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A B S T R A C T

This work describes the coupling of a level-set (LS) based numerical framework for microstructural evolutions
modeling with a crystal plasticity finite element method (CPFEM), in order to propose a new full field approach
dedicated to dynamic recrystallization (DRX) modeling. These developments are proposed for 3D polycrystalline
metals subjected to large deformations at high temperatures.

CPFEM is one of the best available alternatives to model the evolution of dislocation densities and mis-
orientation during plastic deformation. The dislocation density and misorientation is then used as input data for
the recrystallization model. Grain boundary migration (GBM) is modeled by using a kinetic law which links the
velocity of the grain boundaries, described by LS functions, with the thermodynamic driving pressures. The
nucleation of new grains is modeled by using phenomenological laws, which define the number of nucleation
sites as a function of the dislocation density and the misorientation. The link between the CPFEM and the GBM
model gives an accurate description of the DRX phenomenon, which is intended to model industrial processes.

In this work the methods and the coupling algorithm are presented, along with an analysis of the different
numerical parameters and strategies to define nucleation. The calibration and validation of the model against
experimental data for 304L steel will be presented in a future work.

1. Introduction

Current industrial processes require the production of metallic
materials with high mechanical properties. To improve the mechanical
properties, it is necessary to control the evolution of the microstructure
during thermomechanical processing.

During thermomechanical processing the microstructure evolves
due to the interaction of several phenomena: plastic deformation causes
the generation and accumulation of dislocations, the accumulation of
dislocations causes grains to rotate, and because of the high tempera-
tures, dislocations are able to move and annihilate causing dynamic
recovery. The accumulation of dislocations also leads to the formation
of low angle grain substructures, which can evolve into high angle grain
boundaries leading to the formation of new grains with low dislocations
densities (nucleation). Simultaneously the dislocations density gra-
dients between grains (which translate into accumulated energy

gradients) combined with capillarity effects, cause GBM. The interac-
tion of these phenomena constitutes the DRX mechanism [1].

DRX is the main microstructure evolution process, which de-
termines the final state of the material microstructure after thermo-
mechanical processing. Depending on the scale at which new nuclei can
be identified, the DRX process is classified as discontinuous (DDRX) or
continuous (CDRX) [2].

For materials with low to medium stacking fault energy like 304L
steel, that are the initial focus of this work. The recrystallization process
is generally considered as DDRX [2].

The need to control the microstructure has led to the development
of numerous models for dynamic recrystallization [2,3]:

• Phenomenological models, like the JMAK type models, which de-
scribe the evolution of the global recrystallization fraction and mean
grain size as a function of the strain and temperature [4–6], these
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models only describe average behaviors by fitting phenomen-
ological laws to experimental data.

• Mean field models, which describe the state of the microstructure as
the average of a n-number of grains. The evolution of each grain
follows phenomenological laws, that compare the state of each grain
against the average state of the microstructure [7–12]. Mean field
models do not include and can not describe grains topology and
interactions between neighbouring grains.

• Full field models which describe the microstructure topology at the
polycrystal scale and allow to consider local phenomena and inter-
actions between neighbouring grains. Several types of full field
models exist in the literature:
– Probabilistic models like the Monte-carlo and some cellular au-
tomata models. These models use uniform grids formed by cells in
order to describe the microstructure and use stochastic laws in
order to model the evolution of the microstructural state [13–18].

– Deterministic approaches, rely on the resolution of partial differ-
ential equations to describe the evolution of the microstructure.
Deterministic methods can be divided according to their re-
presentation of the grain boundary network between front
tracking and front capturing numerical frameworks.

– Front tracking methods like the vertex approach, explicitly de-
scribe the grains interfaces by using vertices, and models their
evolution by computing the velocity of set of points [19,20]. Front
tracking methods can present limitations when dealing with ap-
pearance and disappearance of new grains, especially in 3D.

– On the other hand front capturing approaches like the level-set
[21–26] and phase field [27–32] methods circumvent this pro-
blem by describing the grain interfaces implicitly with auxiliary
functions (distance functions or phase functions). Some compar-
isons have been performed between the two methods, for GBM
modeling, showing that in terms of accuracy both approaches
have similar performances [33]. Main limitation of these ap-
proaches remains generally their complexity and numerical cost.

Both FEM and Fast Fourier transform (FFT) [23,34] methods have
been coupled with the LS method. Even-tough FFT is largely more
computational efficient than FEM, its requirements for structured mesh
excludes its use for very large deformation cases that undergo re-
meshing operations and complex shape evolutions. The recent im-
provements in terms of computational cost [35,36] make the LS-FEM
approach a powerful numerical framework to model dynamic re-
crystallization in the context of industrial applications.

The existing LS-FEM approach to model DDRX [10,25] focuses on
the description of GBM and nucleation, simplifying the plastic de-
formation. This results in a limited description of the processes involved
in dynamic recrystallization. Moreover, both GBM and nucleation de-
pend on the dislocation density, whose evolution during dynamic re-
crystallization is lead by plastic deformation. The ability to correctly
model the local evolution of the microstructure thanks to this approach
is thus limited.

To circumvent this limitation it is necessary to propose a more ac-
curate description of the plastic deformation phenomena. Given the
anisotropic behavior of plastic deformation and the scale of interest, the
best alternative are crystal plasticity (CP) formulations [37–40]. CP
describes precisely plastic deformation mechanisms at the micro-
structure level.

