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Introduction

Thermodynamics and Kinetics are two fundamental topics in materials science.
The study of thermodynamics provides information about a system at equilib-
rium; its extrapolation, under the assumption of local equilibrium, provides the
basis for kinetic theories. Additionally, kinetics study the evolution of systems
out of equilibrium involving changes in the microstructure, shape, volume or sur-
face and/or composition. Determining the kinetics of recovery, grain growth,
recrystallization, solidification and other metallurgical mechanisms is necessary
to predict material properties but remains a very complex topic.

Metals, ceramics, rocks and ice are polycrystalline materials, it means that
they are composed of crystals, also called grains. The evolution of the crystals
during annealing plays an important role in the final properties of the material.
Grain boundaries (GB) are surface defects, their velocity v produced under a
driving pressure P is defined classically at the mesoscopic scale by the well known
equation v = µP where µ is an intrinsic property called GB mobility [1].

In the context of grain growth, the evolution of GB is driven by the reduction
of interfacial energy, and GB velocity is classically described, at the mesoscopic
scale, by the curvature flow driving pressure P = −γκ where γ, is the GB en-
ergy, and κ, the mean curvature (i.e., the trace of the curvature tensor in 3D).
The kinetic equation v = −µγκ is a simplification of lower scale phenomena in
constant discussions [2,3]. In this case, it constitutes at the polycrystalline scale,
and in metal forming a state-of-the-art accepted physical framework.

GB energy and mobility are two intrinsic properties, the anisotropic behaviour
of these two properties has been early reported by Smith in 1948 [4] and Kohara
in 1958 [5]. During recrystallization and grain growth, the crystals evolve in
exotic ways and complex microstructures can be formed, e.g. with the presence of
twins. By now the definition of mobility is often approximated using an Arrhenius
equation whereas parameters such as structure and composition can have an
impact on it.

In the discussion of whether this kinetic equation is a reasonable approxima-
tion [6] and whether the reduced mobility (µγ product) can really be considered
as defined by temperature and crystallographic properties of the interface as mis-
orientation and inclination, there is no clear and univocal answer today. First
of all, the answer at the scale of a few interfaces and at the homogenized poly-
crystal scale can be contradictory as to the statistical effects. Moreover, a bias
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in the reduced mobility field discussion today lies in the real capacity of full-field
methods to take into account a reduced mobility appropriately defined in the 5D
GB space B, defined by the misorientation and inclination in representative 2D
or 3D simulations. As detailed in this thesis, such a capacity is typically unclear
in the current state-of-the-art. Thus, the discussion between experimental data
and anisotropic full-field simulations is to be treated with extreme caution.

If numerical modeling by considering heterogeneous values of GB mobility
and GB energy remains a complex discussion, it has in fact been widely studied
at the polycrystalline scale with a large variety of numerical approaches: multi
phase-field [7–9], Monte Carlo [10, 11], molecular dynamics [12], oriented tessel-
lation updating method [13], vertex [14], front-tracking Lagrangian or Eulerian
formulations in a finite element (FE) context [15–17], and level-set (LS) [18–20],
to cite some examples. The first models proposed in the literature define the
GB mobility and energy as constants, called isotropic, [7, 10, 18, 21, 22]. The
models evolved in order to reproduce more complex microstructures or local het-
erogeneities. Heterogeneous models were proposed, in which each boundary has
its own energy and mobility [11,19,20,23–30]. For instance, every grain could be
related with an orientation, thus the mobility and energy can be computed from
a model describing their disorientation dependence [8,20], but just one parameter
from the five describing the GB space is considered. Finally, general frameworks
in which the five parameters are discussed have been proposed, and these models
could be categorized as fully anisotropic [20, 31, 32].

The comprehensive understanding of GBs and the process-microstructure re-
lationship is crucial and complex. The origin of this complexity is in the one
hand due to the passage from the GB space to a scalar value, B → R+. On
the other hand, the mechanisms governing the GB motion extend across mul-
tiple length and time scales. As such, experimental and computational studies
must be carried out together. In addition to the enrichment of numerical ap-
proaches, several studies were carried out in order to compute GB properties.
For instance, recent studies have shown the relation between the GB structure
and GB energy of bicrystals [33, 34]. The knowledge of the bicrystal relation is
an important contribution to the study of GB motion and GG. However, little is
known about the effect of GB properties anisotropy on the statistical behavior of
microstructures [35]. It has been shown that the surface tension is not the only
force controlling GB motion during grain growth, as GBs evolve two additional
parameters may be taken into account. First, a torque term is generated by the
anisotropic nature of GB energy. Second, as GB evolve they can create stresses
in the surrounding area leading to additional driving pressures [36, 37].

The experimental techniques and numerical approaches to estimate GB prop-
erties are essential to the understanding of microstructure evolution. To ensure
all these parameters work and are reliable for simulating microstructure evolution
under real thermomechanical processes, the latter should be mimicked in labora-
tory scale experiments to carefully assess evolution kinetics and their dependence
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on thermomechanical parameters.
Annealing phenomena and recrystallization is the aim of the DIGIMU® soft-

ware developed by the Digimu consortium, Transvalor company and CEMEF.
The Digimu consortium is composed of several partners: Safran, Aubert & Du-
val, Framatone, CEA, Timet, ArcelorMittal, Constelium and Ascometal. The
purpose of the DIGIMU consortium is to develop new global Finite Element (FE)
schemes to simulate microstructural evolutions during metal forming processes.
The efficient treatment of the migrating interfaces carries a great importance
because the prediction of microstructures in those simulations is based on the re-
lation v = µP , one could thus say that the physics of the problem is contained in
the definition of the mobility and the net driving pressure. DIGIMU® integrates
2D and 3D tools for the modeling of polycrystalline microstructures including GB
motion due to grain growth, recrystallization (static, dynamic and post-dynamic),
and Smith-Zener pinning by second phase particles. DIGIMU® also includes an-
nealing phenomena such as recovery, crystal plasticity and work-hardening to
model hot deformation.

In this PhD work, an enrichment of the FE tools in terms of GB anisotropy
will be introduced. The methodology introduced here are composed by numerical
developments to include the anisotropy of GB properties and experimental tests
to measure GB properties and compare the numerical results to experimental
data. The main goal of this work is to end up with more physical models. The
work presented in Chapter 3 have been published [38] and the work presented in
Chapter 4 is under review.

The main concepts introduced in Chapter 1 are used in the manuscript. This
chapter is focused on the state-of-the-art concerning the concept of boundary
mobility and its role on the migration of boundaries. In the first section the
polycrystal is defined, also migration mechanisms of boundaries are presented.
Secondly, the first experimental results to estimate values of GB mobility for high
purity materials and low purity materials are presented, this section is finished
with a discussion concerning the limitations of the GB migration equation.

In Chapter 2, the existing full field methods at the mesoscopic scale are briefly
reviewed. This includes multi phase-field, Monte Carlo, cellular automata, molec-
ular dynamics, vertex, front-tracking Lagrangian or Eulerian formulations in a
finite element (FE) context, and level-set (LS).

In Chapter 3, several FE-LS formulations are compared using heterogeneous
GB mobility and energy that depend on the GB disorientation. GG simulation of
a model system including one triple junction and in a polycrystalline microstruc-
ture are performed in 2D and 3D. This section is necessary in order to choose a
FE-LS formulation for further modeling GG in more realistic microstructures.

In Chapter 4, the Isotropic and Anisotropic FS-LS are used to model GG in a
316L stainless steel. Two types of GB network are considered, first, twin bound-
aries are excluded and then considering all the boundaries (with twin boundaries).
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Also, two kinds of microstructures are considered, one generated statistically from
grain size distributions, and the other being a digital twin created from EBSD
data. Regarding GB properties, GB energy is defined either as heterogeneous or
anisotropic, and GB mobility is defined as heterogeneous.

In Chapter 5, the perspectives and general conclusions of this work are pre-
sented. Some preliminary results of some perspectives are also detailed.
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2kG66Pr, Uploaded on March 1, 2021 ) licensed under CC BY 2.0 (https://
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L’immersion. Author: Brayan Murgas.
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Chapter 1

Definition of grain boundary
mobility and limits of the
migration equation v = µP in
polycrystalline materials

Studies of grain growth (GG) and recrystallization (ReX) have been carried out
in order to notably comprehend the mechanisms responsible for the migration
of GBs. Experiments were initially performed using bicrystals and tricrystals.
However, the individual effect of the GB mobility and GB energy was not known.
Thanks to new experimental and numerical techniques the study of each GB
property is possible. Hence, new models of GB properties and mechanisms have
been discovered.

This chapter is focused on the state of the art concerning the concept of GB
mobility and its role on GB migration. In the first section the polycrystal, GB
and their migration are presented. Secondly, existing experimental results of the
state of the art are presented for low and high purity materials, the limitations
of the GB migration equation are also discussed.

1.1 The polycrystal and motion of GBs

Most of the inorganic solids are polycrystalline, those materials are formed of crys-
tals of different size, orientation and/or nature. The properties of the materials
could be defined using the characteristics of crystals, for example the Hall-Petch
equation relates the yield stress with the grain size [39]. The fundamental def-
initions used throughout the text are discussed here. Also, diffusion and GB
movement equations are shown in order to reveal their resemblance.
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CHAPTER 1. GB MOBILITY AND LIMITS OF THE MIGRATION
EQUATION

1.1.1 The crystal lattice and its defects
A perfect crystal is a solid composed of atoms, ions or molecules highly arranged
in patterns repeated periodically [40]. In metals the points of a lattice space
may be the position of atoms. The atoms are arranged in a basic structure
that is repeated, thus every lattice point has the same number of neighboring
atoms. There are 14 space-lattice called the Bravais lattices [41] divided into
seven families: triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral,
hexagonal and cubic. The most common Bravais lattices of the cubic system are
the primitive cubic, body centered cubic (bcc) and face centered cubic (fcc), see
Figure 1.1. As the lattice is repeated periodically the Miller notation is used
because it easily provides the orientation of crystal planes and directions [42].

Figure 1.1: (a) Cubic (b) fcc and (c) bcc Bravais lattices.

In some applications, perfect monocrystals are of prime importance for their
creep properties (e.g., turbine blade), and it requires complex and expensive man-
ufacturing processes. Most common metallic parts have defects that change the
structure of the material and their arrangement are responsible of the properties
of the material. Defects types can be classified into point (0D), linear (1D), planar
(2D) and volume (3D) defects. Vacancies, interstitial, substitutional atoms are
point defects, dislocations are 1D defects, grain/phase interfaces, and stacking
faults are 2D defects, and pores, cracks are 3D defects [43].

The characteristics and properties of defects are complex and have been widely
studied. First, defects can interact, for instance, in irradiated materials GBs
can act as sink or source of defect points [44], also dislocations interact with
GBs [45]. Second, they can change as a function of the material composition; a
recent study using atomic scale characterization has for example revealed a range
of defect patterns of a binary Pt-Au model alloy [46]. Figure 1.2 reveals the
relation between chemistry segregation and defect type [46]. More details about
lattice defects can be found in [43, 47, 48].

This PhD thesis is focused on the study of GBs (2D defects). In the next
section the different terms to define GB structure are presented.
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CHAPTER 1. GB MOBILITY AND LIMITS OF THE MIGRATION
EQUATION

Figure 1.2: Cross-correlative study of a Pt-7 atomic (at) % Au thin film specimen
annealed at 1300 K for 15 min. Each panel shows an atome probe tomography
reconstruction (middle) of each observed defect type, corresponding defect sym-
bols (left), and a diffusive molecular dynamics simulation result (right) in the
colored boxes. The numbers in each box are the Au at % isosurface (Iso) values
for imaging (left) and maximum (max) solute at % near the defects (right). The
red star marks the bulk alloy composition. Image reproduced from [46].

1.1.2 Crystallographic definitions
In addition to point and linear defects inside a crystal, most crystalline mate-
rials are composed of many crystals formed during solidification or under the
influence of a thermomechanical load. Figure 1.3 shows a simulation of solidifica-
tion followed by grain growth using solid seeds with random orientation and GB
anisotropy. Let us consider a domain Ω, of space-dimension d, filled by n grains
Gi ∈ Ω, being open spaces of Ω and defining the set G = {Gi, i = 1, . . . , NG}
with NG the number of grains. The crystals or grains inside a polycrystal have
different orientation (Oi) but can also differ in terms of chemical composition,
shape, volume, etc.

Two neighboring grains Gi and Gj constitute a GB Bij, and the whole set of
boundaries form the GB network Γ. In three dimensions (3D), eight parameters
are necessary to describe the GB: the misorientation between the adjacent crystals
may be defined by three parameters, e.g. the Euler angles φ1, Φ and φ2, the
GB plane requires two parameters to define its unitary normal n⃗ = (n1, n2, n3)
and the translation vector t⃗ = (t1, t2, t3). The knowledge of the GB structure
is then very complex and it may be described mesoscopically in mathematical
terms. At the mesoscopic scale, a GB is considered as a sharp interface and the
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Figure 1.3: Snapshots during polycrystalline solidification with showering and
subsequent grain growth. The gray and color scales indicate the solute concen-
tration in liquid and solid grain number, respectively. Simulation perfomed using
a Multi Phase Field Lattice Boltzmann model. Image from [49].

translation vector is not taken into account. Finally at the mesoscopic scale,
a GB is classically described in a 5D space. The 3 crystallographic properties
describing the orientation relationship between two neighboring grains, Oi and
Oj, can be described by the misorientation matrix Mij = OjO

−1
i , see Figure 1.4.

As such, at the mesoscopic scale the GB may be characterized by a tuple:

Bij = (Mij, nij).

Parameterization of rotation matrices

Grain orientation and GB misorientation are rotation matrices. One can describe
rotations using different parameterization, such as the Rodrigues parameters,
axis-angle, Euler angles, quaternions, rotation vector, Miller indices, to name a
few. The following definitions of rotation matrix can be found in detail in [50].
The Rodrigues parameters are expressed, using the Einstein notation, via the
entries of the rotation matrix as:

ri = 1
2
εijkRjk = − 1

1 +Oll

εijkOjk, (1.1)
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Figure 1.4: Scheme depicting one GB and its parameters. Image available on-
line at Flickr (https://flic.kr/p/2m5JQkz, Uploaded on June 15, 2021 ) li-
censed under CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/,
Uploaded on June 15, 2021). Title: 10GGBParam. Author: Brayan Murgas.

where εijk is the permutation symbol, R = (I +O)−1(I −O) is an antisymmetric
(skew-symmetric) matrix representation of the orthogonal rotation matrix O.
Here the identity rotation is given by ri = 0. The inverse relation is:

Oij = 1
1 + rlrl

((1 − rkrk)δij + 2rirj − 2εijkrk), (1.2)

where δij is the Kronecker delta.
A more intuitive way to represent rotations is via the axis-angle parameteri-

zation. Here a rotation matrix is represented through a rotation angle θ around
an axis a⃗, i.e., O = (⃗a, θ), being θ the magnitude that represents the rotation.
The rotation angle is defined as

2cosθ = Omm − 1. (1.3)

And the unit vector of the rotation axis ai is defined as

ai = −1
(3 −OlmOml)1/2 εijkOjk, (1.4)

this expression is valid if the trace Omm = tr(O) ̸= −1 or 3. Finally, the relation
between (⃗a, θ) and O is

Oij = δijcosθ + aiaj(1 − cosθ) − sinθεijkak, (1.5)

this equation can be obtained substituting ri = aitan(θ/2) in Equation 1.2. It
is important to be aware that there is no unique rotation axis for half turns or
null rotations. Also, one can obtain the same angle θ for different rotation axis a⃗
because of crystal symmetry.
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A more classical parameterization of matrix orientation is done through the
use of Euler angles. The rotation matrix is composed of three rotation matrices,
where each rotation matrix O(n⃗, ω) corresponds to a rotation around n⃗ by the
angle ω. The orientation matrix is composed of three matrices O(e3, φ1), O(e1, ϕ)
and O(e3, φ2), where φ1, ϕ and φ2 are the Euler angles, one can see that two
rotations are done around the z axis and other around the x axis. The individual
rotation matrices are defined as

O(e3, φ1) =

 cosφ1 sinφ1 0
−sinφ1 cosφ1 0

0 0 1

 , (1.6)

O(e1, ϕ) =

1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

 , (1.7)

and

O(e3, φ2) =

 cosφ2 sinφ2 0
−sinφ2 cosφ2 0

0 0 1

 . (1.8)

Hence, the orientation matrix is defined asO(φ1, ϕ, φ2) = O(e3, φ2)O(e1, ϕ)O(e3, φ1)
or may be redefined in its explicit form as

O(φ1, ϕ, φ2) =

 cosφ1cosφ2 − sinφ1sinφ2cosϕ
−cosφ1sinφ2 − sinφ1cosφ2cosϕ

sinφ1sinϕ

sinφ1cosφ2 + cosφ1sinφ2cosϕ sinφ2sinϕ
−sinφ1sinφ2 + cosφ1cosφ2cosϕ cosφ2sinϕ

−cosφ1sinϕ cosϕ

 , (1.9)

Euler angles are frequently used in texture analysis but the information can re-
main limited.

Quaternions are also important in the description of rotations. The advantage
of quaternions over the other parameterization is that one can perform algebraic
operations easier. Quaternions algebra can be derived from the Clifford algebra
(C2 group) [50]. Let eµ, {µ = 0, 1, 2, 3}, be the orthonormal basis of a four
dimensional vector space over real numbers. A quaternion is defined as q =
qµeµ, where qµ are real numbers, for simplicity this definition is representated as
a + bi + cj + dk, where i, j,k are the basic quaternions, the coefficient e0 is the
scalar part and q0 = a, q1 = b, q2 = c and q3 = d. A quaternion for which is
norm |q| = (qµqµ)0.5 = 1 is called a unit quaternion. Unit quaternions represent
rotations, the relation between quaternion components and the rotation matrix
components are

Oij = ((q0)2 − qkqk)δij + 2qiqj − 2εijkq
0qk (1.10)
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or in its explicit form as

O =

(q0)2 + (q1)2 − (q2)2 − (q3)2

2(q1q2 + q0q3)
2(q1q3 − q0q2)

2(q1q2 − q0q3) 2(q1q3 + q0q2)
(q0)2 − (q1)2 + (q2)2 − (q3)2 2(q2q3 − q0q1)

2(q2q3 + q0q1) (q0)2 − (q1)2 − (q2)2 + (q3)2

 , (1.11)

and the inverse relation
qi = ∓ εijkOjk

2(Oll + 1)1/2 . (1.12)

Finally, quaternions are related to the rotation axis ai, rotation angles θ, and
Rodrigues parameters ri, respectively as

ai = q0qi

(q0q0(qkqk))1/2 for q0qk ̸= 0 and ai = qi for q0 = 0, (1.13)

q0 = ±cos(θ/2) and qi = ±sin(θ/2)ai, (1.14)
and

ri = qi

q0 , q
0 ̸= 0. (1.15)

Miller indices are frequently used for texture and orientation analysis. In
mathematical terms the lattice is defined by a set of vectors determined by linear
combinations of the form uiai, where ui are integers, ai are linear independent
vectors and i = 1, 2, 3. If one defines a crystallographic metric as gij = aiaj, its
contravariant gij is determined by gijgjk = δi

k. Miller (plane) indices and (Miller)
direction indices are respectively covariant coordinates with co-prime integer val-
ues and contravariant coordinates of lattice vectors. In practice, Miller indices,
(hkl)[uvw], specifies direction cosines of crystals parallel to a given plane and a
given direction of the sample frame. To obtain the crystallographic plane (hkl)
one has to identify the plane intercepts on the x,y,z axes, specifies the intercepts
in fractional coordinates, and finally, takes the reciprocals of the fractional in-
tercepts. The crystallographic direction [uvw] represents a vector passing from
the origin to a lattice point r⃗, where its components u = r1, v = r2, w = r3 are
the crystallographic direction. If r1, r2, r3 have fractions the components must be
multiplied by their common denominator. The relation between the orientation
matrix and Miller indices is

O((hkl)[uvw]) =

b1 t1 n1
b2 t2 n2
b3 t3 n3

 , (1.16)

with

n⃗ = (h, k, l)
(h2 + k2 + l2)1/2 , b⃗ = (u, v, w)

(u2 + v2 + w2)1/2 , and t⃗ = n⃗× b⃗

|n⃗× b⃗|
. (1.17)
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Due to the symmetry of crystals, Miller indices are generalized to plane and
direction groups using the following notation {hkl}<uvw>.

