δc(Ni , N j ) = dmin ∀ Ni / T ype(Ni ) = P Node
δc(Ni , N j ) = dmin ∀ (Ni , N j ) / T ype(Ni ) = L Node, T ype(N j ) = SNode

δc(Ni , N j ) = 3dmin ∀ (Ni , N j ) / T ype(Ni ) = L Node, T ype(N j ) = L Node
δc(Ni , N j ) = 6dmin ∀ (Ni , N j ) / T ype(Ni ) = SNode, T ype(N j ) = SNode

(10)

where dmin is a user defined parameter defining the global minimum edge size. The chosen relative values allow
to maintain the minimum length of the edges depending on where it is located in the geometrical structure, i.e. the
minimum allowed length of edges composed of only S − Nodes will be 2 times than for edges composed of only
L − Nodes, enabling a denser discretization at the domain boundaries.

A global edge splitting strategy has also been implemented, driven by a splitting coefficient δs defined on the
topological degree of the nodes Ni and N j of the edge:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δs(Ni , N j ) = dmax ∀ (Ni , N j ) / T ype(Ni ) = P Node, T ype(N j ) = P Node
δs(Ni , N j ) = dmax ∀ (Ni , N j ) / T ype(Ni ) = P Node, T ype(N j ) = L Node

δs(Ni , N j ) = 3dmax/2 ∀ (Ni , N j ) / T ype(Ni ) = P Node, T ype(N j ) = SNode
δs(Ni , N j ) = dmax ∀ (Ni , N j ) / T ype(Ni ) = L Node, T ype(N j ) = L Node

δs(Ni , N j ) = 3dmax/2 ∀ (Ni , N j ) / T ype(Ni ) = L Node, T ype(N j ) = SNode
δs(Ni , N j ) = 3dmax ∀ (Ni , N j ) / T ype(Ni ) = SNode, T ype(N j ) = SNode

(11)

where dmax is also a user defined parameter, defining the maximum distance between nodes on the edges of the
interfaces.

Finally a global relation between dmin and dmax has been taken into account as htrm = dmin = dmax/6 in order
to pilot the mesh size at the interfaces with a single parameter htrm , being the minimum distance between nodes at
the interface in the tangent direction.

Vertex smoothing, vertex sliding and edge swapping: shape quality control
Shape quality is not very important for the approximation of interfaces, however it is important for their

movement as the flatter the elements of the interface on their normal direction, the higher the risk of stagnation
(see Fig. 17). Vertex smoothing, vertex sliding and edge swapping are performed to address this problem: a global
vertex smoothing procedure is first performed on every S-Node of the mesh in order to homogenize the mesh
triangulation, then, vertex sliding is performed on the L-Nodes of the mesh and finally a global edge swapping
operator is performed for all elements with a shape quality Qs < qs where qs is a user defined parameter, the
operation is performed over the edges of the elements one at a time checking if the quality Qmean of the element
patch of that edge (see Fig. 14) is improved, if it is, the operation is performed and the algorithm continues to the
next edge.

The final remeshing algorithm performed in our TRM model can be summarized as:
Remeshing algorithm
for all Nodes : Ni do

for all Neighbors of Ni : N j do
if δc(Ni , N j ) < |Ni N j | then

selective node collapse : N j → Ni

end if
end for

end for
for all S-Nodes : SNi do
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Fig. 14. Example of edge swapping. (a) initial state, the edge N2 − N10 will swap, elements involved in the procedure are colored green
(b) state after swapping. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. Example of vertex smoothing. (a) initial state, the node N4 will be smoothed, elements involved in the procedure are colored green
(b) state after smoothing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

selective vertex smoothing : SNi
end for
for all L-Nodes : L Ni do

selective vertex gliding : L Ni
end for
for all Edges : {Ni , N j } j>i do

if δs(Ni , N j ) > |Ni N j | then
selective edge splitting : Ni , N j

end if
end for
for all Elements with Qs < qs : Ei do

for all Edges of Ei : {N j , Nk}k> j do
if quality Qmean(N j , Nk) will improve by swapping then

