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ARTICLE INFO ABSTRACT

Keywords: The Level-set (LS) method has been shown to be a powerful approach to model dynamic interfaces in the context
Body-fitted of large deformations. The LS method has been applied to the simulation of microstructural evolutions as Grain
Moving interfaces Growth (GG) and Recrystallization (ReX) at the mesoscale Maire et al. (2017). Interfaces between grains are
R.erfleShi“g implicitly described in an Eulerian framework, as the zero-isovalue of the LS fields and their evolution is gov-
E:‘l;;ise;l::ment method erned by convective-diffusive partial differential equations (PDEs). The LS approach circumvents the notoriously

difficult problem of generating interface-conforming meshes for geometries subjected to large displacements and
to changes in the topology of the domains.

Generally, in order to maintain high accuracy when using the LS method, moving interfaces are generally
captured by a locally refined FE mesh with the help of mesh adaptation techniques. In a microstructural pro-
blem, the large number of interfaces and the fine mesh required in their vicinity make the mesh adaptation
process very costly in terms of CPU-time, particularly in 3D Scholtes (2016).

In this work, a different adaptation strategy is used. It maintains the benefits of the classical Eulerian LS
framework, while enforcing at all times the conformity of the FE mesh to implicit interfaces by means of local
remeshing operations, special treatments for vacuum regions have been adopted and will be presented within
the generalization of a previous adaptation algorithm presented in Shakoor et al. (2015). Source of errors will be
presented and compared for different test cases. Finally, we will illustrate how the new method decreases the
requirement in mesh density while maintaining the accuracy at the interfaces, hence reducing the computational
cost of the simulations.

1. Introduction namely interfaces between more than two grains where obtaining

both high mesh quality and fidelity with respect to experimental data

Because most virtual polycrystalline microstructure generation
tools are based on the concept of Voronoi cells or Laguerre Voronoi
cells [3-5], meshing virtual microstructures does not raise any major
challenge. The generation of an interface-conforming mesh usually
consists in discretizing cells facets, and then the volume within each
cell [6]. This procedure is commonly used if the microstructure is
subjected to small deformations in the subsequent simulation.
However, for real polycrystals, observed using Scanning Electron
Microscopy (SEM) or 3D X-ray imaging techniques [7,8], a Voronoi/
Laguerre-Voronoi space partitioning is, of course, not accessible.
While there has been much research on real 3D microstructures
meshing methods [9,10], the generalization of these methods to
massively multiphase materials such as polycrystals is not straight-
forward [11,12]. The main challenge is linked to multiple junctions,
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can be complex.

Once a mesh has been generated, modeling large plastic strains
and subsequent microstructure evolutions such as recrystallization
(ReX), grain growth (GG) or solid/solid phase transformations (SSPT)
in a Finite Element (FE) framework is also very challenging. As a
consequence, many researchers have chosen to avoid the use of me-
shes where grain boundaries are explicitly meshed (i.e., with a con-
formal mesh), and instead use implicit interface approaches such as
the Level-Set (LS) [13] or the multiphase field methods [14]. While
results using explicit interface methods are restricted to limited de-
formations, implicit interface methods have given access to the
modeling of a wider range of thermomechanical phenomena. For in-
stance, the LS method has been successfully used to simulate static or
dynamic recrystallization in context of large deformations [1,15-17].
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Fig. 1. Global Treatment in order to eliminate non-physical vacuum regions on a FE discretization. Two colored LS (a) with no treatment of vacuum regions, (b)
result after applying Eq. (1). Three colored LS (c) with no treatment of vacuum regions (d) result after applying Eq. (1).

However, the absence of a conformal mesh at grain boundaries typi-
cally seems to require a finer discretization [18] which could be a
difficulty in terms of numerical cost mainly in 3D [2]. Thus, there is an
interest for alternative methods with similar capabilities and robust-
ness as the LS method, but based on explicit and reasonable interface
meshing/remeshing.

In this work, a new methodology, based on a previous work ori-
ginally applied to mechanical fracture problems [19], is proposed to
generate conforming FE meshes from 2D and 3D images of real mi-
crostructures through the intermediate use of LS functions. Moreover, a
new mesh adaption technique is then proposed to handle large de-
formations and displacements of grain boundary (GB) interfaces. The
ability of generating and adapting conformal FE meshes thanks to the
intermediate use of LS functions is particularly useful for the modeling
of topological events such as grain disappearance during GG. An al-
ternative method based on the full reconstruction of the computational
mesh at each time step is presented in [20]. Here, all proposed algo-
rithms are based only on local mesh modifications, and not full mesh
reconstruction. The present article is dedicated to the application of this
new FE strategy in the context of GG mechanism and to comparisons
with a classical front capturing LS-FE framework [21-24]. A detailed
description of the potential sources of errors during a simulation for
each approach is presented, tested and compared by means of a specific
test case featuring an analytical solution when subjected to capillarity
effects, namely the sphere shrinkage case. Then, comparisons involving
accuracy for more demanding test cases are given, and finally com-
parisons of CPU time are performed for a large 2D polycrystal involving
10,000 initial grains.

2. Interface treatment
2.1. Level-set modeling of polycrystals

Based on earlier developments [25], grayscale data can be trans-
ferred from a 2D or 3D image (i.e., a regular grid) to an initial uniform
mesh of the FE domain Q. If these grayscale values are transferred to
mesh nodes, the interface between the two components Q_ and Q. of
the microstructure can be easily localized based on the iso-contours of
the grayscale field ¢. If g is the threshold value between the two
components (e, Q_={xe€Q,¢[x) < gh Qi ={xeq, P> gh,
then the interface is defined by

T={xeQ ¢ =g}k

In general, the grayscale field # will be transformed into a distance
function ¢ thanks to the so-called LS reinitialization operation [26]. The
obtained LS function is then a signed distance function to the interface:

¢(x)=—-dx,T) xe Q_
¢(x) =+dx, T) xe Q,
¢(x)=0 xeTl

where d(x, I') is the Euclidean distance between a point and the inter-
face being the grayscale value at which phase transition occurs. For
applications to polycrystals, multiple LS functions (¢,)i=;.y are used.’
Independently of how grayscale values are transferred to the FE mesh,
and how LS reinitialization is performed, vacuum regions between

! N is not necessarily the number of grains, as coloring techniques can be used
to gather different grains into the same LS function and dynamically adapt this
coloring throughout the simulation [16].
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Fig. 2. Example of FE discretization of the interfaces between two and three colored grains in 2D: (a) two implicit LS with no vacuum region, (c) three implicit LS
with vacuum region and (c) and (d) results of the initial interface fitting algorithm on (a) and (c) respectively.

