
Modelling and Simulation in Materials Science and Engineering

PAPER

Parallelization of an efficient 2D-Lagrangian model for massive multi-
domain simulations
To cite this article: Sebastian Florez et al 2021 Modelling Simul. Mater. Sci. Eng. 29 065005

View the article online for updates and enhancements.

This content was downloaded from IP address 77.158.181.1 on 28/09/2021 at 07:34

https://doi.org/10.1088/1361-651X/ac0ae7
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstNakHMdOy3i1Xi7jhj0mAaxTL1o9U3F8Q_HQgyxKmys_il_qiE0LPMvfjsmhf7UYvmmsyr_7o-JoOuQtqnsRi6VoE5nvwZDLkNTGTB27DAoiIE-LB3MirF3eR6VqptWMlRFjUCneYxMz2bpLj6YR5ecCPul0T8RNywyM_wki2Kpqfzfjs47urvenEfaxYb7cuulrQHGqLbupPUmE4GWae2W_pKAmxj1JJQf7QnSRIoD9wl1Q0kMyFYedjgNga0xdvp4SS9CaXzxbxArBjf9qlDHocyDzAHI6w&sig=Cg0ArKJSzFph6OTowAdj&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

Modelling and Simulation in Materials Science and Engineering

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 (35pp) https://doi.org/10.1088/1361-651X/ac0ae7

Parallelization of an efficient
2D-Lagrangian model for massive
multi-domain simulations

Sebastian Florez∗ , Julien Fausty , Karen Alvarado ,
Brayan Murgas and Marc Bernacki

Mines-ParisTech, PSL-Research University, CEMEF-Centre de mise en forme des
matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia
Antipolis Cedex, France

E-mail: sebastian.florez@mines-paristech.fr

Received 22 September 2020, revised 29 March 2021
Accepted for publication 11 May 2021
Published 1 July 2021

Abstract
The parallelization of algorithms is an essential step towards the optimization
of large-scale computations. The modeling of evolving multi-domain problems
is not an exception to this rule, specifically when it is applied to the context
of microstructural evolutions. A new method for the simulation of evolving
microstructures has been introduced in a previous work, consisting on a mod-
ified front-tracking approach where the main originality is that not only inter-
faces between domains are discretized but also their bulks. This new model has
obtained promising results in terms of accuracy and numerical performance,
however, it has been implemented in a sequential environment and is not read-
ily usable in modern HPC units for parallel computations. This article pro-
poses a parallel implementation for the new model using a distributed-memory
approach developed with the standard protocol ‘message passing interface’. The
new parallel methodology has been tested in an HCP station with up to 140 cores
for problems involving motion by curvature flow in polycrystals, i.e. by con-
sidering pure grain growth. Good results were obtained in terms of CPU-time
and speed-up for large polycrystals (with up to 560 000 initial grains), showing
that this model can lead to fast and/or large computations of microstructural
evolutions in a full-field context.

Keywords: massive multidomain simulations, parallel implementation, front-
tracking, moving-interfaces, grain-growth, body-fitted, unstructured meshes

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.

0965-0393/21/065005+35$33.00 © 2021 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-651X/ac0ae7
https://orcid.org/0000-0002-5962-7700
https://orcid.org/0000-0001-9911-1859
https://orcid.org/0000-0003-3081-7292
https://orcid.org/0000-0002-6513-7505
https://orcid.org/0000-0002-6677-2850
mailto:sebastian.florez@mines-paristech.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-651X/ac0ae7&domain=pdf&date_stamp=2021-7-1

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

1. Introduction

The simulation of the dynamics of massive multidomain problems have been addressed by
several numerical approaches [1–10], especially in the context of modeling the microstructural
evolutions of metallic materials: grain growth (GG) [11–13], recrystallization (ReX) [14–17]
or Zener pinning (ZP) [18–23]. Usually, these approaches aim to enhance their accuracy and
numerical performance employing computational optimizations, especially for applications
where the physical object, e.g. a representative volume element volume (RVE), is subdivided
into thousands of domains (e.g. grains in a polycrystal). In the following, the term domain
will reference an individual grain in a microstructure. However, the works presented here
can be extended to other multidomain problems such as multiphase flows [24–26] or phase
transformation [27, 28].

Many numerical approaches exist that are capable of handling thousands of domains:
The probabilistic Monte Carlo (MC) method (or Pott’s model) [1, 2, 29–33] and the cellu-

lar automata (CA) method [3, 34–43] both relying in a computational domain discretized in
voxels, making them very efficient in a parallel context [41, 43] although a greater effort must
be done for applications where the deformation of the domain is expected [43].

Furthermore, the level-set (LS) approach [6, 7] coupled with a finite element (FE) method
(FE-LS) [10, 11, 16, 44, 45] or with a fast-Fourier transformation (FFT) method (FFT-LS)
[46–48] are also examples of robust and highly efficient methods in this context. Another
method highly related to the LS method is the phase-field (PF) method [8, 9, 49–58] which
uses, in general, an FE method for their resolution. The degree of difficulty during the paral-
lelization of LS and PF methods depends on the used discretization approach. Methods using
regular grids can be parallelized relatively easier than methods using unstructured meshes.
However, the choice of the discretization approach cannot be determined by the difficulty to
accomplish parallel computations. For instance, the FFT-LS method has proven to be able to
simulate a large number of domains (≈6 × 105 were used in [48] in a 2D GG context) but is
currently limited to the use of regular grids, an aspect that restricts its domain of application to
static or small deformations problems where remeshing is not necessary. This can be a major
drawback for modeling dynamic recrystallization (DRX) in the context of large deformations
(as involved in usual industrial thermomechanical treatments).

Additionally to the MC, CA, LS and PF, methods based on the Lagrangian displacement of
interfaces can be used as in vertex [4, 59–63] or front-tracking (FT) approaches [5, 19–21,
64, 65], which are more complex to implement in parallel but are, in general, much faster than
the aforementioned methods. This is why, the vertex and FT methods have been taken as inspi-
ration for developing a new FT method: topological remeshing in Lagrangian framework for
large interface motion (to real motion hereafter TRM) introduced in a previous publication
[66]. The TRM method proposes the use of unstructured meshes to discretize grain interiors,
contrary to conventional vertex and FT methods that only discretize grain boundaries (inter-
faces between domains). This choice was made for multiple reasons: (i) to allow the use of
intragranular data such as stored energy (used in ReX), (ii) to model large deformation of the
domain and DRX mechanism, and (iii) to make the TRM method more parallel-friendly than
conventional FT models. The TRM model is thus aimed at being compatible with a wide range
of phenomena (e.g. GG and DRX) as the LS-FE methods, to allow large polycrystals model-
ing as for the LS-FFT approach, and to do so with the best numerical performance for which
a parallel implementation is needed. The latter aspect is precisely the main topic of this work.

The TRM model’s performance was tested and compared against a classical front capturing
LS-FE method [10–12] in an isotropic 2D-GG context. Multiple test cases showed an increase

2

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

in accuracy while the CPU-time was reduced by a factor of 14 (for sequential simulations)
[45].

Regarding parallel systems, two categories of design can be proposed to exploit the capabili-
ties of modern computational units. These two categories are differentiated by the management
of the active memory of the running processes: shared memory, where all processes share and
interact with the same location in memory, and distributed memory, where each process has its
own independent memory location. Whether to use one or the other strongly relies on the hard-
ware for which the model is aimed. Typically, applications implemented using only a shared
memory framework cannot be used over a supercomputer cluster, as the memory in these sys-
tems is not connected to a single board, but it is distributed between several independent CPUs
connected to the same network. In other words, shared memory can only be used within a
single CPU, while distributed memory is intended to be used both within a single CPU and
over a network of interconnected CPUs. A third option can be engineered through the use of
a hybrid system, in which a combination of distributed and shared parallelism is made, offer-
ing, in general, the best computational performance. Of course, in a hybrid case, the parallel
strategy’s design can become complex, and it will be avoided in the present article. The parallel
implementation of the TRM model presented in this work will only use a distributed memory
approach.

Each process in a distributed memory system needs a way to communicate data to other
processes. This communication can be established by the use of the standard protocol message
passing interface (MPI) [67]. In this work, the MPI protocol will be used in a C++ envi-
ronment. This choice enables a wide range of hardware compatibility (from small laptops to
cluster stations) and low complexity in terms of code implementation. The immediate goal
of this work is to be able to reproduce large-scale computations (e.g. modeling an RVE or
small parts with hundreds of thousands of grains) using multiple CPU units (e.g. hundred of
processors) with the most reasonable CPU-times.

Very few publications exist in the literature regarding the parallel implementation of FT
models. Such examples can be found in [24, 25] in the context of two-phase flows and in [26]
in a more general context of multiphase flows, however, tested for only just a few domains.
Similarly, examples of vertex models using a parallel scheme can be found in [68, 69] using
a shared-memory approach in the context of molecular-dynamics modeling. These examples
are considerably different from our approach. Indeed, the TRM model avoids the use of two
superposed discretization approaches (contrary to [24, 25]) and allows the discretization of
domain boundaries by more than a vertex-vertex connection (contrary to [68, 69]).

In this paper, the TRM model’s parallel implementation will be presented and tested in
multiple hardware settings. The algorithms addressing the parallel implementation will be
explained. Moreover, an additional tool is needed when performing parallel computations over
a distributed memory approach in order to solve mesh-based problems: the initial partitioning
of the numerical domain and the redistribution (when necessary) of charges (repartitioning)
through the evolution of the simulation. We opted to use the open-source library Metis [70] to
obtain the initial partitioning while a new redistribution algorithm has been developed and will
also be presented in this paper. Finally, the model’s performance and speed-up will be given
and compared to other highly efficient parallel methods in the literature in the context of GG
[46, 48].

2. The TRM model: sequential approach in a GG context

In [66], a numerical method for the TRM model was presented. This numerical method is
built on a data structure defining the current state of the multidomain framework, defining

3

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

geometrical entities such as points, lines, and surfaces. Each point is composed of a P-Node
(defining a mesh node with a topological degree equal to 0) and a set of connections to other
points and lines. Each line is defined by an ordered set of L-nodes (nodes with a topological
degree equal to 1), an initial point, and a final point. Finally, surfaces are defined by a set of
S-Nodes (nodes with a topology degree equal to 2), a set of elements, and a set of delimiting
lines and points.

Details regarding the construction of the data structure built upon an FE mesh can be found
in [45, 66]. Natural parametric splines [71] are used to approximate the domain interfaces
(lines) with third-degree piece-wise polynomials. These approximations are used to compute
geometric properties such as curvature κ and normal�n.

Once a velocity has been computed on the mesh, depending on the physical model being
simulated, the position of each node Ni of the mesh is updated using an explicit-forward Euler
scheme. Mesh conformity (in an FE sense) is ensured by a local-iteratively movement-halving
algorithm preventing element flipping (see [66]). Additionally, the TRM model involves a par-
ticular remeshing procedure. The TRM data structure needs to be maintained when the mesh
evolves to ensure the definition of geometric entities. The TRM sequential remeshing algorithm
can be found in appendix A.