selective edge swapping : {N j , Nk}

end if
end for

end for

3.2.3. Grain disappearance
Grain disappearance is a product of multiple topological changes on the polycrystal structure where complete

interfaces from a grain successively collapse into multiple junctions, eventually reducing the volume of the grain to
a single point. In the presented TRM model, this topological event is automatically handled by the node collapsing
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Fig. 16. Example of vertex gliding when performed on some of the L-Nodes (blue) of a given line using its parametric approximation
(cyan), (a) initial state and upcoming gliding (white arrows), (b) final state after gliding. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Example of element flipping, (a) initial state, the displacement vector of N4 v⃗ · dt lies outside the element patch. (b) state after
updating the position of N4, element E4 has been flipped.

strategy of the remeshing algorithm, note that P-Nodes have a certain predominance over all other types of nodes
when using the selective node collapsing algorithm of Section 2.4.1, meaning that always when a phase disappears
a point of its interface will remain at the moment of the event.

3.2.4. Interface (Line) creation
At the end of a grain disappearance event, it is highly possible that a multiple junction with more than 3

connected interfaces appears. This configuration is highly unstable in our physical context as a lower energy
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Fig. 18. Example of an multiple junction decomposition with anisotropic energies, (a) initial state. (b) detailed view of the multiple junction.
(c) decomposition example, interfaces of φ4 are separated from the initial multiple junction and a new interface is created (φ1 - φ2) (d)
decomposition example, interfaces of φ1 are separated from the initial multiple junction and a new interface is created (φ4 - φ3).

state can be obtained by creating new interfaces and redistributing the multiple junction in several triple junctions
(multiple junction with 3 connected interfaces) [7]. In the case of anisotropic boundary conditions, the decomposition
procedure is as follows: first, the decomposition procedure cannot be performed arbitrarily, an order is imposed by
the values of the surface energy of interfaces and their geometrical configuration. Consider the state presented in
Fig. 18(a) and (b) with a multiple junction of 4 phases (φ1, φ2, φ3, φ4) with anisotropic surface properties, here
the local energy state depends on the energy values, the length and the different angles between interfaces (α1, α2,
α3, α4). Here the structure decomposition can occur in 2 different ways: Fig. 18(c) and (d) show two examples
of decomposition of the quadruple junction into 2 triple junctions with different energy states. It is clear that only
one of these states (the one with the lowest energy state) can occur even if both reduce the local energy state of
the quadruple junction shown in Fig. 18(b). The determination of the right decomposition when using anisotropic
properties is a complex procedure because in addition to the multiple possibilities, the values of the surface energy
of every interface depend on multiple local microstructural variables [39]. This will be discussed further in a future
publication focused on the simulation of microstructural evolutions with anisotropic properties using the TRM
model.

When using isotropic boundary conditions, the decomposition is only dependent on the angles between interfaces,
as the lowest energy state can be obtained by the separation of the two interfaces presenting the lowest angle between
them. An example of decomposition of a quadruple point is shown in Fig. 19, the decomposition is done by a partial
reconstruction of the element patch surrounding the multiple point. Note that this remeshing operation is different
from all operations presented in Section 2.4. In fact, this operation is not accessible by a reconnection procedure
of the star-connection algorithm of [25]. It consists in the splitting of a node of the mesh and a special mesh
reconnection which does not erase the pre-existent connections, note that all the edges from the previous mesh
(Fig. 19(a)), still exist in the new mesh (Fig. 19(b)) plus three additional edges connected to the new node.

The new P-Node is located along the line determined by the angle α4/2 measured from one of the two separated
interface to the inner side of φ4 at a distance δp from the initial multiple point. The value of δp is also a user defined
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Fig. 19. Example of an multiple junction decomposition with isotropic boundary energies, (a) initial state. (b) detailed view of the multiple
junction. Here α4 < α1 < α3 < α2, the choice of the phase to detach from the multiple point is determined by the lowest angle. (c) final
state after the decomposition procedure, two new elements are created. (d) detailed view of the decomposition, interfaces of φ4 are separated
from the initial multiple junction and a new interface is created (φ1 - φ2), the new point will be placed along the line determined by the
angle α4/2 measured from one of the two detached interface to the inner side of φ4 at a distance δp from the initial multiple point.

parameter usually taken as δp > δc to prevent the two P-Nodes to be collapsed by the selective node collapsing
strategy in the next increment, allowing them to separate over time, reducing the total boundary energy of the grain
boundary network.