Figure 1.5: Representation of a rotation. ND, RD and TD are the normal, rolling
and transverse directions. (a) Initial lattice with axes ([100],[010],[001]) parallel
to the reference (sample) axes (x,y,z). (b) Rotation from the reference axes (x,y,z)
to the new axes (x′,y′,z′) represented by the axis-angle (⃗a,θ) parameterization. (c)
Representation of the rotation using the Miller indices, (hkl) is normal to the z
(ND) axis and [uvw] is parallel to the x (RD) axis. (d) Representation of the
sequence of rotations O(e3, ϕ1) (Red), O(e1,Φ) (Blue), and O(e3, ϕ2) (Yellow)
that defines the rotation matrix and the Euler angles. The reference axes are
colored in magenta.

For instance, in Section 3.3.2 the two fixed Euler angles were ϕ1 = 35° and
Φ = 45° which are typical from the Brass Texture (110)[1̄12] with Euler angles
(ϕ1 = 35°,Φ = 45°,ϕ1 = 0°).

Classification of grain boundaries

Misorientation is frequently parameterized with the Rodrigues vector, unit quater-
nions or the axis-angle set. Rodrigues vectors and the axis-angle set are useful for
representing GBs, and quaternions are used to perform efficient computations.
The equations presented before are valid but symmetry must be applied in both
sides of the GB, i.e., Mij = (ScOj)(ScOi)−1, where Sc is the symmetry operator.
Hence, it exists equivalent misorientations without any physical difference, for in-
stance, for the cubic system there are 24 independent operators that correspond
to 24x24x2=1152 equivalent misorientations.
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Due to the number of equivalent misorientations, it is necessary to limit the
rotation space such that there is an unique misorientation. This limited region
is known as asymmetric domain, asymmetric unit, asymmetric region, symmet-
rically equivalent area, fundamental zone or Mackenzie cell [50]. The Rodrigues
(Rodrigues-Frank) space is the more natural representation of the Fundamental
Zone [51]. The Rodrigues parameters, ri, may be expressed as a function of the
disorientation θ and the rotation axis ai as

ri = tan(θ/2)ai. (1.18)

being the three components of this vector the basis of the Rodrigues space. The
fundamental zone for cubic lattices with no sample symmetries is a truncated
cube, see Figure 1.6. The distance from the origin to the octagonal and triangular
facets are normal to the <100> axis (θmax<100> = 45°, ri,max = tan(π/8)), and
the <111> axis (θmax<111> = 60°, |ri| = tan(π/6)), respectively. The maximum
angle is realized at the corners with θ = 62.8°. Thus, the Rodrigues parameters
(r1, r2, r3) correspond to the axis ([100], [010], [001]). Figures 1.6 also shows the
fundamental zone of the cubic-cubic symmetry that has the shape of a truncated
pyramid and is known as the Mackenzie cell.

Figure 1.6: Orientation spaces in the Rodrigues space for cubic lattices. (a)
Cubic-Triclinic (O,C1) symmetry. (b) Cubic-cubic (O,O) symmetry. Repro-
duced from [51].

The misorientation is frequently defined in terms of the axis-angle set i.e.,
Mij = (θ, a⃗). In the computations, one normally takes the minimum rotation an-
gle, called disorientation, obtained with Equation 1.3. Using this representation,
two important types of GBs are classically identified as a function of the disori-
entation: High Angle Grain Boundaries (HAGB) and Low Angle Grain
Boundaries (LAGB). With a disorientation transition from LAGB to HAGB
which is frequently set as 10◦ < θ < 15◦.

Furthermore, if we take into account the misorientation axis, one can define
two important types of GBs: twist and tilt boundaries presented in Figure 1.7.
At particular disorientations, the lattices of the two adjacent grains contain a
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common sublattice that forms a periodic atomic structure. This concept is known
as coincidence sublattices or coincidence site lattices (CSL) [50]. CSL are identified
using Σ, where the value of Σ is the ratio between the number of lattice points in
the CSL and the number of lattice points of the original lattice. This fit between
the two crystal lattices is sometimes related to special GB properties such as low
energy configurations [1]. Some examples of Σ CSL boundaries used in this work
are listed in table 1.1.

Figure 1.7: (a) Boundary plane perpendicular to the rotation axis, (b) boundary
plane parallel to the rotation axis. Reproduced from [52].

Table 1.1: Σ CSL orientation relationship for cubic lattice. The CSL is specified
by a rotation angle around a rotation axis.

Σ Disorientation θ Axis a⃗ Type
1 0.0◦

3 60.0◦ < 111 > Tilt
3 70.53◦ < 110 > Twist
5 36.86◦ < 100 > Tilt
5 53.13◦ < 100 > Tilt
7 38.21◦ < 111 > Tilt
9 38.94◦ < 110 > Twist
11 50.47◦ < 110 > Tilt

Figure 1.8 shows the GB sets <100>, <110> and <111>. The volume is
another view of the fundamental zone in Rodrigues space shown in Figure 1.6.
The 5D nature of the GB can be represented by a point corresponding to the
misorientation and a unit vector corresponding to the GB normal. For instance,
violet Σ3 twin boundary is a pure twist 60° [111] GB, its normal is aligned to the
black line representing the <111> sets.
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Figure 1.8: Geometry of an arbitrary GB in the 5D space can be represented as
a point in Rodrigues space (Misorientation) with an attached unit vector (GB
normal). The GB sets lie along the thick black and blue lines. The most remote
point from the scaffolding sets is shown near the center of the fundamental zone.
Reproduced from [34].

Other classifications of GBs are used in the literature, in [53] GBs are classi-
fied into three broad categories: singular, vicinal and general. In [52], GBs are
classified into two groups: special and random GBs. Singular or special GBs
correspond to CSL. Vicinal GBs have a misorientation near to a CSL. Finally,
general or random GBs are other boundaries.

The GB space B parameterized by the misorientation and the normal direction
is illustrated in Figure 1.4. The two quantities of interest, the GB energy, γ, and
the GB mobility, µ, are maps from B to R+.

1.1.3 Motion of GBs
The motion of interfaces generally tend to decrease the total free energy G per
unit volume (V ). The driving pressure P is defined as

P = −dG

dV
. (1.19)

Motion of interfaces may be conservative or non-conservative [54]. Non-
conservative motion involves long-range diffusion, examples are phase change,
diffusional creep and sintering of polycrystalline materials [53]. In this work
conservative motion is of interest. Conservative motion occurs when the atomic
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fraction of each component in the adjoining crystals are the same (equal com-
position). This motion occurs under quasi-steady conditions and could involve
atom jumps (short-range diffusion), for example the thermally activated motion
of GBs during grain growth. The mechanisms of motion depend on the thermal
activation required and the type of interface. Table 1.2 summarizes some of these
mechanisms.

Table 1.2: Motion mechanisms of sharp (narrow) GBs, from [53].

Mechanism Type of GB
Glissile motion of interfacial dis-
locations

LAGB; singular and vicinal
HAGB; martensitic interfaces

Glide and climb of interfacial dis-
locations

LAGB; Singular or vicinal CSL
HAGB

Shuffling motion of pure steps Singular or vicinal CSL HAGB

Uncorrelated atom shuffling General GBs; general het-
erophase GBs

Uncorrelated diffusional trans-
port

General GBs; general het-
erophase GBs

GB motion could be seen as a generation and destruction of lattice sites at
the interface. Motion could be reduced to jump of atoms across the GB that
generates motion. Assuming a narrow GB, the atoms cross the boundary by
atomic jump with frequency Υ. If the boundary displacement is the diameter of
an atom ba, the GB velocity can be defined as [52]:

v = ba(Υ+ − Υ−) = ba

ν+exp
(

− Q+
m

kT

)
− ν−exp

(
− Q−

m + Pb3
a

kT

), (1.20)

where Υ+ and Υ− are the jump frequencies of atoms in both directions, ν the
attack frequency, Qm the migration free energy, k the Boltzmann constant, T
the absolute temperature, P the net driving pressure and Pb3

a is the free energy
gained when an atom is attached to the growing grain (Ωa = b3

a the atom volume).
Assuming ν+ = ν− = νD (where νD is the Debye frequency) and same free energy
in both directions Q−

m = Q+
m = Qm the velocity may be simplified as:

v = baνDexp
(

− Qm

kT

)(
1 − exp

(
Pb3

a

kT

))
, (1.21)
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if Pb3
a ≪ kT (T ≥ 0.3Tm)

exp
(

− Pb3
a

kT

)
≈ 1 − Pb3

a

kT
, (1.22)

which gives a simplified equation for the velocity of a GB

v = b4
aνD

kT
exp

(
− Qm

kT

)
× P, (1.23)

this model is simple and could be refined, one could, for example, integrate the
influence of vacancies or solute atoms.

In a more general form, GB velocity may be defined, in the unitary normal
direction to the GB (n⃗), as the product of the GB mobility and the sum of driving
pressures P = ∑

Pi:
v⃗ = µP n⃗, (1.24)

the units for the velocity, mobility and driving pressure are
[

m
s

]
,
[

m4

J ·s

] ([
m

s·P a

])
and

[
J

m3

] ([
N
m2

])
, respectively. Sources of driving pressures are of different nature

(Table 1.3), and theoretically any gradient of intensive quantities (electric poten-
tial, interfacial energy, magnetic field, electric field, concentration, etc) could be
a driving pressure, as in the diffusion of species where conjugate forces generate
the fluxes. The mobility described in Equation 1.23 by µ = b4

aνD

kT
exp

(
− Qm

kT

)
is

often simplified at the mesoscopic scale and in hot metal forming context through
an Arrhenius law (thermally activated):

µ = µ0 exp
(

− Q

RT

)
, (1.25)

where µ0 is a constant preexponential factor, Q the activation energy, T [K] the
absolute temperature and R the universal gas constant.

Indeed, in practice the migration of grain boundaries as a function of atom
jumps using Equation 1.23 is difficult to identify. Thus at the polycrystalline
scale, and because the considered T range are often not very wide, rough approx-
imations of Equation 1.23 are classically considered through assuming a constant
value of µ0 or only as a function of the temperature.

Generally during recrystallization, the two main driving pressures are due to
capillarity effects Pc and the difference in stored energy during plastic deformation
Pe, the total pressure is P = Pc + Pe. Pc and Pe are defined classically as [1]:

Pc = −γκ, (1.26)

and
Pe = [[E]] = τ [[ρ]], (1.27)

where γ is the grain boundary energy, κ is the local mean curvature and [[E]] is the
jump of stored energy through the grain boundary. Figure 1.9 illustrates a scheme
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of the driving pressures directions, a negative driving pressure reduces the GB size
while a positive one increases it. Pc points to the center of curvature of the GB,
and Pe points toward the grain with higher stored energy. At the mesoscopic scale
dislocations can be described in terms of density and not individually as in the
case of dislocation dynamics, therefore the stored energy can be approximated
as E = τ × ρ where the energy per unit dislocation line, τ , is approximated
through the relation Gb2

2 , where G and b are respectively the shear modulus and
the Burgers vector. As summarized in table 1.3 other driving pressures may be
present during recrystallization but the driving pressure due to the capillarity and
the difference in the stored energy are two or more orders of magnitude higher in
the context of hot metal forming and when solid/solid phase transformations are
not involved.

Figure 1.9: Representation of the driving pressures between two grains G1 and
G1. The driving pressure produced by capillarity Pc tends to flatten the GB.
The driving pressure produced by stored energy Pe points toward the grain with
higher dislocation density ρ, this driving pressure tends to decrease the total
stored energy of the system. Pc direction can change along the GB. ρ is the
dislocation density which defines the stored energy.
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Source and equation Parameters Estimated
P [MPa]

Chemical driving force

P = R(T1 − T0)c0ln|c0|

c0: concentration, max-
imum solubility at T0;
T1(T0): annealing tem-
perature

∼ 6e2

Stored deformation energy

P = 1
2
ρGb2

ρ: dislocation density;
Gb2

2 : linear dislocation
energy

∼ 10

Grain boundary energy (Capillar-
ity)

P = −γκ
γ: grain boundary en-
ergy; κ: grain boundary
curvature

∼ 0.01

Magnetic field

P = µ0H
2∆χ
2

(cos2(Θ1)−cos2(Θ2))

H: Magnetic field mag-
nitude; ∆χ: difference of
magnetic susceptibilities;
Θ: magnetic field direc-
tion

∼ 3.5e−04

Elastic energy

P = τ 2

2

( 1
E1

− 1
E2

) τ : elastic stress; E1, E2:
elastic moduli of neigh-
boring grains

∼ 2.5e−04

Temperature gradient

P = ∆S2λgrad(T )
Ωa

∆S: entropy difference
between adjacent grains;
T : temperature gradi-
ent; 2λ: grain boundary
thickness; Ωa: molar vol-
ume

∼ 4e− 05

Table 1.3: Examples of driving pressure (in [MPa]) for GB migration, from [52].
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1.2 Experimental Results
Generally speaking, experimental results homogenized at the mesoscopic scale
are consistent with Equation 1.24. Nevertheless, in certain cases the relation is
not strictly verified and large variations of this kinetic equation can be seen at
the GB scale. Measurements of the mobility are difficult because of the number
of parameters affecting it [52]. Also, the developments of predictive models for
the mobility of boundaries are complex because of the symmetries of the crystals
adjoining the boundary and the arrangement of the atoms in the boundary [1].
When studying GB motion, one has to make two crucial decisions: choose a sam-
ple geometry and the driving pressure(s) involved to estimate the GB properties.
Not all the driving pressures are easy to produce in a laboratory. The driving
pressure used in the experiments is chosen based on its reproducibility, magni-
tude, stability, and the possibility to control, e.g., using a magnetic field. During
GG experiments, GB normal velocity is defined as:

v = −µγκ, (1.28)

this equation is a simplification of a more complex equation involving the GB
stiffness tensor Γ(n⃗), i.e., v⃗ = −µΓ(n⃗) : Kn⃗, where Γ(n) = γ + ∇n∇nγ, K is
the curvature tensor, and ∇n the surface gradient. The main issues about the
GG experimental results are that the anisotropy of the GB energy is generally
neglected: Γ(n⃗) is systematically simplified to γ due to the difficulty to evaluate
Γ(n⃗). Finally, µ and γ cannot be dissociated, appearing through the product µγ
(sometimes called reduced mobility) which often leads to inconsistencies in the
literature where the real behavior of µ is frequently confused with that of µγ.

A way to dissociate µ from γ can be to use an additional driving pressure.
Most of the studies are performed using deformed samples involving Pc and Pe,
thus, the GB velocity is defined as:

v⃗ = µ(−γκ+ [[E]])n⃗. (1.29)

It must be highlighted that in this equation, κ and [[E]] are signed scalar
quantities depending on the local GB characteristics and the local direction of
the dislocation density jump across the GB, see Figure 1.9. The driving pressure
produced by the stored energy is uncertain because of its difficulty to be measured
and its non-homogeneity. However, it has been frequently studied due to its
importance in industrial processes.

The aim of the next section is to define the parameters affecting the mobility
and the limits of the Equation 1.25 represented by nonlinearities in Arrhenius
plots and changes in the activation energy based on experimental evidences. The
GB mobility sigmoidal model is introduced, this model is based on experimental
observations and is frequently used in mesoscopic simulations to define GB mo-
bility as a function of the disorientation, µ(θ). These results are part of the first
experimental studies realized to study GB mobility.
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1.2.1 Crystal arrangements

The measurements of GB mobility are mostly carried out in subgrains [55–58]
and bicrystal [59–65] arrangements, Figure 1.10 illustrates some of the geome-
tries used. Polycrystalline arrangements take into account the effect of neigh-
boring crystals and multiple junctions, thus, correlation between mobility and
temperature, pressure, impurity, grain boundary structure, the study of atomic
mechanisms and other specific parameters is difficult to obtain for a particular
GB. On the other hand, bicrystal specimens provide data for a specific GB with a
define misorientation and are reproducible but they are difficult to manufacture.

Figure 1.10: Crystalline arrangements. (a) Wedge technique, (b) reversed cap-
illary technique, (c) quarter loop technique, (d) half-loop technique, (e) Crystal
used in [55], the line in the center represents a scratch, subgrain growth is per-
pendicular to the scratch. From [52].

The use of bicrystals was one of the first methodologies used to estimate the
reduced mobility [52, 59–66]. The first estimations of GB reduced mobility (µγ)
were computed using the wedge technique, reverse capillary technique or quar-
ter loop (QL) technique. The main advantage is the reproducibility of results.
However, this relies on the accuracy of the sample fabrication. Such crystal ar-
rangement requires the use of two (or three) single crystal seeds cut specifically
to create a specific misorientation of the bicrystal (tricrystal). The seeds are then
connected to a polycrystal using local melting and are grown by directional melt-
ing (see [66] for more details). Hence, several defects can be induced, for instance,
porosities during the melting/solidification stage, cracks during the solidification
or even recrystallization nucleation due to work-hardening after cutting the sam-
ple.

Each crystal arrangement has its advantages and disadvantages to estimate
the mobility parameters, crystal arrangements that isolate the migration of the
GB are preferred. GB reduced mobility is calculated from the evolution of ge-
ometrical data: the position of GB tip is followed and its velocity is estimated.
Finally, the driving pressure is estimated as P = γκ, this pressure is different for
the wedge, reversed capillary, QL and half loop (HL) techniques. Hence, the GB
reduced mobility is estimated as µγ = v/κ. The driving pressure using the wedge
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geometry (Figure 1.10a) is computed as:

P = γ

R
= γ

a
, (1.30)

where a is the distance from the edge of the sample to the GB and R the radius
of the GB, see Figure 1.10a. The main advantage of the methodology is the
simple description of the driving pressure and its disadvantage is that the driving
pressure increases as the GB evolves. At the beginning the driving pressure is
small and the external pressures, i.e., grooving, can easily modify the GB motion
until the external forces are overcome. For that reason, the driving pressure can
be underestimated and so the reduced mobility overestimated.

The reversed-capillary method was firstly proposed by Sun and Bauer [67].
The magnitude of the driving pressure can be modified changing the angle α, see
Figure 1.10b and the relation for the driving pressure is given by

P = γ

R
= γ

a
f(α), (1.31)

with f(α) an amplification factor. The main disadvantage of the wedge (Fig-
ure 1.10a) and reversed-capillary (Figure 1.10b) geometries is the lack of steady
state velocity, which was solved using the QL and HL techniques [61].

The QL (Figure 1.10c) and HL (Figure 1.10d) techniques are characterized by
both a transitory movement and a steady state movement. At the steady state
the GB moves as a whole with an average driving pressure defined for the QL
and HL respectively as

PQL = γ

a
and PHL = 2γ

a
. (1.32)

Overall, the best bicrystal techniques are the QL and HL because the grooving
is minimized and they can be extended to triple junctions. We have to keep in
mind that the estimated values of reduced mobility are average for the considered
misorientation because the dependence on the GB inclination is neglected (See a
numerical example in Appendix A.1). Also, the GB energy, γ, is unknown. Thus,
the effects of both GB mobility and energy, are measured simultaneously through
the reduced mobility.

Finally, Humphreys and colleagues [55,57,68] used single crystals of Al under
the assumption of a driving pressure provided by the subgrains following the re-
lation P = cγ

L
, with c a constant equal to 1 or 2 and the GB energy, γ, is defined

using the Read-Shockley model [69] and L the mean linear subgrain intercept.
For HAGB, in addition to the pressure provided by the subgrains, a retarding
pressure is taken into account, its value is given by the relation Pc = 2γmax

R
where

γmax is the GB energy of HAGBs assumed as constant and R is the equivalent
radius of the grain. As it was mentioned before, the value of the driving pressure
is averaged and is affected by the measurement errors. In the following subsec-
tions, experimental results are presented. A significant part of these results was
obtained using bicrystal samples, a simplified view of the capillarity pressure and
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by frequently substituting the notion of reduced mobility for that of GB mobil-
ity. Additionally, thermal grooving affects the motion of GBs, and it affects the
actual identified value of grain boundary mobility. Thus, these existing results
discussed here must be handled with caution.

1.2.2 Mobility regimes
Following discussions proposed in [1], mobility of grain boundaries is often divided
into regions depending on the disorientation, θ. Four regions are identified as
shown in Figure 1.11. Table 1.4 presents the main characteristics of regions A,
B, C1 and C2. The doted lines in Figure 1.11 indicate insufficient experimental
data of region A.

Figure 1.11: Schematic diagram of the regions of GB mobility as a function of
the disorientation. From [1].