Furthermore, the simulation of microstructural evolutions is given by the addition of com-
plex and different phenomena such as GG, ReX, or ZP, all of which are good examples of
multi-domain problems aimed to be modeled with the TRM method. In [66], isotropic GG was
used to compare the TRM model to other approaches (LS-FE [11, 12, 15]). During GG, the
energy minimization is driven by reducing the total amount and energy density of grain bound-
aries. It is well known that ‘curved grain boundary migrates toward its center of curvature’ [72],
inducing an increase of the mean grain size by the disappearance of small grains and the growth
of large grains. One of the first models involving the migration of grain boundaries, based on
the observations given in [72–74], was proposed in [75, 76] in the form of a phenomenological
law predicting the mean grain size. It was assumed that a driving force acting on the boundary
was only produced by the surface tension of the boundaries, hence being directly proportional
to its curvature. These conclusions were also based on the similarities encountered between
the shapes of cells in foams and grains in polycrystals, pointed out by the authors in [74, 77].
In a full-field context, one of the formulations used to represent this phenomenon is commonly
known as curvature flow, where the velocity �v of every point of the interface is proportional to
its local mean curvature:

�v = −Mγκ�n, (1)

where M is the grain boundary mobility, γ the grain boundary energy, κ the local curvature
in 2D and trace of the curvature tensor in 3D, and �n the outward unit normal to the grain
interface. Isotropic conditions will be considered hereafter: M is assumed only dependent on
the temperature, which is constant over the space, and γ is constant.

Note that the velocity at multiple junctions cannot be deduced from equation (1) as the
curvature and normal at these points cannot be mathematically computed. In the FT approach,
the modeling of curvature flow is thus, ill-defined at multiple junctions, and equation (1) is not a
good choice to define the velocity at these points. Here we used an alternative approach: model
II of [4], where the product κ�n is obtained from an approximation of a free energy functional
in a vertex context.

The presented algorithm can be modified to simulate other different multi-domain prob-
lems by adapting the velocity equation defined in equation (1). Multiple topological changes
of the polycrystal structure (grain disappearance and quadruple point dissociation) usually
encountered in GG are also taken into account by the modeling algorithm. We refer the reader

4

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

to appendix B for details concerning the TRM algorithm for GG modeling in a sequential
context.

3. Parallel strategy for the TRM model

A parallel TRM model, other than reducing the CPU-time of small/medium size computations
(several tens of thousands of grains), enables the possibility of performing real scale full-field
modeling of polycrystals (with millions of grains). Whether or not this could be interesting
from a scientific point of view is still debatable, and it remains a perspective of this work.
However, in order to test the parallel implementation introduced in this section, we aim to
perform computations of GG with at least 5 × 105 number of grains and 100 time steps, which
corresponds to the same scale encountered in publications such as [46, 48] using an FFT-LS
approach.

As mentioned in the introduction, we will use here a distributed memory approach using
the standard communication protocol ‘MPI’ [67] to communicate data between processes.

Moreover, two additional tools are needed to solve parallel mesh-based problems: (i) the
initial partitioner, and (ii) the repartitioner of the numerical domain. These tools are used to
balance the load (e.g. number of elements) each core has to handle at the beginning and during
the simulation, respectively. In our context, the mesh is divided into several partitions equal
to the number of running MPI processes (ideally, equals to the number of cores being used).
Multiple libraries are available to divide a mesh made of simplices. Usually, these tools can
work with topologies much more complex than an Eulerian mesh, as they are engineered to
treat graphs1 (see appendix C). Here we opted to use the free library Metis [70] to obtain the
initial partitioning, but of course, other libraries can be used [78, 79]. Moreover, note that
the initial partitioner tool (i.e. Metis) is intended to perform in sequential and cannot act as a
repartitioner over a mesh distributed in the memory. Other libraries are available to accomplish
this task (e.g. an extension of Metis called ParMetis [80]). However, we have opted to develop
our repartitioner (see section 3.4), which enables us to optimize certain functionalities.

Finally, making changes to the mesh at the boundaries between partitions is difficult. In these
regions, element patches are incomplete when seen from either of the adjacent partitions, as
some part of the local patch of elements is not present in its memory. Typically, this is solved
using halo regions, which repeat one or several layers of elements at the boundaries between
partitions. We have not used this concept and a more straightforward methodology, known as
zero-halo [81] approach, has been developed instead. At the same time, the remeshing strategy
is handled using the properties of the repartitioning algorithm as explained in section 3.5.

Before explaining the different parts of our approach, the algorithm for a time step of the
TRM model in parallel for the modeling of GG is summarized in algorithm 1.

3.1. Initial partitioning

The initial partitioning is performed on all of the k MPI running processes, asking for k num-
ber of partitions and using the function of Metis METISPartMeshDual, which makes a non-
overlapping partition of elements (contrary to a not-overlapping partition of nodes as in [82,
83] see appendix C). The function METISPartMeshDual returns a list of tags with values in
0, 1, 2, . . . , k which is fairly well distributed [84]. Finally, each MPI process i stores in memory
the elements correspondingly tagged with the number i and discards the rest.

1 Mathematical structures used to model pairwise relations (edges) between objects (vertices, nodes or points).

5

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Algorithm 1. GG TRM algorithm in parallel.

1: Remeshing algorithm over non-blocked entities (algorithm 2 with the constraints explained in
section 3.5)

2: Recompute load classification (section 3.4.1)
3: Mesh scattering (section 3.4.3)
4: Reconstruct geometries (appendix F)
5: Remeshing algorithm over non-blocked entities
6: Complete lines and point connections (temporary nodes) (section 3.6.1)
7: for all Points: Pi do
8: while Number of connections > 3 do
9: split multiple point Pi.
10: end while
11: end for
12: for all Lines: Li do
13: Compute the spline approx. of Li.
14: end for
15: for all L-nodes: LNi do
16: Compute curvature and normal (κ�n) over LNi.
17: end for
18: for all P-nodes: PNi do
19: Compute the product κ�n over PNi using model II of [4].
20: end for
21: Delete temporary nodes
22: for all L-nodes and P-nodes: LPNi do
23: Compute velocity �vi of node LPNi

24: end for
25: Iterative movement with flipping check in parallel (section 3.6.2)

Note that this procedure runs in sequential on each MPI process instead of being computed
in only one process and then broadcasted to the others. This is because the broadcasting would
add unnecessary overhead to the initial partitioning. Of course, this procedure is not optimized,
and a better strategy would be to use ParMetis [80]. However, license constraints stop us from
using this library.

3.2. Parallel identification of discrete geometric entities

In the present parallel context, it is possible that some geometric entities (points, lines, and
surfaces) appear in several partitions at the same time. This creates issues as the algorithms
used to reconstruct the geometric entities have been developed in a sequential context (see
section 2.2 of [66]). As such, each partition will consider that the geometric entities stop at the
boundaries between partitions. Problems as the one presented in figure 1 could arise: in this
configuration with two surfaces and a line, the expected identification of each geometric entity
should be the one illustrated in figure 1(a), instead, if the sequential numbering presented in
[66] is used, the identification would be as illustrated in figure 1(c), multiple geometric entities
of the same type may have the same identity and not correspond to the same entity (e.g. surf1

from part1 and surf1 from part2), or inversely, entities having different identities within the
same partition but being the same entity in the whole domain (e.g. line1 and line2 from part2
or surf1 and surf3 from part2).

We have developed an algorithm to label all geometric entities such that they can be con-
sistently tracked across the mesh boundaries. The details of this algorithm are explained in

6

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 1. Example of the initial numbering of geometric entities of a domain crossed
by the partition boundaries (red and blue edge trails). (a) Geometric entities sequen-
tially numbered, (b) domain divided into three partitions: part1 (green), part2 (yellow)
and part3 (blue), (c) numbering of the geometric entities on each partition by default
[66], (d) numbering of the geometric entities on each partition using the new numbering
system: each geometric type (point, line, or surface) is numbered starting with its par-
tition number and increasing by the number of total partitions, (e) configuration of the
geometrical entities after regularization.

appendices D.1 and D.2. The numbering algorithm partially solves the issues presented in
figure 1(c) and results in the numbering illustrated in figure 1(d).

7

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

3.3. Regularization

The regularization procedure solves inconsistencies in identifying entities that have been
crossed by partition boundaries (e.g. turning the numbering of figure 1(d) into the numbering
of figure 1(e)).

This procedure is implemented via a local identification of entities attached to shared-nodes
(see section 3.4.2), these entities are renumbered using the lowest identity found for them across
partitions; e.g. figure 1(d) shows that the internal surface has been identified as surf1, surf5 and
surf3 in partitions 1, 2 and 3 respectively. The algorithm chooses surf1 and renumbers surf5

and surf3 with it. The entire regularization algorithm can be found in appendix D.2.

3.4. Rebalancing of loads, repartitioning: mesh scattering

Repartitioning in a distributed memory framework is much more complex than making an
initial partitioning as all the data is scattered among all processes. Even though other tools
solve these kinds of problems (e.g. ParMetis), we have opted to develop our repartitioner. This
is mainly because we have to make sure that the data structure of the different geometric entities
stay consistent during the repartitioning procedure, and controlling this procedure is key to
avoid unnecessarily (or too frequent) mutations on the TRM data structure (see appendix F).
Of course, our objective is not to develop a repartitioner with all the capabilities of the well
established libraries of the community but to develop a robust and straightforward way of
exchanging information between processes having parts of a scattered Eulerian mesh on its
memory.

3.4.1. Process classification per load. The TRM model’s repartitioning algorithm uses a clas-
sification system to determine which processes needs to increase or reduce its computational
load by comparing them to their neighbours. All processes are classified following the number
of elements, the number of nodes, or the total surface of the domain they manage. In this work,
we will use the number of elements. Moreover, if two processes have the same load, a random
attribution is held.

Each process sends its number of elements using the MPI_alltoall routine. Thus, each pro-
cess computes and stores a list PriorityOfRank containing the priority of each partition to be
load up, i.e. the lower the number of elements in a partition, the higher is its priority.

3.4.2. Shared-nodes. During the repartitioning, it will be necessary to know to which parti-
tions each shared-node belongs. Consider, for example, figure C2(c) where some of the green
nodes are shared with the cyan and yellow partitions. The cyan partition must know that these
nodes are shared with the blue partition and vice versa. Note that one of the nodes is shared by
the three partitions. As such, the blue partition must know that this node is shared with the yel-
low and red partitions. This information can be obtained easily: all partitions broadcast which
nodes are at their boundary using MPI_Allgatherv, then the list of received nodes is matched
against the local list of nodes, every match means that the node is shared with the sender par-
tition. Every shared-node stores a list SharedRanks with the id of the partitions containing
it.

3.4.3. Unidirectional element sending. One of the principal challenges during the repartition-
ing procedure, is to maintain consistency on the mesh. As explained in section 3.1, our parallel
scheme maintains non-overlapping partitions of elements. As such, the unit of exchange during
the repartitioning is also one element. If one partition exports one element, this element must
have only one destination. This is achieved using algorithm 6 of appendix E, which employs the

8

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 2. Example of the behavior of the unidirectional element selection algorithm.
(a) Initial state with three parts, the name and the priority of each partition are displayed,
(b) the elements to be sent to part2 from part1 and part3 are cyan and yellow respectively,
elements 3, 4 and 5 appear only to be sent to part2, and not to part1. Elements 1 and 2
appear initially on the list to be sent to part2 and part3, but they are filtered in the last
part of the algorithm (line 15 of algorithm 6), (c) selected elements to be sent to part3,
the intersection of elements to be sent from part1 to part2 and part3 is empty.

global list PriorityOfRank (section 3.4.1) and the SharedRanks lists of shares-nodes (section
3.4.2).