(©)

Fig. 3. Solution of the three grains 2D problem: (a) result after using Eq. (1), (b) result after the first iteration of the joining algorithm, (c) result after the second and

last iteration of the joining algorithm.

grains will usually remain. In other words, if the procedure described
above is used as is, the set Qg = {x € Q, max;—; n¢;(x) < 0} will not be
empty. Note that it is not possible to have mesh nodes inside Qg, be-
cause LS functions values at mesh nodes are computed from grayscale
values of the initial image, which are considered as free of vacuum.
Following the same reasoning, when generating the LS fields based on
Vorono-cells or Laguerre-Vorono-cells over an implicit mesh, these
vacuum regions will appear as well because the mesh can not ensure
that some of the edges (or facets in 3D) will not be crossed by the zero
isovalue of the LS functions.

The presence of non-physical vacuum regions at the multiple junc-
tions with the LS method is well known and the following technique,
proposed in [27], is classically used [16,18,22-24,26] to treat it:

$ 1(rl%—maxqﬁj), Vi=1.N,
J#i

Y o)

where q/,i is then used as the corrected LS function. The effect of this
treatment is illustrated in Fig. 1. This equation is also valid in 3D.

As stated above, the set Q4 does not contain mesh nodes, and if Eq.
(1) is applied between two LS functions as in Fig. 1(a), Qg is empty (see
Fig. 1(b)). However, when applying the same procedure on three LS as
in figure Fig. 1(c), it can be seen that this treatment does not totally
remove vacuum regions (see Fig. 1(d)). Another technique is proposed
in [28,29] to overcome this problem, but it will not be considered here.

2.2. Conformal meshing of level sets

In the present work, a generalized version of the so-called interface
fitting algorithm, introduced in a previous work [30], is proposed to
remove the remaining vacuum regions while constructing a conform FE
mesh of the interface. This algorithm is based on purely topological
mesh operations, and can be easily extended to 3D. As the initial
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interface fitting algorithm consists simply in splitting mesh edges in-
tersected by a LS function, and introducing this intersection as a new
mesh node, it will not remove vacuum regions. Instead, entire mesh
elements will be formed that do not belong to any grain. This is illu-
strated in Fig. 2(c) and (d).

2.3. Vaccum-less conformal meshing of grain boundaries

Let d be the number of spatial dimensions, we consider the hier-
archical organization of simplicial meshes, i.e. each 3-simplex (tetra-
hedron) has 2-simplicial faces (triangles), which in turn have 1-sim-
plicial edges (line segments). In order to obtain a mesh fitted to the
grain boundaries without creating any vacuum region in the domain,
the following general interface joining algorithm is proposed:

Interface joining algorithm

forall T =d..1 do

for all T-simplices S of the mesh do
Compute all intersections between edges of S and any interface
Insert the barycenter of these intersections in the mesh by splitting S
Set the LS function associated to any interface that intersected edges of S to zero
on the inserted node

end for

end for

A 2D example of the results obtained with this interface joining
technique is shown in Fig. 3.

This procedure prevents elements of the mesh that are intersected
by interfaces to remain partly filled with vacuum. Elements that do not
contain a junction (or at least three phases) are also treated by the al-
gorithm, which avoids the creation of elements entirely contained in
vacuum. The output mesh is usually of poor quality, hence this interface
joining process is generally followed by a mesh adaption step to restore
a good element shape close to grain boundaries. This adaption may also
follow some local mesh refinement criterion [19,30]. An example of 2D

Computational Materials Science 172 (2020) 109335

Fig. 4. Example of a 2D polycrystal of 25 grains re-
presented by 4 LS functions (blue, cyan, yellow,
green). In (a) and (b), interfaces (white) are im-
plicitly discretized and cross mesh elements, with
elements containing vacuum regions (red) at some
multiple junctions. In (c¢) and (d), interfaces are ex-
plicitly meshed using both interface joining and mesh
adaption, so that vacuum regions are eliminated in
the final mesh, with no significant deterioration of
element shape.

result with a larger microstructure meshed using both the joining al-
gorithm and mesh adaption is described in Fig. 4.

3. Grain growth modeling
3.1. Model and numerical method

3.1.1. Governing equations

In first approximation, GG by capillarity can be described by a pure
advective process. At the polycrystal scale, the velocity v at every point
on the interfaces can be approximated by the following relationship:

V = —Myn, @

where M is the mobility of the interface, y the grain boundary energy, x
the local mean curvature (i.e. the curvature in 2D and sum of the main
curvatures in 3D) and 7’ the outgoing unit normal to the grain interface.
The isotropy hypothesis remains here to consider M as only dependant
of the temperature and y as constant. In this context, the substitution of
Eq. (2) into an advection equation for each level-set function ¢, results
in:

a¢; o=

E—Mykn»vq_o 3)

Most of the methods described hereafter can be extended to the
context of anisotropic grain boundary energy y or mobility M [31], but
this will not be considered here.

