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Abstract.

A new method for the simulation of evolving multi-domains problems has been

introduced in previous works (RealIMotion), Florez et al. (2020) and further developed

in parallel in the context of isotropic Grain Growth (GG) with no consideration for

the effects of the Stored Energy (SE) due to dislocations. The methodology consists in

a new front-tracking approach where one of the originality is that not only interfaces

between grains are discretized but their bulks are also meshed and topological changes

of the domains are driven by selective local remeshing operations performed on the

Finite Element (FE) mesh. In this article, further developments and studies of the

model will be presented, mainly on the development of a model taking into account

grain boundary migration by (GBM) SE. Further developments for the nucleation of

new grains will be presented, allowing to model Dynamic Recrystallization (DRX)

and Post-Dynamic Recrystallization (PDRX) phenomena. The accuracy and the

performance of the numerical algorithms have been proven to be very promising in

Florez et al. (2020). Here the results for multiple test cases will be given in order to

validate the accuracy of the model taking into account GG and SE. The computational

performance will be evaluated for the DRX and PDRX mechanisms and compared to

a classical FE framework using a Level-Set (LS) formulation.

Submitted to: Modelling Simul. Mater. Sci. Eng.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 2

1. Introduction

The modeling, at the mesoscopic scale, of Grain Growth (GG) and recrystallization

(ReX) in polycrystalline materials during thermal and mechanical treatments has been

the focus of numerous studies in the last decades. Indeed, mechanical and functional

properties of metals are strongly related to their microstructures which are themselves

inherited from thermal and mechanical processing.

When looking to the so-called full-field (FF) methods, based on a full description

of the microstructure topology and modeling of grain boundary migration (GBM) at

mesoscopic scale, main numerical frameworks involve: Monte Carlo (MC) [1, 2], Cellular

Automata (CA) [3, 4, 5, 6], Multi Phase-Field (MPF) [7, 8, 9, 10], Vertex/Front-Tracking

[11, 12, 13, 14, 15] or Level-Set (LS) [16, 17, 18, 19] models. These numerical methods

are developed by many researchers [20]. All the mentioned methods have, of course,

their own strengths and weaknesses [20, 21].

When large deformation have to be considered (common in metal forming con-

text), LS or MPF approaches in context of unstructured Finite Element (FE) mesh and

FE remeshing strategies, remain the main powerful and generic approaches but with a

strong limitation in terms of computational cost.

In this context vertex and front tracking approaches appear as interesting candi-

dates. An explicit description of the interfaces is considered and GBM is imposed at

each increment by computing the velocity of the nodes describing the interfaces. While

having a deterministic resolution (solving of partial differential equation - PDE), this

methodology is very efficient. However, the implementation of algorithms allowing topo-

logical event in this context is not straightforward and the fact that these methods do

not describe the bulk of the grains could be limiting for some metallurgical mechanisms,

such as the appearance of new grains (nucleation is in general only taken into account

exclusively at the vicinity of multiple junctions) or substructures inside the grains.

Previous works [22, 23] have been dedicated to the creation of an improved

front-tracking method solving these weaknesses. The model denominated TOpological

REmeshing in lAgrangian framework for Large interface MOTION (ToRealMotion,

hereafter TRM) maintains the interior of grains meshed, handling with relative ease

the topological changes of the grain boundary network and allowing the treatment of

in-grain operations and at a higher computational performance than classical FE-LS

models for the same accuracy. The objective of the present article is then to extend and

apply the TRM model to handle DRX and PDRX phenomena, namely, reproducing

previous methodologies for the modeling of these mechanisms, published in a FE-LS

context [36].
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 3

2. The TRM model : Isotropic Grain Growth context

The TRM model has been presented in a previous work in [22], then adapted to a parallel

computational environment in [23]. This model uses the logic behind front-tracking

methods where the discretization of interfaces is the minimal topological information

allowing to model 2D-GBM. The TRM model goes a step further by implementing also a

discretization of the interior of the grains in the form of simplexes to allow the interaction

of the grain boundaries with the bulk of the grains and preventing inconsistencies of

the physical domain such as the overlapping of regions. The data structure of the

TRM model is then built on top of a mesh with elements and nodes, enabling also the

possibility to compute FE problems on it (see section 2.1 of [22] for more information

regarding the data structure of the TRM model).

This data structure contains the pieces of information needed to describe discrete

geometrical entities such as Points, Lines and Surfaces. The classification of these

entities is helpful when computing geometric properties: the area of surfaces can be

computed by adding the contribution of each element of the grain, while the curvature

κ and normal ~n of interfaces can be obtained by approximating the interface with a high

order mathematical form (higher than the linear discretization of the domain) such as

a least square approximation or with piece-wise polynomials such as natural parametric

splines. We have opted to use the latter in order to obtain such geometrical quantities.

The TRM model allows physical mechanisms to be simulated. These physical mech-

anisms represent how the different geometries are supposed to evolve and interact based

on their current state. The TRM model has been developed to move the different nodes

of the mesh based on a user-defined velocity field ~v and a time step dt. Once a velocity

is defined a new position for each node Ni on the mesh can be obtained:

~ut+dti = ~ui + ~vi · dt, (1)

where ~ui is the current position of the node Ni and ~ut+dti is the position of node Ni

in the next increment.

Here, each node displacement can potentially produce an overlap ‡ of some of the

elements attached to the node. The TRM model hence ensures the local conformity

of the mesh employing a “locally-iteratively movement-halving”, that finds iteratively

the approximated maximal displacement that a node can make in the direction of the

velocity vi before an overlap takes place. This procedure ensures at all times that both,

the mesh and the microstructural domain are valid.

Once several steps of Lagrangian movement are performed, it is highly probable

that the quality of the mesh become too poor to continue with the GBM, this is why

‡ An overlap in a mesh is produced when an element is partially or completely superposed by another

element hence disrupting the 1:1 mapping of the numerical domain to the physical domain, such a mesh

can not be used in a Finite Element resolution.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 4

the TRM model implements a particular remeshing procedure strongly influenced by

the works in [28, 29], that improves the mesh quality and allows topological events

such as grain disappearance or the decomposition of unstable multiple junctions. Of

course, remeshing is a very costly procedure in a numerical environment, however, in

our context, given the lower mesh density needed to define the interfaces in a proper way

comparatively to some front-capturing methods such as the LS-FE model, one should

expect a considerably improvement in the computational performance regarding the

remeshing procedure, and in general a considerable reduction of the CPU-time needed

by the numerical model when compared to the LS-FE approach, see [22] for more infor-

mation regarding the remeshing procedure of the TRM model.