Models that combine classic recrystallization models with CP for-
mulations have been proposed in the literature: mean field re-
crystallization models have been coupled with viscous-plastic self
consistent CP models [9,41–43], taking advantage that both models
represent the microstructure as a n-number of grains. Probabilistic full
field models have been coupled with both CPFEM and CPFFT simula-
tions [44–47]. In the case of deterministic models the phase field
method has been coupled with CPFFT simulations [48–50]. However
these models do not provide an appropriate framework to perform 3D

full field simulations of dynamic recrystallization in context of in-
dustrial processes, where high plastic deformation can be achieved.

In this context, a 3D full field LS approach, coupled with a CPFEM,
to model DDRX in context of large deformations is proposed. The
CPFEM follows a Lagrangian framework, which combined with re-
meshing operations, allows to model large deformation. In the first
section of this work the CPFEM framework is introduced, followed by
the description of the LS approach for grains representation, grain
boundary kinetics and the formulation to model nucleation. Then
global scheme coupling the models is described. Finally the models
numerical parameters are analyzed along with different nucleation
schemes.

2. Formulation

In this section, first the CPFEM framework to model plastic de-
formation is presented, along with the constitutive equations. Then the
LS formulation to represent the microstructure and GBM is presented,
and finally the phenomenological model that describes nucleation oc-
currence, is detailed.

The CPFEM is based on the variational solution of the momentum
equilibrium equation by using the weak form of the principle of virtual
work in a finite volume element. In CPFEM, the stress - strain response
of each element is defined by a single crystal model. The specific details
of the FEM method have already been described in the literature, and
will not be presented in this work. The interested reader can refer to
[51–53], here only the single crystal model will be further detailed.

The single crystal model, used in this work, follows an elasto-vis-
coplastic formulation, following the work of Marin [54]. In order to
model large plastic deformation a Lagrangian framework is used, the
nodes positions are updated after each iteration, further details can be
found in [55,56].

The single crystal model formulation follows the multiplicative
decomposition of the deformation gradient tensor F, into an elastic part
Fe and a plastic part Fp. The elastic deformation gradient is further
decomposed into the left elastic stretch tensor Ve and the elastic rotation
tensor Re.

= =F F F V R F .e p e e p (1)

The plastic deformation gradient takes the body from the initial
configuration B0, to the intermediate configuration B , lattice orienta-
tion does not change. The elastic rotation takes the body to an addi-
tional intermediate configuration ∼B , the lattice orientation changes.
Finally the elastic stretch takes the body to the final configuration B.

Considering that the elastic strains are orders of magnitude lower
than the plastic strains, the infinitesimal strain assumption is in-
troduced:

∊∊ ∊∊= + ≪V 1 ‖ ‖ 1,e e e (2)

with ∊∊e the infinitesimal elastic deformation tensor. In this context the
kinematics of the single CP model are defined by the stretch rate tensor
d and the spin rate tensor w , defined as:

∊∊ ∊∊ ∊∊= + − +d Ω Ω ḋ ,e e e e e p (3)

∊∊ ∊∊= − + +skeww Ω w( ̇ ) ,e e e p (4)

with =Ω R Ṙe e e
T denoted as the spin of the lattice, dp the plastic strain

rate and wp the plastic spin rate.
For a tensor A, the skew operation is defined as

= −skew A A A( ) 0.5( )T and the sym operation is defined as
= +sym A A A( ) 0.5( )T .

Considering that crystallographic slip is the main deformation me-
chanism, dp and wp are calculated as the summation of the slip rates γ ̇α,
over all the slip systems α as:
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with n the number of slip systems and ̃Zα the Schmidt tensor aligned to
lattice current orientation defined as:

̃ ̃ ̃= ⊗Z s m ,α α α (7)

with ⊗ denoting the dyadic product, ̃ =s R sα
e

α the rotated vector in the
slip plane direction, and ̃ =m R mα

e
α the rotated vector normal to the

slip plane.
The slip rates magnitude γ ̇α are defined by the flow rule as a

function of the resolved shear stress (RSS) τ α, and the critical resolved
shear stress (CRSS) kα, defined by the hardening law. The flow rule and
hardening rule are presented in the next section. τ α acting on a slip
system is defined as:

̃= ττ sym Z: ( ),α α (8)

with ∊∊= +τ σdet (1 )e the Kirchhoff stress, where σ is the Cauchy stress.
The Kirchhoff stress is defined by the constitutive law as:

C ∊∊̃=τ : ,e (9)

with C ̃ the elasticity tensor, rotated to the lattice current orientation.
The values of C ̃ are material dependent. For 304L stainless steel, iso-
tropic elasticity is considered, so C ̃ can be defined by the young
module E( ) and the Poisson’s ratio ν( ).

2.1. Flow rule and hardening rule

The described framework is compatible with several flow rules and
hardening rules found in literature [38]. The ones used in this work
follows previous characterization performed on the material of interest
304L austenitic steel, which has a face centered cubic (FCC) crystal
structure [10,57].