Eq. (3) is notoriously difficult to properly solve by usual numerical
methods. The local curvature x involves second derivatives of the level-
set function ¢;, whose numerical estimate is very irregular, despite the
large number of methods that have been proposed in the literature to
obtain smooth and accurate approximations (see for instance [32-34]).
Moreover, the computation of the curvature is often performed as a
post-processing of the level-set function solution and not as an inherent
part of the numerical scheme used to discretize Eq. (3). The time-ex-
plicit nature of this staggered approach implies the use of very small
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Interpolation of ¢ over the edge BTA:

initial zero-isovalue

_1d|

(a)

A’

new zero-isovalue

7AYo ) ;

(b)

Fig. 5. Reinitialization errors: a) initial configuration, interpolation of the initial LS field to its zero-isovalue, b) new interpolation after reinitializing compared to the
initial one. Errors in the computation of the distance to the linear interpolation of the zero-isovalue of the LS produce a shrinkage of the concave phase.

(a) (b)

Fig. 6. Transport Errors: a) Initial configuration, interpolation of the initial LS field to its zero-isovalue over the old mesh. b) New interpolation after remeshing and
transporting the LS field to the new mesh, superposition of the phase before and after the remeshing/transport process, a loss of surface is identified.

time steps because of restrictive stability conditions. 9¢; — MyAg =0
This is why it is preferred in this work to rewrite Eq. (3) by adding ot vas @

an additional assumption: the LS fields ¢, remain at all times signed

distance functions (| quil = 1) around their 0-isovalues during boundary
migration. The resulting diffusive equation for the LS functions reads:

Eq. (4) is in general much more stable than Eq. (3) and avoids the
direct calculation of x. It is solved by a standard linear Finite Element
method in space combined with a backward Euler scheme in time. The
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A new element mesh
A old element mesh

—— zero-isovalue on old mesh

positive isovalues on old mesh

negative isovalues on old mesh

—— zero-isovalue on new mesh
' vector d;; of magnitud ¢; in the
direction of the segment ij for j#i

&
D

Fig. 7. Transport example from two elements (ABC and ACD) to one element (xyz), a surface-loss after the transport is found on element xyz as the new linear

interpolation crosses the edge AC.
Fig. 8. Fitting Relaxation: a) left: Initial configuration, right: fitting without relaxation, elements with a very small volume <§, are colored red. b) left: relaxation of

the interfaces by pushing the boundaries to node A, the surface-loss of the yellow phase is colored pink, right: fitting after relaxation.

Fitting
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Fitting

Lower than a percent value
of the yellow phase on the
last element patch of node B.
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Element patch
of node B

Fig. 9. Adaptation Relaxation: (top-left): Initial Configuration, (top-right): Fitted Mesh, (bottom-right): adapted node A (vertex displacement), (bottom-left): adapted

node B (edge BC collapsed on C).

1.0

1.0

. A

Fig. 10. Circle shrinkage test case: initial state.

implementation is fully parallel and has been shown to perform very
well on a large number of processors [15].

3.1.2. Global level-set functions and reinitialization

In Section 2, the treatment of interfaces in a polycrystal has been
described assuming that each level-set function ¢ represents the
boundary of a grain. In simulations involving thousands of grains how-
ever, which are generally necessary for physical representativity in this

context, the computational cost of the method becomes prohibitive be-
cause Eq. (4) must be solved thousands of times on the whole domain.

This problem can be overcome by the use of Global Level-Set (GLS)
functions, which include multiple grains in a single distance field
[2,16]. Coloring/Recoloring techniques make it possible to identify sets
of non-connecting grains that can share a GLS. In the case of a GG si-
mulation, topological events (mostly grains vanishing) occur, which
often lead non-connecting phases to become adjacent. This is why dy-
namic re-coloring methods [2,16], which transfer grains between GLS
functions, are used in the present work to ensure that the GLS functions
remain valid. With this techniques, it is possible to limit, independently
of the total number of grains, the number of GLS functions (and thus the
number of diffusion equations to solve) to a few tens, which is com-
putationally affordable.

An additional consideration is that, as mentioned in Section 3.1.1, it
is necessary to reinitialize the LS functions, i.e. to maintain them as
signed distance functions. Many methods have been proposed in the
literature to perform this task, for instance fast marching methods on
regular grids [35-37] or solving a Hamilton-Jacobi equation on un-
structured meshes [38]. In the present work, we prefer to recompute
the distance to the iso-0 level-set in a purely geometric manner with a
parallel-efficient algorithm based on spatial partitioning trees [26].

3.1.3. Interface treatment and remeshing

Three different combinations of interface representation and mesh
adaptation strategies are compared in the numerical tests performed in
this work (see Section 4).

The first approach consists in using a Static Mesh (SM), disabling mesh
adaptation so that the mesh remains the same all along the simulation. The
interface is then implicitly represented by the level-set functions.

In the second approach, interfaces are still described by level-set
functions only, but they are better captured by locally refining the mesh
in their vicinity through Isotropic Mesh Adaptation (IMA). The local
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Fig. 11. Meshes obtained for each one of the configurations for the circle shrinkage test at t = 0 and with a mesh size h = 0.01 at the interface. (a, b) Using the
interface fitting and joining algorithm. (c, d) Using a classic interface capturing algorithm. (e, f) Static mesh.

refinement makes it possible to better resolve the curvature of the grain
boundaries.

The third approach consists in applying the New Fitting And Joining
Algorithm (NFJA) described in Section 2 to track interfaces explicitly
with a body-fitted mesh. With this technique, a mesh adaptation step is
still required in order to improve the low mesh quality resulting from
the fitting procedure and to accurately capture the interface curvature
through local mesh refinement.

The mesh adaptation procedure involved in the IMA and NFJA ap-
proaches relies on local topological mesh operations, that are applied
iteratively with the objective of improving a mixed criterion [39]. The
criterion combines an evaluation of the local element quality and the
conformance of the local edge length to a prescribed size field. Aniso-
tropic meshes could have been generated in the vicinity of the interface

through metric-based techniques [40,41]. However, we have found
highly anisotropic meshes to be of little interest in this specific context:
as level-set functions are linear in the normal direction to interfaces, the
main driver of the accuracy is the mesh size in the tangential direction,
that determine the resolution of the interface curvature.