Figure 2 illustrates one example of the behavior of algorithm 6. The PriorityOfRank list
is computed accordingly to the number of elements in decreasing order. In figure 2(b)) the
elements to be sent to part2 from part1 and part3 are cyan and yellow, respectively. Here, ele-
ments 3, 4, and 5 appear to be sent to part2, and not to part1, applying the filter of line 7
(PriorityOfRank[Part3] < PriorityOfRank[Part1]), which returns false for these elements.
Elements 1 and 2 appear initially on the list to be sent to part2 and part3 but are filtered in line
15 of the algorithm because part2 has a higher priority. In figure 2(c) the elements to be sent
to part3 are cyan. Note that some of the elements of part3 are going to be sent to part2 hence
they appear in a different color. Finally, the intersection of elements to be sent from part1 to
part2 and part3 is empty, and thus consistency is ensured in the scattering process. Figure 3
illustrates the initial and the final configuration after the scattering. All parts’ boundaries have
been displaced by the scattering, including the shared-node a (which is shared by the three
partitions before the scattering). After the scattering, node b is shared by the three partitions,
while node a is part of the bulk nodes of part2.

9

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 3. Example of the configuration of figure 2 after scattering the elements, the
boundaries of all partitions are displaced, (a) initial configuration, (b) configuration after
scattering.

3.5. Blocking remeshing at partition boundaries

Applying remeshing operators at the partition boundaries is very difficult because part of the
local patch of elements might not be accessible. While this is typically solved using halo
regions, we have solved this more simply: (i) blocking operations producing a change (change
of connectivity or position) on the edges of partition boundaries, and (ii) remeshing once, then
repartitioning (partition boundaries change), then remeshing the initially blocked regions.

For example, in figure 3(a), node collapse, edge swapping, and edge splitting are blocked
for the edge ac (the edge delimited by nodes a and c). Note, however, that edge swapping and
edge splitting are allowed on edge de, as this would not change any of the edges defining the
partition boundaries. Of course, the repositioning of any of these nodes is not allowed.

During the repartitioning procedure presented in section 3.4, a complete layer of elements
between the sender and the receiver partitions is exchanged, hence completely changing the
partition boundaries every time it is performed. Figure 3(b) illustrates how all the blocked oper-
ations mentioned above between edges ac and de are unblocked since these edges no longer
belong to the boundary. A new remeshing procedure can be executed for all elements and nodes
previously blocked, finishing the remeshing procedure of the whole domain.

However, note that our solution for the remeshing procedure in parallel can produce dif-
ferent results from the ones obtained with a sequential remeshing as the different remeshing
operations will not be performed in the same order. Nonetheless, this is expected to be of
minimal impact on our model’s precision (see section 4).

3.6. Other parallel treatments

The computation of properties at shared-nodes and the Lagrangian movement of these nodes
cannot be computed using the default sequential way as in [66], this is because shared-nodes
cannot access some information of their surroundings (halo regions are not used). The solutions
to these difficulties are detailed in the following sections.

3.6.1. Computation of properties at shared-nodes. To obtain a velocity using equation (1)
(GG phenomena), the mean curvature κ and the normal �n of the interfaces are needed. As
mentioned in section 2, these properties are computed for L-nodes using a spline approximation
[71]. Thus, the position of nodes adjacent to shared L-nodes is needed. This information is

10

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 4. Example of line patch with temporal nodes (nodes in green), (a) configuration
for two partitions, (b) part1 after adding the required temporary nodes (c) part2 after
adding the needed temporal nodes.

transmitted by the neighboring partitions and stored in temporal nodes. Figure 4 illustrates this
situation: blue nodes correspond to L-nodes belonging to the local partition while green nodes
correspond to temporal nodes. Geometrical properties can now be computed for the L-nodes
b and e on each partition, obtaining the same result in both of them. These temporal nodes
only exist during the computation of the geometrical properties. A similar operation is done
for P-Nodes. However, only one adjacent node is necessary for the computation of model II of
[4] (used for the calculation of the points velocity field in our model).

3.6.2. Lagrangian movement in parallel. In [66], every time one node moves, the algorithm
checks for invalid configurations (flipped elements, see figure 5). In parallel, this has been
implemented as follows: each partition makes its respective check over the elements known
to it, if a flipped element is found, the ID of the node responsible for the event is sent to the
partitions where it is shared, then the movement is executed with half the displacement in a
further iteration.

4. Numerical results

In [66], three academic test cases corresponding to the circle-shrinkage, T-junction, and square-
shrinkage tests, were performed in order to validate the accuracy of the TRM model. A final
test was performed to validate the model in a more realistic environment, where a 2D-RVE
material composed of 10 000 initial grains was simulated using curvature flow and properties

11

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 5. Example of element flipping, (a) initial state, the displacement vector of N4 �v ·
dt lies outside the element patch. (b) State after updating the position of N4, element E4
has been flipped [66].

Figure 6. Mean number of elements per core for the test with a surface of 50 mm2

performed in 10, 20, 28, 56 (2 × 28), and 84 (3 × 28) cores. The evolution of the number
of elements for the simulations contained in one node (left) and in multiple nodes (right)
is shown. The range for the number of elements of all cores in the same simulation is
shown in the same color with an alpha component.

of a 304L stainless steel. In this article, two sets of 2D simulations were performed: for the
first set, domains of fixed size using an increasing number of cores (strong scaling) were sim-
ulated. For the second set, the average computational load per core remained approximately
the same. This was realized by upscaling the number of cores N p and the simulation domain’s
size (weak scaling). Finally, each simulation was performed four times, and the times obtained
were averaged.

All simulations were performed on a cluster facility composed of nodes2 Bullx R424
equipped with two processors Intel Xeon E5-2680v4 (at 2.4 GHz) with 14 cores each, for
a total of 28 cores per node. Each node has 128 Gb of RAM memory. The nodes are connected
using an Infiniband FDR at a speed of 56 Gb s−1. All libraries were compiled using gcc 7.3.0

2 Here the meaning of the word node represent a physical CPU connected in the network of the HPC.

12

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 7. Efficiency of the simulation for the case with a surface of 50 mm2 against the
coefficient of variation CV of the number of elements across partitions (right). The data
has been averaged over 10 increments.

in a Centos 6.7 environment. The version of MPI used was OpenMPI 1.10.7 with default set-
tings, and each core managed one MPI process. Hereafter we will use the syntax Nn × N p to
describe the configuration used in our computations, where the term Nn describes the number
of nodes used and Np the number of cores used per node.

4.1. Strong scaling benchmark

Here, two similar tests to the one presented in [66] with 10 000 grains have been performed,
modifying the surface of the RVE to fit first 50 000 and then 560 000 grains, but maintain-
ing the same initial grain size distribution, the same thermal treatment (1 h at 1050 ◦C) and
identical physical properties: the generation of the initial tessellation has been performed with
a Laguerre–Voronoi cell generation procedure [85–87] over a squared domain and the val-
ues for M and γ are chosen as representative of a 304L stainless steel at 1050 ◦C (with
M = M0 ∗ e−Q/RT where M0 is a constant M0 = 1.56 × 1011 mm4 J−1 s−1, Q is the thermal
activation energy Q = 2.8 × 105 J mol−1, R is the ideal gas constant, T is the absolute tem-
perature T = 1323 K and γ = 6 × 10−7 J mm−2) [16, 17]. Moreover, the initial grain radius
distribution is imposed as a log-normal distribution curve with a median value of 0.017 mm and
a standard deviation of 0.006 mm. Additionally, the maximal and minimal limits for the grains
radius are defined as 0.04 mm and 0.011 mm, respectively. With these values, approximately
1000 grains fit in a surface of 1 mm2 of the surface. As such, the simulation with 50 000 grains
fits in a domain with 50 mm2 and the one with 560 000 grains in a domain of 560 mm2 of the
surface. After the generation of the Laguerre–Voronoi tessellation, the real number of grains
were 52 983 and 544 913 grains for the domains of 50 and 560 mm2, respectively. Finally, the
mesh size parameter and the time step have been held constant and equal to htrm = 0.004 mm
and dt = 10 s, respectively, accordingly to [66].

4.1.1. 2D grain growth 50 000 initial grains. Multiple simulations for the case with 50 mm2

of surface were performed using up to 84 (3 × 28) cores. In appendix G, figure G1 gives the
evolution of the mean grain size pondered by surface and the L2-error (measured with respect
to the sequential case). Here, all parallel tests behave almost exactly like the sequential one (1
core). Similarly, figure G2 shows the evolution of the mean grain size distributions. Once again,
the results are almost identical for all the tests. Deviations from the sequential computation are

13

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 8. Initial state of the case with a surface of 560 mm2, 544 913 grains are shown
in the bigger image. Subsequent zoom views are given.

attributed to the fact that the remeshing procedure is not performed in the same order in parallel
than in sequential (see section 3.5)

Figure 6 describes the mean number of elements and its range for the simulations performed
in 10, 20, 28, 56 and 84 cores. Here, two plots are given: for the simulations performed in one
CPU (one node) and in multiple CPUs (multiple nodes). Note that the range increases when
the number of cores increases as the partition boundaries present more changes. However, the
range is well contained around the mean number of elements per core. The balancing of loads
appears to have good behavior.

One interesting index to follow is the coefficient of variation CV (or relative standard devi-
ation) measured over the number of elements. This index reflects the spread of the imbalance
across partitions, hence one can use it to study the global efficiency of the numerical procedure.

14

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 9. Efficiency of the simulation for the case with a surface of 560 mm2 against
the coefficient of variation CV of the number of elements across partitions (right). The
data has been averaged over 10 increments.

Figure 10. Performance of the TRM model in a strong scaling benchmark: the domain
surface is maintained constant while the number of cores increases, two test were per-
formed, one with a surface of 50 mm2 and the second with a surface of 560 mm2. The
data is compared to the optimal speed up (reference).

During strong scaling, we define the efficiency of one increment i for a simulation with N p

number of cores as follows:

(Efficiency)i =
ti
1

ti
Np

· Np
, (2)

15

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 11. Mean number of elements per core for the test with a DSPC of 2 mm2 per-
formed in 2, 28, 84 (3 × 28), and 140 (5 × 28) cores. The range for the number of
elements of all cores in the same simulation is shown in the same color with an alpha
component.

Figure 12. Mean number of elements per core for the test with a DSPC of 4 mm2 per-
formed in 2, 28, 84 (3 × 28), and 140 (5 × 28) cores. The range for the number of
elements of all cores in the same simulation is shown in the same color with an alpha
component.

where the term ti
Np

determines the CPU-time needed to perform the ith in a simulation with N p

the number of cores. This equation computes the amount of resources needed for one increment
of a parallel simulation compared to a sequential one. Figure 7 plots the simulation’s efficiency
for the case with 50 000 grains against the mean number of elements per core (left) and against
the CV index (right). Of course, the lower the efficiency per increment for a given simulation,
the lower we expect to be its speed-up. The mean efficiency of the 84 cores test (around 0.29)
is much lower than the mean efficiency of the 56 cores test (around 0.48), thus a reduction of
the efficiency of 65% for an increase in the number of cores of 50% (from 56 to 84 cores).
These results suggest that the simulation performed with 84 cores is over partitioned and that
one should aim to obtain a number of elements per core higher than 10 000 or a CV index lower
than 8%.

16

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure 13. Performance of the TRM model in a weak scaling benchmark: the domain
surface increases proportionally to the number of cores, two tests were performed, the
first with a DSPC of 2 mm2 (approximately 2000 grains per core) and the second with
a DSPC of 4 mm2 (around 4000 grains per core). The data are compared to the optimal
speed up (reference).

Finally, figure 10 plots the speed-up of the parallel implementation of the TRM model
against the number of cores. Here, the reference for the optimal speed-up is also shown. Of
course, the optimal speed-up cannot be reached as communications create additional overhead.