4. Numerical results

A series of test cases have been realized to validate the TRM method using the same examples presented in a
previous publication for the benchmark of the LS method under different remeshing conditions [7], results obtained
on that publication will be used to compare the new TRM model to the LS approach. These benchmarks are focused
mainly on the precision and the computational cost of the model, allowing to compare which approaches are more
suitable for the simulation of pure Grain Growth under isotropic conditions.

4.1. Considered geometries

Correspondingly to [7] the considered geometries will respond to different typical situations encountered during
the Grain Growth process, the first three cases being adimensional and the last case representing a more realistic
configuration. Firstly a circle shrinkage test will be used to test the accuracy and the stability of the TRM model.
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Fig. 20. Circle shrinkage test case: initial state [7].

Next, a T-Junction configuration to evaluate the response of the model face to the evolution of an unstable triple
junction. Then, a square shrinkage test to test the typical topological changes on the microstructural web experienced
during GG: grain disappearance and interface creation. Finally one case using a 2D Laguerre–Voronoi tessellation
composed of 10000 grains will be used to test the computational cost of the TRM model under typical conditions.

In [7] three remeshing approaches in the context of the LS GG simulation have been tested for each one of this
geometrical configurations: Static Mesh (SM), Isotropic Mesh Adaptation (IMA) and a New Fitting and Joining
Algorithm (NFJA) presented in this publication, these three approaches (SM, IMA, NFJA) will be compared to the
TRM model knowing that the best approach in terms of stability, accuracy and computation time in [7], was the
one using a static mesh.

4.2. Circle shrinkage

The circle shrinkage test case permits, to observe the response of the model to the instantaneous local curvature,
hence allowing to observe the stability of the interface subjected to a velocity directly proportional to the local
geometric properties (←−n and κ). Additionally, this case enables to compare the precision of the model through
time by comparing it to the evolution of the equivalent analytical circle: as stated in [7], the evolution of a circle
of surface S subjected to capillarity is simple given by the following linear equation:

ds
dt
+ 2π Mγ = 0 H⇒ s (t) = S0 − 2π Mγ t. (12)

The error to this analytical evolution will be computed in two ways, the first using a classical L2-error
computation over the surface of the circular5 domain obtained by the TRM model, and the second using Eq. (11)
of [7] which express the relative error in terms of surface change per increment:

E(h,t,∆t) =
∆sφ(h,t,∆t) −∆s(t,∆t)

∆s(t,∆t)
. (13)

where ∆sφ(h,t,∆t) is the total change of surface of the circle defined by φ, h is the mesh size tangent to the interfaces,
t is the elapsed simulation time and ∆t is the time step. Note that the circle is obtained differently in the LS context
(where it is defined by the positive interpolated domain of the LS field) than in the TRM model (where it is obtained
by simply extracting the elements denoted by the Surface Scirc of the circle).

Similarly to [7] we will compute a mean value for ∆sφ(h,∆t) of ∆sφ(h,t,∆t) to obtain a mean value of the error
E (h,∆t) for each simulation having a different set of parameters of ∆t and h. Moreover, dimensionless simulations
will be considered and unitary values for the mobility M and the surface energy γ will be used. Finally, the initial
state and dimensions used in the circle shrinkage test are described in Fig. 20.

Multiple runs with different mesh sizes htrm and time steps dt were made for the TRM model. One example of
the evolution of the mesh for the circle shrinkage test when using the TRM method is given in Fig. 21.

5 In fact, the numeric circular domain cannot define a perfect circle but the errors given by its real profile are ignored.
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Fig. 21. Example of the evolution of the circle shrinkage test using the TRM method and a parameter htrm = 0.006, the mesh and the
surface field per domain are displayed. (a) Initial state, and (b) to (f) state at t = 0.01, t = 0.02, t = 0.03, t = 0.04 and t = 0.05.