Considering a mesh size hj, in at the interface, the mesh size field h
is defined by:

hinl if |¢| < 4’hint
= R+ "0 (6] € [4Ring, 8hind
8hint if |¢| P 8hint (5)

This definition makes it possible to obtain a band of four refined
elements on each side of the interface and a coarser (8 times larger)
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Fig. 12. Results for the static mesh configuration using a dt = 2-10~> and for
different mesh sizes h. Top: Evolution of S;. Middle: evolution of ASgper, Ks is
the median value for each h. Bottom: evolution of ASgeinis, Kr is the median
value for each h.

mesh in the bulk of the phase.

3.1.4. General algorithm
The general approach can be summarized as follows:

Generate Initial State with a Coloring Method

while Time < FinalTime do
for all LS Field ¢ do
Solve PDEs with a FE method for ¢
end for
for all LS Field ¢ do
Apply Eq. (1) to ¢
end for
for all LS Field ¢ do
for all Grain G in ¢ do
Transport G to another ¢ if necessary (Re-Coloring)
end for
end for
for all LS Field ¢do
Reinitialize ¢
end for
if Remeshing Active then
if Body-Fitted Remesh then
Remesh with the NFJA method

Computational Materials Science 172 (2020) 109335

30
h=0.01
25 h=0.008
h=0.006
20 —— h=0.004
. —— h=0.002
£ 15 1
3
10
5 -
0 T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
dt x107?
30
h=0.01
25 A h=0.008
h=0.006
20 A —— h=0.004
_ —— h=0.002
15 1
~
up
10 A
5 -
(] T T T T T T

T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 :
dt x10™

.0

@Ot

Fig. 13. Results for the static mesh configuration. values of §,,,. and ¢, for
different values of the time step and the mesh size.

Generate Initial State with a Coloring Method

end if
if Interface Capturing Remesh then
Remesh with the IMA method
end if
end if
while

3.2. Source of errors

Each one of the numeric models has a different set of sources of
errors that have been classified as follows: errors given by the direct
reinitialization algorithm, errors given by the remeshing and transport
process and finally, errors given by the resolution of the diffusion
equation in the considered FE framework (P1, unstructured FE mesh).
We will detail each one of the sources of errors excluding the ones
obtained by the FE solution of the EDP which are considered as a
function of the convergence parameter given to the FE solver and
common to the different FE remeshing strategies proposed here.

3.2.1. Direct reinitialization errors

Using the direct reinitialization method proposed in [26] is a very
fast way of reinitializing a LS field, however, some errors will be present
when the FE discretization uses linear elements. Consider the config-
uration of Fig. 5(a), in this case, the zero-isovalue of the LS field (¢) is
obtained by interpolating the LS values within the elements where a
change of sign of the LS was found, a sequence of segments defining the
interface is identified. Then, the reinitialization algorithm will re-
compute the distance of each one of the nodes to the nearest part of the
nearest segment. Applying this procedure to node A, B and C of Fig. 5(a)
will result in a shrinking of the concave phase: the initial LS values are

-
given on A, B and C by the positive norm of vector d, and the negative
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Fig. 14. &5y &geinie AN Erygnpor fOr different mesh sizes h and time steps dt for
the IMA case.

- - |- - - .
norm of vectors dp and d, (‘ dg|, 4dp| and - d.|). The zero isovalue of the

interpolation of these LS values within element K will be the segment s
used to reinitialize nodes A, B and C. For nodes B and C, the value of the
computed distance to segment S is the same as the initial LS values for

- - - - )
these nodes ((dys| = |dp| and |d.| = |d.|). However, the nearest dis-

N
tance of node A to the segment S is the norm of the vector d,; (which is

— —
ortogonal to S). As|d,| < |d,|, when interpolating the new reinitialized

LS field, its zero-isovalue will be different from the initial one (see
Fig. 5(b)). Normally, these errors increase when the curvature of the
zero-isovalue increase, and they become null if the zero-isovalue is a
straight line. A way to avoid this phenomena, is by using body-fitted
interfaces as the ones obtained with the help of the fitting and joining
algorithm presented in this paper.
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Fig. 15. &, and §,,,, for different mesh sizes h and time steps dt for the NFJA
case with &, = 107 and &, = 2-1072.
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Fig. 16. &, and §,,,, for different mesh sizes h and time steps dt for the NFJA
case with &, = 10719 and §, = 2-1073.
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Fig. 17. &, = > ¢ for different mesh sizes h and time steps dt (a) §,,, for the
IMA method. (b) &,,, for the NFJA with §, = 1071° and §, = 2:1072. (c) &, for
the NFJA with 6, = 1071° and &, = 2-1073.

3.2.2. Remeshing and transport errors

It is well known that the process of transporting a numeric field
from a mesh to another causes errors, mainly if the interpolation used
for the transport has a low order. Fig. 6 shows one example of loss of
surface when a mesh using linear elements transports one LS field to
another mesh. Fig. 6(a) shows the initial mesh with its given zero-iso-
value of the LS field. Each node of the new mesh (Fig. 6(b)) will
compute its LS value from the interpolation of the LS field over the old
mesh. Many case scenarios can occur. For instance, if one edge of the
new mesh is completely inside of one of the elements of the old mesh
(as in Fig. 7 see edge Zy)), the old isovalues (including the zero-isovalue)
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over that edge will be transported to it as they intersect the same edge.
In other words, the interpolation of the old LS to the nodes of that edge
will cause that the isovalues computed in the old element along the
edge and the new interpolation over the edge, coincide. However, this
is not the case for all the edges of the new mesh, many of them will
cross the edges of the old mesh (as in Fig. 7 see edge xp). As the in-
terpolation over each one of the nodes of those edges comes from dif-
ferent elements, the isovalues on those edges will not coincide with the
interpolation of the LS of the old mesh along those edges, hence causing
errors.

As for the reinitialization errors, transport errors will cause the
concave phase to shrink, producing a loss of surface. Once again, this
phenomena can be avoided if the nodes of the new mesh coincide with
the zero isovalue of the old mesh, which is exactly the way of producing
new meshes by using the new fitting and joining algorithm.