The TRM model can be extended to model GBM when Stored Energy (SE) and

capillarity act simultaneously as driving pressures, for which the velocity ~v describing

these mechanisms has to be derived. Similarly, ReX can be simulated through the

appearance of new grain boundaries (those delimiting new grains during nucleation), for

which a remeshing strategy can be established. The following sections are devoted to the

implementation of i. a new velocity term ~v taking into account SE into the dynamics of

grain boundaries, along with some necessary changes concerning topological operations

that may occur during the modeling of this mechanism (section 3) and ii. a remeshing

procedure to include new domains (grains) in the microstructure and the laws governing

their apparition as a function of the TMT followed by the material (section 4), where

the methodologies proposed in [36] regarding this aspect were used.

3. Grain boundary migration under capillarity and SE driving pressures

The simulation of microstructural evolutions are given by the addition of complex and

different phenomena as GG [17, 18, 32, 19, 33], ReX [17, 34, 35, 26, 27, 36, 37] or Zener

Pinning (ZP) [38, 39, 40, 41, 42]. In [22], GBM with no influence of SE was used to

compare the TRM model to other approaches (LS-FE [35, 18, 19]), the base model

used to represent this phenomenon is commonly known as migration by curvature flow.

The velocity ~v at every point on the interfaces can be approximated by the following

equation:

~vc = −Mγκ~n, (2)

where M is the mobility of the interface, γ the grain boundary energy, κ the local

magnitude of the curvature in 2D and ~n the unit normal to the grain interface pointing

to its convex direction. In an isotropic context as considered here, the terms M and γ

are supposed as invariant in space.

Of course when post-dynamic phenomena such as Static ReX (SRX) or Meta-

Dynamic ReX (MDRX) are considered, the SE will act as another driving pressure of

the GBM. Note that the SE within a grain can be variant, as there could be regions
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 5

on the grain that have accumulated more or fewer dislocations during the considered

thermomechanical treatment (TMT).

At the mesoscopic scale, the SE can be discussed following different hypotheses.

Crystal plasticity calculations and EBSD experimental data can bring dislocation den-

sity field and so SE field with fine precision until intragranular heterogeneities. While

this information is directly usable in pixel/voxel based stochastic approaches such as

MC or CA methodologies, generally it is homogenized by considering constant value per

grain in deterministic front-capturing (MPF, LS) and front-tracking approaches. If this

choice seems quite natural for phenomena where SE gradients and nucleation of new

grains are mainly focused on GB like for discontinuous DRX (DDRX), it could be a

strong assumption for phenomena where the substructure evolution is important. This

aspect was for example studied in [43] in the context of SRX with a FE-LS numerical

framework. It was concluded that intragranular gradients on the SE could indeed have

a big impact on the grain morphology and that simulations taking into account such

variations were more in accordance with experimental observations than simulations

using a constant value of SE, but with an important numerical cost as the FE mesh

must be then adapted at the intragranular heterogeneities scale. In the following, a con-

stant homogenized energy per grain is assumed in a DDRX environment. Nonetheless,

the approach presented in this article to model GG with a SE field can be used in the

context of a heterogeneous intragranular energy field, this aspect will be investigated

in a forthcoming publication and constitutes one of the main originalities of the TRM

model, when compared for instance to front-tracking models (like vertex ones) that can

not use heterogeneous intragranular field values.

Thus, here SE can act on the displacement of the interface by considering the

difference of SE at both sides of the interface. We will adopt a slightly modified

methodology to the one presented in [34] to quantify it:

~ve = −Mδ(ε̇)[E]ij~n, (3)

where the term [E]ij defines the difference of SE E between the grains i and j

(Ei − Ej), the term δ(ε̇) is a mobility coupling factor whose nature is explained in [36]

appendix c§ and where the direction of the unit normal ~n sets, for a given node of

the interface, the order of the indices as: first the index i and then j. Note that this

definition holds even if the direction of ~n is ambiguous (in the case of a flat interface

with no convex side) as the direction of the velocity ~ve will be then pointed, in all cases,

from the lower to the higher value of SE no matter what the direction of ~n is. Moreover

the value of SE can be computed using the equation:

E =
1

2
µb2ρ, (4)

§ A mobility coupling factor function of the effective strain rate ε̇ with δ(ε̇) = 1 when ε̇ = 0.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 6

where b corresponds to the norm of the Burgers vector and µ corresponds to the

elastic shear modulus of the material.

Finally, the contribution of driving pressures due to SE and capillarity can be

accounted by linearly adding the two velocities as in [34, 27]:

~v = −M(δ(ε̇)[E]ij~n+ γκ~n), (5)

where ~v denotes the final velocity of the interface during GBM when SE effects are

included.

3.1. Velocity at multiple junctions

Equation 2 can only be used in a one-boundary problem, as in a more general context,

the presence of multiple junctions (the intersection points of more than 3 interfaces)

makes it impossible to compute a curvature κ or a normal ~n at these points. As ex-

plained in previous works [22, 23], we have used an alternative methodology to compute

the velocity due to capillarity at multiple points: Model II of [11], where the product

κ~n is directly obtained from an approximation of the free energy equation of the whole

system in a vertex context.

Similarly, Eq. 3 only holds in a one-boundary problem as neither the value of [E]ij
nor the value of ~n can be obtained at these points. To solve this, a different approach

has been developed to compute a “resultant” velocity due to store energy ~ve at multiple

junctions. This approach is illustrated in Fig. 1 where for the sake of clarity, the value

of M has been held constant and equal to 1. Fig. 1.a shows a typical configuration

where the boundaries of three grains converge to a single point, each grain i has its

own SE Ei where E1 > E3 > E2. The values of the velocity for each normal boundary

have been computed with Eq. 3 and are shown as white arrows for each node in the

boundary of Fig. 1.b, here the index on the normal ~nij term is only representative of

their direction and serve to set the indices of each [E]ij terms, these expressions do not

follow the Einstein notation summation laws, all summations will be represented by the

conventional Σ operator.