Fig. 22 describes 4 subsets of evolutions of the circular phase, each subset corresponds to a different value of the
time step dt maintaining a given value for mesh size parameter htrm constant. Fig. 23 illustrates the corresponding
L2-Error evolution for the 4 subsets of Fig. 22. Figs 22(c–d) and 23(c–d) exhibit the normal behavior of the model
when subjected to normal conditions, the maximum error being not higher than 1%. Fig. 22(a) details the evolution
of multiple simulations that eventually encountered continues instabilities in the velocity computation and produced
a divergence from the analytical solution, Fig. 22(b) shows the transition between the normal response (for time
steps dt = 1e − 5 and dt = 2e − 5) and an unstable response (for time steps dt = 3e − 5, dt = 4e − 5
and dt = 5e − 5) of the TRM model. These instabilities manifest in the L2-Error plots (Fig. 23(a–b)) as sudden
increases in the error value that go up to 16% in the worst case (not shown in the figures). Fig. 24 illustrates the
corresponding mean velocity v⃗ of the interface along with the analytic velocity shown as reference; stable responses
show velocity values around the reference curve while unstable responses present an oscillatory global diminution
on the velocity computation, this diminution is due to the fact that some of the nodes present a negative velocity
value (where the velocity vector −→v direction points to the outer region of the circular phase). As mentioned in
Section 2.3.1 the solution over time for a velocity proportional to the curvature when using natural parametric
splines as approximations could lead to instabilities when using high values of time step dt .

It is interesting to see that the obtained result for a mesh size parameter htrm = 0.004 and a time step
dt = 3 × 10−5 lies exactly on the transition between the stable and the unstable region, Figs. 22(b) and 23(b)
show that with these values, the evolution of the surface is still very near the reference curve, obtaining a L2-Error
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Fig. 22. Evolution of the surface of the circle shrinkage test for the circular phase using the TRM method for different values of dt . The
corresponding analytic evolution (Reference) is also shown. (a) for a mesh size parameter htrm = 0.002, (b) htrm = 0.004, (c) htrm = 0.006,
(d) htrm = 0.008.

of only 1% at the end of the simulation, while Fig. 24(b) shows that the evolution of the interface encountered a
diminution on the computation of the mean velocity for a while (between time = (0.032, 0.42)) but auto-stabilized
after, hence presenting a “semi-stable” behavior.

Complementary simulations where made in order to identify the region of stability of the TRM model in function
of the time step dt and the mesh size parameter htrm . the results of this study are summarized in Fig. 25 and hereafter
we will restraint the content of the present article to this stable region.

Finally, Fig. 26 shows the different curves obtained when using Eq. (13) to compare the errors of the TRM
method to the different approaches presented in [7], the error of the TRM method for the stable responses was
always ξT RM < 2% regardless of the mesh size and the time step used in the stable zone. These results are very
promising as the accuracy of TRM model in the stable region was the best.

4.3. T-junction case

The presence of triple points is needed in the description of 2D polycrystals, they represent the junction between 3
grains presenting different properties. In the context of isotropic Grain Growth, the evolution over time of these triple
points converges to a 120◦-120◦-120◦ quasi steady-state equilibrium (young equilibrium) given by the Herring’s
equation [44]. Curved Interfaces around the junction will maintain its shape and make the triple point move at a
constant velocity until they collapse with another multiple point within the microstructure.

The T-Junction test case (see Fig. 27) will be used in order to observe the evolution of a triple point when using
the TRM method and the so called model II described in [10] to calculate the velocity of the multiple point. The
results will be compared here again to other models presented in [7].
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Fig. 23. L2-Error computation for the evolution of the surface of the circle shrinkage test for the circular phase using the TRM method for
different values of dt . (a) for a mesh size parameter htrm = 0.002, (b) htrm = 0.004, (c) htrm = 0.006, (d) htrm = 0.008.

As stated in [7] for the models based on the evolution of Level-Set fields on a Finite Element framework,
convergence is obtained when the mesh size decreases, hence a simulation with 500 000 elements (where
convergence has been obtained, see Fig 19 of [7]) has been used as reference.