The flow rule used, is a traditional power law defined as:

= ⎛
⎝

⎞
⎠

γ γ τ
k

sign τ̇ ̇ | | ( ),α α
α

α

m
α

0

1/

(10)

with γ ̇α0 the reference slip rate and m the slip rate sensitivity coefficient
both considered as material parameters. For a non nul scalar b the sign
operation is defined as =sign b b b( ) / . The hardening follows the
Joshie-Laasraoui-Jonas (YLJ) equation [58]. For FCC crystals it remains
to consider only 1 CRSS for all the slip systems [54,10,57], so the CRSS

=k kα is defined as:

= = +k k k ψμb ρ ,α
0 (11)

with =k σ M/0 0 the initial microscopic yield stress of the material, σ0 the

macroscopic yield stress of the material, ψ a material dependent para-
meter, b the burger’s vector magnitude, M the Taylor factor, and ρ the
dislocation density, which evolves following:

∑= ⎛
⎝

− ⎞
⎠ =

ρ K
M

K
M

ρ γ̇ ̇ ,
α

n
α1 2

1 (12)

with K1 and K2 material parameters related to the generation of dis-
locations and the dynamic recovery respectively.

2.2. Grain representation

In this framework a grain is described thanks to a LS function ψ
defined over a domain Ω, as the signed distance to the boundary Γ. The
values of ψ are evaluated at each FE node (P1 interpolation). The
adopted convention considers >ψ 0 inside the grain and <ψ 0 outside
the grain [21,22,59].

= ± ∀ ∈ψ x t d x t x( , ) ( , Γ( )), Ω, (13)

= ∈ =t x ψ xΓ( ) { Ω, ( ) 0}, (14)

with d the minimum euclidean distance from the point x to the interface
Γ. At the start of the simulation, the initial microstructure is generated
by using a Voronoi tessellation or a Laguerre-Voronoi tessellation [60].
The microstructure is immersed in an unstructured FE mesh as LS
functions as shown in Fig. 1.

From the initial microstructure the initial grain properties are
generated. A random orientation is given to each grain, all nodes that
belong to the grain have the same initial orientation. Similarly, an in-
itial dislocation density value constant per grain is assigned to each FE
node.

However since the CP calculations are performed over the elements,
the orientation and dislocations fields defined over the nodes (P1
fields), must be transformed into fields defined over the elements (P0
fields).

For elements with all nodes belonging to the same grain the value
assigned to the element corresponds to the value of the grain. For ele-
ments with nodes belonging to different grains, the orientation value
that represents the minimal rotation with respect to the reference frame
is assigned to the element (this definition constitutes a first approach,
other definitions might be used). For the dislocation density, a weighted
average is performed between the dislocation values of the grains that
the nodes belong to, with the weights being the volume of the element
belonging to each grain.

2.3. Grain boundary migration (GBM)

As mentioned in the introduction, at high temperature the grains
boundaries will evolve due to capillarity effects and energy gradients
across grain boundaries. In the LS framework used in this work the

Fig. 1. Max value of LS functions (left side) and initial dislocation density constant per grain (right side) in an unstructured finite element mesh representing 3D
microstructure generated using Voronoi tessellation. Contours show the 0 isovalues of the level set functions, i.e. the grain boundary network.
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kinematics of the grain boundary are calculated by solving a transport
equation using FEM, for a given velocity field v :

⎜ ⎟
∂

∂
+ ∇ ⎛

⎝
⎞
⎠

=
ψ x t

t
ψ x tv

( , )
· , 0,

(15)

with ∇ the gradient operator. The velocity field is calculated by con-
sidering capillarity effects (vc) and energy gradients effects (ve) defined
as:

= +v v v ,c e (16)

= − ▵ ∇M γ ψ ψv ,b bc (17)

= ∇M E ψv [ ] ,be 0 (18)

= ⎛
⎝

− ⎞
⎠

M M Q
RT

exp ,b
m

0 (19)

with Mb the grain boundary mobility calculated according to an
Arrhenius law, M0 the mobility pre-exponential factor (material de-
pendent), Qm the activation energy for grain boundary migration (ma-
terial dependent), R the universal gas constant, T the absolute tem-
perature ▵K ψ( ), the laplacian of ψ equivalent to the trace of the
curvature tensor, γb the grain boundary energy which is considered
homogeneous in this numerical framework (material dependent), and

E[ ]0 the jump of the stored energy due to dislocations accumulation
across the grain boundary.

The stored energy is calculated as:

=E d ρ* ,v e (20)

with de being the dislocation line energy defined as a material depen-
dent property.

This calculation framework has already been validated and opti-
mized, with coloring techniques that include more than one grain per
level set function, reducing the computational cost of the calculation.
Further details can be found in [21,22,25,59].

To calculate the energy field used in the velocity calculation, first
the P0 dislocation density field resulting from the CP calculation is
transformed into a P1 field. This dislocation density field is an het-
erogeneous field, even inside the grains. This would result in a highly
heterogeneous velocity field.

In other to correctly solve the transport equation with a highly
heterogeneous velocity field, a very refined mesh can be used, but it
increases dramatically the computational cost of the whole simulation
[61]. To reduce the computational cost the dislocation density field is
averaged per grain in order to calculate the transport velocity as shown
in Fig. 2.