4.1.2. 2D grain growth 560 000 initial grains. Let us extend the RVE surface to 560 mm2 and
the number of cores to 140 (5 × 28). Figure 8 illustrates the initial microstructure for this case.
To the knowledge of the author, this is the maximum amount of grains that have been modeled
using 2D unstructured finite-element meshes, and the second-largest simulation in GG context.
The first is the one presented in [48] for a microstructure with 671 000 initial grains, using a
FFT and regular grids.

Figure H1 gives the results for the evolution of the mean grain size and its L2-error for
the tests with 560 mm2 of surface. The range of the L2-errors has been reduced by at least
1/5 compared to the previous tests (50 mm2). At this level, we consider that the parallel TRM
model’s influence over the precision of the simulation is quasi-non-existent.

The index CV is reduced by increasing the RVE surface as the mean number of elements
per core is increased. Figure 9 plots the simulation’s efficiency for the case with 560 000 grains
against the mean number of elements per core (left) and against the CV index (right); efficiency
is maintained over 0.4.

Figure 10 illustrates the evolution of the speed up for both strong scaling cases. The maxi-
mum speed-up obtained was for the case with a surface of 560 mm2 performed over 140 (5 ×
28) cores for which a speed-up of 48.5 was obtained. This simulation took 38 min and 45 s,

17

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Algorithm 2. Remeshing algorithm [66].

1: for all Nodes: Ni do
2: for all Neighbours of Ni: N j do
3: if δc(Ni, N j) < |NiN j| then
4: selective node collapse: N j collapses Ni

5: end if
6: end for
7: end for
8: for all S-nodes: SNi do
9: selective vertex smoothing: SNi

10: end for
11: for all L-nodes: LNi do
12: selective vertex gliding: LNi

13: end for
14: for all Edges: {Ni, N j} j>i do
15: if δs(Ni, N j) > |NiN j| then
16: selective edge splitting: Ni, N j

17: end if
18: end for
19: for all Elements with Qs < qs: Ei do
20: for all Edges of Ei: {N j, Nk}k> j do
21: if quality Qmean(N j, Nk) will improve by swapping then
22: selective edge swapping: {N j, Nk}
23: end if
24: end for
25: end for

while the one achieved in 1 core took 31 h and 20 min. The total number of grains at the end
of this simulation was 117 157, hence 21.5% of the total initial number of grains, while for the
simulation with 50 mm2 of surface, it was 10 399, hence 19.6% of the total initial number of
grains.

4.2. Weak scaling benchmark

When performing a benchmark on a strong scaling context, the amount of memory that a core
has to maintain decreases when the number of cores increase. Of course, when performing a
sequential simulation, all the memory has to be maintained by only one core, making it longer
to read or to add pieces of information to the data set of the running process. This artifact makes
that the optimization made by the parallel implementation in a strong scaling context, be both,
in memory management (to access and to write in a given memory location) and in number of
operations (such as remeshing or moving nodes) to perform by a core. Instead, a weak scaling
benchmark aims to measure the speed-up3 generated by a parallel implementation only on
the number of operations performed by a core. While it is impossible to maintain a perfectly
balanced and constant load on all cores, it is possible to approach weak scaling by increasing the
size RVE proportionally to the number of cores used. In this section, we give the results of two
sets of simulations: the first with a domain surface per core (DSPC) of 2 mm2 (approximately

3 Contrary to the speed up in strong scaling, the speed up for a weak scaling benchmark is obtained by multiplying the
CPU-time of the sequential case with the number of cores of the parallel case, then dividing by the CPU-time of the
parallel case.

18

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Algorithm 3. Isotropic GG TRM algorithm.

1: Perform remeshing algorithm (algorithm 2)
2: for all Points: Pi do
3: while Number of connections > 3 do
4: split multiple point Pi.
5: end while
6: end for
7: for all Lines: Li do
8: Compute the natural spline approximation of Li.
9: end for
10: for all L-nodes: LNi do
11: Compute curvature and normal (κ�n) over LNi.
12: end for
13: for all P-nodes: PNi do
14: Compute the product κ�n over PNi using model II of [4].
15: end for
16: for all L-nodes and P-nodes: LPNi do
17: Compute velocity �vi of node LPNi

18: Iterative movement with flipping check over LPNi

19: end for

2000 grains per core) and the second with a DSPC of 4 mm2 (approximately 4000 grains per
core). Moreover, even though the same grain size distribution is used in the Laguerre–Voronoi
tessellation generation, it is not possible to obtain a perfectly equal statistical distribution for
different sizes of domains. As such, at the beginning of the simulations, minor variations on
the mean grain size or the grain size distributions may appear.

Figure I1 summarizes the results for the evolution of the mean grain size of the cases with
a DSPC of 2 mm2 along with its L2-error using the largest simulation as a reference (5 × 28-
280 mm2). The curves appear to be very similar to their references, with an error inferior to
3%. Note that the L2-error has a tendency to decrease when the simulation domain increases
(as expected) and that the error after a total surface of 56 mm2 (approximately 56 000 initial
grains) is inferior to 1%.

In the appendix, figure I2 illustrates the evolution of the mean size distribution in surface
for one set of simulations (DSPC of 2 mm2), at the beginning and after 3600 s of simulated
time. Figure I3 gives the evolution of the L2-error over the grain size distributions for both sets
of simulations. Similarly to the evolution of the mean grain size, the L2-error is obtained to be
lower than 3% with a domain size of at least 56 mm2, suggesting that our microstructure can be
statistically well represented by a simulation with over 50 000 initial grains. On the contrary,
simulations performed with a domain of 20 mm2 and below show an error higher than 5%,
suggesting that they contain too few grains (at the end of the simulation) or that boundary
conditions may highly influence statistical results. Simulations with 20 000 grains and below
should be avoided in our GG context.

The evolution of the efficiency, the number of elements per core, and the CV index are
presented in figures 11 and 12 for both sets of simulations. One can note that the number of
elements per core is contained in a given range for both sets (weak scaling), while the efficiency
drops when the number of cores increases. Moreover, the sets using a DSPC of 4 mm2 have a
lower overall CV value and a higher overall efficiency.

19

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Algorithm 4. Identity Regularization algorithm performed on parti.

1: for all Shared-nodes: Ni do
2: for all SharedRanks of Ni: part j do
3: IL ← local identity of the coupled entity of Ni

4: send to part j: pair(Ni, IL)a

5: end for
6: end for
7: for all Parts: part j �= parti do
8: for all Received pairs from part j: pairk do
9: Ni ← the node first(pairk)
10: IL ← local identity of the coupled entity of Ni

11: IR ← second(pairk)
12: send to all parts: triplet(IL, IR, part j)b

13: end for
14: end for
15: while Triplets to treat do
16: TT ← take first non-treated triplet
17: Create empty list of pairs: SameEntity � [identity, partition]
18: Call RecursiveTripletTreatment(TT , SameEntity)
19: ILowest ← the lowest value of the first item in all pairs of SameEntity
20: for all Pairs in SameEntity: pairk do
21: if Second(pairk) == parti then
22: IOld ← first(pairk)
23: change identity of entity with number IOld to ILowest

24: end if
25: end for
26: end while

aA pair is a structure of data with two objects, the function first(pairi) extracts the first object in
pairi and the function second(pairi) extracts the second object.
bA triplet is a structure of data with three objects, the function first(pairi) extracts the first object in
pairi , the function second(pairi) extracts its second object and the function third(pairi) extracts its
third object.

Algorithm 5. Recursive function for the identification of the same entity given a triplet
Tx and a list of pairs to fill PL.

1: function RecursiveTripletTreatment(Tx, PL)
2: IL ← first(Tx) (local identity)
3: IR ← second(Tx) (remote identity)
4: Partr ← third(Tx) (remote partition)
5: for all Received triplets from part Rpart: tripleti do
6: if Tripleti is still not treated and first(tripleti) == IR then
7: Set tripleti as treated
8: Add to PL: pair(second(tripleti), third(tripleti))
9: Call RecursiveTripletTreatment(tripleti, PL)
10: end if
11: end for
12: end function

20

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Algorithm 6. Unidirectional element selection executed in part parti.

1: Store a list of lists: SharedNodesPerPart
2: for all Shared-nodes: Ni do
3: for all SharedRanks of Ni: part j do
4: Add item Ni to SharedNodesPerPart[part j]
5: end for
6: end for
7: Store a list of lists: ElementsToSendToPart
8: for all Parts: part j do
9: if PriorityOfRank[parti] <PriorityOfRank[part j] then
10: for all SharedNodesPerPart[part j]: N j do
11: Add elements(N j) to ElementsToSendToPart[part j]
12: end for
13: Take out repeated elements in ElementsToSendToPart[part j]
14: end if
15: end for
16: for all Parts: part j do
17: for all ElementsToSendToPart[part j]: E j do
18: for all Nodes(E j)a: Nk do
19: for all SharedRanks of Nk: partk do
20: if PriorityOfRank[part j] <PriorityOfRank[partk] then
21: Erase E j from ElementsToSendToPart[part j]
22: end if
23: end for
24: end for
25: end for
26: end for

aFunction nodes(entity) extracts the nodes present in entity, where entity can be a point, a line, a
surface or an element.

Figure 13 describes the speed-up of both sets of simulations. For the simulations performed
in one node (28 cores max.) the speed-up is very similar, while above 28 cores (multiple nodes),
the speed-up favors the simulations with a higher DSPC.

5. Discussion, conclusion, and perspectives

The parallel implementation of the TRM method employed several sub-algorithms addressing
different tasks: the partitioning of the domain, the re-numbering scheme developed to track
geometric entities across partitions, the mesh scattering algorithm allowing to balance the load
between partitions, a simplified parallel remeshing procedure and the Lagrangian movement
in parallel. When performed in sequential and parallel, the accuracy of our model was studied,
obtaining the same response with negligible errors in every test.

The maximum speed-up observed was for a case with 544 913 initial grains using 140 (5 ×
28) cores for which a speed-up of 48.5 was obtained. This simulation took 39 min to end (360
increments). Moreover, it was observed that for simulations performed with a high number of
partitions the speed-up might not be satisfactory if the number of elements is too low (lower
than 10 000 elements per partition).

Weak scaling and strong scaling benchmarks were performed. The results of these sim-
ulations confirmed that the higher the number of initial grains considered, the higher the

21

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

simulation’s efficiency (and speed-up). The TRM model shows a good behavior for both kinds
of benchmarks although with conservative efficiency and speed-up.

Another observation of the weak scaling benchmark was that the L2-error drops below 3%
for an initial number of grains larger than 50 000. On the contrary, simulations performed with
20 000 initial grains and below show an error of more than 5%, which suggest that they might
contain too few grains at the end of the simulation or that boundary conditions may highly
influence statistical results (in our case, orthogonality of grain boundaries with the domain
limits). Globally, it seems that simulations with lower than 4000 grains at the end of simula-
tions should be used with care. This also enforces the argument behind the studies aiming to
increase the performance of massive multidomain simulations as the main obstacle to increase
the number of domains is given by their high computational cost.

In the context of massive multidomain simulations, to the knowledge of the authors, only
two methodologies in the literature have attempted to perform simulations with hundreds of
thousands of grains: the one in [46] with a maximum number of 100 000 grains and the one in
[47, 48] with 671 000. Results in [46] showed a better speed-up of their parallel implementa-
tion than the one presented in this article for our TRM model. Concerning the CPU-time, the
parallel strategy presented in [46] was able to perform 20 increments of a simulation with 100
000 initial grains in 32 s when performed in 128 cores. In [48], no data concerning the speed-
up was provided. However, it was mentioned that a simulation with 671 000 initial grains was
performed until less than 4000 grains remained, with a total CPU-time in the range of 9 to
12 days, when running on 18 intel Nahalem cores. Moreover, the main originality of the pro-
posed model here is, for the first time, to exhibit very efficient simulations in the context of
unstructured FE meshes (regular grids in FFT context are considered in [46, 48]). Indeed, our
strategy will enable us to consider large deformation of the calculation domain, paving the way
to more complex mechanisms such as DRX. Our meshing/remeshing strategy, by conserving
a description of the bulk of the grains, will also make it possible to investigate intragranular
fields.