A test using the same parameters as in [7] (dt = 5 × 10−5 and htrm = 0.006) was made, the evolution of the
mesh and surfaces for this test are described in Fig. 28. The triple point was found to be very near of the position
of the reference case while the interfaces showed a similar curved shape (see Fig. 29) after a time t = 0.035
where the quasi steady-state is already ensured. Moreover, the surface difference between the TRM model and the
reference case shows an error of ξT RM = 1.9% while the other models using the LS approach obtained errors of
ξI M A = 10.1% and ξN F J A = 15.4%. These results show the potential of the TRM method coupled with the explicit
computation of the velocity of the triple point of [13] as the results were almost the same as for the reference
configuration.

4.4. Square-shrinkage case

Another very common case encountered on the evolution of microstructures subjected to grain growth is the
disparition of a grain, the square shrinkage reproduces this case by putting a square shaped phase in the middle
of other 4 phases (see Fig. 30). The angles values on each corner of the square-shaped phase make it to shrink
and to eventually disappear. The symmetry of the model makes it possible that the 4 triple points converge at the
same place at the end of the shrinking, producing a meta-stable configuration: the quadruple point. Given this meta-
stable state, the quadruple point should decompose into two triple points, reducing the total surface energy of the
system [7].
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Fig. 24. Mean velocity of the interface the circle shrinkage test using the TRM method for different values of dt . The corresponding analytic
velocity (Reference) is also shown. (a) for a mesh size parameter htrm = 0.002, (b) htrm = 0.004, (c) htrm = 0.006, (d) htrm = 0.008.

Fig. 25. Stability of the model in function of the mesh size htrm parameter and the time step dt .

As explained in Section 3.2.4, the final decomposition state should be taken accordingly to the configuration with
the lowest total surface energy value, however, in the isotropic case, the choice for the decomposition is merely
dependent on the angles between the interfaces at the multiple point. In the current case scenario where symmetry
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Fig. 26. Comparisons of the error for different models for the circle shrinkage test using Eq. (13). (a) Level-Set FE Static Mesh (SM) (b)
Level-Set FE Isotropic Mesh Adaptation (IMA) (c) Level-Set FE New Fitting and Joining Algorithm (NFJA), (d) TRM (TRM).

Fig. 27. T-junction case. left: initial state, right: steady state [7].

was imposed at the initial state, these angles should be around 90◦ + ξan where ξan takes into account the numeric
error (rounding errors, numeric precision or accuracy of the model). In the context of the TRM model, these small
difference between the 4 angles are enough to decompose this meta-stable configuration into the expected two triple
points configuration (either one of the two final configurations shown in Fig. 30 are valid.).

One test for the square shrinkage case using the same parameters as in [7] (dt = 5 × 10−5 and htrm = 0.006)
was made, the evolutions of the mesh and surfaces for this test are described in Fig. 31

Fig. 32 illustrates the comparison of the TRM model and the methods used in [7] to the reference case (Using
a LS FE method with a static mesh composed of 2 millions elements) after t = 0.05. The error on the area of the
square shaped phase was ξT RM = 6.6% while for the other cases was ξN F J A = 38.4% and ξI M A = 16.3%.

4.5. A 2D-10000 grains case

Finally, a massive multidomain test composed of 10000 initial grains is considered. Here, the TRM model will
be compared to the Isotropic Mesh Adaptation (IMA) case and to the Static Mesh (SM) case from [7] using a mesh
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Fig. 28. Example of the evolution of the T-junction test using the TRM method and a parameter of htrm = 0.006, the mesh and the surface
field per phase are displayed. (a) Initial state, (b) state at t = 0.1, (c) state at t = 0.2 (d) state at t = 0.3, (e) state at t = 0.4, (f) state at
t = 0.5.

size of h = 0.004 mm at the interfaces, additionally, statistical comparisons with the response obtained by a FE-LS
approach as presented in [1,3,20,45] will be given, this approach uses a more classic method of mesh adaptation
during calculations where the interfaces are captured with an anisotropic non-conform local refined mesh and it
will be described as the Anisotropic Meshing Adaptation (AMA) case. Finally a reference case will be used to
compare the different models, this reference is obtained after a convergence analysis over the SM case having the
mesh size as a parameter in the same way as in [7] (the resulting mesh of the reference case employing a mesh
size h = 0.001 mm)