GBM is driven by a reduction of the stored energy, which implies a
decrease of the dislocation density field inside the grains. Swept areas
are assigned a minimal or annealed dislocation density ρ0 which is
material dependent. To take into account this effect into the CP cal-
culation, the P0 dislocation density field must be updated. This is done
in the finite elements by considering:

= − +−ρ ρ f ρ f(1 ) ( ),e e t dt swept swept0 (21)

with ρe the dislocation density in the element after the GBM, −ρe t dt the
dislocation density in the element before GBM, and fswept the swept
volume fraction of the element.

2.4. Nucleation

Nucleation is modeled by coupling phenomenological laws with the
LS framework, this approach has been previously used in the literature
to model both dynamic and static recrystallization [10,25,59]. It is
further adapted here to be usable in a CP framework.

Since the nucleated grains have a low dislocation density, they are
introduced in the model with a ρ0 dislocation density value. The dif-
ferent considerations for nucleation are described next:

2.4.1. Critical dislocation density
The critical dislocation density ρcr , defines when and where nu-

cleation can occur, is calculated in a iterative way, following Eq. (22).

=
⎡

⎣

⎢
⎢
⎢

− ∊

−

⎤

⎦

⎥
⎥
⎥( )

ρ
γ

ln

2 ̇

1
,cr

b
K

M d

K
K ρ

1/2

b e

cr

2
2

2
1 (22)

Eq. 22 is derived from the critical dislocation density equation in-
troduced by Roberts and Ahlblom [62], where some of the parameters
were renamed in order to ensure compatibility with the current nu-
merical framework.

2.4.2. Nucleus size
A nucleus radius ∗r is calculated according to the Bailey-Hirsch

criterion defined by Eq. (23). This criteria approximates the condition
that the stored energy is high enough to overcome the capillarity
pressure, and that the nucleus will not disappear.

This criteria is based on the assumption of perfect spherical grains.
It requires a mesh size small enough to correctly describe the nuclei
topology. Therefore a numerical safety factor ω is introduced, to com-
pensate for errors in the description of the nucleus topology:

=∗r ω
γ

ρ d
2 b

cr e (23)

2.4.3. Nucleus location
Classical nucleation models use the following criteria to define nu-

cleation sites: first, nucleus can only appear in positions with an
average dislocation density higher than the previously defined critical
dislocation density. This, combined with the nucleus size defined by Eq.
23 ensures that the nucleus will growth. Second, it is initially assumed
that nucleus can only appear near the grain boundaries, this is done by
defining a distance d from the grain boundary which is equal to the
nucleus diameter ∗r2 . The appearance of nucleus near the boundaries

Fig. 2. P0 dislocation density field from CP calculation (left side) and its corresponding averaged per grain P1 dislocation density field for the calculation GBM
velocity (right side).
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ensures the presence of misorientation, and is in accordance to necklace
nucleation assumption. However different criteria considering disloca-
tion density gradients, misorientation, and misorientation gradients can
also be defined. In Section 4.5 different criteria and their impact on the
simulation results are analyzed.

2.4.4. Nucleation rate
The number of nuclei that are going to be introduced is represented

as a volume of nuclei per unit of time dV dt/ , calculated with a variation
of the proportional model of Peczak and Luton [63]:

=dV k ϕdt,g (24)

with kg a probability coefficient that depends of the strain rate and
temperature, and ϕ the total area or volume of the elements with dis-
location density higher than the critical value, depending on the type of
nucleation considered (necklace or bulk).

2.4.5. Post-nucleation treatment
After a nucleus is introduced, the P0 dislocation density and or-

ientation fields must be updated in order to reflect the nucleation effect
in the CP calculations. It is done in the following way: for the dis-
location density field, as mentioned before, the nucleated grains will
have a dislocation density equal to the minimal dislocation density ρ0.
The update procedure for the elements in which a nucleus appears
follows the one used for the GBM. The new dislocation field is calcu-
lated as:

= − +−ρ ρ f ρ f(1 ) ( ),e e t dt nuc nuc0 (25)

with fnuc the volume fraction of the element occupied by the nu-
cleus.

For the orientation field, the nucleus orientation will be the or-
ientation of the parent grain (grain in which the center of the nucleus is
located) plus a random misorientation of minimum 15 degrees. This
criteria is defined as a first approach, but further analyses with ex-
perimental data must be performed as there is no universal choice for
the nucleus orientation definition. For the elements orientation field,
only the elements with all their nodes inside the nucleus are affected.
The same orientation is assigned to all the elements.

The difference in the selection of affected elements, causes that
some elements near the nuclei boundaries will only have their dis-
location density field updated. However the orientations field can not
be treated in the same way as the dislocation density field.

Fig. 3 illustrates an example of the update of the dislocation density
field after nucleation.

Updating the dislocation density fields and orientation fields, cre-
ates additional localized gradients and breaks the equilibrium state of
the CPFEM calculation. This can affect the convergence of the next
CPFEM calculation step. The strategy used in order to ensure the con-
vergence of the CPFEM calculation will be presented in Section 4.

3. Model coupling

The coupling of the models requires several considerations in order
to reach an optimal solution in terms of numerical cost, convergence
and accuracy:

• The CPFEM calculation requires a smaller time step for its resolution
than the GBM calculation.

• In order to ensure convergence and minimize the computational cost
of the CPFEM calculation, the time step needs to be updated during
the simulation. This is further detailed in Section 4.

• The elements quality deteriorates with each iteration as the nodes
positions are updated after each CPFEM iteration. Therefore re-
meshing operations must be performed periodically to preserve a
good mesh quality.