1.2.3 Experimental evidence of the sigmoidal model
Knowledge of migration of LAGB is of great importance during recovery and con-
tinuous dynamic recrystallization. Boundary structure of LAGBs is composed of
dislocation arrays. Motion of LAGBs consists in a collective movement of indi-
vidual dislocations produced by shear stress. In [71–75], GB motion is studied
under mechanical stress and it has been shown that the mobility seems dependent
on the misorientation angle. Figure 1.12 illustrates the effect of misorientation
angle on the GB velocity under a constant stress of symmetrical tilt boundaries
in Zinc, this figure illustrates the region A reported in Figure 1.11 but few exper-
imental studies are available in the literature for θ < 1◦. Also, for low values of
θ, we may not talk about a GB but more of a dislocation arrangement. It must
be highlighted that Figure 1.12 reports a tendency of v but it is assumed that µ
have the same tendency because it follows Equation 1.24 with a driving pressure
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Table 1.4: Main characteristics of the regions shown in Figure 1.11. C, cj, b, and
DS are respectively a constant, the concentration of jogs, the Burgers vector and
the coefficient of self-diffusion.

Region Disorientation
θ [◦]

GB mobility
(µ(θ)) Mechanism

A θ → 0 µ = cjb
2

4c1θ

DS

kT

Dislocation climb and
glide [70]

C2 2 − 5 µ = Cb
DS

kT

Dominant mechanisms
not clear, it may be
related to the movement
of dislocations [1]

C1 5 − 15 µ ∝ θ

Atoms transfer (Anal-
ogous to the diffusion
through a membrane of
thickness h)

B θ > 15 µ independent of
θ, equation 1.23

Atom jumps across the
boundary

defined in a particular form:

P = 2τxysin
θ

2
, (1.33)

where τxy is a constant shear stress. This result also illustrates that the GB
mobility definition (µ = v⃗/P ) can often be experiment or model dependent which,
somewhere, complexify the global discussion concerning the effective parameter
impacting the GB mobility.

Other studies of GB motion under the influence of a shear stress were carried
out by Gorkaya et. al [65, 72–75]. Experiments of tilt boundaries in high purity
aluminum have shown a transition of the GB mobility at θ ≈ 13.6◦ at 573 and
873 [K] (0.61Tm and 0.93Tm), see Figure 1.13. At 873 [K], the mobility of LAGB
is higher than the mobility of HAGB. In [72] the activation energy, Q, obtained
from the two different tilt boundaries (<112> and <111>) are similar. In [72],
the authors have also exhibited a difference of the activation energy between
LAGBs and a HAGBs, QLAGB =123.5 [kJ/mol] and QHAGB =81.05 [kJ/mol].
In [72], QLAGB and QHAGB are similar to the activation energy of self-diffusion
in aluminum and grain boundary diffusion, respectively.
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Figure 1.12: GB velocity of symmetrical tilt boundaries at 350◦C under a constant
stress of 63.4 [kPa] in Zinc as a function of disorientation. Taken from [1] from
the work of [71].

(a) (b)

Figure 1.13: Dependence of the grain boundary mobility on the misorientation
angle of symmetrical planar <112> and <111> tilt boundaries under the influ-
ence of stress of high purity aluminum at (a) 573 [K] and (b) 873 [K]. From [72].

In [65], motion of curved and planar tilt boundaries are compared, the driving
force of the planar GB is defined by Equation(1.33) and regarding the curved GBs
the authors used the QL technique, the driving pressure is defined as P = γ/a
leading to

v = −µγ

a
, (1.34)

with a the width of the QL bicrystal, see Figure 1.10. The authors found different
migration mechanisms for planar and curved GBs based on the behavior of the
activation energy and a different dependence of the activation energy on the GB
disorientation. These results however neglected the anisotropic nature of γ and
took it as a constant, γ = γmax. In [2], a new equation of GB migration was
proposed under the assumption that GB migration is controlled by the motion
of linear defects, thus the driving pressure is divided into a driving pressure
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associated with shear stress and the second is associated with surface energy
reduction in the system, i.e., capillarity.

Humphreys et al. carried out several studies using aluminum alloys. The au-
thors have shown one of the first EBSD in-situ techniques that allow the tracking
of crystals and opened a new way to study the evolution of microstructures. How-
ever, one issue is encountered: how recrystallization was induced, for instance,
the surface is abraded [68] or a scratch is done in the middle of the sample [55],
hence the experiments are hard to reproduce. Even so, they reported the mobility
dependence on the misorientation angle of region C2, see Figure 1.14. Also, the
data fit the power law µ0 = kθC (k = 3×10−6 [m4/Js] and C = 5.18) represented
by a solid line [68].

Figure 1.14: Effect of the average grain disorientation on the mobility of LAGB
using high purity Al − 0.005%Si alloy at 300◦C. From [68].

Some characteristics of LAGB have been reported by Bauer et. al [59, 67].
The measurements were performed using the reversed capillary technique. GB
mobility measurements are indirect using the expression a2/f(α) = 2µγt where
a is the wedge displacement of the hyperbolic GB generated by capillary forces,
t the annealing time and f(α) is a parameter related to the geometry of the GB.
K is a normalized parameter, it may also be defined as a pseudo reduced mobility:

K = 2µγf(α). (1.35)

It means that these results are related to the tip of the GB. Thus, the GB is
subjected to surface grooving, and once again, its change in normal direction
is neglected. On the other hand, the driving pressure is not constant. Figures
1.15a and 1.15b show the GB mobility and activation energy dependence on
disorientation for sodium chloride and copper, one can see that QLAGB > QHAGB.
The same tendencies are depicted in Figure 1.13b. Also, the activation energy of
LAGB of copper QCu,LAGB is close to the activation energy in self diffusion and
QNaCl,LAGB is close to the diffusion of Cl− in NaCl.
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(a) (b)

Figure 1.15: (a) Variation of the activation energy with misorientation angles
around the axis <100> of NaCl bicrystals, from [67]. (b) Variation of the reduced
mobilityK ′ with temperature and the misorientation angle for high purity copper.
The unit of the activation energy Q are [kJ/mol], from [59]. Both experiments
were carried out using the reversed capillary technique.

Several investigations of boundary mobility in aluminum have been reported
[56, 68, 76]. In [56], the annealing behavior of cube-oriented crystals is stud-
ied (Figure 1.16a). It was found, for different temperatures, that the mobility
increases with misorientation and reaches a plateau which is consistent with re-
gions C1 and B as illustrated in Figure 1.11. For these two regions, a sigmoidal
empirical relation between µ and θ has been proposed and is classically used [77]:

µ = µmax

1 − exp

−B
(
θ

θ0

)A
, (1.36)

where µmax is the mobility of HAGB (supposed to be constant), θ0 the misori-
entation angle when the boundary could be defined as HAGB and two constants
A and B; in [68] A = 4 and B = 5. Equation 1.36 may be redefined in order to
introduce the effect of the temperature as a result of the difference between the
activation energies of LAGB and HAGB as seen in Figures 1.15a and 1.16b using
a sigmoidal relation.
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(a) (b)

Figure 1.16: (a) Variation of the mobility with temperature and the misorien-
tation angle for Al − 0.05%Si. Combined results of subgrain growth in crystals
of Goss and Cube orientation. From [1]. (b) Effect of the misorientation angle
on the activation energies (Q) in Al − 0.05%Si measured from subgrain growth.
From [56]. Both experiments were carried out using the single crystal technique.

These results show the experimental framework of the model frequently used
to describe GB mobility in mesoscopic models of GG and ReX. However, they
are based on 2D data, GB energy is assumed to be isotropic and the GB stiffness
tensor is neglected. New methodologies to estimate GB mobility have emerged
and intend to give a better insight of the GB properties and motion mechanisms.
In the next two subsections, additional results are presented and the limitations
of the classical mesoscopic GB migration equation (Equation 1.24) are discussed.

1.2.4 Limitations and transitions: Non-continuous Arrhe-
nius plots and different disorientation dependence

HAGB have been studied in more details than LAGB. The effect of temperature,
misorientation, boundary plane, impurities and point defects must be studied
to understand the grain boundary migration in more complex materials such as
alloys with the aim to take them into account in the numerical description of GBs
at the mesoscopic scale.

The effect of temperature

As seen above, the activation energy gives an idea about the thermally acti-
vated atomic processes. Constant activation energies over a temperature range
as seen in Figure 1.15b are typical of high purity materials. In alloys and low
purity materials, transition temperatures are important and should be taken into
account leading to different activation energies depending on the temperature
ranges [61, 78, 79].
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• Change in the boundary structure: Rutter and Aust [78] have shown
the temperature and misorientation angle dependence of the activation en-
ergy in bicrystals of high purity lead for <100> tilt boundaries. Activation
energies in CSL boundaries are lower due to a change in the structure
and/or the presence of impurities. Activation energy changes were also ex-
hibited by Maksimova et al. [61] for boundaries within 1◦ of the Σ17 (28◦) in
99.9999% purity Tin. Figure 1.17 shows a drop in mobility around the Σ17
boundary while increasing the temperature. The change in the activation
energy at high temperatures is explained by the authors as resulting from
a grain boundary structure change, within the temperature range used in
their experiments where diffusion coefficients of boundaries are similar to
that of liquids, between 0.94Tm and 0.98Tm.

• Change in the mechanisms of boundary migration: Several exper-
iments in pure lead and zinc at elevated temperatures (T > 0.7Tm) have
shown a transition regime to low or zero activation energy, this transfor-
mation may be related to an evolution from a diffusion mechanism to a
cooperative atomic shuffle [1].

Figure 1.17: Discontinuity in the migration of boundaries under capillary driving
pressure. Temperature dependence of the <001> tilt boundary migration rate in
Tin using a constant driving force. Boundaries within ≈ 1◦ of the Σ17 boundary:
(a) 26◦, (b) 26.5◦, (c) 27◦, (d) 27.7◦, (e) 28.2◦ and (f) 29.5◦, from [61].
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The effect of the GB misorientation

Several authors have found that crystals grow rapidly when having boundaries
with certain disorientation. Kronberg and Wilson [80] postulated that it exists
a relation between fast growing and the structure of the involved boundaries,
i.e., special boundaries. Humphreys and Huang carried out investigations in
aluminum [55] using a cylindrical crystal depicted in Figure 1.10 and a scratch to
induce recrystallization. Figure 1.18 shows the effect of both misorientation angle
and the angle from the <111> axis on the GB migration velocity. As one can see,
the beginning of Figure 1.18a shows a similar tendency of the sigmoidal model
but after 40◦, the grain relative velocity decreases. However, it is important to
point out that the authors analyzed the movement of GBs in 2D. Also, the stored
energy is approximated as

ED =
2γmax

θ̄G

θ0

(
1 − ln

θ̄G

θ0

)
L̄

, (1.37)

where L̄ is the mean linear grain intercept, θ̄G the mean grain disorientation and
γmax the GB energy of HAGBs.

(a) (b)

Figure 1.18: Relative boundary migration rates in a deformed single-phase Al-Si
alloy using the single crystal technique. (a) Relative migration variation with
misorientation angle. (b) Relative migration variation with deviation from a
<111> axis. From [55].

Another example where the sigmoidal model of GB mobility seems not rep-
resentative anymore is frequently found in materials with high impurity levels.
Shvindlerman and colleagues carried out experiments in aluminum at different
percentages of purity of tilt boundaries. Figures 1.19a and 1.19b show the effect
of the disorientation on the reduced mobility and the activation energy. The

40



CHAPTER 1. GB MOBILITY AND LIMITS OF THE MIGRATION
EQUATION

advantage of these experiments, using capillarity driving pressures, is to study
particular bicrystal configurations. Figure 1.19a shows a peak at θ = 38.2◦ (Σ7
twin boundary (TB)) and a transition at θ = 40.5 ◦. The two disorientations have
two different values of activation energy, also, the reduced mobility of <111> tilt
boundaries of 40.5◦ is higher at elevated temperatures whereas at low temper-
atures the reduced mobility of 38.2◦ is higher. This transition of the dominant
disorientation may be related to grain boundary structure change and solute drag
as seen in Figure 1.19b where the activation energy is lower near CSL configura-
tions.

(a) (b)

Figure 1.19: (a) Effect of temperature and disorientation on the reduced mobility
of <111> tilt boundaries in 99.999%Al determined by curvature driven grain
growth. From [81]. (b) Disorientation and purity dependence of the activation
energy for migration of different purity of <100> tilt boundaries in aluminum.
From [82].

Experimental investigations [56, 81] have reported a relation between the ac-
tivation energy Q and the preexponential term µ0 summarized in Equation 1.38.
α and β are constant for a similar type of boundaries (tilt or twist). This relation
is known as the compensation effect, observed in thermally activated processes
like grain boundary diffusion or grain boundary migration, and is defined as:

Q = αln|µ0| + β. (1.38)

The compensation temperature Tc = α
k

highlights two regions: above Tc, the
higher is µ0 the higher is Q as shown in Figure 1.19a, while for T < Tc the higher
is µ0 the lower is Q.

These results reveal a complex behavior of GB motion as a function of solute
concentration and temperature which makes the study of GBs more complex. To
the author’s knowledge, this kind of study has never been done in steels or other
alloys, this is discussed in the following section (Section 1.2.5).
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The effect of the boundary plane

GB plane effect on the GB mobility has also been reported [1,5]. Twist boundaries
can grow slower than tilt boundaries as seen in Figure 1.20, which is a clear
evidence of oriented growth.

Figure 1.20: Optical micrograph of lenticular grains, viewed edge-on in a recrys-
tallizing single crystal of Al− 0.05%Si. The broad face is parallel to the rotation
axis, i.e. tilt boundary. From [83].

1.2.5 The effect of impurities and point defects
Until now, experimental results of high purity materials have been shown. In
real materials, impurities and solutes must be taken into account in order to
enhance the description of GB properties. The GB mobility can be decomposed
into intrinsic and the extrinsic components, denoted as µi and µe (also called
“solute atom drag mobility”), respectively [54,59]. Results shown in the previous
sections represent the intrinsic mobility when the impurities do not affect the
values of the mobility and the Arrhenius plot of equation 1.25 is globally verified.

Effect of solute concentration

The velocity of a GB is affected by the presence of impurities or solutes that
produce a drag pressure Pd = Pd(v, C, T ), where C is the solute concentration [54].
In order to find the relation between the GB velocity v(p, C, T ) and its interaction
with the solutes, the applied pressure P is approximated to the sum of the drag
pressure Pd and the intrinsic pressure Pi (i.e. the driving pressure that would
move the boundary at the same velocity v without impurities):

P (v, C, T ) = Pi(v, T ) + Pd(v, C, T ) . (1.39)

If equation 1.39 is multiplied by v, it could be seen as the energy dissipated by
the intrinsic migration and the drag effect

Pv = Piv + Pdv . (1.40)
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Finally, dividing equation 1.39 by v, a relation between the mobility and its
components µi and µe can be expressed as

1
µ

= 1
µi

+ 1
µe

. (1.41)

In addition to the GB mobility dependence on impurity species, concentration and
distribution, P depends on GB pinning, surface drag and thermal grooving at free
surfaces. Figure 1.21 shows two different regimes in function of the concentration
of Mg and Cu solute atoms in Al: at high concentration the GB mobility is low
and at low concentration the GB mobility is higher and does not vary strongly
with concentration. Figure 1.21a shows that at high concentration the solute
atmosphere affects the GB migration whereas in the high GB mobility regime the
GB is not affected by the solutes. In addition, the nature of the solute atom alters
the transition of the two velocity regimes (see Figure 1.21a) and the activation
energy transition as shown in Figures 1.21b and 1.21c.

(a) Effect of Cu and Mg on v. (b) Effect of Mg on Q. (c) Effect of Ag on Q.

Figure 1.21: Effect of impurities on the growth of new grains in deformed alu-
minum. From [84].

Combined effect of temperature and solute concentration

The effect of temperature is indirectly linked to the activation energy Q. Here the
term apparent activation energy is used because it may not correspond to only one
physical mechanism. In Figure 1.22a, a peak is found at high temperatures for
GB mobility in Au with 20 ppm Fe, the apparent activation energy is lower and
the GB mobility increases abruptly. In other cases, a peak is found depending
on the concentration of the solute atom as seen in Figure 1.22b for aluminum.
This transition is due to the interaction between the solutes and the GB, this
interaction could be explained using the concept of GB adsorption and could be
divided into four segments. The first is characterized by Q independent of the
concentration C. The second is characterized by an increase of Q with increasing
C. The third is characterized by a decrease of Q, this means that not all the
solute atoms moves within the boundary. Finally the GB adsorption is saturated
and Q remains constant.

43



CHAPTER 1. GB MOBILITY AND LIMITS OF THE MIGRATION
EQUATION

(a) (b)

Figure 1.22: Effect of temperature on grain boundary migration. (a) Effect of
the temperature on the migration velocity of a 30◦ <111> tilt boundary in gold
with 20 ppm Fe. From [1] according to the work of [85]. (b) Effect of Cu on the
activation energy of boundary migration in aluminum. From [1] according to the
work of [86].

Combined effect of solute concentration, orientation and temperature

As it has been shown, GB mobility and structure are related. Random and special
GBs dependence on the solute concentration differs. Both types of GBs have
similar mobilities at low concentrations but when the concentration increased
random GBs change more drastically as seen in Figure 1.23. The effect of the
disorientation on the activation energy and the reduced mobility of tilt boundaries
is shown in Figures 1.19a and 1.19b. In both figures, for a certain amount of
solute concentration, the GB mobility reaches a peak at disorientation near the
Σ5 CSL site. Nevertheless, this behavior is not general for all impurity levels.
In Figure 1.19b, for aluminum of 99.99995% purity, the activation energy does
not fluctuate and for aluminum of 99.89% purity the disorientation effect on the
activation energy is lower. The peaks at the CSL disorientation may be link to a
less constraint GB structure where atoms could diffuse along or across the GBs.

The temperature effect on the mobility of grain boundaries also seems more
complex than generally considered. Experiments of <100> tilt boundaries on
aluminum [82] and lead [78] have reported the combined effect of temperature
and misorientation as seen in Figure 1.24. At high temperatures the boundary
velocity tends to be constant for HAGBs, this may be due to the detachment of
the solute atmosphere from the boundary.

These results confirm the GB mobility dependence on the disorientation (and
more generally on misorientation) under the influence of impurities or solute
atoms. Also, the effect of the solute concentration depends on the temperature.
Point defects have been investigated but their interpretation is more difficult
because they interact with linear and superficial defects. Also, it has been re-
ported that point defects accelerate the diffusion and migration of boundaries (in
accordance with theories of diffusion [53]).
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(a) (b)

Figure 1.23: Effect of tin on (a) the rate of grain boundary migration at 30◦ and
(b) the activation energy of random and special boundaries in lead. From [87,88].

Figure 1.24: (a) The effect of temperature and misorientation angle on the ve-
locity of < 100 > tilt boundaries in lead, Image from [1] according to the work
of [78]. The effect of temperature and misorientation angle on the mobility of
< 100 > tilt boundaries of 99.9992% Al (b) and 99.99995% Al (c), image from [1]
according to the work of [82].
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1.3 New methodologies to estimate the GB mo-
bility

As the computational tools evolved, GB mobility and energy could then be es-
timated separately using Molecular Dynamics [58, 89–91]. However, the time
and length scales are very short compared to those of real annealing phenom-
ena such as recrystallization and grain growth. Another methodology has been
used for estimating GB reduced mobility values, mixing both experiments and
simulations and reverse engineering, thus the time and length restrictions are
overcome [92–96].

In the following subsections, some examples of the aforementioned method-
ologies are presented.

1.3.1 3D estimation of GB reduced mobility values of poly-
crystals using synchrotron and tomography analysis

3D visualization of microstructures allows to study the evolution of microstruc-
tures in a more realistic way. 3D visualization have been carried out using
micro-focused high-energy X-rays [97], synchrotron radiation X-ray diffraction
contrast tomography (SR-DCT) [92], atom probe tomography (APT) [98], op-
tical microscopy or SEM combined with serial sectionning or focused ion beam
(FIB) [99]. Among those 3D characterization techniques, only the first one is
non-destructive and allows for measuring the GB position at different stages of
the evolution. Based on SR-DCT, laboratory X-ray diffraction contrast tomog-
raphy (LabDCT) has been further developed and relatively large samples can be
studied with an acceptable accuracy (SR-DCT: grain size resolution (diameter):
5 µm, GB spatial resolution: 1.5 µm and angular resolution: 0.1◦; LabDCT: grain
size resolution (diameter): 7.6 µm, GB spatial resolution: 1.9 µm and angular
resolution: 0.1◦) [95]. Thus, it became possible to study the influence of GB crys-
tallographic parameters and also the interaction between GBs in 4D. Using this
technique, GB properties are computed using reverse engineering: GB are char-
acterized experimentally, the initial microstructure is immersed in a digital twin
microstructure, the heat treatment is simulated and GB properties of individual
GBs are fitted in order to obtain a similar microstructure evolution [92–95].