This parallel scheme’s implementation corresponds to the first perspective fulfilled for the
general TRM approach. Other perspectives concern: the development of the DRX and post-
DRX TRM model, the possibility to perform simulation taking into account anisotropic grain
boundary properties, and the extension of the algorithms to a 3D context. These questions will
be discussed in future works.

Acknowledgments

The authors thank the ArcelorMittal, ASCOMETAL, AUBERT & DUVAL, CEA, FRAM-
ATOME, SAFRAN, TIMET, Constellium and the ANR for their financial support through the
DIGIMU consortium and ANR industrial Chair (Grant No. ANR-16-CHIN-0001). The authors
also would like to thank Dr. Ing. Markus Kühbach, from the Fritz-Haber-Institut of the Max
Plank Haber Society, for the interesting exchanges on the theme of this article.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for
legal/ethical reasons but are available from the corresponding author on reasonable request.

22

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure C1. Example of a mesh and its dual graph in 2D, the green points are nodes of
the mesh, and the red points are nodes of the dual graph of the mesh.

Appendix A. Sequential remeshing algorithm

When a remeshing procedure is performed, the mesh evolves, and the sets defining each
geometric entity have to be adapted. Therefore, the remeshing procedure must take into
account the local data structure of the nodes and elements involved in each remeshing
operation.

The remeshing strategy of the TRM model uses the separate definition of locally selec-
tive4 remeshing operators: selective vertex smoothing, selective node collapsing, selective
edge splitting, selective edge swapping, and selective vertex gliding (see [66] for a com-
plete definition of each operator). As a general rule, the remeshing procedure is performed
to increase the general quality Q of the mesh (or a patch of elements of the mesh). Here,
the notion of mesh quality Q is computed as a factor of the shape and the size of the ele-
ments using the same approach as in [88]. However, the selective remeshing procedure is
not only driven by the local mesh quality Q but also by the local topological degree of
the nodes involved in the operation. In [66], a global remeshing procedure was introduced,
driven by two nodal fields δc and δs corresponding to the collapsing and splitting fields, and
a minimum quality shape coefficient qs. The complete remeshing procedure is summarized in
algorithm 2.

Appendix B. TRM sequential algorithm for grain growth

The complete algorithm for an increment of the TRM model using one core is presented in
algorithm 3. Note that line 4 states ‘split multiple point Pi’, this procedure is explained in [66]
and corresponds to the decomposition of unstable multiple junctions that may appear during
the simulation.

4 The word selective denotes a variation of the original remeshing operations when performed over the data structure
of the TRM model. Each remeshing operation is performed differently over nodes with different topologies (P-node,
L-node and S-node).

23

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure C2. Example of partitioning using the graph and the dual graph. (a) Mesh to par-
tition. (b) Mesh partitioned using the graph, subsets of nodes in color (yellow, blue, and
green) represent each node subset, cyan vertices are crossed by the partitions’ bound-
aries. (c) Mesh partitioned using the dual mesh, subsets of elements (red, yellow, cyan)
represent each element subset, nodes in green define the boundaries between partitions,
these are shared-nodes.

Appendix C. Graphs, and graph partitioning

Two ways of partitioning a mesh are classically used: the first is to partition the mesh graph
(each node is a vertex in the graph and each edge of the elements is an edge on the graph)
to obtain multiple subsets of nodes. Each sub-graph will contain nodes that are not present
in any other sub-graph. The second is to make the partitions using the mesh’s dual graph (or
dual graph of a planar graph5) of the initial mesh. In the dual graph, each vertex represents
an element of the initial planar graph, and each edge represents an edge of the initial planar
graph that is shared by two elements. Coherent Eulerian meshes are planar graphs: in a 2D,
the computation of the dual mesh uses each two-simplex (elements) as a vertex and each one-
simplex (edges) as an edge, while in 3D each three-simplex (elements) is treated as a vertex

5 A graph that can be projected into a plane and that its edges intersect only at their nodes.

24

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure F1. Example of the scattering near a P-node a the corresponding connections of
its coupled point are displayed in yellow to L-nodes b and d and to P-node c. L-nodes are
blue while P-nodes are red. (a) Initial configuration, connections to the point of P-node
a are stored in part1 and part3 and (b) configuration after the scattering, connections to
the point of P-node a are distributed within all parts.

and each two-simplex (facets) as an edge. Partitioning the dual graph of the mesh produces
subsets of elements of the initial mesh, each sub-graph will contain a subset of elements not
being present in any other sub-graph. Figure C1 shows examples of the dual graph of a mesh
in 2D.

Figure C2 illustrates examples of the two ways of partitioning a mesh (figure C2(a)), using
the graph (figures C2(b) and (d)) and the dual graph (figures C2(c) and (e)).

Appendix D. Parallel numbering and regularization across partitions

D.1. Non-repeating numbering

The non-repeating numbering is a straightforward process: each geometric type (point, line
or surface) will be numbered according to the partition where it is present, starting with the
number of the local partition (i.e. if numbering in part3, the first Line will be numbered as line3,
the first point as point3 and the first surface as surf3), subsequently the numbering increases by
the number of total partitions (i.e. if numbering in part3 and the total number of partitions is 4
the second Line will be numbered as line7).

D.2. Regularization algorithm

Algorithm 4 contextualizes this procedure with the help of a recursive function presented in
algorithm 5. Note that the lines 4 and 10: of algorithm 4 send information to other partitions.
These are performed using predefined functions of MPI (MPI_Alltoallv and MPI_AllGatherv).
The purpose of the call of algorithm 5 in line 14: is to fill the set SameEntity. This list of
sets stores the identities given to each geometric entity crossed by partition boundaries. In the
configuration given in figure 1(d), when algorithm 4 is performed over the surfaces, SameEntity
would store two lists, one for each iteration of the while loop of line 11: in the first iteration
the list would be composed of three pairs: {{surf1, part1}, {surf5, part2}, {surf3, part3}} and the
second iteration of four pairs: {{surf4, part1}, {surf8, part2}, {surf2, part2}, {surf6, part3}}. On
each iteration, the entity will be named on all partitions with the lowest identity found for it. In

25

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure F2. Example of the scattering with a line (yellow) crossed by the boundary of
two partitions part1 and part2, the assembled and separated views are displayed, the
assembled view shows the domain being simulated while the separated view shows
the actual memory of each partition. (a) and (c) Initial configuration, assembled and
separated views respectively, (b) and (d) configuration after scattering, assembled and
separated views, respectively.

our example, surf5 and surf3 will be named surf1 in their respective partitions, and surf4, surf8,
and surf6 will be named surf2 in their respective partitions.

Appendix E. Unidirectional element selection algorithm

In the first section of algorithm 6 (lines 1 to 10), two lists are created and filled. These lists
contain the share-nodes arranged by partitions and the elements to send to each partition. A first
element filter is applied via the inequality of line 7. The list of elements to export only accepts
elements that share at least one node with a partition of superior priority (a partition with a
lower number of elements). In the last section of the algorithm (lines 11 to 16), a final filter is
applied to subtract the elements that appear to be sent to multiple destinations (i.e. elements
with nodes shared by more than two partitions). The final destination for these elements is
defined, once again, by choosing the partition with the highest priority (line 15). Once this
algorithm is executed by all partitions, a scattering process begins, sending each element to
its destination along with some associated information: node positions, node fields, element

26

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure G1. Results of the test with a surface of 50 mm2 performed with 1 to 84 (3 × 28)
cores. (Left) Mean grain size evolution, (right) L2-error of the mean grain size evolution
with the test performed in sequential as a reference.

fields, and some data necessary to fill the data structure of the geometric entities involved in
the scattering (see section appendix F).

Appendix F. Reconstruction of geometric entities

When exchanging elements and nodes between partitions, a reconstruction of geometrical enti-
ties involving those elements and nodes must be considered. These reconstructions must be
addressed in function of the type of entity to reconstruct (point, line, or surface). While recon-
structing surfaces is trivial (they move along with elements, [66]), the reconstruction of lines
and points is more complex.

F.1. Point reconstruction

Received P-nodes need to build points. As such, information regarding the connections of
points to other points and lines is required (see the data structure of points of section 2.1 of
[66]). In some cases, this information needs to be gathered from multiple partitions as illus-
trated in figure F1. Here the scattering procedure is performed near a point attached to P-node
a. This point exists in the memory of part1 and part3 (hence P-node a is a shared-node). The
connections of L-nodes a and b are only known by part1 and part3 while both partitions know
the connection to P-node c. Note that part2 does not have any information regarding the con-
nections of P-node a. During the scattering, elements 1 and 2 are sent to part2 by Part1 and
Part3 respectively, also, both partitions need to send the nodes unknown by part2. Part1 sends
the node a and b while part3 sends the node a and d (both partitions sent information of node a
because they have no way to know that the other partition has already sent it). The information
available on each partition regarding the connections of the point of P-node a is attached to
the communication. Part1 sends the P-node a along with the identities c and b, and part3 sends
the P-node a along with the identities c and d. Part2 receives two times the P-node a, how-
ever, it is only created once. Then, the information received about its connections is used: part2
searches on its memory for the existence of nodes b, c, and d. If they exist (each separately),
the connection is stored in the data structure. Note that P-node c is not found by part2; hence
that connection is not created.

27

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure G2. Grain size distributions for the test with a surface of 50 mm2 performed in
1, 28, 56 (2 × 28), and 84 (3 × 28) cores. Initial state (top), state at 3600 s (bottom).

F.2. Line reconstruction

Line reconstructions are performed similarly to point reconstructions. The data structure of
lines is particular as it is composed of an ordered sequence of L-nodes and optional initial and
final points (section 2.1 of [66]). Here, an additional property is included in the data structure
of L-nodes: the previous and next nodes within the same line. This additional property helps to
reconstruct lines similarly to point connections help to reconstruct points. The L-node position
within a line is obtained by its relative position to its next and previous nodes. If one of these
nodes does not appear in memory, it means that the line is segmented at that L-node.

Figure F2 shows the initial and final states of a scattering between two partitions where a
line has been crossed by the partition boundary. During the scattering, two L-nodes are sent
from part1 to part2. Node a carries the identity of its previous (L-node g) and next (L-node b)
nodes, and node d carries the identity of its previous (L-node e) and next (L-node h) nodes.
Nodes a and d are then placed in the line of part2 before L-node b and after L-node e. Note
that even though the information about the previous node of L-node a was sent, it is not used

28

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure H1. Results of the case with a surface of 560 mm2 performed with 1 to 140
(5 × 28) cores. (Left) Mean grain size evolution, (right) L2-error of the mean grain size
evolution (reference is the sequential computation).

Figure I1. Mean size of the case with a DSPC of 2 mm2. Simulations using, (top) one
node (28 cores max.), (bottom) multiple nodes. The L2-error reference is the largest
simulation (140 (5 × 28) cores).

because node g does not appear in the memory of part2 (see figutr F2(d)). Consequently, the
previous node of L-node a is set to null in part2.

29

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure I2. Grain size distributions for the test with a DSPC of 2 mm2 performed with 1
to 140 (5 × 28) cores. Initial state (top), distributions after 3600 s (bottom).

Appendix G. Strong scaling, results in a 50 mm2-RVE

(See figures G1 and G2).