• GBM calculations require several operations making them more
computational costly than CPFEM calculations.

• Use of very small time steps in the GBM calculations can lead to
numerical errors. This is further detailed in Section 4.

• The insertion of nuclei requires that the mesh size is small enough to
correctly describe the nuclei topology. Since nuclei have a smaller
size than the rest of the original microstructure, the mesh must be
refined before the nuclei insertion.

• As the dislocation density increases with plastic deformation, the
nucleus size defined by Eq. 23 decreases. Therefore the mesh size
must be refined during deformation.

• Remeshing operations in 3D have a very high computational cost.

• The time step required for nuclei to be inserted at each iteration is
higher than the time required for CPFEM calculations.

Taking the previous consideration into account. The implemented
coupling algorithm utilizes two different time steps, one for the CPFEM
iterations and one for the GBM iterations. Additionally the remeshing
and nucleation operations are only performed when the GBM iteration
is performed.

For a clearer description the coupling algorithm is summarized in
Fig. 4.

3.1. Reference simulation

The presented coupling algorithm allows to perform full field 3D
simulations of dynamic recrystallization. The simulations provide in-
formations of the average state of the microstructure and also describe
the local evolution of the microstructure, including interactions be-
tween neighbouring grains.

Fig. 5 illustrates a compressive test case of a domain composed of
400 initial grains. The simulation was ran on 4 processors of 24 cores
each. The simulation time is shown to illustrate how the computational
cost is the main limitation of the presented numerical framework. Also

Fig. 3. 2D view of the elements affected by the introduction of a nucleus: dislocation density field.
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see Animation 1.
The evolution of the microstructure is described in terms of: re-

crystallized fraction X (Eq. 26), volume-weighted mean grain size R
(Eq. 27), volume-weighted recrystallized mean grain size RX Eq. 28 and
the number of grains:

∑
= =X

Sr

S
,i

n

i

T

1

Rx

(26)

with nRx the number of recrystallized grains, Si the volume of the cor-
responding grain and ST the total volume of the domain.

∑
= =R

r S

S
,i

n

i i

T

1

(27)

with n the total number of grains and ri the equivalent spherical radius
of each grain.

∑
= =R

r S

S
,X

i

n

i i

X

1

Rx

(28)

with SX the total recrystallized volume.

4. Sensitivity analysis and model results

A sensitivity analysis of the numerical parameters of the model in
order to ensure the convergence of the results and minimize the com-
putational cost of the simulations was performed. For this purpose,
several simulations were performed by changing different numerical
parameters according to the studied cases.

The boundary conditions imposed for the simulations represent a
channel die compression at a constant strain rate of −s0.01( )1 . Fig. 6
shows the schematic of the boundary conditions, the imposed velocity
is calculated for the shown faces as the points coordinates multiplied by

the strain rate. The remaining Faces are forced to remain flat by im-
posing a velocity equal to 0 in the direction normal to the face.

The material parameters for the simulations were obtained from
[10]. The grains orientation follows a random distribution for all the
test cases. The sensitivity analysis were performed for the different
models separately and the coupled model. The analysis were performed
in terms of average polycrystal response.

The meshing and remeshing schemes create an isotropic mesh with
uniform size. The mesh size is calculated as a function of the nucleus
size. As dislocation density increases (due to strain increase) the nuclei
size is reduced, causing the mesh to be refined as shown in Fig. 7.

4.1. CPFEM

4.1.1. CPFEM model validation
The CPFEM model can be studied both in terms of full FE calcula-

tions and also as material point (MP) calculations by considering only
the single crystal model. The CPFEM model developed for this work was
validated both with material point (Taylor model) simulations and FE
simulations.

For the MP simulations, the cases presented by Marin [54] were
reproduced. The simulations consist of the deformation of an aggregate
of 256 FCC crystals subjected to plane strain compression and to simple
shear. The results are presented in terms of macroscopic stress response
and 111 pole figures before deformation and after deformation. Fig. 8
shows the results for both cases.

The results are consistent with the results presented by Marin [54].
The results show that the implemented CP model correctly predicts
stress-strain response and texture evolution.

For the FE simulation, the deformation of 304L steel presented by
Fabiano et al. [64] was reproduced. The simulations consist of a
channel die compression of a 0.5-mm cube composed of 100 grains. The
results are presented in terms of average stress response and average
dislocation density. Fig. 9 shows the simulation results.

The results are consistent with the experimental measurements and

Fig. 4. Coupling algorithm between the CPFEM and the dynamic recrystallization model.
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the simulation results presented by Fabiano et al. [64]. These results
show that the CPFEM model correctly predicts the experimental
average stress–strain response, and that the dislocation density

evolution agrees with literature simulations results, in terms of average
response and local distribution.

Fig. 5. Example simulation of compression of a domain composed of 400 initial grains.

Fig. 6. Schematic of the imposed boundary condi-
tions.
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4.1.2. CPFEM mesh size
For the CPFEM calculations, the number of elements required to

ensure convergence towards the solution was studied. The analysis was
performed in terms of number of elements per grain, calculated as the
average equivalent grain diameter divided by the average mesh size.