The 3D data acquisition combines absorption contrast tomography to obtain
the phase topography and diffraction-based tomography to obtain the crystal
orientations and stress state. After acquisition, data are processed through the
following steps:

• Segmentation and indexing of diffraction spots,

• Reconstruction and segmentation of individual grains,

• Assembly of grains into the sample volume.
Hence, the experimental set of grains Gexp is obtained. The fitting approach con-
sists in comparing the evolution of the numerical (Gsim) and experimental set

46



CHAPTER 1. GB MOBILITY AND LIMITS OF THE MIGRATION
EQUATION

of grains. In [92, 93, 96], numerical simulations are performed using the phase
field method [100]. At t = 0 s, the experimental microstructure is reconstructed
such that Gexp(t0) = Gsim(t0). The optimization step aims to find the set of
reduced mobility values µγ = {µγ11, µγ12, · · · , µγnn} to minimize the cost func-
tion fcost(t,µγ) = ∑

ij f
cost
ij . In [92, 93], the authors proposed to consider a cost

function for each grain boundary Bij

f cost
ij (ϕsim

i , ϕexp
i , ϕsim

j , ϕexp
j ) =

∫
Bij

(ϕsim
i (µγij) − ϕexp

i )2 + (ϕsim
j (µγij) − ϕexp

j )2dx,

(1.42)
where ϕ are the distance functions from the experiments and simulations. The ini-
tial reduced mobility is estimated using the same methodology presented in Chap-
ter 4 to compute an average reduced mobility value (µγ = µγ), then GB prop-
erties are fitted in order to match the experimental microstructure. Figure 1.25
shows a comparison between the experimental and numerical data from [93].
Even with the average initial reduced mobility value most of the GBs are alike
in 2D and 3D. In [93], the GB reduced mobility values show no correlation with
the GB crystallographic parameters. Two GBs with the same misorientation and
similar GB morphology can have different values of the GB reduced mobility.
These results may arise from the fact that the heterogeneity of the GB reduced
mobility is not properly described and the effect of the GB inclination and torque
terms (GB stiffness tensor) are neglected, hence, the GB reduced mobility may
be seen as an average value for a given misorientation.

These results are really interesting and open a new way to study microstruc-
tures in 3D with high resolution (in Figures 1.25 and 1.26, grain orientation and
GB positions were mapped with resolution of 0.1◦ and 1.5-3 µm, respectively)
and capturing the 5D nature of GBs. However, the GB mobility cannot be dis-
sociated from the GB energy, this may be the reason to not have a clear relation
between GB reduced mobility and its crystallography. Another advantage of this
technique is that it opens the possibility of studying the GB stiffness tensor in
real microstructures.
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Figure 1.25: Comparison of experimental and simulated GBs in pure iron an-
nealed at 700◦C for 30 minutes. The annealing step is 5 minutes. (a) Comparison
of a 2D section of the 3D microstructure obtained after simulating GG with the
initial average reduced mobility. (b) The same as (a) but using fitted reduced
mobility values. (c) One grain at time step 4. (d) Experimental and (e) numerical
evolution of one grain using the fitted reduced mobility values. Figure from [93].

Figure 1.26: Fitted GB reduced mobility values of 344 GBs in iron as a function
of (a) disorientation, (b) misorientation (in the Rodrigues-Frank space) and (c)
GB inclination. Figure from [93].
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1.3.2 Estimation of GB mobility using molecular dynam-
ics

Molecular dynamics (MD) is one of the most effective simulations tools to inves-
tigate the behavior of materials at the atomic scale. The main limitations of MD
simulations are the time and length scales, for that reason most of the simula-
tions in polycrystalline microstructures are limited to some µm and ns. Most of
the MD studies are then focused on few GBs, and also there are no studies on
polycrystals with thousands of grains. Thanks to current developments on this
domain, this issue could be overcome in a near future [101].

The motion of atoms is governed by the Newton’s equation of motion

maa⃗a = f⃗a, ∀r⃗a ∈ Ω (1.43)

where ma, a⃗a and f⃗a are the mass, the acceleration and the force vector on the
atom a. The LAMMPS code [102], which is one of the most used MD code, solves
this equation using the velocity-Verlet time integration scheme.

The appearance of Molecular Dynamics provided new methods to estimate GB
properties allowing to overcome the difficulty of manufacturing crystals. This
approach has been applied to different geometries such as the shrinking circle
(sphere) [103,104], the HL geometry presented above [105,106], bi/tricrystals with
planar GBs [58, 89–91, 107–113] and polycrystals [12, 114]. The first estimations
of GB mobility were carried out using the HL geometry but two problems arose
from those simulations: the GB reduced mobility is average and isotropic.

A flat GB was considered by Janssens et al. to overcome the issue of the GB
anisotropy and concentrate the study on a specific misorientation [89]. Most of the
MD calculations of GB mobility performed so far are based on this methodology
[58, 89–91]. The authors proposed an orientation-dependent artificial potential
uξ(r⃗i) where r⃗i is the position vector of atom i. This artificial force induces the
motion of GBs as it occurs when stored energy differences exist between grains,
with one grain containing stored energy being consumed by the other with lower
energy. This methodology can be used to model flat or curved GBs and the
simulations are carried out during short MD times.

The well-known surveys carried out by Olmsted et al. used Janssens’ method-
ology [89] and the embedded atom method (EAM) to study GB mobility in pure
nickel [90]. The authors found different effect of many variables on the GB
mobility. Figure 1.27 shows the value of GB mobility as a function of the dis-
orientation for different types of GB (special and general GBs), one can see that
the sigmoidal model described above does not describe the dependence on the
disorientation. The main reason for this difference is the simplification of the GB
description (5D space) to a simple angle, the disorientation. In [58], the authors
showed a complex dependence of GB mobility on temperature using MD. Ni GBs
have shown different behaviors in terms of GB mobility: traditional thermally
activated, non-thermally activated, mixed modes and boundaries that cannot be
classified.
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Figure 1.27: GB mobility as a function of disorientation for EAM Ni at 1400K (a)
for 388 GBs and (b) for 285 GBs with low shear-coupled motion. The symbols
represent the GB type. The solid line is the GB mobility resolution limit of the
MD simulations in terms of relative shear. Image from [90].

As a matter of fact, the real crystallographic dependency of the GB mobility
is more complex, in [104] the authors used the data from [90] and showed the
dependency of the Σ3 twin boundary on the misorientation. Figure 1.28 shows
the GB mobility of the Σ3 twin boundary as a function of the GB inclination.
Comparing Figures 1.27 and 1.28, one can see that the disorientation is not
a variable that can fully describe the crystallographic dependence of the GB
mobility.

Figure 1.28: GB mobility as a function of the GB inclination for Σ3 TB using
the functional fit µ(θ, ϕ) = 1.527 - 0.535 cos(2θ) - 0.361 cos(4θ) - 0.976 cos(6ϕ)
+ 0.410 cos(6ϕ) cos(2θ) + 0.359 cos(6ϕ) cos(4θ) - 0.392 cos(12ϕ) and with data
coming from [90]. Image from [104].

Thanks to the recent MD results and the recent developments of GB met-
rics [115–121], analytical models have been proposed to define the GB energy
landscape in the 5D GB space [34]. MD simulations allow to study GB prop-
erties that remained poorly known, but with limits in time and length scales.
The time scale is classically limited to some ns. Moreover, the length scale is
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limited to a few nanometers and very few studies have been carried out on poly-
crystals [12, 114]. Several methods have been developed to extend the MD time
scale, for instance, the collective variable-driven hyperdynamics [101], but these
methods are still in development.

Even if MD studies can give a detailed idea of the behavior of GB properties,
one must keep in mind that these results remain also numerical estimations, and
the results in alloys, steels, or other polycrystalline materials with more than
one element in their composition may be different due to the effect of impurities,
driving pressures or interactions with other GBs. Nevertheless, the observations
of MD results can give an idea of the behavior of GBs that can be used for
enriching mesoscopic models of GG and ReX.

1.4 Disconnection models and mobility tensor
As shown before, several experimental results have shown a good fit between µ vs
T using the Arrhenius equation. However, some experimental results exhibited
transitions at given temperatures (see Figure 1.17) and molecular dynamic sim-
ulations [58, 90, 122] have revealed atypical behaviors where GBs are immobile,
anti-thermal, thermally activated, thermally damped, T-independent or mixed .
Additionally, we have seen that GB velocity is sensitive to the crystallography,
composition and driving pressures. The limits of the classical GB motion equa-
tion v⃗ = µP n⃗ is then more and more discussed, at yet at the GB interface scale.
New models of GB motion have emerged via line defects known as disconnec-
tions [54, 123]. GB disconnections may be defined by a Burgers vector b⃗ and a
step height h. Hence, different modes of steps and dislocation motion produce an
enhanced spectrum of GB migration mechanisms.

In [124–127], GB mobility has been presented as a non-intrinsic property that
depends on the driving pressure. With this in mind, in [128], GB mobility has
been redefined as a 3 × 3 tensor with a new coordinate system such that the GB
normal is parallel to the e1 axis and its first component µ11 represents the classical
GB mobility defined in Equation 1.24. µ1j (j ̸= 1) and µij (i, j ̸= 1) represents the
shear coupling and GB sliding, respectively. Thus, the GB mobility tensor links
the velocity to the vectorial net driving pressure (Pi) through a matrix product
(written here using the Einstein summation notation):

vi = µijPj, (1.44)

where Pj = −∂G/∂uj and vi = u̇i with ui = (u1, u2, u3) being the generalized
displacement. One may redefine Equation 1.44 explicitly as:

v1
v2
v3

 =

µ11 µ12 µ13
µ21 µ22 µ23
µ31 µ32 µ33


 P1 = P
P2 = σ12 = τ12
P3 = σ13 = τ13

 (1.45)
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where τ12 and τ13 are shear stresses applied along the e2 and e3 directions which
define the GB plane. Continuum disconnection models are presented in more
detail in the next chapter.

1.5 Summary and discussion
GB migration has been presented, this literature review was focused on the grain
boundary mobility and the parameters affecting it. Firstly, the definitions used
throughout the text and the motion of GBs were presented: lattice, defects,
GB structure, types of GBs, motion of GBs and driving pressures. Secondly,
experimental results have shown that the behavior of high purity metals follow
the sigmoidal model being functions of the disorientation, θ. Finally, MD results
and a new model based on disconnections using a tensorial GB mobility was
briefly presented.

Most of the experimental results focused on a specific type of GBs using
bicrystals or tricrystals. Experimental data is usually compared to the follow-
ing equation µ = µ0exp(−Q/RT ). Using Arrhenius plots, the activation energy,
Q, can tehn be estimated but, in fact, GB mobility depends also on the mis-
orientation, impurity concentration or GB type. For high purity materials, the
Arrhenius plot is linear which means the presence of a unique mechanism of GB
motion. Additionally, the results with high purity materials revealed a sigmoidal
model that can be used to relate disorientation and GB mobility.

However, experimental results become more complex when the material gains
in impurities or is composed of more than two elements. The problem with the
Arrhenius equation is that it does not work all the time (see Figures 1.17 and
1.22). All those effects may be linked to the GB structure: first, at high tempera-
tures the GB structure can change and the migration mechanism as well; second,
at certain temperatures the effect of impurities is more pronounced resulting in
activation energies or mobilities oscillating as the misorientation angle increases.
At low temperatures solute atoms do not diffuse easily and at certain misorien-
tation angles, the GB structure captures the solute atoms in the boundaries and
the GB mobility is then reduced.

The experimental results have shown the complexity of GB motion. One
major issue is generally the simplification to 2D analysis instead of 3D, meaning
that some information are neglected. Thanks to MD simulations, the GB mobility
was estimated as a function of the GB inclination for general and special GBs,
thus completing the 5D space, but these results haven’t been, at yet, confirmed
experimentally. GB mobility is then a very complex topic, intensively studied in
the state of the art, with sometimes contradictory conclusions.

This work is composed of an experimental and numerical part. In the next
chapter, the literature review is completed with the introduction of different nu-
merical approaches used to model grain growth at the mesoscopic scale that
account for anisotropic/heterogeneous GB properties. Special attention is given
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to the framework used during this work combining Finite Element (FE) methods
and Level Set (LS) functions.
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1.6 Résumé en Français du Chapitre 1
Ce chapitre présente les bases théoriques et concepts importants utilisés tout
au long de ce texte. Il est divisé en différentes parties décrivant: les concepts
du polycrystal et de migration des joints de grains, les résultats expérimentaux
de l’état de l’art pour estimer la mobilité des joints de grains et finalement,
l’introduction du concept des disconnections.

La mobilité est souvent décrite comme thermiquement activée avec un modèle
de type Arrhenius. La base expérimentale du modèle Sigmoidal est également
présentée. Ce modèle est fréquemment utilisé pour décrire la mobilité en fonction
de la désorientation dans les calculs à champs complets à l’échelle mésoscopique.
Les limites de l’équation d’Arrhenius sont mises en évidence. Elles sont notam-
ment liées à l’effet de la composition chimique, de la température, du changement
de type de joint de grains ou de changements de mécanismes de migration.
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Chapter 2

Accounting for anisotropic grain
boundary properties using
different numerical methods at
the mesoscopic scale

GG modeling has been widely studied at the mesoscopic scale with a large variety
of numerical approaches: multi phase-field [7–9], Monte Carlo [10,11], orientated
tessellation updating method [13], vertex [14], front-tracking Lagrangian or Eule-
rian formulations in a FE context [15–17] and FE-LS [18–20], to cite some exam-
ples. Most of the models are based on (or verify) the classical velocity equation
given by Equation 1.24.

One can classify the full-field approaches with respect to the definition of GB
properties. The first models proposed in the literature defined GB properties
as constants, carrying the name of Isotropic, [7, 10, 18, 21, 22, 129], this category
shows good agreement in terms of mean quantities and distributions, nevertheless,
they are restrictive in terms of the grains morphology and texture predictions.
The models evolved in order to reproduce more complex microstructures or local
heterogeneities, such as twin boundaries. Heterogeneous models were proposed,
in which each GB has its own energy and mobility [11,19,20,23–30,130–133]. In
general, every grain is related with an orientation, thus the mobility and energy
can be computed in terms of the disorientation [8,20]. Finally, general frameworks
in which the five parameters, misorientation and inclination are discussed, have
been proposed, these models could be categorized as fully anisotropic [31,32,134].

This chapter aims to show the implementation of heterogeneous or anisotropic
GB properties in the aforementioned approaches, and also, to discuss their advan-
tages and disadvantages. First, the Vertex, Phase Field, Monte Carlo and Cellular
Automata approaches are presented, including the details about the introduction
of heterogeneous or anisotropic GB properties. Finally, the Finite-Element Level-
Set (FE-LS) formulations used along this work are presented.
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A part of the work presented in this chapter has been published in [134,135].

2.1 Full Field modeling approaches

2.1.1 Monte Carlo
The first Monte Carlo (MC) mesoscale approach for microstructure evolution was
proposed in 1984 by M. P. Anderson et al. in [21]. As for CA approaches, the
microstructure is represented into a regular lattice. Each lattice site is defined by
an orientation Oi in the form of an integer between 1 and Q. The GB are defined
using the edges between two lattice sites of different orientation. GB energy is
classically defined from the following Hamiltonian:

E =
∑

i

Ei =
∑

i

nn∑
j

−J(δOiOj
− 1), (2.1)

where δOiOj
is the Kronecker delta symbol and the summation is carried out for

all nearest neighbors (nn) sites j of site i. J is added to the system’s energy
every time two consecutive sites are different. Finally, the kinetics of the GB is
obtained by the integration of an MC approach over the domain: A lattice site
i is chosen randomly, then a new trial orientation O∗

i is selected randomly, such
that, O∗

i = {1, · · · , Q|O∗
i ̸= Oi}. A transition probability is computed using the

Metropolis method and the classical choice is given by the following function:

P =
{
exp(−∆E/kT ) ∆E > 0,
1 ∆E ≤ 0 , (2.2)

where ∆E is the change of energy caused by the trial orientation O∗
i . If ∆E ≤

0, the transition is applied, while for ∆E > 0 the probability to change the
orientation is given by exp(−∆E/kT ). The time definition of a MC simulation
is called Monte Carlo Step. It is related to N reorientation attempts, where N is
the total number of lattice sites. It means that if one site lattice is chosen several
times in one MC step, not all the lattice sites may be tested.

Heterogeneous GB energy was considered in [136] one year after the first
MC applications concerning GG modeling [21] completing a series of articles
called Computer Simulation of Grain Growth. As the grains are identified by
their orientation, the authors defined the GB energy as a function of the GB
disorientation:

Ei =
nn∑
j

γ(θ), (2.3)

where Ei is defined as an “anisotropy” potential. The authors tested three dif-
ferent forms of γ as a function of the disorientation, one of them is of the Read-
Shockley form [69]. Regarding the heterogeneity of GB mobility in [11, 137], the
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authors used the definition of the Hamiltonian defined in Equation. 2.3 and they
proposed the following equation concerning the transition probability:

P =



µ(θ)γ(θ)
µmaxγmax

exp(−∆E/kT ) ∆E > 0,

µ(θ)γ(θ)
µmaxγmax

∆E ≤ 0.

, (2.4)

2.1.2 Cellular automata
Cellular Automata (CA) models are based on the use of regular grids. The four
main ingredients of the CA approach are:

• the definition of the cell geometry,

• the number and kind of states,

• the definition of neighboring cells, and

• the transition rules.

The first application of CA models of ReX was proposed by Hasselbarth in
1991 [138]. In 1996, the idea of Hasselbarth was combined with the Monte Carlo
(MC) methodology to model GG [139]. In [139], the von Neumann’s definition
of neighbors is used and the state of the cell is defined by its orientation ranging
from 1 to Qs. By using the example given in Figure 2.1, the transition of the
central cell “a” is determined by:

• The state of the cells b, c, d, e (If three of them has the same state as a,
the cell a does not change).

• The cell must overcome the energy barrier to change of state. The probabil-
ity of successful transition could be defined as P = exp (−∆E/kT ), where
∆E = E − EB, EB is the energy barrier and E is the local energy.

• Grain boundary energy is homogeneous.

The physics of the CA approach is encapsulated in the definition of the energy
barrier and transition rules. For instance, in [132, 133, 140], heterogeneous GB
properties were defined within the probability function using an activation energy
and GB mobility that could depend on the disorientation as:

P = µ(θ)
µmax

∑
Pi

Pmax

exp

(
−E(θ) − EB

kT

)
. (2.5)

where ∑Pi is the net driving pressure. For the case of pure GG, ∑Pi = Pc =
−γκ and the heterogeneity of GB energy can be considered. The effect of the
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inclination is not discussed in the literature due to the definition of GBs (as
borders of regular grids).

Figure 2.1: Energy barrier between two states (yellow and cyan). The center
cell “a” changes from its initial state (cyan) to the neighboring state (yellow) if
it overcomes the energy barrier, Eb. The Von Neumann’s definition of neighbor
cells is used.

2.1.3 Vertex
This approach consists in representing GBs and multiple junctions as continuous
interfaces divided by a successive number of nodes called vertex. In the liter-
ature, one can find implicit or explicit formulations to calculate the velocity of
the nodes. The early developments of vertex models were proposed in [141] for
simulations of growth in two-dimensional soap froths. Based on the topological
operations presented in [141], Soares et al. presented the first vertex model of GG
in [142] based on a thermodynamic formulation that separates the effect of faces,
edges and vertices. Under the assumption of having straight edges, the authors
proposed the following GB motion equation :

v⃗j = µj

∑
ε⃗i, (2.6)

where v⃗j and µj are the velocity and mobility of a vertex j, and ε⃗i the line tensions
acting at this vertex. This model was firstly proposed as isotropic, i.e., µj = µ
and |ε⃗i| = ε are constant.