Appendix H. Strong scaling, results in a 560 mm2-RVE

(See figure H1).

Appendix I. Weak scaling results

(See figures I1–I3).

30

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

Figure I3. L2-error of the grain size distribution for the test with a DSPC of 2 mm2 (left)
and a DSPC of 4 mm2 (right) compared to the largest simulation of each context (140
(5 × 28) cores) (280 and 560 mm2 respectively).

ORCID iDs

Sebastian Florez https://orcid.org/0000-0002-5962-7700
Julien Fausty https://orcid.org/0000-0001-9911-1859
Karen Alvarado https://orcid.org/0000-0003-3081-7292
Brayan Murgas https://orcid.org/0000-0002-6513-7505
Marc Bernacki https://orcid.org/0000-0002-6677-2850

References

[1] Anderson M P, Srolovitz D J, Grest G S and Sahni P S 1984 Computer simulation of grain growth-I.
Kinetics Acta Metall. 32 783–91

[2] Srolovitz D J, Anderson M P, Grest G S and Sahni P S 1984 Computer simulation of grain growth-
III. Influence of a particle dispersion Acta Metall. 32 1429–38

[3] Hesselbarth H W and Göbel I R 1991 Simulation of recrystallization by cellular automata Acta
Metall. Mater. 39 2135–43

[4] Kawasaki K, Nagai T and Nakashima K 1989 Vertex models for two-dimensional grain growth Phil.
Mag. B 60 399–421

[5] Brakke K A 1992 The surface evolver Exp. Math. 1 141–65
[6] Osher S and Sethian J A 1988 Fronts propagating with curvature-dependent speed: algorithms based

on Hamilton–Jacobi formulations J. Comput. Phys. 79 12–49
[7] Merriman B, Bence J K and Osher S J 1994 Motion of multiple junctions: a level set approach J.

Comput. Phys. 112 334–63
[8] Chen L-Q and Yang W 1994 Computer simulation of the domain dynamics of a quenched system

with a large number of nonconserved order parameters: the grain-growth kinetics Phys. Rev. B
50 15752–6

[9] Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz G J and Rezende J L L 1996
A phase field concept for multiphase systems Physica D 94 135–47

[10] Bernacki M, Chastel Y, Coupez T and Logé R E 2008 Level set framework for the numerical
modelling of primary recrystallization in polycrystalline materials Scr. Mater. 58 1129–32

31

https://orcid.org/0000-0002-5962-7700
https://orcid.org/0000-0002-5962-7700
https://orcid.org/0000-0001-9911-1859
https://orcid.org/0000-0001-9911-1859
https://orcid.org/0000-0003-3081-7292
https://orcid.org/0000-0003-3081-7292
https://orcid.org/0000-0002-6513-7505
https://orcid.org/0000-0002-6513-7505
https://orcid.org/0000-0002-6677-2850
https://orcid.org/0000-0002-6677-2850
https://doi.org/10.1016/0001-6160(84)90151-2
https://doi.org/10.1016/0001-6160(84)90151-2
https://doi.org/10.1016/0001-6160(84)90151-2
https://doi.org/10.1016/0001-6160(84)90151-2
https://doi.org/10.1016/0001-6160(84)90089-0
https://doi.org/10.1016/0001-6160(84)90089-0
https://doi.org/10.1016/0001-6160(84)90089-0
https://doi.org/10.1016/0001-6160(84)90089-0
https://doi.org/10.1016/0956-7151(91)90183-2
https://doi.org/10.1016/0956-7151(91)90183-2
https://doi.org/10.1016/0956-7151(91)90183-2
https://doi.org/10.1016/0956-7151(91)90183-2
https://doi.org/10.1080/13642818908205916
https://doi.org/10.1080/13642818908205916
https://doi.org/10.1080/13642818908205916
https://doi.org/10.1080/13642818908205916
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1080/10586458.1992.10504253
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1006/jcph.1994.1105
https://doi.org/10.1006/jcph.1994.1105
https://doi.org/10.1006/jcph.1994.1105
https://doi.org/10.1006/jcph.1994.1105
https://doi.org/10.1103/physrevb.50.15752
https://doi.org/10.1103/physrevb.50.15752
https://doi.org/10.1103/physrevb.50.15752
https://doi.org/10.1103/physrevb.50.15752
https://doi.org/10.1016/0167-2789(95)00298-7
https://doi.org/10.1016/0167-2789(95)00298-7
https://doi.org/10.1016/0167-2789(95)00298-7
https://doi.org/10.1016/0167-2789(95)00298-7
https://doi.org/10.1016/j.scriptamat.2008.02.016
https://doi.org/10.1016/j.scriptamat.2008.02.016
https://doi.org/10.1016/j.scriptamat.2008.02.016
https://doi.org/10.1016/j.scriptamat.2008.02.016

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

[11] Cruz-Fabiano A L, Logé R and Bernacki M 2014 Assessment of simplified 2D grain growth models
from numerical experiments based on a level set framework Comput. Mater. Sci. 92 305–12

[12] Maire L, Scholtes B, Moussa C, Bozzolo N, Pino Muñoz D and Bernacki M 2016 Improvement of
3D mean field models for capillarity-driven grain growth based on full field simulations J. Mater.
Sci. 51 10970–81

[13] Furstoss J, Bernacki M, Ganino C, Petit C and Pino-Muñoz D 2018 2D and 3D simulation of grain
growth in olivine aggregates using a full field model based on the level set method Phys. Earth
Planet. Inter. 283 98–109

[14] Bernacki M, Resk H, Coupez T and Logé R E 2009 Finite element model of primary recrystallization
in polycrystalline aggregates using a level set framework Modelling Simul. Mater. Sci. Eng. 17
64006

[15] Bernacki M, Logé R E and Coupez T 2011 Level set framework for the finite-element modelling of
recrystallization and grain growth in polycrystalline materials Scr. Mater. 64 525–8

[16] Scholtes B, Boulais-Sinou R, Settefrati A, Pino Muñoz D, Poitrault I, Montouchet A, Bozzolo N
and Bernacki M 2016 3D level set modeling of static recrystallization considering stored energy
fields Comput. Mater. Sci. 122 57–71

[17] Maire L, Scholtes B, Moussa C, Bozzolo N, Muñoz D P, Settefrati A and Bernacki M 2017
Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to
phenomenological laws Mater. Des. 133 498–519

[18] Weygand D, Bréchet Y and Lépinoux J 1999 Zener pinning and grain growth: a two-dimensional
vertex computer simulation Acta Mater. 47 961–70

[19] Couturier G, Maurice C and Fortunier R 2003 Three-dimensional finite-element simulation of Zener
pinning dynamics Phil. Mag. 83 3387–405

[20] Couturier G, Maurice C, Fortunier R, Doherty R and Driver J H 2004 Finite element simulations of
3D Zener pinning Mater. Sci. Forum 467–470 1009–18

[21] Couturier G, Doherty R, Maurice C and Fortunier R 2005 3D finite element simulation of the
inhibition of normal grain growth by particles Acta Mater. 53 977–89

[22] Agnoli A, Bernacki M, Logé R, Franchet J-M, Laigo J and Bozzolo N 2015 Selective growth of low
stored energy grains during δ sub-solvus annealing in the Inconel 718 nickel-based superalloy
Metall. Mater. Trans. A 46 4405–21

[23] Alvarado K, Florez S, Flipon B, Bozzolo N and Bernacki M 2021 A level set approach to simulate
grain growth with an evolving population of second phase particles Modelling Simul. Mater. Sci.
Eng. 29 035009

[24] Laucoin É and Calvin C 1996 A parallel front-tracking method for two-phase flow simulations
Parallel Computational Fluid Dynamics vol 2004 (Amsterdam: Elsevier) pp 289–96

[25] da Silveira Neto A, Villar M, Roma A, Serfaty R, van Wachem B and Pivello M 2016 A parallel
front-tracking algorithm for the simulation of rising bubbles 9th Int. Conf. on Multiphase Flow
(ICMF-2016) (February1–6 2016)

[26] Pan K-L and Yin G-C 2012 Parallel strategies of front-tracking method for simulation of multiphase
flows Comput. Fluids 67 123–9

[27] Collins J B and Levine H 1985 Diffuse interface model of diffusion-limited crystal growth Phys.
Rev. B 31 6119–22

[28] Langer J S 1986 Models of pattern formation in first-order phase transitions 165–86
[29] Srolovitz D J, Grest G S, Anderson M P and Rollett A D 1988 Computer simulation of

recrystallization-II. Heterogeneous nucleation and growth Acta Metall. 36 2115–28
[30] Rollett A D, Luton M J and Srolovitz D J 1992 Microstructural simulation of dynamic recrystal-

lization Acta Metall. Mater. 40 43–55
[31] Peczak P and Luton M J 1993 A Monte Carlo study of the influence of dynamic recovery on dynamic

recrystallization Acta Metall. Mater. 41 59–71
[32] Peczak P 1995 A Monte Carlo study of influence of deformation temperature on dynamic recrys-

tallization Acta Metall. Mater. 43 1279–91
[33] Radhakrishnan B and Zacharia T 1995 Simulation of curvature-driven grain growth by using a

modified Monte Carlo algorithm Metall. Mater. Trans. A 26 167–80
[34] Pezzee C F and Dunand D C 1994 The impingement effect of an inert, immobile second phase on

the recrystallization of a matrix Acta Metall. Mater. 42 1509–24
[35] Liu Y, Baudin T and Penelle R 1996 Simulation of normal grain growth by cellular automata Scr.