For this analysis, CPFEM simulations on a domain composed of 200
grains, with a mean grain size of 0.05 mm, with different mesh sizes
were performed. The simulations were performed up to a deformation
of 25% without remeshing operations. The mesh size range considered
was from 4.0 up to 8.0 elements per grain. The lower value of 4.0 ele-
ments per grain corresponds to the minimum value defined by Maire
et al. [25], as the number of elements required to ensure a correct re-
presentation of the nuclei topology. The results in terms of average
response are presented in Fig. 10.

The results showed that 4 elements per grain radius ensure a good
average response in terms of convergence for the CPFEM simulations.

To check the convergence in terms of local evolution, simulations of
the deformation of a polycrystal with different mesh sizes were com-
pared. To perform the comparison, the same sites were used in the
Voronoi tessellation algorithm used to generate the microstructures,
and the same initial orientations and dislocation density were assigned
to each grain. The local dislocation density distribution weighted by the
volume of the elements at different deformation levels, for the

considered mesh sizes, are shown in Fig. 11. The L2 difference con-
cerning the means (calculated by interpolating results of each simula-
tion to a common mesh, Eq. (29)) with respect to the case with the
smaller mesh size were also calculated and are shown in Fig. 12.
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with N the number of elements, vi the variable value in the element i
and ′vi the reference variable value in the element i.

The results show moderate differences at the local level for the
different mesh sizes. Bigger mesh sizes give a more stiff response of the
polycrystal. With the increase in deformation, more elements reach the
maximum dislocation density, behaviour determined by the used
hardening law. This reduces the heterogeneity in the field and causes a
reduction in the differences between the different mesh sizes. Since the
reduction in the mesh size causes a significant increase in the compu-
tational cost, the choice in the mesh size will finally be a compromise
between the required accuracy and the available computational re-
sources. Here, the value of four elements per grain radius will be used
as the minimal value for the CPFEM simulations in which the average
response is analyzed. For the DRX simulations, the mesh size required
for the grain boundary migration calculation, the mesh size required for

Fig. 7. 2D-cut view of the mesh before and after a channel die deformation simulation.

Fig. 8. MP simulations of the deformation of an aggregate of 256 FCC crystals subjected to plane strain compression (top side) and to simple shear (bottom side).
Macroscopic stress response (left side) and 111 pole figures before deformation (center) and after deformation (right side). The data from Marin [54] was obtained
by digitalizing the published data.
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a correct representation of the nuclei and the domain size i.e. the
number of grains, also need to be considered. This is presented in the
following sections.

4.1.3. Number of grains
The number of grains in the domain required to obtain convergence

in the response was analyzed. For this, simulations were performed for
different domain sizes i.e. different number of grains, with a mean grain
size of 0.05 mm. Fig. 13 shows the responses in terms of stress and
dislocation density.

The results showed that 50 grains ensure convergence in the poly-
crystal response. Lower number of grains causes that the average
polycrystal response depends on the orientations assigned to the initial
microstructure.

4.1.4. Deformation step
The final parameter studied was the deformation step (time step).

Since CP is a highly non-linear problem, choosing an adequate de-
formation step is very important to ensure the convergence of the
computation.

However the non-linearity of the problem changes as the material
evolves. Being the elasto-plastic transition (initial part of the stress-
strain curve) the more complex to resolve, followed by the plastic-
hardening part (the material hardens as it is deformed), and finally the
saturation part (material no longer hardens) being the less complex to
resolve.

Additionally when coupled with the GBM migration and nucleation
models, the movement of the grains boundaries and the appearance of
new grains introduce localized gradients, that make the following

Fig. 9. Channel die compression, in terms of average stress and average dislocation density, of a 304L polycrystal (0.5-mm cube composed of 100 grains). The
experimental data from Fabiano et al. [64] was obtained by digitalizing the published data.

Fig. 10. Stress vs strain curve (left side) and dislocation density vs strain curve (right side) for CPFEM simulations for different number of elements per grain. For a
domain of 200 grains, with a mean grain size of 0.05 mm.
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calculation more complex to resolve.
Because of the previous considerations, a very small deformation

step is required in order to ensure converge during all the steps of the
simulation. However keeping a very small deformation step during all
simulation increases drastically the total computational time.

The best alternative in order to ensure convergence and minimize
the computational cost, is to dynamically calculate the deformation step
during the deformation. The criteria used to calculate the optimal de-
formation step, is based on the number of iterations required by the
non-linear FE solver, to reach convergence at each time step.

An optimal interval for the number of iterations, in terms of com-
putational cost, was identified. If the number of iterations is larger than
the maximal set value, the time step is reduced by half for the next
iteration. If convergence is not reached the time step is reduced by half
and the calculation is performed again. if the number of iterations is
lower than the minimal set value, the time step is multiplied by a factor
of 1.5.

Fig. 14 shows the stress vs strain curve and the deformation step vs
strain curve, for a CPFEM simulation. This result illustrates that the
optimal deformation step varies between 0.1% and 1%, and the optimal
deformation time step changes according to the material evolution.