In [143], Kawasaki et al. proposed an implicit formulation based on a dissi-
pative equation of motion defined as

∂RR

∂v⃗
= −∂ν

∂r⃗
, (2.7)

where RR represents the Rayleigh dissipation function and ν the potential func-
tion. The following vertex equation of motion was derived

1
3
∑ |r⃗(ij)|

µ(ij)
n⃗(ij) × n⃗(ij) ·

(
v⃗i + 1

2
v⃗j

)
= −

∑
γ(ij)

r⃗(ij)

|r⃗(ij)|
= −

∑
γ(ij)t⃗(ij), (2.8)

where r⃗(ij) is the vector r⃗i−r⃗j, r⃗i is the position of the vertex i. n⃗(ij), γ(ij) and µ(ij)
are respectively the normal unit vector, the boundary energy and the mobility of
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the boundary segment delimited by vertices i and j. v⃗i is the unknown velocity
of vertex i, t⃗(tj) = r⃗(ij)/|r⃗(ij)| is a unit vector and the summation is carried out
for each vertex j connected to a given vertex i. In Equation 2.8, the left-hand
side defines the anisotropic nature of GB properties. In contrast, the central and
right-hand sides define its heterogeneous nature. For instance, GB properties of a
set of edges (ij) between two grains could be defined as disorientation dependent:
µ(ij)(θ) or γ(ij)(θ). Even if the proposed formulation by Kawasaki et al. could han-
dle anisotropy, the authors proposed a more straightforward formulation known
as model II:

1
6µ

(∑
|r⃗(ij)|

)
v⃗i = −γ

∑
t⃗(ij), (2.9)

with µ and γ being homogeneous-isotropic properties.
Triple junctions are singular points where no misorientation or normal di-

rection could be defined directly. In [144, 145], the authors estimated a “triple
junction mobility”, which is different from the GB interfaces mobility that form
the junction. In order to reproduce this effect, the vertex approach was enhanced
adding the following term to RR:

RT J =
NT J∑ v⃗i

2

µT J

, n = 1, · · · , NT J (2.10)

whereNT J and µT J are the number of triple junctions and their mobility [146,147].
L. A. Barrales Mora introduced an anisotropic vertex formulation where both the
effect of the misorientation and normal direction are taken into account [14]. In
general a velocity is calculated in every vertex and its position is updated with
the following explicit Euler scheme:

r⃗i(t+ ∆t) = r⃗i(t) + v⃗i(t)∆t, (2.11)

with ∆t the time step. The vertex approach is flexible and has shown a relative
easiness to handle anisotropy and heterogeneity [14]. Nevertheless, the main
difficulty is to handle topological events, which become more complex in 3D.
Moreover, intragranular fields (such as stored energy) cannot be predicted and
taken into account into driving pressures. Mixed vertex simulations have emerged
in order to add intragranular fields and describe other mechanisms.

Vertex-FE approach

This method was proposed recently and combines vertex and FE approaches in
order to define GBs and their migration, known as To Real Motion (TRM) al-
gorithm [17]. The approach maintains the discretization inside the grains using
an evolving triangular mesh, thus, the discretization will remain valid for FE
calculations as illustrated in Figure 2.2. In that way, crystal plasticity or recrys-
tallization can be implemented [148].

In [135], GB velocity to model anisotropic GG is derived from the model
proposed in [17] using the TRM approach and the model proposed by L. A.
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Figure 2.2: Example of he nodal geometric tagging performed on a body fitted
mesh in the TRM algorithm. a) Considered grain topology. b) Resulting nodal
tagging. Image from [17].S-, L- and P-Nodes are surface, linear and point nodes
in 2D.

Barrales in [14]:

v⃗i = µ(θ)i

(
−γ(θ)iκin⃗i +

∑
j Tijn⃗ij

c−1∑
j |NiNj|

)
, (2.12)

where Tij is a torque term, n⃗ij is the normal of the segment | ¯NiNj| and c is
the number of connections of the multiple junction. One can note the effect
of heterogeneity in terms of disorientation in µ(θ)i and γ(θ)i, and the effect of
the anisotropy in the term

∑
j

Tij n⃗ij

c−1
∑

j
|NiNj | . This method has several advantages:

first, the method reduces the CPU time compare to classical FE approaches, and
second, the method is highly flexible thanks to the different definitions of the GB
velocity. However, it remains limited, at yet, to 2D modeling.

Vertex-Monte Carlo approach

A different methodology is found in [149], the authors coupled the Vertex and
Monte Carlo methods to describe recrystallization. The model induces GB motion
through Monte Carlo steps. At each step, a triple junction is chosen randomly
and its position is changed randomly within a radius δr. The energy of the triple
junction m is computed as

Gm =
∑

n

(
γ(θ)(mn)t⃗(mn) + E(mn)A(mn)

)
, (2.13)

where n describes the triple junctions connected to m, E(mn) is the stored energy
and A(mn) the grain surface of the grains between the two triple junctions m and
n. This model have been presented with heterogeneous GB mobility and energy
as functions of the disorientation, γ(θ)(mn) and µ(θ)(mn).

60



CHAPTER 2. ANISOTROPIC GB PROPERTIES USING DIFFERENT
METHODS

Finally, the energy evolution between the steps t and t+ 1 is:

∆Gm = Gt+1
m −Gt

m, (2.14)

and the transition probability is defined as:

P =



µ(θ)
µmax

exp(−∆Gm/kT ) ∆Gm > 0,

µ(θ)
µmax

∆Gm ≤ 0 .

(2.15)

The main advantage of this approach is that the resolution of large equation
systems is avoided, but as the MC approach, the time step used in this method
has no direct physical meaning.

2.1.4 Phase field
The Phase Field (PF) method has gained a lot of popularity and is used in
numerous applications, from crack propagation to dislocation dynamics [150].
The approach is based on the diffuse-interface description developed by Cahn
and Hilliard [100] and applied in the context of microstructural evolution such
as multiphase evolution or grain growth [151,152]. The microstructure is defined
using a set of field variables. The set of variables is divided in two main groups:
conserved (ci) and non-conserved (ηi). Hence, the evolution of a given state of
variables (i.e., the microstructure) is defined by the minimization of the total free
energy which is defined by

F =
∫

v

(
f(c1, c2, · · · , cn, η1, η2, · · · , ηp) +

n∑
i=1

αi(∇ci)2+

+
3∑

i=1

3∑
j=1

p∑
k=1

βij∇iηk∇jηk

)
dV, (2.16)

where f is the local free energy, and αi and βij are gradient energy coefficients.
The temporal evolution of F is described by the Cahn-Hilliard nonlinear diffusion
equation [153]:

∂ci

∂t
+ ∇Mij∇

∂F

∂cj

= 0,

and the time dependent Ginzburg-Landau equation [154]:

∂ηj

∂t
+ Ljk

∂F

∂ηk

= 0,

where L and M are related to the dissipation of energy of the system.
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The first PF based model of GG was proposed by Chen et al. in [155–157].
This model, also known as Continuum Field, employed the following free energy
density

f =
p∑

i=1

[
−kα

2
η2

i + kβ

4
ηi

]
+ kγ

p∑
i=1

p∑
j>1

η2
i η

2
j , (2.17)

kα, kβ and kγ being phenomenological parameters. The total free energy of the
system is

F =
∫

v

[
f(η1, η2, · · · , ηp) +

p∑
i=1

β

2
(∇ηi)2

]
dV, (2.18)

where βij = δijβ/2. If Equation 2.17 is replaced in Equation 2.18 the kinetic
equation may be redefined as

∂ηi

∂t
= −Li

kαηi + kβηi + 2kγηi

p∑
j ̸=i

η2
j − β∇2ηi

 , i = 1, 2, · · · , p, (2.19)

if the cross terms of the dissipation energy parameter are ignored (i.e., Ljk = Lj).
The Continuum Field approach has been modified and other PF formulations can
be found in the literature: Multi-phase field [158], Anti-symmetric MPF [159] and
Generalized MPF [160] can be cited. A comparison of different PF approaches is
presented in [161, 162].

The PF approach has been widely enriched in order to deal with heterogeneity
and anisotropy. In general, the effect of disorientation and inclination are directly
attributed to the terms kγ(θ, n⃗), β(θ, n⃗) and L(θ, n⃗), being β(θ, n⃗) and L(θ, n⃗)
proportional to the GB energy γ and mobility µ, respectively [8, 31, 131, 163].
Other possibility could be to define the free energy density with an anisotropy
coefficient, fa = X(θ, n⃗)f [163], where X(θ, n⃗) encapsulates the effect of the
disorientation and inclination.

2.1.5 Level-Set
The LS method is a flexible tool initially developed by Osher and Sethian [164] to
describe curvature flow of interfaces, enhanced later for evolving multiple junc-
tions [165, 166], and considered in recrystallization and grain growth problems
in [167, 168]. The principle for modeling polycrystals is the following: the grain
interfaces are defined through scalar fields called LS functions ϕ in the space Ω
and more precisely by the zero-isovalue of the ϕ functions. LS functions to the
interfaces are classically initialized as the sign Euclidean distance functions to
these interfaces:

{
ϕ(X) = ±d(X,Γ), X ∈ Ω, Γ = ∂G
ϕ(X ∈ Ω) = 0 ⇌ X ∈ Γ. (2.20)

with d the Euclidean distance and ϕ generally defined as positive inside the grain
and negative outside. The dynamics of the interface is studied by following the
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evolution of the LS field. The interface may be subjected to an arbitrary velocity
field v⃗ and its movement can be simulated by solving the transport equation:

∂ϕ

∂t
+ v⃗ · ∇⃗ϕ = 0. (2.21)

The flexibility of this method lies in the ability to take into account different
physical phenomena encapsulated in the velocity field. This equation is solved to
describe the movement of every grain. When the number of grains increases one
may use a graph coloring/recoloring strategy [169] in order to limit drastically
the number of involved LS functions Φ = {ϕi, i = 1, . . . , N} with N ≪ NG being
N the number of LS functions. Additionally, two more treatments are necessary.
Firstly, the LS functions are reinitialized at each time step to keep the metric
property of a distance function:

∥∇ϕ∥ = 1. (2.22)

Indeed, after the transport resolution, the LS functions is no longer a distance
function, hence, the initial metric can be restored solving Equation 2.22. In
the proposed numerical framework, the algorithm developed in [170] is used.
Secondly, the evolution may not preserve the impenetrability constraints of the
LS functions leading to overlaps and voids between grain interfaces. These events
are corrected after solving the transport equation by resolving Equation 2.23 as
proposed in [165] and classically used in LS framework [168, 171].

ϕi(X) = 1
2

[
ϕi(X) − max

j ̸=i
ϕj(X)

]
, ∀i = {1, . . . , N}. (2.23)

Several formulations using the LS framework exist in the literature. The initial
GG formulation uses a homogeneous grain boundary energy and mobility [18],
the velocity field is thus defined as :

v⃗ = µP n⃗ = −µγκn⃗, (2.24)

with P = −γκ the capillarity pressure and n the outward unitary normal to
the interface. When dealing with recrystallization, supplemental terms could be
added to the velocity as proposed in [18]. If ϕ is defined as positive inside the
grain and remains a distance function (by verifying Equation 2.22), the mean
curvature and the normal may be defined as:

κ = −∆ϕ, n⃗ = −∇⃗ϕ, (2.25)

then the velocity in Equation 2.24 may also be defined as:

v⃗ = −µγ∆ϕ∇⃗ϕ. (2.26)
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The first application with pseudo heterogeneous GB properties using a LS
framework was proposed by Mießen et al. [19]. The authors modified Equa-
tion 2.24 such that γ is a function of the disorientation and µ = 1/γ(θ). In
other words, the effect of heterogeneity is avoided and the formulation remains
Isotropic. The new differential equation to transport the distance functions is
similar to the heat equation and is defined as:

∂d

∂t
− ∆d = 0. (2.27)

It means that the GB velocity is defined by the relation v⃗ = −κn⃗. The new
differential equation has an analytical solution given by

G(X, t) = 1
(4πt)1/2 exp

(
−|x|2

4π

)
, (2.28)

known as the Gaussian kernel. Hence the evolution of the distance function for
a grain k can be reduced to the convolution equation below

dk(X, t+ ∆t) = G(X, t = ∆t) ∗ dk(X, t), (2.29)

and it does not require the computation of the curvature. The authors also defined
different triple junction mobility. In general the authors observed convergence of
the grain growth rate towards the von Neumann-Mullins law [172].

In [32] the authors proposed an anisotropic formulation using LS functions and
solved Equation 2.21 using Finite Difference. GB energy is anisotropic, γ(M),
and its effect is introduced in the definition of the GB velocity:

v⃗ = −µ∇⃗
(
γ(M)∇⃗ϕ

)
n⃗, (2.30)

the origin of Equation 2.30 in [32] is not specified but the term ∇⃗
(
γ∇⃗ϕ

)
=

∇⃗γ∇⃗ϕ+ γ∆ϕ is similar to the one proposed earlier by Fausty et al. in [25]. The
main innovation in [32] was the use of the code GB5DOF [34] to describe the
anisotropy of GB energy, for bicrystals and tricrystals.

2.1.6 Level-Set Finite-Element formulations
When looking to the evolution of the FE-LS framework for GG, four main formu-
lations have been proposed in the state of the art. In the first one, an Isotropic
formulation is considered by introducing Equation 2.26 into Equation 2.21, thus
the Isotropic transport equation may be defined as a pure diffusive problem with
µγ only temperature dependent [18]:

∂ϕ

∂t
− µγ∆ϕ = 0. (2.31)
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This formulation has shown good agreement with experimental data regarding
GG predictions concerning the mean grain size and even the grain size distri-
bution (GSD) [169, 173, 174]. However, this approach is limited to reproduce
complex grain morphology (non-equiaxed ones), described special GBs and to
respect textures. This formulation could be slightly modified in a second one
with the introduction of heterogeneous GB properties leading to a Heterogeneous
formulation:

∂ϕ

∂t
− µ(θ)γ(θ)∆ϕ = 0. (2.32)

With this formulation, it is expected to obtain more physical grain shapes. In-
deed, some GBs can evolve faster thanks to higher GB reduced mobility values,
and triple junctions may have different dihedral angles thanks to different GB
energy values. This strategy which is classically used in full-field formulations
(not only in LS ones) can lead to confusion when it is named as “heterogeneous”.
Indeed, stricto sensu, the heterogeneity shape of µ and γ can lead to additional
terms in the driving pressure of the kinetic equation (Equation 2.24) but also in
the weak formulation derived to solve the GB motion. However, the term “het-
erogeneous” will be used in the following to distinguish this formulation from the
purely isotropic model.

Such discussion is described in [25] where an additional term capturing the
local heterogeneity of the multiple junctions is added to the velocity equation
such that:

v⃗ = µ(∇⃗(θ)γ · ∇⃗ϕ− γ(θ)∆ϕ)∇⃗ϕ. (2.33)

Inserting this term into the transport equation (Equation 2.21) leads to the,
hereafter called, “Heterogeneous with Gradient” formulation [25]:

∂ϕ

∂t
+ µ∇⃗γ(θ) · ∇⃗ϕ− µγ(θ)∆ϕ = 0. (2.34)

The introduction of the term ∇⃗γ(θ) · n⃗ only acts at multiple junctions because
these are the only places where this term does not vanish. This formulation is
equivalent to the Isotropic one if no heterogeneity is added. This formulation has
been used to model triple junctions [25] and polycrystalline microstructures with
different models of heterogeneous GB energy [20].

Finally, in [134, 175], works in which I participated, a new relation for the
velocity was developed using thermodynamics and differential geometry. The
five crystalline parameters are taken into account with an intrinsic torque term,
which leads to (see Equation (2.43) in [175]):

∂ϕ

∂t
− µ

(
∂2γ(θ, n⃗)
∂∇̃αϕ∂∇̃βϕ

+ γ(θ, n⃗)mαβ

)
∇̃α∇̃βϕ+ µPαβ∇̃βγ(θ, n⃗)∇̃αϕ = 0, (2.35)
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where mαβ is the metric with components α and β of a Riemannian n-manifold,
with n the dimension of the space, and ∇̃ the Levi-Civita connection. This
equation may be redefined using a flat metric and tensor notations as:

∂ϕ

∂t
− µ

(
∂2γ(θ, n⃗)
∂n⃗∂n⃗

+ γ(θ, n⃗)I
)

: K + µP∇⃗γ(θ, n⃗) · ∇⃗ϕ = 0, (2.36)

and also written as:

∂ϕ

∂t
− µ

(
∇⃗n⃗∇⃗n⃗γ(θ, n⃗) + γ(θ, n⃗)I

)
: K + µ∇⃗n⃗γ(θ, n⃗) · ∇⃗ϕ = 0, (2.37)

where I is the unitary matrix, P = I − n⃗ ⊗ n⃗ is the tangential projection tensor,
and therefore, ∇⃗n⃗γ = P∇⃗γ with ∇⃗n⃗, the surface gradient on the unit sphere of
interface normal n⃗, K = ∇⃗n⃗ = ∇⃗∇⃗ϕ, is the curvature tensor. In Equation 2.35,
the term Pαβ∇̃βγ∇̃αϕ and its equivalent P∇⃗γ ·∇⃗ϕ in Equation 2.36, i.e., ∇⃗nγ ·∇⃗ϕ,
should be null in the grain interfaces. However, the front-capturing nature of the
LS approach, which requires to solve Equation (2.36) not only at the GB network
but also in its vicinity, needs to consider this term, which could be non-null
around the GB interfaces. This stabilization term is then totally correlated to the
front-capturing nature of the LS approach and not derived from the GG driving
pressure. The resulting tensorial diffusion term, D = ∇⃗n⃗∇⃗n⃗γ+γI [134,175], is also
well-known as the GB stiffness tensor Γ(M, n⃗) in [104,176]. With this formulation,
the 5D-GB space B is fully described and is referred to as “Anisotropic-5”. In
[134], this formulation was only considered for a bicrystal using a mathematical
function to describe the effect of the GB inclination on the GB energy, γ(n⃗).

If the torque term is neglected in Equation 2.36, the formulation could be
simplified as:

∂ϕ

∂t
+ µP∇⃗γ(θ) · ∇⃗ϕ− µγ(θ)∆ϕ = 0. (2.38)

This equation is hereafter called “Anisotropic” and is not equivalent to the ”Het-
erogeneous with Gradient” formulation (Equation 2.34).

2.2 Disconnection-based formulations
Disconnection based models are new alternatives to model GB motion. The
models have shown a good accuracy and continuous models have been proposed
for GBs, triple junctions and polycrystals [2, 114, 127, 177–182]. This section is
mainly focused on the works on the GB mobility tensor proposed by K. Chen et
al. [128] and two consecutive articles presented by J. Han, D. Srolovitz and M.
Salvalaglio where a disconnection-based continuum model is presented and used
in a PF approach [180, 181].

In [128], the authors performed MD simulations on a Σ7 [111] (123̄) symmetric
tilt GB in copper to study the behavior of the GB mobility tensor (See section
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1.4). They demonstrated that the components of the GB mobility tensor are
non-zero. Figure 2.3 shows the temperature dependence of the GB mobility
components. The components can vary by several orders of magnitude with

µ11 > µ1i > µ22 > µ33, i = 1, 2, 3. (2.39)
The dashed lines are fitted using a disconnection statistical model of the GB
mobility tensor [128]:

µij = f0L
2

kBT

∑
m

H
(m)
i H

(m)
j exp(−Q(m)/kBT ), (2.40)

where the superscript m represents the disconnection mode, f0 is the attempt
frequency, L is the GB width (cell distance), Q(m) is the activation energy and
Hi ≡ (h, b2, b3) is a vector defined by the disconnection step h and the components
of the burgers vector parallel to the GB plane, b2 and b3.

From Figure 2.3 one can see the different temperature dependences of the GB
mobility components. The components µ11, µ22 and µ12 follow an antithermal
behavior dominated by the prefactor 1/T . While the components µ33, µ23 and
µ13 follow an Arrhenius law linked to the exp(−Q(m)/kBT ) factor. Experimental
results frequently show the temperature dependence of GB mobility fitted by an
Arrhenius relation µ11 ∝ µ0exp(−Q/kBT ), but for this particular case (Σ7 [111]
(123̄) symmetric tilt GB in copper) µ11 ∝ 1/T .

In this type of model, the temperature dependence is determined by the dis-
connection activation energy Q(m) and the number of disconnection modes ac-
tivated during GB migration. For instance, in Figure 2.3 the activation energy
for the components µ33, µ23 and µ13 is Q(1) ≈ 2eV . On the other hand, the
components µ11, µ22 and µ12 have two modes Q(1) ≈ 0eV and Q(2) ≈ 0.2eV . Ad-
ditionally, the bicrystallography which is classically defined by the tuple (M ,n) is
now defined by one or multiple disconnection modes by the tuple (⃗bm, hm). These
results are similar to those presented in [58] where different temperature relations
for µ can be found. It is necessary to point out that even if these results show
different tendencies of GB mobility, they need to be confirmed by experimental
results which may explain the non-linearity of the Arrhenius plots presented in
section 1.2.4.