3.2.3. Errors of the new fitting and joining algorithm

One of the issues when using the new fitting and joining algorithm is
that some of the elements at the interface end up with a very poor
quality (in terms of shape and size) when the zero isovalue crosses the
element too near to a node (see Fig. 8(a)). One way to avoid this pro-
blem is by pushing the interface to the node before applying the fitting
algorithm to the patch of elements (see Fig. 8(b)). This procedure is
triggered if the volume of one of the elements after fitting is smaller
than an user defined value §, (the element colored in red in Fig. 8(a)
left).

Once the fitting algorithm has finished, a mesh adaptation proce-
dure begins in order to improve the quality of the mesh near to the
fitted interface. Small changes on the volume of each phase are allowed
under a percent value &, also user-defined. Take for instance the ex-
ample showed in Fig. 9. An initial fitting process is done over the initial
configuration (Fig. 9(top-left)) giving as a result the body-fitted mesh
(Fig. 9(top-right)) containing potentially ill conditioned elements (see
elements attached to nodes A, B and C), then, a first adaptation process
will over node A, which is going to move the same node to a position
where the quality of the whole element patch of node A is improved
(Fig. 9(bottom-right)) till then, no change on either of the phases is
registered. Then, a second attempt of adaptation is done: the patch of
elements surrounding node B in Fig. 9(bottom-right) contains two
phases. If by applying a remeshing operation to this element patch, the
quality is improved and the maximum volume change of the two phases
(in this case, the yellow phase) does not go over the allowed user-de-
fined percent (percent of the initial volume of the phase on the element
patch) the operation is enregistered, else, the operation is discarded and
no change on the patch is made. An additional constraint is added to the
nodes of the boundary of the FE domain: when performing the adap-
tation step, the nodes of the boundary are not allowed to move, even if
the movement increases the quality of the local patch. This condition
enables to maintain the calculation domain boundaries during inter-
faces migration. Finally, point deletions are allowed in the same way as
for all the other nodes (if the changes do not reduce or increase the
volume of the local patch over the allowed user-defined percent).

These processes operations cause errors on the surface of the phases,
producing some of them to expand or to shrink. We will measure the
effect of the relaxation with the help of the following test cases. The
other sources of errors explained before will be studied and compared
too.

4. Numerical results
4.1. Considered geometries

Eq. (4) will be considered to obtain the evolution of the LS fields for
several test cases, each one responding to different interesting topolo-

gical situations: sphere shrinkage, T-Junction, square shrinkage and
finally a 2D Laguerre-Voronoi tesselation composed of 10,000 grains.
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0y

Fig. 18. T-Junction Case. left: initial state, right: steady state.

15625 Elements
31250 Elements
62500 Elements
125000 Elements
250000 Elements
500000 Elements

Fig. 19. T-Junction Case: static Mesh, convergence analysis. Only the interfaces between ¢, — ¢, and ¢, — ¢, are shown (see Fig. 18 for the notation).

B IMA
NJFA
M Reference

0,10353 mm?

0,67212 mm?

Fig. 20. ¢, phase for the reference model and the geometric difference of the
same phase obtained with the other models (the IMA and NFJA) at time
t = 0.35. values for the area of each section is given.

For each one of this geometrical configurations, the three remeshing
approaches (SM, IMA, NFJA) will be compared.
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4.2. Circle shrinkage

The circle shrinkage test case, being the most basic of all, enables to
observe the response of the interface to the instantaneous curvature and
so to observe the topological disappearance of the grain. This case al-
lows to compare the shape evolution of the phase defined by the po-
sitive values of ¢ to the analytic solution; The evolution of the analy-
tical circle radius r is simple given by the following differential
equation:

Myt =05 r() = 2 - 2myt.
r

This equation can be rewritted in terms of the surface of the circle S,
with a linear solution, as:

dr
— +

dt (6)

% +2nMy = 0= S(t) = So — 2mMyt. o)

As mentioned before, solving Eq. (4) in a FEM context implies some
errors. Here we will quantify each source of errors using the surface Sy
of the phase ¢ describing the “circle”. In reality, the phase ¢ can not
define a perfect circle but the errors given by its real shape will be
neglected.

We can establish the signed difference between the numeric surface
computation Sy and the analytic value S as the total error E**:

Egnian = Sp@htan — S (8)
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Fig. 21. T-Junction Case. Numeric diffusion of the metric field used by the mesh adaptation algorithm for the IMA case. The needed thickness of refined elements of
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Py

Fig. 22. Square-Shrinkage. left: initial state, center: square shrinking, right: the square disappears and a new interface is made (¢, — ¢, or ¢; — ¢).

where h is the mesh size at the interfaces and At is the time step. Eq. (8)
can be rewritten in order to obtain the error per increment E*:

EGninn — EGni—atan = Sp@hnan = Sp@ni-atan + Se—an = Sw»  (9)

Egnian = DSpnian — ASu,an. (10)

Finally we can express the relative error as:

13

ASgpnean — ASq.an

Egntan =
@ht.00 AS( Aty an

The term ASgnian is actually the addition of the different con-
tributions to the change of surface given by the different treatments
done in an computational increment: solution of the EDP in the FE
context, reinitialization and remeshing. The latter itself is also differ-
entiated in the change of surface given by the processes of transport,
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Fig. 23. Square-Shrinkage. Comparison of the ¢, phase at t = 0.05 [s].
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S B n,an
ASremesh (p,h,t,At)
AS(ar)

_ ASsolver(qS,h,t,At) - AS(t,At) + ASreinit(qS,h,t,Al)
ASan AS(tan

13)

Finally, Expressions for the three principal sources of error can be
stablished:

ASsower (¢h,1,00 — AS(t,a0)

B

gsolver ($.h,t,00) = 100-

AS,a) a4
ASreinit (g,n,t,80)
£ = 100. —renit@.nLAD
reinit (¢,h,t,At) AS([,A[) (15)
ASremesh(q& h,t,At)
¢ = 100. —remesh (@ h.t.ALD
remesh (¢,h,1,A) AS¢an) (16)

where the terms & represent the relative error given by the procedure i
(solver, reinit ans remesh). The dependence of ¢ for the different values
of ¢ describes the error produced by how far the phase ¢ is to represent
a perfect circle of surface Sy, in this study, this dependence will be

H IMA
NFJA
[ Reference

R

Fig. 24. Square-Shrinkage. Comparison of the interfaces after the disappearance of the ¢, phase. t = 0.1.