If a portion of differential size dr centered at the multiple point is evaluated (see

Fig. 1.c) the boundaries between grains will appear as flat, here the difference on the

SE can be seen as a distributed difference of potential [E]ij applied on the length of

the grain boundary of size dr (analog to a given pressure acting as a resultant force

on a given interface). A normal ~n′ij can be obtained and used to compute a velocity

of each boundary (1.d) applied at its center. Note that the direction of ~n′ij can be

chosen ambiguously on this linear segment, however, as mentioned before, an eventual

ambiguity on the direction of ~n do not represent an ambiguity on the term −[E]ij · ~nij
as [E]ij · ~nij = [E]ji · ~nji with [E]ji = −[E]ij and ~nji = − ~nij. These velocities can be

divided and applied at the ends of each boundary and finally added at the junction
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 7

32.5210 1.50.5

Stored Energy

Figure 1: Graphical demonstration of the obtention of Eq. 6, a) typical triple junction

configuration with values of SE homogenized on each grain and the normal vectors n

computed at the nodes of the interfaces pointing to their convex side, b) computation

of the term −[E]ij · ~nij for each node of the interface except for the node at the triple

junction, c) definition of the same configuration as in a) but in a differential portion

of radius dr, d) the resultant driving forces are applied at the center of the segments

on the differential portion, e) and f) the driving forces are distributed at the ends of

each segment and an expression can be formulated at the triple junction for its resultant

driving force.

point (Figures 1.e and 1.f respectively) to obtain a valid velocity vector field at multiple

junctions. The expression on Fig. 1.f can be extended to the case where the values of
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 8

M are neither constant nor equal to 1:

~ve =
−ΣMδ(ε̇)[E]ij~n

2
, (6)

of course, this expression can be also used in cases of multiple junctions of any

order, where more than three interfaces meet. Eq. 6 will be used to compute the value

of ve at multiple junctions as an approximation to the yet unknown behavior of such

configurations under the influence of SE in a transient state.

Boundary conditions are also modeled through the use of Model II. We do so by

changing the status of every L-Node found in the domain boundary to a P-Node. Then,

every P-Node of the boundary creates a “virtual” connection (a connection to take into

account in Model II) to the two adjacent nodes also belonging to the domain boundary.

Finally, only the tangent‖ component of the velocity ~v obtained for these P-Nodes is

used in their movement.

3.2. Topological changes: capillarity, stored energy

Multiple changes in the topology of the microstructure occur during GG and ReX. In

general, the topological changes during GG are given by the disappearance of grains:

on a shrinking grain, each of their boundaries evolves until they collapse to multiple

junctions. Eventually, all boundaries collapse to a single multiple junction and the

domain occupied by the grain disappears. This behavior was implemented on the

original TRM model presented in [22] by means of the application of the selective node

collapse operator, where some restrictions were made regarding the order of collapsing.

In [22] we opted to use this methodology to produce coherent topological changes

on the microstructure, leading to a series of rules on the selective node collapse operator

(see section 2.4.1 of [22]). These rules gave to the P-Nodes a higher influence over other

kind of nodes and prevented the collapsing of non-consecutive nodes as illustrated in

Figures 2 and 3 respectively.

The implementation of such node collapsing strategy allows a high control over the

order on which the topological changes occur, unfortunately this kind of reasoning can

only be used on isotropic GG and can not be used when SE or spatial heterogeneities

of the mobility/interface energy must be taken into account.

When considering SE, the kinetics of the GB are not only led by the movement

of multiple points; flat surfaces can evolve with a given velocity and it is possible that

the velocity of simple boundaries may become much more important than the velocity

of multiple junctions. Fig. 4 illustrates this behavior with six grains with a specific

SE state. The circular grain in the middle grows due to its low SE compared to the

SE of its surrounding grains. The circular grain is indeed surrounded by an initially

‖ In this context, the tangent component refers to the tangent of the domain limits and not to the

tangent of the GB intersecting the domain boundaries.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 9

Figure 2: Node Collapsing rule in GG by capillarity. Some nodes are within the

collapsing zone of Ni: Two S-Nodes (yellow) will collapse, one L-Node (blue) cannot

collapse and one P-Node (red) cannot collapse. Ni cannot collapse P-Nodes (topological

degree), Ni can collapse L-Nodes but Nj does not belong to the same line (i.e. they do

not belong to the same grain boundary). [22]

Figure 3: Node Collapsing rule in GG by capillarity. Some nodes are within the

collapsing zone of Ni: four L-Nodes (blue) Na, Nb, Nc and Nd. Only Nodes Nb and

Nc can collapse as they are consecutive to Ni within the same line. [22]

squared grain that starts shrinking by the combined effects of capillarity at their exter-

nal boundaries and the surface taken away by the circular growing grain. Fig. 4.right,

shows the moment when the boundary of the circular grain and the external boundaries

of the initially square grain collide, unchaining a series of topological changes on the

microstructure. These topological changes are illustrated in Fig. 5, where new multiple

junctions (Points) appear, grain boundaries (Lines) are split and grains (Surfaces) are

divided.

These several changes on the microstructure (contact of different grain boundaries

in non-convex grains) can not be accomplished by the TRM model if the rules described

above and illustrated by figures 2 and 3 are maintained. This is why these two rules

need to be overridden and a new condition implemented: If two non-consecutive nodes

(nodes not connected by the microstructural wireframe) collapse, the classification of

the remaining node is a P-Node. Additionally, the remaining node is moved to the
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 10

32.5210 1.50.5

Stored Energy

Figure 4: Six grains with a specific SE balance, the circular grain in the middle grows

due to its low SE compared to the SE of its surrounding grains. The initially squared

grain shrinks by the combined effects of capillarity at their external boundaries and the

amount of surface taken away by the circular growing grain. Left: initial state, center:

the circular grain grows, right: the boundary of the circular grain and the external

boundaries of the initially square grain collide.

Figure 5: Details of the final event of Fig. 4, highlighting the changes on the

microstructure. Here, Points describe multiple junctions, Lines grain boundaries and

Surfaces grains.

barycenter of the initial nodes involved in the collapse and the surrounding geometrical

entities (points, lines and surfaces) are checked and updated if necessary. Take for

example the same configuration shown in Fig. 2 now in Fig. 6: here the collapsing of

nodes Ni and Nj is possible, the remaining node Ni is placed in the middle of the edge

NiNj and its classification is changed from L-Node (blue) to P-Node (red). Now their

surroundings need to be checked for possible changes on the topology: all three Lines

(grain boundaries in cyan) need to erase node Nk as a final/initial point and put in its

place P-Node Ni, similarly, one of the lines has to add Nk as a node in their sequence

of L-Nodes hence Nk changes also its classification to L-Node.