In [128], the authors have also shown results for 2D polycrystalline cases.
If GB migration and shear are not coupled, one can obtain a simplified kinetic
equation from the classical GB motion equation (Equation 1.24): R2 − R2

0 =
2µ11gγt, where R is the equivalent grain radius, g = n/6 − 1 is a factor that
describes grain topology and n the number of edges. When GB shear is coupled,
Equation 1.45 may be redefined as(

Ṙ
−τ̇R/G

)
=
[
µ11 µ12
µ21 µ22

](
gγ/R
τ

)
, (2.41)

where τ is the shear stress and the dot notation represents time derivative. An
equivalent simplified kinetic equation is defined as R2 − R2

0 = 2µ̃gγt, where the
effective GB mobility of the polycrystal is defined as µ̃ = |µij|/µ22 = µ11−µ2

12/µ22.
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Figure 2.3: Temperature dependence of the GB mobility components (A) µ11,
(B) µ22, (C) µ33, (D) µ12, (E) µ13 and (F) µ23 of a Σ7 [111] (123̄) symmetric
tilt GB in copper (error bars indicate the range of the simulation results). The
data points represent the MD results, and the dashed lines are fits of the data to
Equation 2.40 for a single disconnection mode. For the off-diagonal components
of µij(i ̸= j), two sets of data points (blue circles and red squares) are shown.
Image from [128].

These results show a reduction of the GB mobility if shear is considered, µ̃
< µ11. Additionally, the behavior of the apparent GB mobility µ̃ depends on
the temperature dependence of its components dµ11/dT and d(µ2

12/µ22)/dT . The
fact that most of the experimental results follow an Arrhenius equation means
that the components are dominated by the exponential factor µ11 − µ2

12/µ22 ∝
µ0exp(−Q/kBT ). To conclude, one can keep in mind that the component µ11 can
dominate among the GB mobility tensor components for a large range of temper-
ature, hence, the classical GB migration equation can be accepted. However, in
some cases, the shear coupled migration and the GB mobility tensor should be
considered in order to correctly describe the GBs evolution.

2.2.1 Phase Field Disconnections
After the series of papers describing GB migration via disconnections, four recent
papers presented continuum models using the Phase field approach [178, 180–
182]. This extension is important in order to predict the different behaviors of
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GB migration through disconnections in mesoscopic simulations. The first PF
implementation was presented by B. Runnels in [178]. Eventually, J. Han et al.
presented two consecutive papers with a detailed explanation of disconnection
mediated GB motion [180] and its extension to large scale simulations [181].

In [180], the authors derived the GB motion equations under the influence of
different driving pressures. The migration equation developed using disconnec-
tions is defined using the Einstein notation as:

vi = µijPj = (Γsκ+ τΛ + ψ)µijnj, (2.42)

where Γs is a scalar representation of the GB stiffness tensor defined using dis-
connections, κ the mean curvature, τ = τdisc + τext the shear stress separated
into contributions from the external shear stress τext and the stress generated by
the disconnections along the interface τdisc, ψ accounts for the chemical potential
jump and Λ is a factor that correlates the shear coupling generated in different
directions. The crystallography in Equation 2.42 is present intrinsically in the
terms µij, Γ and Λ which are defined via disconnections. From Equation 2.42 one
can obtain the classical GB migration equation of GG (vi = −µγκni) under the
following conditions: disconnections are represented by steps (i.e., the Burgers
vector is zero), µ and γ are isotropic and ψ = 0.

In [180], disconnection movement is dominated by glide in two directions,
thus:

Λ ≡ β(2) − β(1) = b(2)

h(2) − b(1)

h(1) , (2.43)

where β ≡ b

h
is the shear coupling factor characterized by the step h and the

Burgers vector b, and the superscripts (1) and (2) are equivalent to the R(1) and
R(2) disconnections of the reference interfaces that are parallel to the x-plane and
y-plane. The shear coupling β is less effective at high temperatures, thus, Λ → 0
[128]. Also, in some cases the shear coupling in the two directions is equivalent
β(2) = β(1), hence Λ = 0. It means that the difference between disconnection-
based formulations and classical formulations presented in section 2.1 is notable
in particular cases where the factor Λ is high enough.

From the Anisotropic LS-FE formulation (Equation 2.36), GB velocity can
be expressed using the Einstein summation notation as:

vi = (Pkjγ,jnk − ΓmnKmn)µni, (2.44)

where γ,j is the GB energy gradient. If the chemical potential in Equation 2.42
is neglected, the GB motion equation via disconnections may be redefined as:

vi = (Γsκ+ τΛ)µijnj, (2.45)

the differences between Equations 2.44 and 2.45 lies in the definition of the GB
mobility, the definition of the GB stiffness tensor, and the presence of the pro-
jected GB energy gradient in Equation 2.44 and the shear coupled migration term
τΛ in Equation 2.45 which could be easily added to the FE-LS approach.

69



CHAPTER 2. ANISOTROPIC GB PROPERTIES USING DIFFERENT
METHODS

2.3 Summary and discussion
The classical kinetic equation (v = µP ) is a simplification of lower scale phe-
nomena [2,3] but it constitutes at the polycrystalline scale and in metal forming
state-of-the-art an accepted physical framework. One must keep in mind two
main questions: Is this kinetic equation is a reasonable approximation [6]? Is
the reduced mobility (µγ product) only defined by the temperature and macro-
scopic properties of the interface as misorientation and inclination? A clear and
univocal answer seems complicated today. A bias in the reduced mobility field
discussion lies today in the real capacity of full-field methods to take into account
a reduced mobility defined properly in the 5D space defined by the misorientation
and inclination.

The majority of the methods can deal with heterogeneous GB properties (3-
parameters) using phenomenological models that describe GB properties as a
function of the disorientation θ, but the misorientation axis and inclination de-
pendence are not frequently studied. The effect of the GB normal has been
studied using Vertex, Phase Field and Level-Set approaches due to the smooth
representation of GBs. On the other hand, GBs using CA and MC approaches
are stepped and the effect of the GB normal is not studied. However, a different
type of model was developed using the kinetic Monte Carlo method [127,183,184].
The main difference is that the classical migration equation is not used anymore
but the motion of GBs is controlled by the formation and motion of disconnec-
tions [179].

One can find some weaknesses in the use of the term “anisotropy”. In the
literature heterogeneous values of GB properties have been often categorized as
anisotropic. For instance, in [8, 13, 28, 30, 185] heterogeneous GB energy and a
constant GB mobility are considered to model polycrystal evolution during GG,
and the models are categorized as anisotropic even if it is assumed that the GB
energy does not depend on the GB normal and the GB mobility is homogeneous.
Another example is found in [32], the proposed LS formulation in context of
regular grids includes the effect of anisotropic GB energy using both the effect
of the misorientation and the inclination in a GB energy gradient. However, the
GB energy dependence on the normal direction is defined without inquiring if
additional torque terms are needed and the GB mobility is homogeneous.

Most of the full-field models at the mesoscopic scale cannot deal with the
whole description of the GB space (5D). During this PhD thesis, the FE-LS
approach has been used and enhanced. The mean reason why LS framework
was adopted in this work is its ability to simulate concomitant mechanisms even
in context of large deformations. This aspect is essential if one want to model
realistic thermomechanical paths in metal forming. In the next chapter, existing
LS formulations are discussed and also extended to consider a full anisotropic
formulation.
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2.4 Résumé en Français du Chapitre 2
Ce chapitre est dédié à l’introduction des différentes méthodes à champ complet
utilisées en modélisation de la recristallisation et de la croissance de grains. Par
ailleurs, leurs extensions afin de considérer des propriétés de joints de grains
hétérogènes et anisotropes ont été présentées.
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Chapter 3

Comparative study of different
finite element level-set
formulations for the modeling of
anisotropic grain growth

Due to the wide variety of formulations, this chapter aims to compare four dif-
ferent formulations within a FE-LS approach, the former is the Isotropic for-
mulation frequently used in different contexts such as GG, recrystallization, GG
with second phase particles [167–169,174,186]. The second one is a simple exten-
sion of the isotropic formulation by considering non-homogeneous values of the
GB reduced mobility, i.e., Heterogeneous formulation. The third formulation
was firstly proposed in [25] and extended to polycrystals using different mathe-
matical models of GB energy in [20], i.e., Heterogeneous with Gradient for-
mulation. The last formulation is based on a more robust thermodynamics and
differential geometry framework but was only applied, at yet, to a bicrystal-like
geometry [134], i.e., Anisotropic formulation.

One of the perspectives of this work is to criticize and validate these existing
formulations but also to consider the enrichment of GB mobility in FE-LS frame-
work. In section 3.2, simulation results are compared with analytical solutions in
the context of simple triple junction geometries. In section 3.3, polycrystalline
simulations are studied. Mean values and statistical quantities are compared with
two different initial textures and using heterogeneous GB energy and mobility.
Section 3.4 is dedicated to the inclination dependence discussions studying the
movement of triple junctions and bicrystals. Extension to 3D discussions will
conclude this chapter.

A part of the results presented in this chapter were published in [38].

73



CHAPTER 3. COMPARISON OF FE-LS FORMULATIONS

3.1 Level-Set Finite-Element formulations
Four different formulations will be studied. The strong formulations used in this
work are the ones defined by Equations 2.31, 2.32, 2.34, 2.36 and 2.38. Moreover,
the effect of the heterogeneous GB mobility is defined as a GB mobility gradient
in the weak formulation of the Heterogeneous with Gradient and Anisotropic
formulations. The weak formulations of Equations 2.31, 2.32, 2.34, 2.36 and 2.38,
with φ ∈ H1

0 (Ω) are respectively∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µγ∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µγφ∇⃗ϕ · n⃗d(∂Ω) = 0, (3.1)

∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µ(θ)γ(θ)∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µ(θ)γ(θ)φ∇⃗ϕ · n⃗d(∂Ω) = 0, (3.2)

∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µ(θ)γ(θ)∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µ(θ)γ(θ)φ∇⃗ϕ · n⃗d(∂Ω)+

+2
∫

Ω
µ(θ)∇⃗γ(θ) · ∇⃗ϕφdΩ +

∫
Ω
γ(θ)∇⃗µ(θ) · ∇⃗ϕφdΩ = 0,

(3.3)

∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µ(θ)D(M, n⃗)∇⃗φ · ∇⃗ϕdΩ+∫

Ω
µ(θ)(P · ∇⃗γ(M, n⃗) + ∇⃗D(M, n⃗))φ∇⃗ϕdΩ +

∫
Ω

∇⃗µ(θ)D(M, n⃗) · ∇⃗ϕφdΩ = 0,
(3.4)

and ∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µ(θ)γ(M, n⃗)∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µ(θ)γ(M, n⃗)φ∇⃗ϕ · n⃗d(∂Ω)+∫

Ω
µ(θ)(P · ∇⃗γ(M, n⃗) + ∇⃗γ(M, n⃗))φ∇⃗ϕdΩ +

∫
Ω
γ(M, n⃗)∇⃗µ(θ) · ∇⃗ϕφdΩ = 0.

(3.5)

More details about the construction ofD(M, n⃗) could be found in Section 5.2.2.
All the formulations presented here are equivalent if the properties are homoge-
neous but the main question remains to test their real capacity concerning the
fact to take into account the GB crystallography in the description of µ and
γ. The advantage of the Heterogeneous with Gradient and Anisotropic formula-
tions is the ability to take into account the change of boundary type in multiple
junctions.

In the next sections a comparative study is presented. It must be highlighted
that the formulations proposed in Equation 3.3 and Equation 3.4 are more general
than those proposed in [25] and [134], respectively, as µ is here considered also
as heterogeneous (function of θ: µ(θ)). Also, GB energy is better described using
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the anisotropic model of GB energy (function of M(θ, a⃗) and n⃗: γ(M(θ, a⃗), n⃗))
called GB5DOF [34]. Thus, the GB energy is a function of the misorientation
and the inclination as γ(M, n⃗).

The “Isotropic”, “Heterogeneous”, “Heterogeneous with Gradient”,
“Anisotropic-5” and “Anisotropic” formulations will be referred, in the follow-
ing, as Iso, Het, HetGrad, Aniso5 and Aniso. The next table is a summary of
the five FE-LS formulations used in this work as a function of the GB crystallo-
graphic properties B = (M(θ, a⃗), n⃗).

Summary of FE-LS formulations

Iso : v⃗ = −µγκn⃗

Het : v⃗ = −µ(θ)γ(θ)κn⃗

HetGrad : v⃗ = µ(θ)(∇⃗γ(θ) · n⃗− γ(θ)κ)n⃗

Aniso : v⃗ = µ(θ) (P(∇γ(B), n⃗) − γ(B)κ) n⃗

Aniso5 : v⃗ = µ(θ)
(
P(∇γ(B), n⃗) −

(
γ(B)I + ∂2γ(B)

∂n⃗∂n⃗

)
: K

)
n⃗

In practical terms both µ and γ could be functions of B but little information
of µ(n⃗) is known. In section 5.2.2, a case with both anisotropic GB mobility and
GB energy (µ(M, n⃗),γ(M, n⃗)) will be presented.

3.2 The Grim Reaper case
In this section, simulation results obtained with the Het, HetGrad and Aniso
formulations are compared for a triple junction microstructure in 2D. This ge-
ometry is chosen because analytical relations are available for the comparison
of triple junction velocities and angles depending on the µγ values. The sim-
ulations presented here were carried out with unstructured triangular meshes,
a P1 interpolation, and using an implicit backward Euler time scheme for the
time discretization. The system is assembled using typical P1 FE elements with
a Streamline Upwind Petrov–Galerkin (SUPG) stabilization for the convective
term [187]. The boundary conditions (BCs) are classical null von Neumann BCs
applied to all of the LS functions. This choice imposes the orthogonality between
the LS functions and the boundary domain (each plane of the boundary domain
can be seen as a symmetric plane). By considering a minimal and maximal mesh
size (respectively hmin and hmax), an optimized anisotropic remeshing strategy
developed by Bernacki et al. [186,188], used in the DIGIMU® software [189] and
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illustrated in Figure 3.1, is adopted here. The mesh is finely and anisotropically
refined close to the interfaces (ϕ < ϕmin) and becomes isotropic when ϕ > ϕmax,
with a linear evolution of the normal mesh size between ϕmin and ϕmax. A ho-
mogeneous tangential mesh size (ht = hmax) is considered everywhere and the
normal mesh size is then defined as:


hn = hmin, ϕ < ϕmin,

hn = m(ϕ− ϕmin) + hmin, m = hmax − hmin

ϕmax − ϕmin

ϕmin ≤ ϕ ≤ ϕmax,

hn = ht = hmax, ϕ > ϕmax.

(3.6)

By generalizing this approach at the multiple junctions, a fine isotropic (hn =
ht = hmin) remeshing is automatically performed (see [186] for more details).
During grain boundary migration, thanks to a topological mesher/remesher,
anisotropic remeshing operations are performed periodically to follow the grain
interfaces. Typically, a remeshing operation is considered each time a LS is about
to leave the fine mesh area set by ϕmin.

Figure 3.1: Illustration of the anisotropic mesh refinement [188, 190].

3.2.1 Description of the test case

The case presented here is described in [7], a well known case for heterogeneous
triple junction, called “Grim Reaper” due to its particular profile. The authors
developed a stationary solution of a symmetric triple junction. The initial mi-
crostructure is a dimensionless T-shape triple junction with three phases and
unitary dimensions Lx = 1 and Ly = 3 (see Figure 3.2). This geometry was
chosen because after a transient-state, a quasi-steady-state is reached, where an-
alytical relations, depending on the reduced mobility, are available for the triple
junction velocity and equilibrium angles.
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G3
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(a) (b)

3

1 

Figure 3.2: T-shape triple junction (a) and quasi steady state of the triple junction
showing the dihedral angles and GB energies (b).

When the quasi-steady-state is reached, the triple junction moves with a con-
stant velocity towards the bottom of the domain, with a stable triple junction
profile which respects the conditions imposed by the Herring’s equation [191]:

∑
j>i

γij τ⃗ij + ∂γij

∂τ⃗ij

= 0, (3.7)

where γij is the GB energy and τ⃗ij are the inward pointing tangent vectors of
the three boundaries at the triple junction. In the present example, the grain
boundary energy is constant per interface (γ(θ)) and the above equation may as
well be expressed by the Young’s law (no torque terms):∑

j>i

γij τ⃗ij = 0, (3.8)

which may be expressed in terms of the angles ξi of the grain i, through the
Young’s equilibrium (see Figure 3.2):

sinξ1

γ23
= sinξ2

γ13
= sinξ3

γ12
. (3.9)

By considering an axially symmetric configuration where γ13 = γ23 = γtop and
γ12 = γbot, and by defining the ratio of grain boundary energies as r = γtop

γbot
, an

analytical value for the angle ξ3 can be obtained:

ξana
3 = 2arccos

( 1
2r

)
. (3.10)
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Moreover, the stationary transported profile takes the form of the “Grim
Reaper” profile, defined as:

y(x, t) = g(x) + vana
T J t

g(x) = −µγtop

vana
T J

ln

(
cos

(
vana

T J

µγtop

x

))
+ y0

(3.11)

where vana
T J is the magnitude of the stationary velocity, y0 is the initial y-value, and

(x, y) are the Cartesian coordinates. By using Neumann boundary conditions, the
stationary velocity could be related to the x-size of the domain:

vana
T J = −2µγtop

Lx

(
π

2
− ξana

3
2

)
. (3.12)

In order to focus on a considerable level of heterogeneity in the system, r is
initially fixed as equal to 10 (γtop = 1 and γbot = 0.1), and µ is defined as unitary.
Several simulations were carried out and compared with the analytical values of
ξana

3 = 174.27◦ and vana
T J = −0.100042. These variables are computed as follows:

• The velocity of the triple junction is computed using the relation vT J =(
yt+∆t

T J − yt
T J

)
/∆t, where yt

T J is the y-position of the triple point at time t
and ∆t is the time step.

• The dihedral angles are computed using the methodology presented in [25]:
one may define, at each time, a circle of radius ε with circumference Cε, and
divide it into arcs which pass through grain Gi with length Li

ε. The angle
of the arc, ξi, could be approximated thanks to the relation ξi = 2πLi

ε/Cε.

Hence, these variables are affected by the spatial discretization of the domain
and the choice of ε, which must be close enough to the multiple junction while
containing a sufficient number of finite elements, as illustrated in Figure 3.3,
where different values of ε are tested. Here, the value ε = 0.05 is adopted. vT J

and ξi are compared using relative errors which are defined as:

eX =
∣∣∣∣Xana −X

Xana

∣∣∣∣ ,
where Xana is the analytical value of the variable to be compared. Another
discussed quantity is the interfacial energy, calculated using:

EΓ =
∑

i

∑
e∈T

1
2
γle(ϕi), (3.13)

where T is the set of all elements in the FE mesh, le is the length of the zero
iso-value existing in the element e, and i refers to the number of LS functions,
and the 1

2
is necessary due to the duplicity of the LS functions in the interfaces

78



CHAPTER 3. COMPARISON OF FE-LS FORMULATIONS

defining a grain boundary. This variable is frequently studied and it may be seen
as an energetic measure of how quickly the system reaches equilibrium.

Figure 3.3: The triple junction at t = 0.25 using hmin = 5×10−4, ∆t = 1×10−5.
The three white circles represent the radius ε = {0.05, 0.1, 0.2} used to compute
the top dihedral angle. One can see the impact of the curved interfaces around
the triple junctions in the ξ3 estimation. In the following, the value ε = 0.05 is
adopted.
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3.2.2 Results and analysis
First, a sensibility analysis for the three formulations was carried out. The values
of mesh size and time step used here are: hmax = ht = 1 × 10−2, hmin = {5 ×
10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2} and ∆t = {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 ×
10−4}. For all the cases, Φmin and Φmax are fixed respectively to 1 × 10−2 and
2 × 10−2. Figure 3.3 shows, for the different formulations, the triple junctions
at t = 0.25 using hmin = 5 × 10−4 and ∆t = 1 × 10−5. One dihedral angle is
depicted for different values of ε. In the following, ξhmin[k],∆t[k]

3 is used to define
the converged value of the ξ3 angle for the k-th value of the hmin and ∆t datasets.
Indeed, if the results described in Figures 3.4–3.6 principally aim to compare the
simulations with the quasi-steady-state analytical values, it is also interesting to
discuss the obtained converged value of vT J as a function of the converged value
of ξ3 (i.e., if Equation (3.12) is respected for these values).