ZOONY-Section

Fig. 25. Initial state of the microstructure composed of 10,000 grains build
thanks to a Laguerre-Vorono-algorithm.

fitting and adaption as explained in Section 3.2. This can be summar-
ized as follows:

ASg(g.ne.ar) = ASsower p.h.t.a0) T ASpeinit (p.ht.ar) T ASremesh(gh.t.A0)5 12)

neglected and we will focus on the evolution of the error as a parameter
of the mesh size h, the time ¢ and the time step At. Note that we have
not used an absolute value to describe each error. Indeed, we want to
observe if the numeric models are quicker or slower than the analytic
solution: a negative (resp. positive) value of the error would mean that
phase ¢ shrinks too fast (resp. low) during the considered step.

In the following, dimensionless simulations will be considered and
the value of the reducted mobility M-y will be assumed to be unitary.

The initial radius is set as ry = 0.3 (initial surface S, ~ 0.2827) and
the circle is immersed in the center of a 1 X 1 square as illustrated in
Fig. 10.

As stated before, three meshing configurations will be compared,
the first one will use the interface fitting and joining algorithm to re-
mesh every time step, the second one will use an interface capture
meshing (a mesh refined only at the interfaces but not fitted) and the
last one will use a static mesh with an uniform mesh size. Examples of
each meshing approach are given in Fig. 11. Note that for the static
mesh, all the domain must be refined in order to maintain the same
level of accuracy as for the other cases during the interface migration.

Multiple runs with different mesh sizes h and time steps dt were
made for each one of the configurations. Eq. (4) was solved with a
standard diffusion FE solver with a precision of 107° for a P1 (linear)
interpolation.

One example of the obtained results for the evolution of the surface
for the configuration with a static mesh are summarized in Fig. 12, Ks
and Kr are the median values of the surface change when solving the
FEM problem and when reinitializing respectively. These values can be
replaced in Egs. (14) and (15) as ASsoner and ASgeini to obtain the values
of & ;. and &,,...,- Fig. 13 shows the values of £ ;. and &,,,,;, for different
time steps and mesh sizes. Note that for this case &40 & and &,
are equal to zero because there is no remeshing.

It is interesting to see that errors given by the reinitialization pro-
cedure are much more important than those obtained by using a FEM to

dapt
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Fig. 26. Convergence analysis when a homogeneous static mesh is considered: evolution of the mean grain size of the microstructure.

solve Eq. (4). and that they tend to be bigger when the time step de-
creases. In fact, from our observations AS,,;,; is not dependant of the
time step dt used (it depends only of the mesh size h), however, a
smaller dt means more increments to simulate the same time, and as the
error from the reinit cumulates, the more increments the bigger the
value of &,

A similar computation can be made for the IMA and the NFJA ap-
proaches. When using the IMA approach, the value §r,,,,; # O be-
cause the remeshing makes the procedure of transport unavoidable.
however, as there are no fitting, &;, = 0 and §,,,,, = 0. The values of
Eqomer and &, are almost equal to those of the SM method displayed in
Fig. 13 as the only difference near to the interface between these two
approaches is that a procedure of remeshing is done between time steps.
Fig. 14 shows the results for the values &, &geinie @Nd &pgppore fOT
different values of the mesh size h and the time step dt in context of the
IMA strategy. The values of &, were found to be very small com-
pared to those of &, and &, hence they can be neglected in the
following.

Finally, when using the NFJA approach, as explained in Section 3.2,
Ervanspore = 0 and &gy = 0. however, &, # 0and §,,,, # 0 as a fitting
procedure is used. The NFJA allows to control the two variables 6, and
6, introduced in Section 3.2.3, these variables control directly the va-
lues of &;, and §,,,,,- A very low value of 5, will cause that the algorithm
allows to get very small elements after fitting while the value &, tends
to zero. In the same way, a very low value of &, will cause that even
though a very poor quality of elements were found after fitting, the
algorithm could not modify the interface in order to improve that
quality, while the value £,,,,, tends also to zero.

Fig. 15 shows the values of &, and §,;,, for one example with
8, = 1071° and 6, = 2-1072. For these values, &, are very low and can be
neglected. An example of a mesh obtained with these values is showed
too. In the same way, Fig. 16 shows another example for the values of
8, = 1071 and &, = 2-1073. It is interesting to see that for the latter,
§440p: can be neglected and the remaining errors are given by the value
of &, and additionally, &, is lower than the one from Fig. 15. Of
course, the curvature of the interface is better preserved when &, is low

15

but the mesh obtained with such values is nearly degenerated. Results
shows that the FEM solver is more sensitive to the small changes in the
description of the surface than to the quality of the elements, and that it
will be actually more accurate to maintain the interface as it is after
fitting than to try to improve the mesh quality field with remeshing
operations.

Fig. 17 shows the value of §,, = > ¢ for the IMA method and for
the NFJA with the two sets of constants used in Figs. 15 and 16. The
smallest §,,, was found for the NFJA approach with the values
8, = 107'* and &, = 2-1073. Even though the § . was very high for the
NFJA in comparison to the one given by the IMA, results show that with
the right choice for 6, and &, for the NFJA approach, one can be more
accurate on the prediction of the evolution of interfaces when using Eq.
(4) and a body fitted mesh in a FEM context.