Similarly, the situation presented in Fig. 3 can be reproduced with the new rules
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 11

Figure 6: Node Collapsing of Fig. 2 when allowing the collapse between non consecutive

nodes, S-Nodes are displayed in yellow, L-Node in blue and P-Nodes in red. The

collapsing of nodes Ni and Nj produces a new P-Node (Ni) while the preexistent P-

Node Nk needs to be reclassified as a L-Node. Left: initial state, right: state after

collapse.

of collapsing: on the initial state (Fig. 7.a), the collapsing zone of Ni puts L-Nodes Na,

Nb, Nc and Nd inside. The first node to be collapsed is L-Node Na. After this initial

collapse (Fig. 7.b) the collapse produces L-Node Ni to be moved to the center of the

edge NiNa and to become a P-Node. Moreover, the collapsing zone of Ni changes its

position and leave L-Node Nc out hence it will not be collapsed. Additionally, a new

topological change is identified (Fig. 7.c), here the collapse is also responsible for the

fact that a Surface is divided in two new surfaces (cyan and orange Surfaces). Finally,

the remaining collapses are performed between P-Node Ni and L-Nodes Nb and Nd

(Fig. 7.d), these collapses are performed in the conventional way following the rules of

collapsing between P-Nodes and L-Nodes presented in [22].

The new node collapsing rules have been implemented in the TRM model and

will be used from this point forward in the cases where SE is present. This node

collapsing technique will be able to perform the majority of the topological changes in the

microstructure. Furthermore, for the purpose of this article, the creation of boundaries

by the decomposition of unstable multiple junctions (multiple junctions with more than

3 meeting boundaries) is handled via the decomposition procedure introduced in section

3.2.4 of [22] without any further implementation.

3.3. The TRM algorithm under the influence of capillarity and stored energy

Finally, the algorithm for a time step of the TRM model in the context of isotropic

grain growth under the influence of SE and capillarity is presented in Algorithm 1,

where the step “Perform Remeshing and Parallel Sequence” corresponds to the parallel

implementation of the TRM model presented in [23].
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 12

Figure 7: Node Collapsing of Fig. 3 when allowing the collapse between non consecutive

nodes, S-Nodes are displayed in yellow, L-Node in blue and P-Nodes in red. a) Initial

state; b) L-Node Ni performs the first collapse with Na. This produces L-Node Ni to

be moved to the center of the edge NiNa and to become a P-Node. Moreover, the

collapsing zone of Ni changes its position and leave Node Nc out; c) The collapse also

has produced a Surface to be divided in two (cyan and orange Surfaces); d) Additional

collapses are performed between P-Node Ni and L-Nodes Nb and Nd, these collapses are

performed in the conventional way without moving Ni as it is a P-Node now.

4. Recrystallization

In order to model ReX with the TRM model, two additional components are necessary:

the first is a procedure allowing to change the topology of the microstructure and to

introduce new grains (i.e. nuclei); the second component is a model for the apparition

of nuclei which depends on thermomechanical conditions. Here discontinuous DRX

(DDRX) context is considered. Of course PDRX and subsequent GG phenomena can

also be investigated by considering microstructure evolutions when the deformation is

completed. The combination of these two mechanisms can describe multiple TMTs that

are used today in the material forming industry.

With the purpose of simplicity, in this article we will use the same methodology

presented in [36, 44] for the laws governing the introduction of new nuclei during the
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 13

Algorithm 1 Isotropic Grain Growth TRM Algorithm for capillarity and SE

1: Perform Remeshing and Parallel Sequence

2: for all Points: Pi do

3: while Number of Connections > 3 do

4: split multiple point Pi.

5: for all Lines : Li do

6: Compute the natural spline approximation of Li.

7: for all L-Nodes : LNi do

8: Compute curvature and normal (κ~n) over LNi then compute ~vc for LNi (Eq 2).

9: Compute the ~ve for LNi (Eq 3)

10: for all P-Nodes : PNi do

11: Compute the product κ~n over PNi using model II of [11] then compute ~vc for

PNi (Eq 2).

12: Compute ~ve for PNi (Eq. 6)

13: Delete Temporal Nodes

14: for all L-Nodes and P-Nodes : LPNi do

15: Compute final velocity ~v of Node LPNi (Eq. 5)

16: Iterative movement with flipping check in parallel

modeling of hot deformation:

In [36] the evolution of the dislocation density is accounted by a Yoshie-Laasraoui-

Jonas Law [45] as follows:

∂ρ

∂εpeff
= K1 −K2ρ, (7)

which can be evaluated in a discretized time space with an Euler explicit formulation

for the next increment step as :

ρ(t+∆t) = K1∆ε+ (1−K2∆ε)ρ(t), (8)

where ρ(t) is the value of the dislocation density at time t and where the value of

∆ε can be computed as ˙εpeff ·∆t with ∆t the time step.

As explained in [36], when a grain boundary migrates, the swept area is assumed

almost free of dislocations. This aspect is modeled by attributing to these areas a

value of dislocation density equal to ρ0, then, for the grains with part of their domain

presenting ρ0, their dislocation density is homogenized within the grain (as intragranular

gradients on the SE are not taken into account either in [36] nor in the present work),

the final value of ρ for the growing grains is computed as:

ρ(t+∆t) =
ρtS(t) + ∆Sρ0

S(t+∆t)
, (9)
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 14

where St and ∆S denote the surface at time t and the change of surface of a given

grain.

Additionally to Eq. 9, in PDRX the annihilation of dislocations by recovery must

be taken into account. This is done thanks to the following evolution law:

dρ

dt
= −Ksρ, (10)

where Ks is a temperature-dependent parameter representing the static recovery

term. This recovery law is only taken into account in PDRX as in DRX, Eq. 9 already

takes into account the annihilation phenomenon.

4.1. Nucleation laws

The procedure consists in introducing volume (surface in 2D) of nuclei at a rate of Ṡ,

once the local value of dislocation density has reached a critical value: ρc. In [27, 36, 46]

this value was obtained by iterating until convergence the following equation:

ρ(i+1)∗

c =

[
−bγε̇ K2

Mδ(ε̇)τ
2

ln(1− K2

K1
ρic)

] 1
2

with ρic = ρi−1
c + c · (ρ(i)∗

c − ρi−1
c ), (11)

where i represents the iteration number, c is a convergence factor (c < 1 chosen

in this article as c = 0.1), K1 and K2 represents the strain hardening and the material

recovery terms in the Yoshie–Laasraoui–Jonas equation discussed in [45], the term b = 1

in 2D and b = 2 in 3D, τ is the dislocation line energy and ε̇ is the effective deformation

rate used during the deformation of the material.

When solving this equation, two special cases may produce an erroneous

computation: the first is given when K1/K2∗ρc > 1 for which the logarithm is undefined,

the solution to this is to limit the value of ρc < K2/K1 whenever this situation occurs.

The second is when ε̇ = 0 which corresponds to the intervals where PDRX is considered.