4.2. GBM

In the previous section, the numerical parameters for the CPFEM
calculation were analyzed. Since the GBM requires the FE solution of a
different equation, the numerical parameters for the GBM calculation
must also be analyzed. The parameters analyzed were the time step and
the mesh size relative to the grain size. Simulations of the GBM of a
single spherical grain, immersed in an homogeneous matrix were per-
formed. The grain dislocation density was initialized to ρ0 and the
matrix was initialized to the maximum dislocation density defined by
K K1/ 2. Additionally the grain dislocation density was updated fol-
lowing the YLJ hardening equation for a constant macroscopic strain

Fig. 11. Comparison of the local dislocation density distribution in volume for the simulations of an identical polycrystal with different mesh sizes, for different
deformation levels (∊ = 0.10 top, ∊ = 0.15 middle, ∊ = 0.20 bottom).
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rate of −0.01(s )1 .
The results were compared with the analytical solution available in

[25]. Fig. 15 shows the error of the simulated GBM in terms of calcu-
lated grain size for different mesh sizes and time steps, with respect to
the analytical solution for the grain size. The mesh sizes analyzed were
defined by considering the minimal number of elements required to
correctly describe a spherical grain topology according to [25], and the
computational cost related to reducing the mesh size.

The results show that the error is reduced with the decrease in the
mesh size. With 8 elements per grain radius, errors lower than 5% are
obtained, which is an adequate value for the calculation, considering
the increase in computational cost with smaller mesh sizes.

To analyze the error related to the time step, it is necessary to
consider that the total error in the calculation has multiple sources. Part
of the error comes from the temporal discretization and part comes
from the resolution methodology. The error related to the discretization
can be reduced by refining the time step. The error related to the nu-
merical methodology comes from the numerical operations performed.

The solution of the GBM with the current LS-FE framework requires
the performance of several complementary numerical operations (re-
moval of vacuum regions, transport of and reinitialization of the LS
function). Each numerical operation introduces errors that accumulate
over several iterations. The magnitudes of the introduced numerical
errors are related to interpolation of the zero iso-values of the LS that
defines the GB network. More details on these errors are precisely de-
scribed and discussed in [65].

One alternative to reduce this errors is to use fitted meshes with
nodes located along the zero iso-values of the LS functions. This alter-
native requires constant remeshing operations that in 3D have currently

a prohibitive computational cost. It is not a viable option in this work.
Another alternative is the homogeneous reduction of the mesh size

to improve the interpolation of the zero iso-values of the LS functions.
However this strategy also implies a significant increase of the com-
putational cost.

Finally the alternative used in this work is to minimize the number
of operations performed, and to ensure that the magnitude of the cal-
culated displacement of the grain boundaries is significantly higher
than the introduced numerical errors. This is done by defining an
adequate time step for the GBM calculations.

The optimal time step is defined as a compromise that seeks to
minimize the errors introduced by the discretization and does not in-
troduce significant error due to the numerical operations.

The results show very similar behavior for the time steps values of
5(s) and 10(s) but higher errors for smaller time steps. For this work the
range between 5(s) and 10(s) was chosen for the GBM calculation time
step, which was translated in terms of deformation step.

4.3. Coupled model

Simulations were run to check the number of initial grains required
to correctly describe the general behavior of the polycrystal. The results
were analyzed in terms of X and R . Simulations of the coupled model
with different domains sizes, ranging from 20 to 200 initial grains, were
run. The results are shown in Fig. 16.

The results show that the minimal number of grains required to
ensure convergence in the simulation results in terms of both X and R is
150 grains. Simulations with lower number of grains, 50 and 100, are
able to reproduce the same trend, but the results do not show a smooth
behaviour. Simulations with lower number of initial grains, 25 grains,
show divergence in the results at higher strain levels in terms of X, and
more discontinuous behaviour in terms of R .

4.4. Nucleation

Since the safety factor w is a purely numerical parameter, it was
necessary to analyze its effect on the model results. Simulations with
the complete coupled model for a small domain, 10 grains, were per-
formed for different values of w. The grains dislocation density was
initialized to a value close to ρcr in order to accelerate the appearance of
nuclei. A small domain was chosen in order to illustrate more clearly
the effect of the nucleated grains in the general behaviour of the mi-
crostructure. Fig. 17 illustrates the evolution of the nucleated grains.

The results are presented in Fig. 18 in terms of R and RX . The results
show that the value of w has significant effects on the simulation results
and leads to overestimations of R and RX . However, as w modifies the
nucleus size, which is used to calculate the mesh size, it also has a very
important effect on computational cost of the simulation.

The results also show that if the mesh is sufficient small to correctly
describe the nuclei topology, it is not necessary to play with the

Fig. 12. L2 differences concerning the mean of the local dislocation density for
the simulations of an identical polycrystal with different mesh sizes, calculated
with respect to the case with the smaller mesh size, for different deformation
levels.

Fig. 13. Stress vs strain (left side) and dislocation density vs strain (right side) response for simulations with different initial number of grains.
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parameter w. So the inclusion of the parameter w in simulations con-
stitutes a choice related to the available computational resources and
the required accuracy of the results but must be used carefully.

4.5. Nucleus position

The criteria used to define the nuclei position, which restricts nuclei
appearance only near the grain boundaries, is valid for necklace type
nucleation but does not correctly describe other nucleation types.
Additional information provided by the CP model can be used to define
different criteria for the nuclei position.