Mater. 34 1679–83

32

https://doi.org/10.1016/j.commatsci.2014.05.060
https://doi.org/10.1016/j.commatsci.2014.05.060
https://doi.org/10.1016/j.commatsci.2014.05.060
https://doi.org/10.1016/j.commatsci.2014.05.060
https://doi.org/10.1007/s10853-016-0309-6
https://doi.org/10.1007/s10853-016-0309-6
https://doi.org/10.1007/s10853-016-0309-6
https://doi.org/10.1007/s10853-016-0309-6
https://doi.org/10.1016/j.pepi.2018.08.004
https://doi.org/10.1016/j.pepi.2018.08.004
https://doi.org/10.1016/j.pepi.2018.08.004
https://doi.org/10.1016/j.pepi.2018.08.004
https://doi.org/10.1088/0965-0393/17/6/064006
https://doi.org/10.1088/0965-0393/17/6/064006
https://doi.org/10.1016/j.scriptamat.2010.11.032
https://doi.org/10.1016/j.scriptamat.2010.11.032
https://doi.org/10.1016/j.scriptamat.2010.11.032
https://doi.org/10.1016/j.scriptamat.2010.11.032
https://doi.org/10.1016/j.commatsci.2016.04.045
https://doi.org/10.1016/j.commatsci.2016.04.045
https://doi.org/10.1016/j.commatsci.2016.04.045
https://doi.org/10.1016/j.commatsci.2016.04.045
https://doi.org/10.1016/j.matdes.2017.08.015
https://doi.org/10.1016/j.matdes.2017.08.015
https://doi.org/10.1016/j.matdes.2017.08.015
https://doi.org/10.1016/j.matdes.2017.08.015
https://doi.org/10.1016/s1359-6454(98)00383-8
https://doi.org/10.1016/s1359-6454(98)00383-8
https://doi.org/10.1016/s1359-6454(98)00383-8
https://doi.org/10.1016/s1359-6454(98)00383-8
https://doi.org/10.1080/1478643031000152771
https://doi.org/10.1080/1478643031000152771
https://doi.org/10.1080/1478643031000152771
https://doi.org/10.1080/1478643031000152771
https://doi.org/10.4028/www.scientific.net/msf.467-470.1009
https://doi.org/10.4028/www.scientific.net/msf.467-470.1009
https://doi.org/10.4028/www.scientific.net/msf.467-470.1009
https://doi.org/10.4028/www.scientific.net/msf.467-470.1009
https://doi.org/10.1016/j.actamat.2004.10.044
https://doi.org/10.1016/j.actamat.2004.10.044
https://doi.org/10.1016/j.actamat.2004.10.044
https://doi.org/10.1016/j.actamat.2004.10.044
https://doi.org/10.1007/s11661-015-3035-9
https://doi.org/10.1007/s11661-015-3035-9
https://doi.org/10.1007/s11661-015-3035-9
https://doi.org/10.1007/s11661-015-3035-9
https://doi.org/10.1088/1361-651X/abe0a7
https://doi.org/10.1088/1361-651X/abe0a7
https://doi.org/10.1016/j.compfluid.2012.07.010
https://doi.org/10.1016/j.compfluid.2012.07.010
https://doi.org/10.1016/j.compfluid.2012.07.010
https://doi.org/10.1016/j.compfluid.2012.07.010
https://doi.org/10.1103/physrevb.31.6119
https://doi.org/10.1103/physrevb.31.6119
https://doi.org/10.1103/physrevb.31.6119
https://doi.org/10.1103/physrevb.31.6119
https://doi.org/10.1142/9789814415309_0005
https://doi.org/10.1142/9789814415309_0005
https://doi.org/10.1142/9789814415309_0005
https://doi.org/10.1016/0001-6160(88)90313-6
https://doi.org/10.1016/0001-6160(88)90313-6
https://doi.org/10.1016/0001-6160(88)90313-6
https://doi.org/10.1016/0001-6160(88)90313-6
https://doi.org/10.1016/0956-7151(92)90198-n
https://doi.org/10.1016/0956-7151(92)90198-n
https://doi.org/10.1016/0956-7151(92)90198-n
https://doi.org/10.1016/0956-7151(92)90198-n
https://doi.org/10.1016/0956-7151(93)90339-t
https://doi.org/10.1016/0956-7151(93)90339-t
https://doi.org/10.1016/0956-7151(93)90339-t
https://doi.org/10.1016/0956-7151(93)90339-t
https://doi.org/10.1016/0956-7151(94)00280-u
https://doi.org/10.1016/0956-7151(94)00280-u
https://doi.org/10.1016/0956-7151(94)00280-u
https://doi.org/10.1016/0956-7151(94)00280-u
https://doi.org/10.1007/bf02669802
https://doi.org/10.1007/bf02669802
https://doi.org/10.1007/bf02669802
https://doi.org/10.1007/bf02669802
https://doi.org/10.1016/0956-7151(94)90361-1
https://doi.org/10.1016/0956-7151(94)90361-1
https://doi.org/10.1016/0956-7151(94)90361-1
https://doi.org/10.1016/0956-7151(94)90361-1
https://doi.org/10.1016/1359-6462(96)00055-3
https://doi.org/10.1016/1359-6462(96)00055-3
https://doi.org/10.1016/1359-6462(96)00055-3
https://doi.org/10.1016/1359-6462(96)00055-3

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

[36] Raabe D 1998 Disrete mesoscale simulation of recrystallization microstructure and texture using a
stochastic cellular automation approach Materials Science Forum 273-275 169–74

[37] Raabe D 1999 Introduction of a scalable three-dimensional cellular automaton with a probabilistic
switching rule for the discrete mesoscale simulation of recrystallization phenomena Phil. Mag.
A 79 2339–58

[38] Rollett A D and Raabe D 2001 A hybrid model for mesoscopic simulation of recrystallization
Comput. Mater. Sci. 21 69–78

[39] Lin Y C, Liu Y-X, Chen M-S, Huang M-H, Ma X and Long Z-L 2016 Study of static recrystallization
behavior in hot deformed Ni-based superalloy using cellular automaton model Mater. Des. 99
107–14

[40] Hallberg H, Wallin M and Ristinmaa M 2010 Simulation of discontinuous dynamic recrystallization
in pure Cu using a probabilistic cellular automaton Comput. Mater. Sci. 49 25–34

[41] Rauch L, Madej L, Spytkowski P and Golab R 2015 Development of the cellular automata frame-
work dedicated for metallic materials microstructure evolution models Arch. Civ. Mech. Eng. 15
48–61

[42] Li H, Sun X and Yang H 2016 A three-dimensional cellular automata-crystal plasticity finite ele-
ment model for predicting the multiscale interaction among heterogeneous deformation, DRX
microstructural evolution and mechanical responses in titanium alloys Int. J. Plast. 87 154–80

[43] Madej L, Sitko M, Legwand A, Perzynski K and Michalik K 2018 Development and evaluation
of data transfer protocols in the fully coupled random cellular automata finite element model of
dynamic recrystallization J. Comput. Sci. 26 66–77

[44] Logé R, Bernacki M, Resk H, Delannay L, Digonnet H, Chastel Y and Coupez T 2008 Linking
plastic deformation to recrystallization in metals using digital microstructures Phil. Mag. 88
3691–712

[45] Florez S, Shakoor M, Toulorge T and Bernacki M 2020 A new finite element strategy to simulate
microstructural evolutions Comput. Mater. Sci. 172 109335

[46] Mießen C, Velinov N, Gottstein G and Barrales-Mora L A 2017 A highly efficient 3D level-set
grain growth algorithm tailored for ccNUMA architecture Modelling Simul. Mater. Sci. Eng. 25
084002

[47] Elsey M, Esedoḡlu S and Smereka P 2009 Diffusion generated motion for grain growth in two and
three dimensions J. Comput. Phys. 228 8015–33

[48] Elsey M, Esedoḡlu S and Smereka P 2013 Simulations of anisotropic grain growth: efficient
algorithms and misorientation distributions Acta Mater. 61 2033–43

[49] Fan D and Chen L-Q 1997 Diffuse-interface description of grain boundary motion Phil. Mag. Lett.
75 187–96

[50] Krill C E and Chen L Q 2002 Computer simulation of 3D grain growth using a phase-field model
Acta Mater. 50 3057–73

[51] Kazaryan A, Wang Y, Dregia S A and Patton B R 2001 Grain growth in systems with anisotropic
boundary mobility: analytical model and computer simulation Phys. Rev. B 63 184102

[52] Moelans N, Blanpain B and Wollants P 2008 Quantitative analysis of grain boundary properties
in a generalized phase field model for grain growth in anisotropic systems Phys. Rev. B 78
024113

[53] Moelans N, Godfrey A, Zhang Y and Juul Jensen D 2013 Phase-field simulation study of the
migration of recrystallization boundaries Phys. Rev. B 88 1–10

[54] Chen L et al 2015 An integrated fast Fourier transform-based phase-field and crystal plasticity
approach to model recrystallization of three dimensional polycrystals Comput. Methods Appl.
Mech. Eng. 285 829–48

[55] Chang K, Chen L-Q, Krill C E and Moelans N 2017 Effect of strong nonuniformity in grain boundary
energy on 3D grain growth behavior: a phase-field simulation study Comput. Mater. Sci. 127
67–77

[56] Garcke H, Nestler B and Stoth B 1999 A multiphase field concept: numerical simulations of moving
phase boundaries and multiple junctions SIAM J. Appl. Math. 60 295–315

[57] Miyoshi E and Takaki T 2017 Multi-phase-field study of the effects of anisotropic grain-boundary
properties on polycrystalline grain growth J. Cryst. Growth 474 160–5

[58] Takaki T, Yoshimoto C, Yamanaka A and Tomita Y 2014 Multiscale modeling of hot-working with
dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical
behavior Int. J. Plast. 52 105–16

33

https://doi.org/10.4028/www.scientific.net/msf.273-275.169
https://doi.org/10.4028/www.scientific.net/msf.273-275.169
https://doi.org/10.4028/www.scientific.net/msf.273-275.169
https://doi.org/10.4028/www.scientific.net/msf.273-275.169
https://doi.org/10.1080/01418619908214288
https://doi.org/10.1080/01418619908214288
https://doi.org/10.1080/01418619908214288
https://doi.org/10.1080/01418619908214288
https://doi.org/10.1016/s0927-0256(00)00216-0
https://doi.org/10.1016/s0927-0256(00)00216-0
https://doi.org/10.1016/s0927-0256(00)00216-0
https://doi.org/10.1016/s0927-0256(00)00216-0
https://doi.org/10.1016/j.matdes.2016.03.050
https://doi.org/10.1016/j.matdes.2016.03.050
https://doi.org/10.1016/j.matdes.2016.03.050
https://doi.org/10.1016/j.matdes.2016.03.050
https://doi.org/10.1016/j.commatsci.2010.04.012
https://doi.org/10.1016/j.commatsci.2010.04.012
https://doi.org/10.1016/j.commatsci.2010.04.012
https://doi.org/10.1016/j.commatsci.2010.04.012
https://doi.org/10.1016/j.acme.2014.06.006
https://doi.org/10.1016/j.acme.2014.06.006
https://doi.org/10.1016/j.acme.2014.06.006
https://doi.org/10.1016/j.acme.2014.06.006
https://doi.org/10.1016/j.ijplas.2016.09.008
https://doi.org/10.1016/j.ijplas.2016.09.008
https://doi.org/10.1016/j.ijplas.2016.09.008
https://doi.org/10.1016/j.ijplas.2016.09.008
https://doi.org/10.1016/j.jocs.2018.03.007
https://doi.org/10.1016/j.jocs.2018.03.007
https://doi.org/10.1016/j.jocs.2018.03.007
https://doi.org/10.1016/j.jocs.2018.03.007
https://doi.org/10.1080/14786430802502575
https://doi.org/10.1080/14786430802502575
https://doi.org/10.1080/14786430802502575
https://doi.org/10.1080/14786430802502575
https://doi.org/10.1016/j.commatsci.2019.109335
https://doi.org/10.1016/j.commatsci.2019.109335
https://doi.org/10.1088/1361-651x/aa8676
https://doi.org/10.1088/1361-651x/aa8676
https://doi.org/10.1016/j.jcp.2009.07.020
https://doi.org/10.1016/j.jcp.2009.07.020
https://doi.org/10.1016/j.jcp.2009.07.020
https://doi.org/10.1016/j.jcp.2009.07.020
https://doi.org/10.1016/j.actamat.2012.12.023
https://doi.org/10.1016/j.actamat.2012.12.023
https://doi.org/10.1016/j.actamat.2012.12.023
https://doi.org/10.1016/j.actamat.2012.12.023
https://doi.org/10.1080/095008397179615
https://doi.org/10.1080/095008397179615
https://doi.org/10.1080/095008397179615
https://doi.org/10.1080/095008397179615
https://doi.org/10.1016/s1359-6454(02)00084-8
https://doi.org/10.1016/s1359-6454(02)00084-8
https://doi.org/10.1016/s1359-6454(02)00084-8
https://doi.org/10.1016/s1359-6454(02)00084-8
https://doi.org/10.1103/physrevb.63.184102
https://doi.org/10.1103/physrevb.63.184102
https://doi.org/10.1103/physrevb.78.024113
https://doi.org/10.1103/physrevb.78.024113
https://doi.org/10.1103/physrevb.88.054103
https://doi.org/10.1103/physrevb.88.054103
https://doi.org/10.1103/physrevb.88.054103
https://doi.org/10.1103/physrevb.88.054103
https://doi.org/10.1016/j.cma.2014.12.007
https://doi.org/10.1016/j.cma.2014.12.007
https://doi.org/10.1016/j.cma.2014.12.007
https://doi.org/10.1016/j.cma.2014.12.007
https://doi.org/10.1016/j.commatsci.2016.10.027
https://doi.org/10.1016/j.commatsci.2016.10.027
https://doi.org/10.1016/j.commatsci.2016.10.027
https://doi.org/10.1016/j.commatsci.2016.10.027
https://doi.org/10.1137/s0036139998334895
https://doi.org/10.1137/s0036139998334895
https://doi.org/10.1137/s0036139998334895
https://doi.org/10.1137/s0036139998334895
https://doi.org/10.1016/j.jcrysgro.2016.11.097
https://doi.org/10.1016/j.jcrysgro.2016.11.097
https://doi.org/10.1016/j.jcrysgro.2016.11.097
https://doi.org/10.1016/j.jcrysgro.2016.11.097
https://doi.org/10.1016/j.ijplas.2013.09.001
https://doi.org/10.1016/j.ijplas.2013.09.001
https://doi.org/10.1016/j.ijplas.2013.09.001
https://doi.org/10.1016/j.ijplas.2013.09.001