Two solutions may be considered for this situation: the first is to block the nucleation

when it is not necessary (metadynamic evolution for example), and the second to supply

a value of ε̇ > 0 to Eq. 11. Here, we have chosen the latter, for which an apparent

effective strain rate ε̇s is used instead ε̇ in PDRX:

ε̇s =

∫ t
0
ε̇2 dt∫ t

0
ε̇ dt

, (12)

which accounts for the instant mean value of the real effective strain rate and gives

the possibility to produce nucleation immediately after the the deformation stages.

Once a value of ρc is computed, the surface per unit of time Ṡ of nuclei to be

inserted can be computed with the following equation corresponding to a variant of the

proportional nucleation model [47]:

Ṡ = KgPc, (13)
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 15

where the term Kg is a probability constant depending on the processing conditions

and Pc is the total perimeter of the grains whose dislocation density is greater than ρc.

Another constraint is given by the minimal radius r∗ of nucleation (the radius at

which the nuclei should be inserted in the domain so the capillarity forces would not

make it disappear) which can be computed thanks to the following equation [48]:

r∗ = ω
γ

(ρc − ρ0)τ
, (14)

where ω > 1 is a safety factor ensuring the growth of the nucleus at the moment of

its apparition. The term ω accounts for the non-spherical shape of a grain inserted in

a discretized domain such as in the TRM model. In section 5.1 a value for this factor

will be obtained based on numerical tests.

4.2. Nucleation approach for the TRM model

Having defined the tools needed to obtain the kinetics of the grain boundaries, where

the pressure behind such kinetics can be of different nature: capillarity, SE or both.

However, in order to model ReX it is necessary to have a way to introduce new grains

into the domain of the TRM model. Nucleation, similarly to boundary migration, is

one of the ways of the microstructure to relax the high gradients of the SE appearing

during or after a TMT. Nucleation has been addressed by several approaches for each

methodology able to simulate such behavior: LS-FE methods, relay on the definition of

circular LS fields (different from the already defined LS fields occupying the same spa-

tial domain) to form nuclei [49, 36], CA and MC methods change the crystallographic

orientation and SE value of some cells [50, 51, 52, 53] in order to nucleate while vertex

models form new grains by redefining new vertex and interfaces in the shape of triangles

around the preexistent vertex points [15].

In the present work, a remeshing-reidentification procedure will be performed

around a central node Ni in order to introduce nuclei. A circular region with center Ni

will be drawn and all edges crossed by this circle will be similarly split at the intersection

as in [24, 25] by successively applying an edge splitting operation, regardless of the

classification of the nodes defining the edge (P-Node/L-Node/S-Node) (see Fig. 8).

The classification of the new nodes being placed by the splitting algorithm is as L-

Nodes unless the split edge represents a grain boundary, in which case the inserted

node will be classified as a P-Node (see Figures 9.b.middle and 9.c.middle). Once

all edges are split, a Surface Identification algorithm will be performed over node Ni

(see section 2.2.5 of [22]), all identified elements and nodes will be inserted into a

new empty Surface defining the nucleus, and extracted from their previous Surfaces

(grains), new Lines (grain boundaries) will be built with their respective Points (multiple

junctions) if any were formed by the nucleation process and all remaining lines and

points inside the new surface will be destroyed (remaining lines and points can appear
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 16

if the nucleation took place near a grain boundary) see Figures. 9.a, 9.b and 9.c left.

However, in a parallel context an additional constraint was added: shared nodes can

not be involved in the nucleation process, neither as a central node nor one of the

nodes of a split edge. This constraint has been added because of the lack of information

(position of the edges to cut) around shared nodes and the performance of the nucleation

process (as a great amount of information would be necessary to be transferred to other

processors). This constraint should not have a great impact on the general behavior

of the model as the domain of each processor (and their shared nodes) is changed by

the Unidirectional Element Sending algorithm presented in [23] every time step, hence

constantly unblocking the restriction to nucleate over the same region.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 17

Figure 8: Remeshing steps for the nucleation process of the TRM model. Top: initial

state with a selected node (cyan) and a circle drawn over the mesh, middle: successive

edge splitting steps to form the interfaces of the nucleus, bottom: the elements inside

the nucleus are identified and extracted from its previous Surface container.
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 18

Figure 9: Examples of the formation of nucleus over different types of nodes, a) S-Node

at the center and no crossed lines, b) L-Node at the center and one crossed line, two

P-Nodes are created, the initial line is divided and two new lines are created, c) P-Node

at the center, 3 P-Nodes are created, the P-Node at the center is detached from all its

lines and converted to S-Node, 3 new lines are created.
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5. Numerical tests

In this section different academic tests will be performed to evaluate the performance

of the TRM model when simulating GBM under the influence of capillarity and SE.

For these academic tests, dimensionless simulations will be considered. Moreover, the

results of simulations using the DRX and PDRX frameworks described in section 4

will be given, these simulations will use the nucleation approach presented in section

4.2 specially developed for the TRM model. The different physical parameters will be

taken as representative of the 304L stainless steel. Comparisons with LS-FE predictions

will be discussed.

5.1. Circular Grain: competition between capillarity and stored energy

In this test case, it will be evaluated the accuracy of the model when the geometric

configuration leads to a competition between the driving forces given by the capillarity

and the SE. Here we will adopt a value of boundary energy and mobility equal to γ = 1

and M = 1 respectively. A circular domain with a value of SE E = α is immersed in a

squared domain with an attributed value of SE E = β ( see Figure 10.a and 10.b left)

where β > α. The difference on the SE [E] = β − α at the boundary will try to make

the circle expand at a rate ve = M [E] = [E] while the capillarity effect will try to make

it shrink at a rate vc = Mκ = κ where κ is the local curvature. The analytical model

for this configuration can be put in terms of a non-linear ordinary differential equation

in terms of the radius r of the circle as follows:

dr

dt
= −1

r
+ [E], (15)

or in terms of the surface S of the circle:

dS

dt
= 2(−π +

√
πS[E]), (16)

We have used an Euler explicit approach to solve this equation and the results are

used to compare the response of the TRM model for different values of [E] for two cases:

the first is given for an initial radius of r0 = 0.3 and the second for r0 = 0.025 (see Figure

10.a and 10.b left). The initial mesh for each one of the two cases is given in Figure

10.a and 10.b right respectively. Note how in the first case, the initial circle boundary is

discretized by a number of nodes sufficiently capable of capturing precisely the value of

its curvature, hence it will serve to evaluate the accuracy on the kinetics of a typically

curved boundary, while in the second case, the circle boundary is only defined by a few

nodes allowing to evaluate the behavior of a nucleus when it is inserted on the domain.