To define additional criteria for the nuclei position and test their
influence on the simulation results, several simulations were run, each
considering different parameters to define the nuclei position. The
different criteria are based on the ρ field, orientations are not

considered here.
All the criteria tested consider that the dislocation density must

reach ρcr for appearance of a nucleus, to ensure that it will growth. In
addition, the following criteria were used: (i) nuclei can only appear
near the grain boundaries (necklace nucleation considered as a re-
ference simulation); (ii) nuclei can appear anywhere on the domain;
(iii) nuclei appear on sites with the highest values of ρ in the domain
and (iv) nuclei appear on sites with the highest ρ gradient values. The
third and fourth strategies use the ρ field without averaging it over
grains.

The simulations considered a domain of 150 initial grains up to
∊ = 1.0. The results are shown in: Fig. 19 in terms of X R, ‾ and RX and in
Fig. 20 in terms of number of neighbours and recrystallized grains
number of neighbours. Additionally Fig. 21 shows the nucleated grains
positions at the end of the simulation.

Fig. 14. Stress vs strain curve (left side) and deformation step vs strain curve (right side) for CP simulation of 304L steel at a constant strain rate of −s0.01 1.

Fig. 15. Errors of the simulated GBM in terms of mean grain size for different mesh sizes (left side) and time steps (right side), compared against analytical solution.
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The results show that all cases exhibit very similar behaviour in
terms of X R, ‾ and number of neighbours. However different behaviours
can be seen in terms of RX and recrystallized grains number of neigh-
bours. For deformations lower than 0.6, the number of nucleus in-
troduced is relatively small, causing more rapid changes in the results.

For the second criterion, when the deformation is lower than 0.6 the
recrystallized grains growth more than in all other criteria, since nuclei
can appear in the interior of grains, their growth is not limited by others
grains, that might have lower energy. With the deformation increasing,
most of the grains in the domain reach ρcr , the behaviour becomes
equivalent to that of the reference case. In terms of number of neigh-
bours, since the nuclei have more locations to appear, less clusters form,

so the nuclei have a lower number of neighbours.
For the third criterion, the nuclei show lower sizes during all the

simulation. Local max ρ values appear first near multiple grain junc-
tions and near the domain boundaries, since the highest deformation
incompatibilities are located in these positions. This causes that nuclei
tend be near grains with lower ρ values than the grain they appear on,
which slows down their growth. In terms of neighbours, they show
lowest number of neighbours of all criteria during all the simulation. At
high deformation, when most of the domain has reached the max ρ
value, less localized max values are found so the behaviour becomes
similar to the second criterion.

The fourth criterion shows the highest clustering of nuclei, with the

Fig. 16. Results of simulations of dynamic recrystallization with different domains sizes, ranging from 20 to 200 initial grains. Top figures illustrate the 20 and 100
grains cases. Evolutions of X (bottom left side) and R (bottom right sight) are summarized for the different number of grains.

Fig. 17. 2D view of the evolution of nucleated grains during a DRX simulation of a small domain composed of 10 initial grains.
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highest number of neighbours during all the simulation. This has the
effect that clustered nucleus limit each other growth. This behaviour is
the result of the reinitialization of ρ to ρ0 when a nucleus is introduced,
which creates very high gradients of ρ.

The overall test showed that the general microstructural behaviour
remains globally the same for all criteria. So, in theory, each of them
could be used to simulate the behaviour of the polycrystal. It is then
necessary to compare the simulations results with experimental data in
order to define which criteria fits better the physical phenomena.
Additionally the criteria can be modified by defining limit values in-
stead of just max values. This constitutes prospects for this work.

5. Conclusions

In the present work, a CPFEM model was coupled with a LS-FE
formulation for GBM and phenomenological laws, in order to perform
3D full field simulations of dynamic recrystallization up to high de-
formation in metals. The inclusion of the CPFEM model allows a much
better representation of the plastic deformation phenomena than pre-
vious phenomenological approaches [25].

The inclusion of CPFEM model, not only represents a better de-
scription of the plastic deformation phenomena, but also since during
dynamic recrystallization several processes interact with each other, it

Fig. 18. Results of simulations with different w values for a 10-grains microstructure initialized with a dislocation density value close to ρcr .

Fig. 19. Results of simulations with different criteria for nuclei position, in terms of X R, ‾ and RX .
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provides more accurate input information for the additional models.
The coupled model is able to account for the major physical phe-

nomena happening during dynamic recrystallization and constitutes an
interesting numerical framework to perform further improvements.

The results of the implemented CP were compared with results of
models and experimental measurements from the literature [54,64].
The model results showed very good agreement with the models from
the literature and with pre-existing experimental measurements.

A coupling algorithm was developed, that minimizes the computa-
tional cost, which is one of the main limitations of the CP model, while
ensuring the accuracy and correct behavior of all the models.

The models numerical parameters were analyzed, keeping into ac-
count the interactions of the different models. Values that ensure con-
vergence of the results and minimize the computational cost were
found.

The additional information provided by the crystal plasticity model
was also used to define different criteria for the position of nucleus, and
the effect on the simulations results were compared for an austenitic
stainless steel.

The next step of this work will be the validation of the model results
thanks to detailed experimental data.
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Fig. 20. Results of simulations with different criteria for nuclei position, in terms of grains number of neighbours and recrystallized grains number of neighbours.

Fig. 21. Recrystallized grains of simulations with different criteria for nucleus position. From top to bottom and left to right: (i) to (iv) criterion. Red color
corresponds to the recrystallized grains.
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