The initial microstructure along with its thermomechanical properties for this test have been detailed in [7], the
generation of the initial tessellation have been realized thanks to a Laguerre–Voronoi cells generation procedure [46–
48] over a squared domain of surface A = 10 mm2 and the values for M and γ are chosen as representative of a
304L stainless steel at 1050 ◦C (with M = M0 ∗ e−Q/RT where M0 is a constant M0 = 1.56 · 1011 mm4/Js, Q is the
thermal activation energy Q = 2.8 · 105 J/mol, R is the ideal gas constant, T is the absolute temperature T = 1323
K and γ = 6 · 10−7 J/mm2) [2,3].

One test using the TRM method has been performed using a mesh size parameter htrm = 0.004 mm and a
constant time step dt = 10 s. The evolution of the microstructure through time can be observed in Fig. 33,
here a comparison with the SM model has been given. A detailed view of the same comparison can be found
in Fig. 34 where a more specific comparison between grains can be made. The overall comparison shows that the
grain growth phenomena occurs very similar in both cases, the morphology of the grains is very similar at the
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Fig. 29. Difference between the growing phase of the T-junction test case for the reference model and the geometric difference of the same
phase obtained with the other models (the IMA and NFJA) at time t = 0.35. Values for the area of each section are given.

Fig. 30. Square-Shrinkage. left: initial state, center: square shrinking, right: the square disappears and a new interface is made (φ2 − φ4 or
φ3 − φ5) [7].

different moments during the simulation, while a very small difference on the grain sizes values (see the color
distribution in Fig. 33(c-d)) can be observed.

A more quantitative comparison in terms of the evolution of the mean grain size and the grain size distributions
can be observed in Figs. 35 and 36 respectively. Here the comparison with the AMA and the IMA and the reference
case are also displayed. These comparisons show that the speed of grain growth when using the TRM model is a
little slower compared to the other three cases. However its evolution is very near to the evolution of the SM case
which has been the best case scenario in the comparisons made in [7] to the reference case.

The CPU-time evolution over time for the different models can be found in 37, where the TRM model has been
the one with the lowest computational cost, performing 14,8 times faster that the SM model and 156 times faster
than the AMA case. These results are very promising as the ratio accuracy — CPU-time of the TRM model shows
a significant improvement against the other compared models.
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Fig. 31. Example of the evolution of the square shrinkage test using the TRM method and a parameter of htrm = 0.006, the mesh and the
surface field per phase are displayed. (a) Initial state, (b) state at t = 0.0225, (c) state at t = 0.045 (d) state at t = 0.0675, (e) state at
t = 0.09, (f) state at t = 0.1125.

Fig. 32. Square-Shrinkage. Comparison of the φ1 phase at t = 0.05 (left side). Values for the area of each domain are given (right side).

Finally, the mobility term M can be fitted in order to minimize the difference between the curves of grain size
of the different models and the reference. A correction factor of −12.8% for the SM model and of +6.69% for the
TRM model is necessary to minimize the error between both models and the reference response. Figs. 38 and 39
show the evolution of the grain size and the grain size distributions respectively for the SM and the TRM model
after the adaptation of the mobility. These results illustrate a well known behavior of full field simulations of GG:
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Fig. 33. 2D 10000 grains case. Comparison of the evolution of the TRM model (right) and the SM model (left). (a) Initial state (b) state
at t = 840 s (c) state at t = 1940 s (d) state at t = 2780 s.

the reduced mobility is classically impacted by the choice of the numerical method and is not only a universal
physical parameter. Here the TRM model performed 13.63 times faster than the SM model to obtain a similar
response.