Results for this first case are given in Fig. 11 along with the solution of Eq. 16 for

different values of [E], Fig. 11.left illustrates how the references curves are superposed to

the different simulated curves with a very low error (around 2 % max see Fig. 11.right).

Furthermore, the analytic metastable case (given for [E] = 10/3) shows a very good
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A new front-tracking Lagrangian model for the modeling of DRX and PDRX 20

Figure 10: Circle Test, left: initial state and right: initial mesh a) r = 0.3 radius

(Surface=0.287) b) r = 0.025 radius (Surface=0.01963)

behavior losing only 1.2% of its surface at t = 0.09.

Similarly, The results for the second circle case are given in Fig. 12. Here

it is appreciated how for the cases where the capillarity is the higher driven force

([E] = 0, 10, 20, 30), the circle disappears at the good rate. An interesting discussion

concerns the case with [E] = 40 which corresponds analytically to the metastable

configuration. In TRM simulation, the grain disappears. This behavior is due to the low

number of nodes at the interface, producing an overestimation on the computed value

of its curvature, making it shrink from the very first increment. A value of [E] ≈ 48, 5

was necessary on the simulated side to maintain a metastable position (an increase of

21.2% accordingly to its analytical value). Moreover, for this value, the error on the

prediction of the evolution of the surface was also the highest, going up to 92% after

t = 0.003. Of course, this error is given as the simulated circle maintains its surface,

while the analytical solution shows a continuous increase. The curves corresponding to
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Figure 11: Evolution of the surface (left) and L2 error (right) for the circle test case for

an initial circle radius r = 0.3 (Surface=0.287) a mesh size h = 0.006 and a delta time

dt = 3×10−5, the analytical results (References) are shown superposed to the simulated

curves in black dashed lines. The expected metastable curve is given for a [E] = 10/3

(Red curve).

[E] = 50, 60, 70, 80 (for which the higher driving force is the SE) show a decreasing error

when the value of [E] increases. This result can be used on the determination of factor

ω used in Equation 14 where the authors have estimated that a value of ω = 1.5 (which

counteracts for an increase of 50% over the analytical value of [E] for a metastable state,

see the curve [E] = 60 in Fig. 12.) is sufficient in order to give the inserted nucleus a

growing state and prevent its early disappearance.

Figure 12: Evolution of the surface (left) and L2 error (right) for the circle test case with

an initial circle radius of r = 0.025 (Surface=0.01963) a mesh size h = 0.025 and a delta

time dt = 1× 10−5, the analytical results (References) are shown as dashed lines of the

same color of their corresponding simulated evolution. The expected metastable curve

is given for a [E] = 40 (orange curve), but metastability was found for [E] = 48.491

(Red curve)
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5.2. Triple junction : The capillarity effect on the quasi-stable shape of multiple

junctions

In [54, 55] analytic solutions for the movement of multiple junctions in a quasi steady-

state under the influence of SE were presented. In [54] the so called “Vanishing Surface

Tension” (VST) test was introduced to demonstrate the non-uniqueness of the solution

presented in [55] hereafter called the ”Sharp” solution, this test (the VST test) takes

the form of the limit problem given by:

~v · ~n = −M([E]ij + εγκ), with ε→ 0, (17)

which has subjected to several 2D test cases and a perturbation analysis to demon-

strate that the VST solution corresponds to one of the solutions when ε = 0 and to the

unique solution otherwise.

These solutions were later studied in [17, 34] using a LS-FE model to obtain the

same behavior both in 2D and 3D. Here we have reproduced with the TRM model two

tests that show the same behavior as in [54, 17, 34] for the 2D solutions. For all test

the ”Sharp” solution was obtained when capillarity effects where taken into account

(with ε = 1) and the VST solution when no capillarity was introduced in the system

(hence with a value of ε = 0). Furthermore we have developed analytic equations for

the evolution of the growing surface in our specific case (see Figure 13), these analytic

evolutions are valid up to the point of contact of the multiple junction with the lower

edge of the equilateral triangle (the limits of our domain) and allow us to make a more

quantitative comparison in terms of error.

Figure 13: Initial state for the triple junction test, three phases immersed in a domain

in the shape of an equilateral triangle, this shape is intended to maintain an orthogonal

position of the boundaries with respect of its limits while the configuration evolves. a)

Initial configuration and b) initial mesh.

For this test case, the initial conditions are those presented in Fig. 13.left, three
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phases immersed in a domain in the shape of an equilateral triangle, this shape is in-

tended to maintain an orthogonal position of the boundaries with respect of its limits

while the configuration evolves. Two of the phases (the two in the lower part of the

domain) will have a constant value of SE of α and the third phase a value of β < α,

this configuration will produce a global movement of the triple junction downwards at a

constant and normal velocity of the flat interfaces equals to α−β. Eventually the triple

point will reach the bottom part of the domain making it to split and evolve towards a

lower energy state; even though this portion of the simulation is showed in some of the

results it is not relevant to our study, hence we will give quantitative results up to the

point of splitting. The initial mesh for every test performed is shown in Fig. 13.right

corresponding to a mesh size parameter of htrm = 0.006. Furthermore, values for the

boundary energy and mobility have been set to γ = 1 and M = 1 respectively.

The analytic solution for the evolution of the surface of the upper phase (the growing

phase) for the Sharp solution is given by:

SCap =

(
2a√

3
− y
)2 √

3

4
(18)

where a is the length of one of the sides of the equilateral triangle (here a = 1) and

y is the vertical position of the triple junction measured from the base of the triangle

and given by the following expression:

y =
a

2
√

3
− |~v · ~n| 2t√

3
(19)

where t is the time and the expression |~v · ~n| is the instant normal velocity of the

flat phase boundaries, i.e. α− β.

Similarly the analytic response of the VST solution in terms of surface for the

growing phase is given by

SNoCap = SCap +

(
π

6
− 1√

3

)
(|~v · ~n|t)2. (20)

Two test were performed: one with β = 2 and α = 4, i.e. |~v · ~n| = [E] = 2 and

one with β = 10 and α = 20, i.e. |~v · ~n| = [E] = 10. The two tests were performed

with a time step ∆t = 1 · 10−5. Results for the evolution of the mesh and the surface

are given in Fig. 14 for the first and the second cases. It is clear that the accuracy on

the scalability of the solution is very good as Figures 14.a, .b and .c are almost equal to

the ones of figures 14.e, .f and .g respectively which were obtained for a velocity 5 times

higher. Note that the only different frame is given for Figures 14.d.right and 14.h.right

as here the capillarity effects over the limits of the domain are not negligible and in Fig.