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

[59] Soares A, Ferro A C and Fortes M A 1985 Computer simulation of grain growth in a bidimensional
polycrystal Scr. Metall. 19 1491–6

[60] Weygand D, Bréchet Y and Lépinoux J 1998 A vertex dynamics simulation of grain growth in two
dimensions Phil. Mag. B 78 329–52

[61] Lépinoux J, Weygand D and Verdier M 2010 Modeling grain growth and related phenomena with
vertex dynamics C. R. Phys. 11 265–73

[62] Barrales Mora L A 2010 2D vertex modeling for the simulation of grain growth and related
phenomena Math. Comput. Simul. 80 1411–27

[63] Mellbin Y, Hallberg H and Ristinmaa M 2015 A combined crystal plasticity and graph-based vertex
model of dynamic recrystallization at large deformations Modelling Simul. Mater. Sci. Eng. 23
045011

[64] Frost H J, Thompson C V, Howe C L and Whang J 1988 A two-dimensional computer simulation
of capillarity-driven grain growth: preliminary results Scr. Metall. 22 65–70

[65] Becker J K, Bons P D and Jessell M W 2008 A new front-tracking method to model anisotropic
grain and phase boundary motion in rocks Comput. Geosci. 34 201–12

[66] Florez S, Alvarado K, Muñoz D P and Bernacki M 2020 A novel highly efficient Lagrangian model
for massively multidomain simulation applied to microstructural evolutions Comput. Methods
Appl. Mech. Eng. 367 113107

[67] Walker D W 1992 Standards for message-passing in a distributed memory environment Technical
Report Center for Research on Parallel Computing (CRPC), Oak Ridge National Lab. TN (United
States)

[68] Sussman D M 2017 cellGPU: massively parallel simulations of dynamic vertex models Comput.
Phys. Commun. 219 400–6

[69] Madhikar P, Åström J, Westerholm J and Karttunen M 2018 CellSim3D: GPU accelerated software
for simulations of cellular growth and division in three dimensions Comput. Phys. Commun. 232
206–13

[70] Karypis G and Kumar V 1998 A fast and high quality multilevel scheme for partitioning irregular
graphs SIAM J. Sci. Comput. 20 359–92

[71] de Boor C 1978 A Practical Guide to Splines (Applied Mathematical Sciences vol 27) (New York:
Springer)

[72] Sutoki T 1928 On the mechanism of crystal growth by annealing Scientific Reports of Tohoku
Imperial University vol 17 pp 857–76

[73] Carpenter H and Elam C F 1920 Crystal growth and recrystallization in metals J. Inst. Met. 24
83–131

[74] Harker D and Parker E R 1945 Grain shape and grain growth Trans. Am. Soc. Met. 34 156–201
[75] Burke J E 1949 Some factors affecting the rate of grain growth in metals AIMS Trans. 180 73–91
[76] Burke J E and Turnbull D 1952 Recrystallization and grain growth Prog. Met. Phys. 3 220–92
[77] Smith C S 1948 Grains, phases, and interfaces: an introduction of microstructure Trans. Metall. Soc.

AIME 175 15–51
[78] Pellegrini F and Roman J 1996 Scotch: a software package for static mapping by dual recursive

bipartitioning of process and architecture graphs Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol 1067
pp 493–8

[79] Devine K, Hendrickson B, Boman E, John M S and Vaughan C 2000 Design of dynamic load-
balancing tools for parallel applications Proc. of the Int. Conf. Supercomputing pp 110–8

[80] Karypis G and Kumar V 1996 Parallel multilevel graph partitioning Proc. Int. Conf. Parallel
Processing (IEEE Comput. Soc. Press) pp 314–9

[81] Mohanamuraly P, Hascoët L and Müller J-D 2020 Seeding and adjoining zero-halo partitioned
parallel scientific codes Optim. Methods Software 35 618–37

[82] Coupez T, Digonnet H and Ducloux R 2000 Parallel meshing and remeshing Appl. Math. Modelling
25 153–75

[83] Mesri Y, Digonnet H and Coupez T 2009 Advanced parallel computing in material forming with
CIMLib Eur. J. Comput. Mech. 18 669–94

[84] Karypis G and Kumar V 1998 Multilevel k-way partitioning scheme for irregular graphs J. Parallel
Distrib. Comput. 48 96–129

[85] Imai H, Iri M and Murota K 1985 Voronoi diagram in the Laguerre geometry and its applications
SIAM J. Comput. 14 93–105

34

https://doi.org/10.1016/0036-9748(85)90157-7
https://doi.org/10.1016/0036-9748(85)90157-7
https://doi.org/10.1016/0036-9748(85)90157-7
https://doi.org/10.1016/0036-9748(85)90157-7
https://doi.org/10.1080/13642819808206731
https://doi.org/10.1080/13642819808206731
https://doi.org/10.1080/13642819808206731
https://doi.org/10.1080/13642819808206731
https://doi.org/10.1016/j.crhy.2010.07.015
https://doi.org/10.1016/j.crhy.2010.07.015
https://doi.org/10.1016/j.crhy.2010.07.015
https://doi.org/10.1016/j.crhy.2010.07.015
https://doi.org/10.1016/j.matcom.2009.08.005
https://doi.org/10.1016/j.matcom.2009.08.005
https://doi.org/10.1016/j.matcom.2009.08.005
https://doi.org/10.1016/j.matcom.2009.08.005
https://doi.org/10.1088/0965-0393/23/4/045011
https://doi.org/10.1088/0965-0393/23/4/045011
https://doi.org/10.1016/s0036-9748(88)80307-7
https://doi.org/10.1016/s0036-9748(88)80307-7
https://doi.org/10.1016/s0036-9748(88)80307-7
https://doi.org/10.1016/s0036-9748(88)80307-7
https://doi.org/10.1016/j.cageo.2007.03.013
https://doi.org/10.1016/j.cageo.2007.03.013
https://doi.org/10.1016/j.cageo.2007.03.013
https://doi.org/10.1016/j.cageo.2007.03.013
https://doi.org/10.1016/j.cma.2020.113107
https://doi.org/10.1016/j.cma.2020.113107
https://doi.org/10.1016/j.cpc.2017.06.001
https://doi.org/10.1016/j.cpc.2017.06.001
https://doi.org/10.1016/j.cpc.2017.06.001
https://doi.org/10.1016/j.cpc.2017.06.001
https://doi.org/10.1016/j.cpc.2018.05.024
https://doi.org/10.1016/j.cpc.2018.05.024
https://doi.org/10.1016/j.cpc.2018.05.024
https://doi.org/10.1016/j.cpc.2018.05.024
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1016/0502-8205(52)90009-9
https://doi.org/10.1016/0502-8205(52)90009-9
https://doi.org/10.1016/0502-8205(52)90009-9
https://doi.org/10.1016/0502-8205(52)90009-9
https://doi.org/10.1080/10556788.2019.1591404
https://doi.org/10.1080/10556788.2019.1591404
https://doi.org/10.1080/10556788.2019.1591404
https://doi.org/10.1080/10556788.2019.1591404
https://doi.org/10.1016/s0307-904x(00)00045-7
https://doi.org/10.1016/s0307-904x(00)00045-7
https://doi.org/10.1016/s0307-904x(00)00045-7
https://doi.org/10.1016/s0307-904x(00)00045-7
https://doi.org/10.3166/ejcm.18.669-694
https://doi.org/10.3166/ejcm.18.669-694
https://doi.org/10.3166/ejcm.18.669-694
https://doi.org/10.3166/ejcm.18.669-694
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1137/0214006
https://doi.org/10.1137/0214006
https://doi.org/10.1137/0214006
https://doi.org/10.1137/0214006

Modelling Simul. Mater. Sci. Eng. 29 (2021) 065005 S Florez et al

[86] Hitti K, Laure P, Coupez T, Silva L and Bernacki M 2012 Precise generation of complex statistical
representative volume elements (RVEs) in a finite element context Comput. Mater. Sci. 61 224–38

[87] Ilin D N and Bernacki M 2016 Advancing layer algorithm of dense ellipse packing for generating
statistically equivalent polygonal structures Granul. Matter 18 43

[88] Shakoor M, Bernacki M and Bouchard P-O 2015 A new body-fitted immersed volume method for
the modeling of ductile fracture at the microscale: analysis of void clusters and stress state effects
on coalescence Eng. Fract. Mech. 147 398–417

35

https://doi.org/10.1016/j.commatsci.2012.04.011
https://doi.org/10.1016/j.commatsci.2012.04.011
https://doi.org/10.1016/j.commatsci.2012.04.011
https://doi.org/10.1016/j.commatsci.2012.04.011
https://doi.org/10.1007/s10035-016-0646-9
https://doi.org/10.1007/s10035-016-0646-9
https://doi.org/10.1016/j.engfracmech.2015.06.057
https://doi.org/10.1016/j.engfracmech.2015.06.057
https://doi.org/10.1016/j.engfracmech.2015.06.057
https://doi.org/10.1016/j.engfracmech.2015.06.057

	Parallelization of an efficient 2D-Lagrangian model for massive multi-domain simulations
	1. Introduction
	2. The TRM model: sequential approach in a GG context
	3. Parallel strategy for the TRM model
	3.1. Initial partitioning
	3.2. Parallel identification of discrete geometric entities
	3.3. Regularization
	3.4. Rebalancing of loads, repartitioning: mesh scattering
	3.4.1. Process classification per load.
	3.4.2. Shared-nodes.
	3.4.3. Unidirectional element sending.

	3.5. Blocking remeshing at partition boundaries
	3.6. Other parallel treatments
	3.6.1. Computation of properties at shared-nodes.
	3.6.2. Lagrangian movement in parallel.

	4. Numerical results
	4.1. Strong scaling benchmark
	4.1.1. 2D grain growth 50tnqx2009;000 initial grains
	4.1.2. 2D grain growth 560tnqx2009;000 initial grains

	4.2. Weak scaling benchmark

	5. Discussion, conclusion, and perspectives
	Acknowledgments
	Data availability statement
	Appendix B. TRM sequential algorithm for grain growth
	Appendix C. Graphs, and graph partitioning
	Appendix D. Parallel numbering and regularization across partitions
	D.1. Non-repeating numbering
	D.2. Regularization algorithm

	Appendix E. Unidirectional element selection algorithm
	Appendix F. Reconstruction of geometric entities
	F.1. Point reconstruction
	F.2. Line reconstruction

	Appendix G. Strong scaling, results in a -RVE
	Appendix H. Strong scaling, results in a -RVE
	Appendix I. Weak scaling results
	ORCID iDs
	References