5. Discussion, conclusion and perspectives

The development of the TRM method has implemented multiple concepts: the initial LS-TRM preprocessor and
geometrical reconstruction has granted a way to characterize microstructures defined using the LS approach to a
body-fitted geometric-based data structure. This data structure was intentionally developed in order to approximate
the interfaces with a piece-wise third degree polynomial (natural splines) and to remesh using a selective remeshing
operators based on the local geometry present on the mesh. These developments coupled with an explicit lagrangian
movement of the interface have allowed to successfully simulate complex microstructural evolutions such as two
dimensional grain growth. Multiple test cases were reproduced in order to compare the behavior of the model when
subjected to different situations.

Firstly the sphere shrinkage test has aid to identify a stability range where the TRM model performs very
accurately, obtaining errors not higher than 1% to the analytical solution. Then, the T-junction case and the square
shrinkage case were used to evaluate the evolution of multiple junctions and the disappearance of a grain. Finally,
a test using 10000 initial grains was performed and compared to other more classical methods to perform full field
simulations such as grain growth.

The results are very promising as the accurateness of the model on the sphere shrinkage, T-junction and square
shrinkage is very high, obtaining lower errors than any other model tested. On the final test the evolution of the
mean grain size and the grain size distributions showed that the TRM model is slightly slower than the other models;
comparisons on the evolution of the grains showed that the morphology of the solution is very similar to the one
obtained with the SM model (which had been the best case scenario in [7]).

A significance improvement on the computational cost of the full field modeling of grain growth was observed
with the TRM model, being 14,8 times faster than the SM model and 156 times faster than the AMA case.
Furthermore, Figs. 35 and 36 illustrated the difference on the evolution of the grain size distribution and the mean
grain size respectively for the different models, the TRM model obtained the nearest response to the reference
followed by the SM case, model with a L2-error of 4.9% and 10.3% respectively on the prediction of the mean
grain size and 10.2% and 19.8% L2-error respectively on the prediction of the grain size distribution.
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Fig. 34. 2D 10000 grains case. detailed view of the evolution of the TRM model (right) and the SM model (left). (a) Initial state (b) state
at t = 840 s (c) state at t = 1940 s (d) state at t = 2780 s.

A final simulation was performed for the 10000 grains test case after adapting the values of the mobility M (which
is classically always impacted by the chosen model) for the TRM and the SM models to obtain the same response as
in the reference case for the evolution of the mean grain size. The value of the initial mobility (M = 8.27549 ·10−07

mm4/Js) was corrected in −12.8% for the SM model (Msm = M ∗ (1− 0.128) = 7, 21623 · 10−07 mm4/Js) and of
+6.69% for the TRM model (Mtrm = M ∗ (1+ 0.0669) = 8, 829120 · 10−07 mm4/Js). Figs. 39 and 38 illustrate the
evolution of the mean grain size and the grain size distribution respectively after the correction, a L2-error of 2.06%
and 14.32% over the mean grain size and grain size distribution respectively was obtained for the TRM model and
of 0.734% and 5.06% respectively for the SM model. Here the SM model performed better in terms of accuracy
while the TRM model was 13.63 times faster in terms of CPU-time.

Even though the development of this model was only used to simulate 2D isotropic grain growth, the TRM
approach can be applied to simulate mechanism such as 2D Recrystallization (ReX) or 2D microstructural evolutions
taking into account anisotropic grain boundary properties. Further efforts will be made in order to integrate these
mechanisms to the TRM model as well as the development of the TRM model in 3D.
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Fig. 35. Evolution of the grain size distribution pondered by surface for the different models. The TRM model appears to be slower than
the others.

Fig. 36. Grain size evolution for the 10000 grains test case. The TRM model appears to be slower than the others.
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Fig. 37. CPU-time comparison for the 10000 grains test case. the TRM model was 14,8 times faster that the SM model and 156 times
faster than the AMA case.

Fig. 38. Grain size evolution for the 10000 grains test case after a correction on the Mobility M of −12.8% and +6.69% for the SM model
and the TRM model respectively. All curves are superposed. This result illustrates a well known behavior of full field simulations of GG:
the reduced mobility is classically impacted by the choice of the numerical method and is not only a universal physical parameter.
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Fig. 39. Evolution of the grain size distribution pondered by surface after a correction on the Mobility M of −12.8% and +6.69% for the
SM model and the TRM model respectively.
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