14.d right the configuration have had 5 times more time to evolve to its given state.
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Figure 14: States for the triple junction test case with a value of [E] = 2 and [E] = 10,

for each case, left: with ε = 0 and right: with ε = 1. for the case with [E] = 2 at

a) t = 0.02 b) t = 0.04, c) t = 0.06, d) t = 0.08. and for the case with [E] = 10, e)

t = 0.004 f) t = 0.008, g) t = 0.012, h) t = 0.016.

The evolution of the surface of the growing phase and its error with respect to

equations 18 and 20 is given in Fig. 15, where the L2-Error for both cases was lower

than 0.8%.

5.3. DRX/PDRX case

Here a simulation with a few initial grains will be performed using the recrystalliza-

tion method mentioned in section 4: the initial tessellation will be realized thanks to a
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Figure 15: Evolution of the surface of the growing phase of the triple junction test

case, from top to bottom: (top) Evolution of the surface, (center) Zoom in the red

zone, (bottom) L2-error over the evolution of the surface. Left: results for the test with

[E] = 2 and right: with [E] = 10

Laguerre-Voronoi cells generation procedure [56, 57, 58] over a rectangular domain of

initial dimensions 0.65× 0.328 mm (see Fig. 16) and the values for M , γ, τ and ks are

chosen as representative of a 304L stainless steel at 1100 ◦C (with M = M0 ∗ e−Q/RT
where M0 is a constant M0 = 1.56 · 1011 mm4/Js, Q is the thermal activation energy

Q = 2.8 ·105 J/mol, R is the ideal gas constant, T is the absolute temperature T = 1353

K, γ = 6 ·10−7 J/mm2, τ = 1.28331 ·10−12 J/mm and ks = 0.0031 s−1 [27, 36] ). Addi-
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Figure 16: Initial State for the DRX/PDRX test case.

tionally, the parameters K1, K2, Kg and δ are taken as dependent of the absolute value

of the component xx of the strain rate tensor ε̇ (|ε̇xx|) which is defined as corresponding

to a plane deformation case. These parameters will be obtained using a linear interpo-

lation of the values presented in Tab. 1.

Table 1: Parameter data table for the DRX PDRX test case, when in range |ε̇xx| =

[0.01, 0.1] s−1 the values are interpolated. If |ε̇xx| > 0.1 the value for the corresponding

parameter will the same as for |ε̇xx| = 0.1 s−1, the same strategy applies when

|ε̇xx| < 0.01.

|ε̇xx| s−1 K1 mm
−2 K2 Kg mm · s−1 δ

0.01 1.105 ·109 9 1.3 ·10−4 0.937

0.1 1.55 ·109 6.9 9 ·10−4 2.245

Moreover, during PDRX (|ε̇xx| = 0), the parameter δ will take the value of 9.18

following the findings in [59]. Also, as explained in section 4.1, during PDRX the pa-

rameter ρc will be computed using the apparent effective strain rate ε̇s (see Eq. 12 and

Fig. 17.right) instead of the effective strain rate ε̇ (equals to 0 in this regime). Finally,

outside the range of interpolation, the values are computed as follows: if |ε̇xx| > 0.1 the

values of all parameters will take the same values as for |ε̇xx| = 0.1 s−1, similarly, the

same strategy applies when |ε̇xx| < 0.01, using the values for |ε̇xx| = 0.01 s−1.

Moreover, following the same nucleation approach of [36, 44], here necklace nu-

cleation will be used, corresponding to a random distribution of nuclei over the grain

boundaries and multiple junctions of grains with a dislocation density higher than the

critical value (ρ > ρc), given by Eq. 11. Note that the rate of surface to introduce by

nucleation given by Eq. 13 depends on the perimeter of the grains with ρ > ρc. Other
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types of nucleation could be considered, such as bulk nucleation where the nucleus ap-

pear at random inside the grains with ρ > ρc, nonetheless this will not be studied in

this article.

Figure 17: Deformation loading strategy for the DRX and PDRX case: right: the

computed values of the effective strain rates ε̇s and ε̇, left: the strain deformation

component ε̇xx, where multiple markers have been drawn, corresponding to different

states during the simulations.

Four cycles of deformation/coarsening will be applied as illustrated in Fig. 17, Fig.

17.right shows the computed values of the effective strain rates ε̇s and ε̇, while Fig.

17.left shows the strain deformation component ε̇xx, where multiple markers have been

displayed, these markers correspond to different states along with the simulation that

will be useful when analyzing the results.

Statistical comparisons of the TRM model and the response obtained by a FE-LS

approach presented in [17, 18, 36, 60] will be given. This approach uses a more classic

method of mesh adaptation during calculations where the interfaces are captured with

an anisotropic non-conform local refined mesh. This methodology will be denoted in

the following as the Anisotropic Meshing Adaptation (AMA) model.

A well-known behavior of full-field simulations of microstructural evolutions is that

the reduced mobility (γM product) is classically impacted by the choice of the numer-

ical method and is not only a universal physical parameter. This is given by the fact

that the motion of multiple junctions depend on a value of velocity that is ill defined at

these points. This makes it that different numerical models, use different ways of solving

these issues. This, of course, produce a different kinematics during the transient state of

multiple junctions, that, even though go in the same direction (for the two approaches

used in the manuscript, the TRM and the FE-LS) it produces a higher velocity in the

case of the LS-FE approach. In other words, the reduced mobility is a physical param-
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eter that needs to be identified comparatively to experimental data. This identification

may lead to different values depending generally of the numerical method used [53]. In

[22], the reduced mobility was adjusted in order to minimize the L2-difference between

the mean grain size evolution curves considering TRM or AMA numerical strategies.

The same methodology was used here in the global thermomechanical paths leading to

an increase of 40% in the optimal identified reduced mobility.

Here, we have chosen the AMA case as a reference even though there is no way

to know which model gives the most accurate response to the given physical problem;

this choice on the other hand is given as an example of how the TRM model can indeed

obtain similar responses to well-established models in the field of microstructural evo-

lutions.

Multiple microstructural states have been retrieved from the results given by the

TRM model. These states are marked with numbers corresponding to the states of

figure 17:

States 1 to 3 are given in figure 18, here state 1 illustrates the apparition of the

firsts nuclei in the positions where the dislocation density field reaches its value ρ > ρc.