4.3. T-junction case

The T-junction problem is an initially unstable configuration of
three interfaces (for three grains at a 90°-90°-180° initial configuration)
that converge to a 120°-120°-120° quasi steady-state equilibrium as the
My term is assumed here isotropic. The equilibrium of the triple point is
given by the Herring’s equation [42]. It will bring the system to a state
where the surface energy is minimized and the three lines will arrange
themselves in a sTable 120°-120°-120° (Young’s Equilibrium) config-
uration evolving after with an homogeneous velocity given by the mi-
gration of the curved interfaces and the Neumann boundary conditions
[43] (see Fig. 18).

Comparing the results from the T-junction test and the square-
shrinkage is much more difficult because there is no analytic solution
for these problems concerning the way to reach the quasi steady-state.
However, as illustrated in the precedent study over the circle-shrinkage
test, convergence is obtained when the mesh size decreased. This result
will be used to obtain a reference case for the T-junction problem.
Several computations where turned with different static meshes. Fig. 19
shows the interfaces ¢, — ¢, and ¢, — ¢, after t = 0.35 for the T-
Junction configuration. At this time, the quasi steady-state is ensured.
As convergence is obtained when the mesh size decreases, the
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Fig. 27. Results for each case: (a) using a classic meshing adaptation (IMA) technique, (b) using the New Fitting and Joining Algorithm (NFJA), (c) using the NFJA
method with the improvements on the metric field explained in Fig. 21 and the reference curve. Left: evolution of the mean grain size and right: CPU-time of

simulations, the reference case is not plotted.

simulation with 500000 elements (last one from Fig. 19) will be used as
reference.

Fig. 20 shows the ¢, phase for the reference model and the geo-
metric difference of the same phase obtained with the other models (the
IMA and NFJA) at time t = 0.35. Compared to the reference model, the
error on the area of the ¢, phase is &,,, = 10.1% and &y, = 15.4%.
Hence, the IMA approach is clearly more accurate. An acceleration of
the multiple point was found for the NFJA model.

Finally, during the simulation campaign, some differences on the
capabilities of the algorithms were observed. Some limits were ob-
served when using the IMA method: the minimum number of refined
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elements at each side of the interface is around 4. This number of
elements ensures that the numeric diffusion obtained at the remeshing
step over the metric field is not too important, hence the remeshing
success. Otherwise, as illustrated in Fig. 21 the remeshing may fail after
some increments. On the other hand, the NFJA method is able to re-
mesh successfully every time step, as some of the new nodes are fitted
to the interface hence the metric field can not be numerically diffused
there.
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Fig. 28. Grain size distributions weighted by surface for the different models
and for a mesh size h = 0.004. (a) state at time ¢ = 1800, (b) state at time
t = 3600.

4.4. Square-shrinkage case

The square shrinkage test makes it possible to observe the behavior
of each model when four triple points converge to the same position.
The instability of this configuration suggests that the 4 triple points
should became 2 triple points and not 1 quadruple point. Fig. 22 shows
the normal behaviour of this test case: initially there are 5 phases where
the central phase ¢, represents a perfect square; then, each one of the
triple points reaches a quasi steady-state similar to the one obtained for
the T-Junction problem. At this stage, each one of the interfaces of the
phase represented by ¢, is shrinking at a constant rate. Finally, ¢, dis-
appears and a new interface is created resulting of the absolute nu-
merical instability of the quadruple point. Here two possible config-
urations are possible for the creation of the new interface (¢, — ¢, or
¢, — ¢5). The choice of the created interface should be given by the
difference on the surface energy of each one of the possibilities, the one
with the lowest energy is the one that should be created, however, in
our study isotropic grain boundary properties are considered, and ei-
ther of the two decompositions are valid.

In the context of a FE level-set method, it is almost impossible to
obtain a perfectly symmetric quadruple junction that will maintain its
stability: a symmetric (four right angles) quadruple junction is a meta-
stable state that will decompose in a lower energy state, i.e. two triple
junctions, with an infinitesimal perturbation 6. As mentioned in Section
3, the LS method depends on the FE mesh discretization, convergence
stop criterion of the FE solver, the interpolation degree and the ap-
proximations made such as the application of Eq. (1) or the re-
initializing method used. Finally, by applying this method to the con-
sidered geometry (square shrinkage), the angles between the 4
interfaces at the moment when the quadruple point appears will be of
90 + © where © > §, triggering its decomposition. In fact, It is actually
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Fig. 29. L2-Error over the grain size distributions vs the mesh size h. (a) state at
time t = 1800, (b) state at time ¢ = 3600.

highly probable that the quadruple point never really appears (two very
close triple points appearing instead).

Similarly to the T-junction test case, a convergence analysis was
made using static meshes in order to obtain the reference evolution for
this configuration. Convergence was obtained after using a static mesh
with 1 million elements. our reference will employ a static mesh with 2
million elements.

Fig. 23 shows the comparison of the NFJA and IMA methods to the
reference after t = 0.05. The error on the area of the ¢, phase was
Eriypia = 38.4% and Ermys = 16.3%. Once again an acceleration on the
evolution of the NFJA was observed. Another difference from the re-
ference model was that both NFJA and IMA methods created interface
¢, — ¢ while the reference model created ¢, — ¢, (See Fig. 24).

4.5. 2D 10,000 grains case

Here, the New Fitting and Joining Algorithm is also compared with
a more classic method of mesh adaptation where the interfaces are
captured with a non-conform local refined mesh as detailed in Section
3.1.3 and described as the Isotropic Mesh Adaptation (IMA) technique
instead of tracked with a body-fitted mesh adaptation algorithm. Both
cases will be compared to a reference case, which is the convergence of
the evolution of the mean grain size (equivalent radius in number)
when using an homogeneous refined static mesh. When a homogeneous
static mesh is considered transport errors are not present. In addition, if
the mesh size is small, errors on the reinitialization procedure become
less important as the distance functions are better described and finally
vacuum regions become smaller. Hence the case with the homogeneous
refined static mesh will be treated as the better solution in terms of
precision and errors of the two other cases will be computed thanks to
its evolution.