Figure 3.4 illustrates the evolution of EΓ, ξ3, and vT J using the Het formu-
lation. Two stages appear in EΓ, whereby it initially increases before decreas-
ing. The results illustrate the fact that the approach seems not to converge,
in time and space, towards the analytical solutions. However, in terms of the
dihedral angle, the results converge towards ξhmin[0],∆t[0]

3 , and the triple junction
velocity converges toward the corresponding velocity v

ana(hmin[0],∆t[0])
T J (following

Equation (3.12)). The movement of the Het formulation is mostly influenced by
the curvature of the interface, as exposed in Section 3.1, and one has to keep in
mind that there are no additional terms that could influence the movement of the
interfaces. These results illustrate that the Het formulation, by considering het-
erogenous values of reduced mobility and the multiple junction treatment defined
by Equation 2.23, without re-discussing the capillarity driving pressure used in
the kinetic equations, is definitively not a good option when a convective/diffusive
formulation is solved to model the GG mechanism.
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Figure 3.4: Sensibility analysis for the Het formulation in (left) time for hmin =
1 × 10−3 and in (right) hmin size for ∆t = 1 × 10−4: (top) interfacial energy
sensibility, (middle) triple junction angle, ξ3, sensibility analysis, and (bottom)
triple junction velocity, vT J , sensibility analysis.
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Figure 3.5: Sensibility analysis for the HetGrad formulation in (left) time for
hmin = 1 × 10−3 and in (right) hmin size for ∆t = 1 × 10−4: (top) interfacial
energy sensibility, (middle) triple junction angle, ξ3, sensibility analysis, and
(bottom) triple junction velocity, vT J , sensibility analysis.
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Figure 3.6: Sensibility analysis for the Aniso formulation in (left) time for hmin =
1 × 10−3 and in (right) hmin size for ∆t = 1 × 10−4: (top) interfacial energy
sensibility, (middle) triple junction angle, ξ3, sensibility analysis, and (bottom)
triple junction velocity, vT J , sensibility analysis.

The evolution of the HetGrad formulation is quite different, the interface
evolves in the opposite direction (see Figure 3.7) which explains that EΓ increases
during the simulation (see Figure 3.5). An explanation of this evolution comes
from the presence of the grain boundary energy gradient, ∇γ, in the triple junc-
tion. The main purpose of this gradient is the correction of the triple junction
dihedral angles and velocity. In Figure 3.5, one can see that ξ3 is closer to its
analytical value and that it also converges towards ξhmin[0],∆t[0]

3 . Nevertheless, ∇γ
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also changes the kinetics of the interface because it is present along the interface
and exerts a force that overcomes the effect of the curvature and generates a
movement in the opposite direction. Regarding the velocity, it does not converge
towards the analytical value vana

T J , nor the correlated value vana(hmin[0],∆t[0])
T J .

Het HetGrad Aniso

t=0.075[s] t=0.15[s] t=0.225[s] t=0.3[s]

Figure 3.7: Evolution of the interfaces at different time steps of the three models.

The Aniso formulation has an additional term, the projection tensor P, which
takes into account the tangential changes of ∇γ. Thanks to this term, the inter-
face evolves in the right direction, with a minimization of the boundary energy.
From the evolution of ξ3 and vT J , one can see that the simulation converges in
time and space. Even if the values of ξ3 do not precisely fit the analytical value,
they converge towards ξhmin[0],∆t[0]

3 . Moreover, the converged value of velocity
is around v

ana(hmin[0],∆t[0])
T J , meaning that the kinetics and topology of the triple

junction are well-correlated through Equation (3.12).
The evolution of the triple junction profile using the Het, HetGrad, and Aniso

formulations is illustrated in Figure 3.7. Both the Het and Aniso formulations
produced the Grim Reaper profile, while the profile produced by the HetGrad
formulation evolves in the opposite direction. This is reflected in the values of
the triple junction velocity shown in Figure 3.8c. From the comparison of the
interfacial energy evolution (Figure 3.8a) and of the velocities (Figure 3.8c), one
can see that the Aniso formulation has the best energetic behavior and a better
approximation of the triple junction velocity. However, the best approximation
of dihedral angles is obtained with the HetGrad formulation (Figure 3.8b).
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Figure 3.8: Time series of EΓ, ξ3 and vT J for the three formulations.
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Figure 3.9: Detail of the triple junction at t = 0.3.
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The level of anisotropy defined here is high (r = 10), and this order of value
has also been discussed in the literature [25, 29, 162] and remains necessary to
discuss realistic polycrystal aggregates (coherent twin energy, for example). In
Figure 3.10, the effect of the anisotropy level (r value) on the top dihedral an-
gle and the triple junction velocity is illustrated. We have carried out simu-
lations using h = 1 × 10−3, ∆t = 1 × 10−4 and r ∈ {0.55, 0.625, 0.714, 0.833,
1.0, 1.25, 1.66, 2.5, 5, 10}, which are equivalent to γbot ∈ {1.8, 1.6, 1.4, 1.2, 1.0,
0.8, 0.6, 0.4, 0.2, 0.1}. These results allow us to conclude that the Het methodol-
ogy is not adapted whatever the r value. Interestingly, the HetGrad formulation
seems very good for ξ3 and vT J for r < 1.5, but the migration direction ends
up being reversed for higher r values, while keeping an excellent profile for the
equilibrium angles. Finally, if the angle respect is slightly worse for the Aniso
formulation, the respect of the triple junction speed is much better as soon as
r > 1. In Figure 3.10b, the three additional dashed lines represent the expected
velocity for the ξ3 values obtained after reaching equilibrium, as illustrated in
Figure 3.10a using Equation 3.12. One can see that the Het and HetGrad formu-
lations correlate ξ3 and vT J for r < 1. On the other hand, the Aniso formulation
correlates ξ3 and vT J for every r value. A good correlation could be advanta-
geous if one wants to perform more realistic simulations where correct kinetics
and topology of the microstructure are of significant importance.
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Figure 3.10: Variation of triple junction characteristics as a function of r using
the Het, HetGrad, and Aniso formulations, and the 1 × 3 domain. h = 1 × 10−3

and ∆t = 1 × 10−4.

Effect of the mesh and domain size

The simulations presented above were carried out with an unstructured static
mesh (StaticMesh) and a body fitted remeshing technique (Fitz) [192] and then
compared to the results obtained using the remeshing technique presented before
(Remesh) [186,188]. The mesh size around the triple junction is the same for the
three cases. First the same domain with Lx = 1 and Ly = 3 is used, Figure 3.12
and Figure 3.11 show the value of the dihedral angle and the velocity after the
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triple junction reaches an stationary state. One can see that the difference be-
tween the three cases is small regarding ξ3, also the case using the static mesh
is slightly closer to the analytical values. On the other hand, the values of vT J

show a similar tendency using the Aniso and HetGrad formulation.
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Figure 3.11: Variation of triple junction characteristics as a function of r using
the HetGrad formulation and the 1x3 domain.
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Figure 3.12: Variation of triple junction characteristics as a function of r using
the Aniso formulation and the 1x3 domain.

If the domain is bigger, similar results are found, the HetGrad formulation
has a better approximation of the dihedral angle and also evolves in the wrong
direction for r > 2. On the other hand, the Aniso formulation has a better
approximation of the junction velocity.
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Figure 3.13: Variation of triple junction characteristics as a function of r using
the HetGrad formulation and the 3x3 domain.
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Figure 3.14: Variation of triple junction characteristics as a function of r using
the Aniso formulation and the 3x3 domain.

Effect of the Boundary Conditions

In [25], the authors proposed the HetGrad formulation and performed several
simulations for different values of r. The authors compared the dihedral angles
against the analytical Grim Reaper values, see Equation 3.10, and found a very
good estimation of the dihedral angles. A triangular domain was used with an ini-
tial triple junction equilibrium at 120° and Dirichlet boundary conditions (fixing
the GB in the border domain). In other words, a final configuration respecting
the Young’s equilibrium is attained without the possibility to describe the tran-
sient state with an analytical solution. In order to study the Aniso formulation
behavior, the same case is presented here. An isotropic mesh is used with a local
adaptation around the triple junction where the mesh is refined in a circle of
radius ε = 0.05, allowing the simulation to be more computationally efficient in
terms of CPU time and memory storage. Figure 3.15 illustrates the mesh around
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the triple junction, where one can see the change of the mesh size close to the
triple junction.

Figure 3.15: Initial configuration of the triangular case with a refined isotropic
mesh around the triple junction and a coarse mesh outside the triple junction
with r = 10.

Multiple simulations were carried in order to study the effect of r. The con-
stant parameters are the GB mobility µ = 1, the GB energy of the top inter-
faces γtop = 0.1, the mesh size at the triple junction hT J = 0.001, the mesh
size outside the triple junction h = 0.01, and the time step ∆t = 1 × 10−4.
As for the case presented before, the GB energy of the bottom interface is
changed to obtain r ∈ {0.55, 0.625, 0.714, 0.833, 1.0, 1.25, 1.66, 2.5, 5, 10}
(γbot ∈ {0.18, 0.16, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01}). In Figure 3.16,
one can see the same tendencies as in Figure 3.10, with the HetGrad formulation
being the best option in terms of dihedral angles’ prediction.

Figure 3.17 shows the interface evolution with r = 10. The evolution is similar
for the Grim Reaper example in Figure 3.7. The Het and Aniso formulations
exhibit a Grim Reaper-like profile, while the HetGrad formulation evolves in the
upward direction. This may seem wrong, however, for this particular geometry
an upward movement is expected for r > 1 in order to match the analytical
angles and as the initial angles are fixed to 120°. Thus, one can say that the
interface obtained with the Het formulation evolves in the wrong direction. On the
other hand, the movement obtained by the HetGrad formulation exaggerates the
expected displacements and the interface is highly curved. Another illustration of
the interface movement is shown in Figure 3.18 for r = 1.66, where the HetGrad
and Aniso formulations have a correct evolution of the interface and the dihedral
angle is closer to the analytical value, as shown in Figure 3.16.

In Figure 3.19, one can see the evolution of EΓ. The trends are similar to the
previous test case. The HetGrad and Aniso formulations have a better energetic
behavior, and the Aniso formulation remains the best option for high anisotropy
levels.
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Figure 3.16: Triangular case with Dirichlet boundary conditions: variation of the
triple junction top dihedral angle ξ3 as a function of r using the Het, HetGrad,
and Aniso formulations.
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Figure 3.19: Variation of the interfacial energy, EΓ, using two different values of
r.

These results highlight that the Aniso formulation seems to be the more physi-
cal model for a triple junction regarding the velocity of the triple junction and the
interfacial energy. Additionally, it also represents the dihedral angles correctly for
a wide range of anisotropy levels. Nevertheless, this idea must be reinforced with
large scale simulations of polycrystals which is the subject of the next section.
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Figure 3.17: Interface evolution using the Het, Hetgrad, and Aniso formulations
of the triple junction with r = 10.

Figure 3.18: Interface evolution using the Het, Hetgrad, and Aniso formulations
of the triple junction with r = 1.66.

3.3 Effect of the texture and heterogeneous GB
properties during GG simulations of a poly-
crystalline microstructure

In this section, we study a representative GB network in 2D. Figure 3.20 exhibits
the initial characteristics of the microstructure, it consists of a square domain
with length L = 1.6 mm and 5000 grains generated using a Laguerre-Voronoi
tessellation [193] based on an optimized sphere packing algorithm [194] with a
log-normal distribution for the arithmetic mean grain size. The grain size, R, of
each grain is defined as

√
S/π, with S as its surface (i.e., defined as the radius of

the equivalent circular grain of the same surface). Anisotropic remeshing is used
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following Equation 3.6 with a refinement close to the interface. The mesh size in
the tangential direction (as well as far from the interface) is fixed at ht = 5µm
and at hn = 1µm in the normal direction. The time step is fixed at ∆t = 10 s.
This section is mainly devoted to studying the heterogeneity of both GB energy
and mobility using the four introduced grain growth formulations. Finally, the
same study is performed using a different texture.

Figure 3.20: Initial microstructure (a) with 5000 grains and its grain size distri-
bution (b).

3.3.1 Effect of the heterogeneity
Here we use a misorientation dependent GB energy and mobility defined with
a Read-Shockley (RS) function [69] and a Sigmoidal (S) function proposed by
Humphreys in [77]: {

γ(θ) = γmax
θ
θ0

(
1 − ln

(
θ
θ0

))
, θ < θ0

γmax, θ ≥ θ0
(3.14)

µ(θ) = µmax

1 − exp

−5
(
θ

θ0

)4
 , (3.15)

where θ is the disorientation, µmax and γmax are the maximal GB mobility and
energy, respectively. θ0 = 30◦ is the disorientation defining the transition from a
low angle grain boundary (LAGB) to a high angle grain boundary (HAGB). θ0 is
normally considered to be between 15−20◦ but here this parameter is exaggerated
to exacerbate the heterogeneity of the system. The maximal values for the GB
properties are µmax = 1.379mm4J−1s−1, and γmax = 6 × 10−7Jmm−2, these
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values were estimated using the same methodology as in [173] and are typical for
a stainless steel.

Figure 3.21 shows the orientation field using the vector magnitude
OG =

√
φ2

1 + ϕ2 + φ2
2 where (φ1, ϕ, φ2) are the three Euler angles. The Euler

angles defining the crystallographic orientations generated in this case are gen-
erated randomly, leading to a Mackenzie-like disorientation distribution function
(DDF) [195]. As the Read-Shockley model is used to define γ, the GB energy
distribution (GBED) is concentrated at high values as seen in Figure 3.22.

(a) Orientation (b) Disorientation

Figure 3.21: Initial crystallographic characteristics.
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Figure 3.22: Initial GB characteristics.
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Heterogeneous grain boundary energy

In this section, GB energy is defined using Equation 3.14 and GB mobility is as-
sumed isotropic. Hence, the Het, HetGrad, and Aniso formulations are presented
as “Het(µ:Iso)”, “HetGrad(µ:Iso)”, and “Aniso(µ:Iso)”. The results are summa-
rized in Figures 3.23–3.25. First, it is noticeable that all the formulations have
a similar evolution concerning the total grain boundary energy EΓ, the number
of grains Ng, and the mean grain size weighted by number R̄Nb[%] or by surface
R̄S[%]. Additionally, if the grain size distribution weighted by number is nor-
malized (Figure 3.24), one can recognize that all the formulations have similar
distributions and the minima have similar values with respect to the mean radius.
Similar results for the “Iso” and “HetGrad” formulations with heterogeneous GB
energy defined by the Read–Shockley model were already reported [20].
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Figure 3.23: Mean values time evolution for the different formulations.
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Figure 3.24: Grain radius distribution weighted by number at t = 1h.
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Figure 3.25: Grain size distribution and contributions from every group of grains
with coordinance from 3 to 9 at t = 1h.

The slow evolution of the mean values has been reported as a consequence of
little local heterogeneity produced by a Mackenzie-like DDF and/or a low value
of θ0 [30, 185, 196, 197]. If the DDF starts as a Mackenzie distribution, the value
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of GB mobility and energy is focused at higher values, thus the microstructure
cannot easily find a path to minimize its energy faster and the DDF changes
slightly from its initial Mackenzie form. In other words, the initial configuration
is almost isotropic. Slight differences can be observed after t = 1 h for the different
formulations, which may be due to the low final number of grains (NG ≈ 500).

Regarding the morphology of the microstructures at t = 1 h, the grains are
equiaxed. If we divide the total group of grains in classes divided by the number of
neighbors (defined as the coordination number in the following), n, an interesting
analysis regarding the morphology of grains could be performed. In Figure 3.25,
the contribution of every class is depicted, and at t = 0 s, most of the grains
verify n = 5. After one hour, one can directly appreciate that the class with
n = 6 is the main class using the four formulations. This agrees with theoretical
predictions of grain boundary motion with isotropic GB energy, which promotes
triple junctions with dihedral angles near 120◦ [172]. This aspect again illustrates
the limited impact of the considered anisotropy in this configuration.

Figure 3.26: Disorientation of the boundaries using the four formulations with
homogeneous grain boundary mobility at t = 2h, boundaries with a disorientation
higher than 30◦ are colored in red. The triple junction presented with the dihedral
angles is present during the whole simulation.
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Heterogeneous grain boundary energy and mobility

In this section both GB energy and mobility are heterogeneous, respectively de-
fined with Equations 3.14 and 3.15, for that reason the names introduced above
are replaced by ”Het(µ:S)”, ”HetGrad(µ:S)” and ”Aniso(µ:S)”. In order to com-
pare the results presented above, the same initial microstructure and crystal-
lographic orientations are used. The mean values evolution and distributions
remain similar among the four formulations and keep similar values as presented
before. The heterogeneous GB mobility may affect the morphology of the mi-
crostructure, due to a retarding effect from GBs with disorientation lower than
θ0. There is a resemblance between the four microstructures shown in Figure 3.27
showing mostly equiaxed grains. Two important aspects of these microstructures
are that the microstructure obtained by the “Het” formulation is the most dis-
similar with a lower number of GBs with disorientation inferior to θ0. Second, the
presence of low angle GBs (θ < 30◦) looks higher using the Anisotropic formula-
tion. Nevertheless, this is not reflected in the interfacial energy nor the DDF (see
Figure 3.28). Regarding the microstructure obtained with the Anisotropic formu-
lation, the blue GBs with less than 12◦ looks like a sub-grain structure, this kind
of structure has been found in other works using Phase Field formulations [8].

Figure 3.27: Disorientation of the boundaries using the four formulations with
heterogeneous grain boundary mobility at t = 1h, boundaries with a disorienta-
tion higher than 30◦ are colored in red.
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Figure 3.28: Grain size distribution and contributions from every group of grains
with coordinance from 3 to 9 at t = 1h.

Finally, Figure 3.29 shows the disorientation distribution function using both
an isotropic and heterogeneous mobility at t = 1h. As said before, the initial
Mackenzie-type distribution evolves slowly, a slow preference of low angles GBs
is found. Using heterogeneous mobility affect slightly the DDF, one can see that
the Anisotropic formulation (Aniso(µ:S)) exacerbates low values of disorientation
reflected in higher values in the distribution at 0 < θ < 10◦. Due to the Mackenzie
like DDF, the GB energy distribution is concentrated around γmax, i.e, the level
of anisotropy (R = γmax/γmin) is R = 1 leading to microstructures with triple
junctions angles around 120◦ (see Figure 3.27), these results are in accordance
with prior works [172, 196, 198].
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Figure 3.29: Disorientation distribution function at t = 1h using an isotropic (a)
and a heterogeneous (b) mobility.

At this point one can see that for a non-texture material with an initial
Mackenzie-like DDF the GB energy and mobility is similar to an Isotropic case.
That is the fundamental reason of little difference among the formulations using
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isotropic or heterogeneous GB mobility. The results exhibit similar evolution of
mean values, distributions and morphology. In order to study the behavior of
the different formulations for a wider spectrum of GB properties, the next sec-
tion is devoted to study the effect of the texture using the four formulations with
isotropic and heterogeneous GB mobility.

3.3.2 Effect of the texture
Here, the crystallographic orientations are defined differently: one Euler angle is
generated randomly with a uniform distribution function and the two others are
constants. As a result, the final disorientation distribution is more uniform, as
seen in Figure 3.30. Properties are defined using Equations 3.14 and 3.15, and the
transition disorientation angle is set to 30◦, as previously used. The main effect
of the wider resulting GBED is the increase of local anisotropy at triple junctions,
as illustrated in Figure 3.30, compared to the previous test case (Mackenzie-like
DDF).
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Figure 3.30: Comparison of GB distribution properties, (a) DDf and (b) GBED.

Heterogeneous grain boundary energy

The results described in Figure 3.31 illustrate that the Iso formulation predicts
the fastest evolution. Additionally, one can see that the interfacial energy is
better minimized using the Aniso formulation. From these results, one can infer
that the isotropic formulation seems not adapted in this context. For a wider
range of anisotropy levels, such as the one used in this test case, a particular
coordination number with n = 4, 5 may be more present [172,198]. However, the
Iso formulation promotes equiaxed grains (n = 6). Once again, this tendency
discredits the Isotropic approach for highly heterogeneous interfaces.

Regarding both heterogeneous formulations (Het and HetGrad), the evolution
of mean values and distributions are similar, as illustrated in Figures 3.31 and
3.32. First, both predicted distributions have similar groups, with n = 4, 5, 6, and
second, the predicted microstructures show mostly equiaxed grain with a similar
distribution of GB disorientation. In Figure 3.33, one can see similar clusters of
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GBs, with high values of disorientation depicted in red. From the morphology
of GBs (Figure 3.33), the formulation that respects the most, on average, the
triple junction angles is the Anisotropic one. This is illustrated in Figure 3.34,
where the dihedral angles of a triple junction formed by GBs with low and high
disorientation angles are shown. For this particular example, in Figure 3.34,
blue and red boundaries have values of γ of about 0.25 × 10−7J · mm−2 and
6 × 10−7J · mm−2, respectively. One can estimate an approximated value of the
dihedral angle opposite the blue interface using Equation 3.10, which is about
177◦, with r = 6/0.25 = 24. The results described in Figures 3.31 and 3.35 show
that while promoting a slower evolution of the microstructure, the Aniso (µ:Iso)
formulation exhibits a better behaviour concerning the decreasing GB energy.
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Figure 3.31: Mean values time evolution for the different formulations.
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Figure 3.32: Equivalent radius distribution and contribution from every group of
grains with coordinance from 3 to 9 at t = 1h.