Then state 2 gives the end of the first stage of deformation where more nuclei have

appeared, note that the value of the SE in some of the small grains is different from

others, these grains have been present longer in the domain and consequently have been

subjected to strain hardening, contrary to the nucleus that have appeared later, during

or at the end of this deformation stage. Finally state 3 shows the end of the first grain

coarsening stage where nuclei have been given time to growth as a product of the high

difference in energy with their surroundings.

States 4 to 6 are presented in Fig. 19. In stage 4 only a small percent of the do-

main have a dislocation density of at least ρc and nucleation is restricted to these zones,

contrary to stage 5, where a bigger part of the domain have reached the value of ρc,

consequently new grains appear everywhere. Finally, the end of the second deformation

stage is given in state 6 where the first peak of number of grains is reached (4250 grains).

States 7 to 10 are given in figure 20, these steps are representative of the ends of the

third and fourth deformation/coarsening cycles, where during the deformation the nu-

cleation process increases the number of grains while in the grain coarsening stages the

high value of the parameter δ (2.245 to 9.18 its dynamic vs its static value) makes the

grain number decrease rapidly (see figure 25.a for the evolution of the number of grains).

States 11 to 14 are provided in figure 21, these states correspond to a value of time

t of 30, 40, 50 and 60 seconds respectively. In this range of time no deformation is

considered. Note how the limits of the scale in figure 21 change as a product of the
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Figure 18: States 1 to 3 (see figure 17) obtained with the TRM model. 1: the firsts

nuclei appear, 2: end of the first stage of deformation, 2: end of the first grain coarsening

stage.

disappearance of high energetic grains and to the annihilation of dislocations simulated

through equation 10.

Statistical values for the states 4 to 6 and 11 to 14 are given in figures 23 and 24 re-

spectively. The grain size distributions for the TRM model without a mobility increase

and with a mobility increase of 40% have been plotted along with the response given by

the AMA case. Similarly the evolution of the mean grain size are provided for all sim-

ulations in figure 22.left and the L2-difference to the AMA case is given in figure 22.right

Finally, the evolution of some representative values are given in Fig. 25: the evolu-

tion of the number of grains, the recrystallized fraction, the mean value of ρ pondered

in surface (ρ) and the total perimeter of the grains whose dislocation density is greater

than ρc (Pc) are provided.

These results show a good agreement between the general behavior of the TRM
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Figure 19: States 4 to 6 (see figure 17) obtained with the TRM model. 4: the nuclei

appear on the regions where ρ > ρc, 5: all the domain is now above the value of ρc hence

the nucleation occurs everywhere, 6: end of the second stage of deformation, here the

maximum number of grains is reached (4250 grains).

model and the behavior of the AMA simulation when an increase of 40% is considered

to the reduced mobility Mγ value (following the findings of [22]). The computational

cost for the different iterations of the TRM model is given in Fig. 26, where for the

slower simulation the time needed for its completion was of 25 min while the fasted took

20 min, a very small CPU-time compared to the time needed in the AMA case (4 hours

and 38 min).
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Figure 20: States 7 to 10 (see figure 17) obtained with the TRM model. 7: end of the

second grain coarsening stage, the number of grains drops very quickly given by the

increase of the value of δ from 2.245 to 9.18 (its dynamic vs its static value) , 8: end of

the third deformation stage, 9: end of the third grain coarsening stage, 10: end of the

fourth deformation stage.
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Figure 21: States 11 to 14 (see figure 17) obtained with the TRM model. these state

correspond to a value of time t of 30, 40, 50 and 60 seconds respectively.

Figure 22: Evolution of the Mean grain size (left) for the TRM model and the L2-

difference with the AMA simulation (right).
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Figure 23: Grain size distributions pondered in surface for the states 4 to 6 (example of

a deformation Stage). A peek on the nucleus size can be observed.
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Figure 24: Grain size distributions pondered in surface for the states 11, 13 and 14

(example of a grain coarsening stage). The values are distributed more evenly on the

size range (x axis) as a product of the grain growth.
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Figure 25: different values as a function of time for the DRX and PDRX test case, a)

Number of grains, b) Recrystallized fraction, c) Mean value of ρ pondered by surface,

and d) Critical perimeter for the computation of the nucleation rate in equation 13
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Figure 26: CPU-time for the different simulations using the TRM model, the

computational cost drops as the number of simulated grains decreases.

Page 36 of 41AUTHOR SUBMITTED MANUSCRIPT - MSMSE-104953.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



A new front-tracking Lagrangian model for the modeling of DRX and PDRX 37

6. Discussion, conclusion and perspectives

In this article the TRM model presented in previous works in the context of GBM by

capillarity has been adapted in order to take into account bulk terms due to the SE

during plastic deformation. This adaptation has made possible the integration of a re-

crystallization model to the TRM approach, for which a nucleation procedure has also

been presented.

The algorithms presented in section 3.1 and represented by Eq. 6 for the compu-

tation of the velocity at multiple junctions, although intuitive have not been published

before to the knowledge of the authors, only [37] shows a similar (more indirect) ap-

proach in the context of vertex simulations.

Results for the circle test case and tripe junction case have demonstrated the high

accuracy of the TRM model in the modeling of boundary migration due to capillarity

and SE, where in the normal context (for typical grain boundaries and multiple junc-

tions), an error no greater than 2% was found. Also, the circle test case showed the

typical behavior of a nucleus when subjected to a wide range of SE around its metastable

point and helped define the safety factor ω used in Eq. 14, defining the minimal radius

to nucleate in the context of the TRM model.

Finally, a DRX/PDRX test case was considered in order to test the recrystalliza-

tion model provided in section 4 for 304L stainless steel at 1100 ◦C. A reference test

case using the same ReX model but with a FE-LS strategy was also considered (AMA

case) [17, 18, 36, 60]. Following the findings in [22], an optimal reduced mobility was

calibrated to perform the tests (40% higher than the mobility used in the AMA case

context). Results show a very good agreement between the two models. Moreover the

CPU-times of the TRM model were much lower being between 20 to 25 minutes against

the 4 hours and 38 minutes needed for the AMA case for its completion.

Perspectives for the presented work and the TRM approach include the implemen-

tation of a model able to treat full anisotropic boundary properties, as well as the study

of the in-grain gradients of SE. The 3D implementation of the TRM model will also be

studied in future works.
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growth in olivine aggregates using a full field model based on the level set method, Physics of

the Earth and Planetary Interiors 283 (2018) 98–109.

Page 39 of 41 AUTHOR SUBMITTED MANUSCRIPT - MSMSE-104953.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



A new front-tracking Lagrangian model for the modeling of DRX and PDRX 40
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