The initial microstructure considered is composed of 10,000 grains
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Fig. 30. L2 Error vs the Total CPU-time at the end of the simulation. Each point
of the same curve represent a simulation with a different mesh size (from left to
right: h = [0.01, 0.008, 0.006, 0.004, 0.002]). (a) L2-Error over the mean grain
size, (a) L2-Error over the grain size distributions.

generated using the concept of Laguerre-Voronoi cells [3-5]. Fig. 25
illustrates the initial state for a square domain with surface
A = 10 [mm?] and a grain size lognormal distribution with a mean value
of m = 0.017 [mm] and standard deviation o = 0.006 [mm]. The values
for M and y are chosen as representative of a 304L stainless steel at
1050° Celsius (with M = M, *e~@RT  where M, is a constant
M, = 1.56e11 [mm*/Js], Q is the thermal activation energy
Q = 2.8-10° [J/mol], R is the ideal gas constant, T is the absolute tem-
perature T = 1323 [K] and y = 6-107 [J/mm?]). The isothermal treat-
ment is realized during 3600 s.

Fig. 26 describes the evolution of the mean grain size (calculated in
number) when different static meshes are considered. We assume that
convergence is reached when the accumulated L, error in time remains
lower than 5% at 3600 s. Hence, the simulation employing a mesh size
h = 0.001 [mm] will be considered as the reference case in the fol-
lowing.

Fig. 27 shows the evolution of each case, the one using the IMA
technique for the capturing of the interfaces and the New Fitting and
Joining Algorithm (NFJA). Note that two curves are listed for the NFJA
method, one (the NFJA) corresponds to a simulation which remeshing
is done by employing the same metric field as in the IMA case, the other
(NFJA Improved) corresponds to another where the metric field had
been improved as shown in Fig. 21.

Fig. 28 shows the comparison of the grain size distributions
weighted by surface of each model (IMA, NFJA and Static Mesh) and for
the reference case with a mesh size of h = 0.004, for the times t = 1800
and ¢ = 3600. Fig. 29 shows the L2-Error over these grain size dis-
tributions for multiple mesh sizes h = [0.01, 0.008, 0.006, 0.004, 0.002].
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Finally, a summary of these results can be made in a single chart:
Fig. 30 shows the evolution of the L2 Error in function of the Total CPU-
time at the end of the simulation for every case. These charts show that
for a precision greater than 5% on the prediction of the mean grain size
and greater than 10% on the prediction of the grain size distributions
the fastest method is the one using a static mesh, meaning that the
procedure of remeshing regardless which one we use seems not to given
any advantage in terms of CPU-time for the considered configuration.

5. Discussion, conclusion and perspectives

Fig. 27 shows that the behaviour of the CPU-time for each of the
simulation is not linear, this is due to the fact that the number of grains
is also changing during the simulation: the less grains there are, the
smaller the zone needed to maintain with a refined mesh hence the
smaller the time of computation by increment.

Fig. 30(a) and (b) illustrates that for IMA and the NFJA methods the
accuracy range is wider that for the one using a static mesh. CPU-time
for both cases (IMA and NFJA) are very near, however they represent
very different processes. The time needed to remesh with the NFJA for a
fixed number of elements is higher as in addition to the mesh adapta-
tion process because the fitting process adds an extra amount of com-
putational work. On the other hand, some of our observations showed
that the NFJA needed less mesh elements to properly define the inter-
face even if the asked metric field was the same. Thus the proposed new
front-tracking approach appears already as competitive comparatively
to the existing LS front-capturing approach used in the state of the art in
context of unstructured FE mesh [1,17,31,24]. However, when com-
paring the CPU-time obtained for the simulations using a static mesh,
every test (except for the one with 4 = 0.002) turn out to have a lower
CPU-time than for the corresponding IMA and NFJA approaches. This
result in addition to the fact that the error ranges are close, take us to
conclude that the actual remeshing processes (IMA and NFJA) does not
reduce the computation time of a 2D few-thousand multidomain si-
mulation in context of the proposed recent algorithm (diffusive for-
mulation, coloring/recoloring algorithms, optimized direct re-
initialization and treatment at multiple junctions).

Figs. 28-30(b) show that in one hand the IMA case behaves better in
terms of accuracy on the prediction of the grain size distributions
contrary to 30(a) where the NFJA case predicts better the mean grain
size. Of course, the grain size distribution gives a better description of
the global state of the polycrystal hence we conclude that the IMA
approach is more accurate for a fixed mesh size. On the other hand, if
comparing the cpu-time in either 30(a) or (b) the computational cost
needed for the IMA case is always bigger than the one for the NFJA
case, but the error given by the NFJA remains too important (even for
the smallest mesh size h, last point from right to left) to consider it at
the optimal candidate for a multidomain simulation. In fact, comparing
the grain size distributions (see Fig. 28) reveals that the kinetics of the
NFJA method is clearly different from the one using an implicit de-
scription of the interfaces (IMA or Static Mesh) being faster on the
evolution of the small grains and slower on the evolution of the big
ones. This conclusion seems coherent with the results described for the
T-junction and square-shrinkage cases where the kinetics of the triple
junctions was systematically overestimated by the NJFA approach
comparatively to others. If this weakness is automatically linked to the
mesh topological operations realized at the multiple junctions, solved it
is not straightforward and constitutes a perspective of this work. In-
deed, this approach remains clearly of interest as further improvements
could be made with the use of the NFJA that could result in a suitable
method to model multidomain problems with a diminution of the CPU-
time and of the error that could not be possible to make by employing
more classical approach. Indeed, with this approach, geometrical data
such as interface normal and curvatures can be computed directly from
the body-fitted mesh using the position of the interface nodes only,
instead of relying on the costly and inaccurate approximation of the LS
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field derivatives which could lead to the direct use of Eq. (3) in a sta-
bilized framework. These perspectives will be described in a forth-
coming publication such as the fact to confirm the conclusions of the
previous paragraph for larger 2D and 3D simulations and when stored
energy due to plastic deformation (involving a convective/diffusive FE
formulation as in [2,44,1]) has to be considered.
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