Figure 3.33: Disorientation of the boundaries using the four formulations with
homogeneous grain boundary mobility at t = 1h, boundaries with a disorientation
higher than 30◦ are colored in red.
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Figure 3.34: TJ dihedral angles among boundaries with high (red) and low (blue)
GB energy. The disorientation of the boundaries is also depicted for the four
formulations and homogeneous grain boundary mobility at t = 2h. Boundaries
with a disorientation higher than 30◦ are colored in red.
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Figure 3.35: Grain boundary characteristics distributions at t = 1h.

Heterogeneous grain boundary energy and mobility

If heterogeneous GB mobility is added, the evolution of the microstructures can
vary significantly. The results presented in Figure 3.36 show two regimes for the
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Het(µ:S) formulation. First, one can infer that the Het formulation have issues
to reduce the interfacial energy and presents a peak which is the result of an
evolution dominated by curvature flow without any effect of the heterogeneity. If
we compare the results shown in Figures 3.31 and 3.36, one can see the retarding
effect of using a heterogeneous GB mobility. This effect is more stronger on
the HetGrad and Anisotropic formulations due to the gradients introduced by
heterogeneous fields and is completely natural because technically the diffusivity
is the scalar product γµ, so the effect of the crystallography is taken into account
twice. Thus, the Isotropic case evolves faster than the other formulations.
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Figure 3.36: Mean values time evolution for the different formulations.

The results presented in Figure 3.37 and Figure 3.38 show that using the Het
and HetGrad formulations the microstructure has more grains within the classes
n = 4 and n = 7. On the other hand, the Anisotropic case didn’t evolve enough
to compare it to the other cases, one can see that the number of grains is around
twice the number of grains of the other cases.
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(d) Aniso(µ:S)

Figure 3.37: Equivalent radius distribution and contribution from every group of
grains with coordinance from 3 to 9 at t = 1h.

Figure 3.38: Disorientation of the boundaries using the four formulations with
heterogeneous grain boundary mobility at t = 1h, boundaries with a disorienta-
tion higher than 30◦ are colored in red.
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Interestingly, the DDF of the Het formulation disagrees with the results pre-
sented in [185]. Here, the evolution of the DDF evolves in the opposite way to
the expected results (see Figure 3.39). Indeed, the DDF tends to increase the
percentage of interfaces with θ > θ0 and decrease those with θ < θ0, which clearly
seems nonphysical. Moreover, the Iso and HetGrad formulations do not exacer-
bate a particular disorientation. Finally, the Anisotropic formulation seems to
exhibit a more physical behavior by promoting a higher percentage of GBs with
lower values of disorientation.
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Figure 3.39: Grain boundary characteristics distributions at t = 1h.

3.3.3 CPU Time
All the simulations presented here were performed on 20 cores with the same
mesh size, hn = 1µm at the normal direction of the interface and ht = 5µm in
the tangential direction of the interface and far from the interface. As expressed
before, both heterogeneous formulations and the anisotropic formulation have
additional terms which can be synonymous of more complex resolution. This
aspect if not significant when moderated anisotropy is considered as illustrated
by the first line of Table 3.1.

However, the CPU-Time changes importantly for the textured case presented
above. The HetGrad and Aniso formulations take 2 and 4 additional hours,
respectively, in comparison to the Isotropic formulation.

Table 3.1: CPU time in hours of the four formulations with heterogeneous GB
energy and mobility.

Case Iso Het HetGrad Aniso

Random 5.4 5.5 5.5 5.6
Textured 5.4 5.5 7.3 9.4
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3.4 Accounting for Misorientation and Inclina-
tion Dependence

The formulations presented above have dealt with heterogeneous GB properties.
However, we know that the nature of the GB is described in a 5D space generated
by the inclination and the misorientation. The effect of the normal direction has
been described by Herring in [191] as a torque term. Hence, a triple junction
should respect a condition frequently known as Herring’s equation, i.e. Equation
3.7.

Due to the high dimensional space of GBs, many researchers have attempted
to propose metrics that properly represent symmetries [115–121]. With these
metrics, one can compare and compute the shortest paths (geodesics) between
GBs. As the misorientation and the normal orientation and misorientation can
change during the microstructure evolution due to grain rotation or grain disap-
pearance/appearance, the evolution of the metric could reveal important infor-
mation about the microstructure–property relationship. Recent works by Chesser
et al. [199] and Francis et al. [200] have proposed new metrics using octonions,
revealing good predictions of GB energy of the data published by Olmsted in [33].

To the authors’ knowledge, the effect of the GB normal orientation is not clear,
and more experimental, numerical, and theoretical works are needed. Here, we
define the effect of the normal orientation using a model of GB energy proposed
for fcc metals by Bulatov et al. [34] and available in the GB5DOF code. When
γ is defined using the GB5DOF code, both the effect of the misorientation and
inclination are taken into account using the crystallographic orientations of the
two adjacent grains and the local coordinate system of the corresponding GB [34].

3.4.1 Triple Junction

This case concerns again a triple junction, as described by Figure 3.40. We per-
formed simulations with a constant GB mobility set to µ = 1×106 mm4 ·J−1 ·s−1,
taken from [201], a domain of 1×1 mm2, and a time step of ∆t = 5×10−5 s. The
Aniso formulation is used by considering γ as only initially defined by the misori-
entation (γ(M)) and then also dependent on the inclination (obtained through
the GB5DOF code and denoted as Aniso-GB5DOF, i.e., γ(M, n⃗)). The Iso, Het,
and HetGrad are not presented here because they evolve in the wrong direction
(the expected movement should reduce the length of the interface between grain
G1 and G2, depicted in yellow). The evolution of the interfaces shown in Fig-
ure 3.41 presents similar tendencies to the cases presented by Garcke in [202] and
Hallberg in [32]. If both evolutions (without or with the inclination dependence)
seem to promote similar triple junction evolution, the Aniso-GB5DOF case ex-
hibits a much faster evolution, which illustrates the importance of accounting for
the inclination in the reduced mobility description.
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Figure 3.40: (a) Grain orientations, (b) initial reduced mobility [mm2/s], (c)
change of GB energy as a function of the GB inclination, λ, with respect to the
x-axis, evaluated using the code GB5DOF [34].

Figure 3.41: Interface evolution for three different times, t = 0.25, 0.5, 0.75 s.

3.4.2 Coherent and Incoherent Twin Boundary
The main advantage of the GB5DOF code is that it is possible to characterize
coherent and incoherent twin boundaries. These special GBs play an important
role on polycrystalline microstructures, and their modeling is not frequently dis-
cussed at the mesoscopic scale. The next example was firstly proposed by Brown
and Ghoniem in [203] and also reproduced at the mesoscopic scale in [32]. It
consists of two grains composed of two coherent twin boundaries (CTB) and one
incoherent boundary (ICB). Figure 3.42 shows the crystallographic orientation,
the initial GB energy, and the variation of the GB energy as a function of the
GB inclination. The Iso and Aniso formulations were used to model the GB
movement. For the Aniso formulation, the GB5DOF code was used to compute
the GB energy all along the simulation. On the other hand, the GB energy of
the Iso case is constant and set to γ = 0.65969 J ·m−2. The evolution of the GB
is shown in Figure 3.43. The time step was set to ∆t = 0.1 ns and GB mobility
was set to µ = 1.3 × 107 µm4 · J−1 ·ns−1 in order to reproduce the velocity of the
ICB found by Brown and Ghoniem in [203], vICB = 1.2 m · s−1. The movement
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of the ICB should be uniform and it should respect the flatness of the CTB. The
Aniso-GB5DOF simulation enables to respect the expected behavior.

Figure 3.42: (a) Grain orientations, (b) initial reduced mobility [µ m2/s], (c)
change of GB energy as a function of the GB inclination, λ, with respect to the
x-axis, evaluated using the GB5DOF code.

Figure 3.43: Interface evolution at different times, t = {2, 4, 6, 8, 10, 12, 14, 16}
ns.

3.5 Numerical implementation in 3D
2D simulations reveal important characteristics of the kinetics of microstructures.
Nevertheless, more realistic microstructures need to be studied. To that end,
3D simulations are necessary because they reveal complex topological changes
that are omitted in 2D simulations and in 3D, the inclination can be correctly
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taken into account. In this section a 3D version of the Grim Reaper case and a
polycrystalline case with 7100 initial grains are presented.

3.5.1 The Grim Reaper Case
The main difference with the 2D case is that the T junction is extruded and a
boundary is added. This means that the two triple lines with an anisotropy level
r are present. Figure 3.44 shows the initial configuration of the multiple junction.
It is composed of 4 grains and 3 multiples lines from which two of them have a
different value of r (colored in green). This example was proposed by Hallberg
in [32] and remains dimensionless.

Dimensionless simulations are carried out using γtop = 1.0, µ = 1.0 and r =
{10, 1.25, 0.55}. The 0.5 × 0.5 × 0.5 domain is discretized with a non-structured
static mesh with a size of h = 0.01. First, the evolution of the multiple junction
with r = 10 is presented in Figure 3.45. Alike the 2D Grim Reaper case, the Het
formulation is the fastest. The evolution of the triple junction obtained with the
HetGrad formulation in 2D evolved in an opposite direction as it was expected for
r = 10. Yet the 3D multiple junction evolves in the correct direction with a slight
difference in the y-direction. Finally, the Aniso formulation evolves as expected.
This simulation seems to be driven mostly by the curvature of the interfaces with
a little effect of the gradients. Figure 3.46a shows the evolution of the interfaces

Figure 3.44: Multiple junction in 3D with two different points of view. The green
lines depict the triple lines where the anisotropy level r is defined. The outline
color corresponds to the z-Orientation of the grain.
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Het HetGrad Aniso

t=0.025

t=0.075

t=0.025

t=0.075

t=0.025

t=0.075

Figure 3.45: Multiple junction evolution in 3D, using the Het, Hetgrad and Aniso
formulations with r = 10. The disorientation angles are shown for every interface
at two different times t = 0.025, 0.075.
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Figure 3.46: Time series of EΓ using the three formulations with a)r = 10,
b)r = 1.25 and c)r = 0.55.

3.5.2 Polycrystalline case with a strong texture
Figure 3.47 shows the initial microstructure employed to model 3D grain growth.
The domain of size 0.1 × 0.1 × 0.1mm is discretized with a non-structured static
mesh with a size of h = 1µm. The initial system consists of 7991 grains generated
using a Laguerre-Voronoi tessellation [193] based on an optimized sphere packing
algorithm [194] with a log-normal distribution for the arithmetic mean grain size
(µdist = 0.003 and σdist = 0.0005). The time step, maximal GB mobility, maximal
GB energy and disorientation angle transition are set to ∆t = 10s, µmax =
1 mm4 ·J−1 ·s−1, γmax = 10−7 J ·mm−2 and θ0 = 30◦. The orientation is generated
as in Section 3.3.2: φ2 is generated randomly using a uniform distribution and
φ1 and ϕ are constant.
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(a) Euler angle φ2 (b) Disorientation angle

Figure 3.47: Initial microstructure characteristics. In (b) the red GBs have a
disorientation angle higher than 30◦ (HAGBs).

Figure 3.48 shows the initial GB distributions, as exposed in the 2D cases,
a DDF with a wider domain of disorientation produces a GBED with a bigger
variation of GB energy and higher levels of anisotropy. The initial DDF is not
as uniform as the one generated for the 2D case, see Figure 3.30, but the level of
anisotropy is enough to expect different responses of the FE-LS formulations.
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Figure 3.48: Initial grain boundary characteristic distributions.
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Heterogeneous grain boundary energy

The results described in Figure 3.49 are coherent to those exposed in the 2D
case. First, the Iso formulation produces a faster evolution of the microstructure.
Second, the interfacial energy is better minimized by the Anisotropic formulation.
From Figures 3.50 and 3.51, one can see that the Anisotropic formulation allows
the decreasing of the interfacial energy thanks to the creation and promotion of
LAGBs colored in blue in Figure 3.51.
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Figure 3.49: Mean values time evolution for the different formulations in 3D.
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Figure 3.50: Grain boundary characteristics distributions at t = 30min.

Figure 3.51: Disorientation of the boundaries using the four formulations with
isotropic grain boundary mobility at t = 30min, boundaries with a disorientation
higher than 30◦ are colored in red.
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Heterogeneous grain boundary energy and mobility

If the heterogeneity of GB mobility is added, the evolution of the microstructures
are drastically modified. From Figure 3.52 the evolution of the grain size and the
number of grains one can notice the slow evolution of the Het, Hetgrad and Aniso
formulations. Also, the evolution of the interfacial energy does not present the
peak near t = 0s. Interestingly, the DDF and the GBED produced by the Aniso
formulation are in accordance with prior work [38,185]. In Figures 3.53 and 3.54,
the GBs with low disorientation angle are preferred by the Aniso formulation
while the Iso, Het and HetGrad formulations do not exacerbate any particular
disorientation.
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Figure 3.52: Mean values time evolution for the different formulations in 3D.
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Figure 3.53: Grain boundary characteristics distributions at t = 30min.

Figure 3.54: Disorientation of the boundaries using the four formulations with
heterogeneous grain boundary mobility at t = 30min, boundaries with a disori-
entation higher than 30◦ are colored in red.
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3.6 Conclusions
Different FE-LS formulations to simulate grain growth were presented and com-
pared in this chapter. The isotropic formulation is able to reproduce mean grain
size and grain size distribution evolutions when a moderated anisotropy is in-
volved.

From the results presented using the triple junction cases, the Anisotropic
formulation was the most accurate. The triple junction velocity predictions were
the closest to the theoretical values while predicting accurate dihedral angles. In
addition, the interfacial energy was always minimized and faster compared to the
other approaches.

Additionally to these academic configurations, simulations using two different
polycrystalline microstructures were performed. First, the initial orientations
were generated using a uniform distribution, producing an initial Mackenzie-like
disorientation distribution. Finally, another example with a textured orientation
was considered. It was then illustrated that for a simple microstructure with
initial random orientation, an isotropic formulation can be used, and that for a
textured configuration, the Anisotropic formulation presents the best behavior
in terms of grain morphology, DDF, and interfacial energy evolution predictions,
while keeping a reasonable efficiency, compared to the isotropic formulation. The
same results were obtained in 3D and the effect of the GB mobility looks to only
modify the morphology of the grains.

The initial DDF and GBED are two important distributions that one has to
analyze in order to choose a correct formulation. More importantly, the GBED
and the GB energy values around multiple junctions are crucial to understand
the anisotropic nature of microstructures. The next chapter is focused on the use
of 2D experimental data of 316L stainless steel where different DDF are used.
With the next results, we intend to validate the Anisotropic formulation as the
best formulation to model anisotropic GG.

117



CHAPTER 3. COMPARISON OF FE-LS FORMULATIONS

3.7 Résumé en Français du Chapitre 3
Ce chapitre s’est concentré sur la comparaison de quatre différentes formulations
avec énergie et mobilité de joints de grain hétérogènes. Par ailleurs, l’ensemble
des formalismes Éléments Finis hétérogènes ou anisotropes pour la description
de γ ont été enrichis afin de pouvoir considerer une mobilité dependante de la
désorientation.

Des cas académiques sur jonctions multiples ainsi que des cas plus réalistes
sur polycristaux 2D et 3D sont considérés et discutés.

La formulation anisotrope présente les résultats physiques les plus réalistes
mais il a également été montré que pour la prédiction de certains attributs et
dans certaines configurations, la formulation isotrope pouvait être suffisante.
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Chapter 4

Level-Set modeling of grain
growth of 316L stainless steel
using EBSD data.

In the previous chapter, academic triple junctions test cases and simplified poly-
crystalline microstructures were considered. The main conclusion was that the
Isotropic formulation can reproduce mean values and distributions when the
anisotropy level is moderated. However, when the anisotropy level increases,
the Anisotropic formulation leads to more physical predictions in terms of grain
morphology, global surface energy evolution and multiple junctions equilibrium.
The goal of this chapter is to criticize the capacity of the Isotropic and Anisotropic
formulations to model GG of a real material, 316L stainless steel, in terms of mean
grain size, grain size distributions and mean GB properties. The effect of consid-
ering an initial microstructure using statistically representative Laguerre-Voronoï
tessellation [193] or digital twin microstructures from EBSD data is compared.
The effect of the GB energy definition is illustrated with two different frame-
works: a 3-parameter one, well-known as the Read-Shockley formulation [69];
and a 5-parameter one using the the GB5DOF code proposed in [34]. The effect
of the GB mobility description using an isotropic and a Sigmoidal model [77] is
also discussed.

This chapter is organized as follows. First, in section 4.1, the FE-LS GB
velocity formulations are presented briefly. The methodology to compute the
GB reduced mobility from experimental data is presented in section 4.2. The
results using the Isotropic and Anisotropic formulations are compared using sta-
tistically representative Laguerre-Voronoï tessellations (Section 4.3), immersed
microstructures with heterogeneous GB properties (Section 4.4) and immersed
microstructures with anisotropic GB energy using the GB5DOF code [34] (Sec-
tion 4.5.1). Finally, a discussion about 3D uncertainties and their effect in the
estimation of GB properties is presented.

This Chapter was partially submitted to publication in [204].
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4.1 GB velocity formulation
The Isotropic and Anisotropic formulations were detailed in Section 3.1 but are
briefly reminded in this section. The Isotropic formulation uses a homogeneous
GB energy and mobility [18], the velocity field is thus defined as:

v⃗ = −µγκn⃗,

On the other hand, the Anisotropic formulation was developed using ther-
modynamics and differential geometry in [20, 175]. Both, the GB normal and
misorientation are taken into account and an intrinsic torque term is present:

v = µ(θ)
(
P∇⃗γ(M(θ, a⃗), n⃗) · n⃗− Γ(M(θ, a⃗), n⃗) : K

)
n⃗.

In this study the torque term Γ(M(θ, a⃗), n⃗) = ∇⃗n⃗∇⃗n⃗γ(M(θ, a⃗), n⃗)+γ(M(θ, a⃗), n⃗)I
is neglected but the GB energy still depends on the GB misorientation and incli-
nation, the kinetic equation could be simplified as:

v = µ(θ)(P∇⃗γ(M(θ, a⃗), n⃗) · n⃗− γ(M(θ, a⃗), n⃗)κ)n⃗.

The weak formulation of the Isotropic (Iso) and Anisotropic (Aniso) formula-
tion are [38]∫

Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µγ∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µγφ∇⃗ϕ · n⃗d(∂Ω) = 0,

and ∫
Ω

∂ϕ

∂t
φdΩ +

∫
Ω
µ(θ)γ(M,n)∇⃗φ · ∇⃗ϕdΩ −

∫
∂Ω
µ(θ)γ(M,n)φ∇⃗ϕ · n⃗d(∂Ω)+∫

Ω
µ(θ)(P · ∇⃗γ(M,n) + ∇⃗γ(M,n))φ∇⃗ϕdΩ +

∫
Ω
γ(M,n)∇⃗µ(θ) · ∇⃗ϕφdΩ = 0,

respectively.
If the properties are homogeneous both formulations are then equivalent. The

main question remains the capability of these two numerical frameworks when the
results are compared to experimental Electron Backscatter Diffraction (EBSD)
data.
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4.2 Parameters Identification
4.2.1 Microstructure characterization: EBSD
Electron Backscatter Diffraction (EBSD) provides the orientation maps for a
given list of predefined materials. EBSD is used when aiming at quantifying
microstructure characteristics such as texture, recrystallized fraction, grain size,
GB disorientation, and GB length. The EBSD setup is the following. The sample
is polished and placed in the SEM chamber. The sample is then tilted at 70◦ and
the electron beam scans the surface of the sample over a regular grid with a fixed
step size, see Figure 4.1. One can use square or hexagonal grids; in this work, a
square grid is used.

EBSD maps are generated on a phosphor screen by backscatter diffraction.
The diffraction presents a regular arrangement known as Kikuchi pattern [205]
and which consists on a regular arrangement of parallel bands, see Figure 4.1.
Every band fulfill the Bragg condition with respect to the atomic planes. The
Kikuchi pattern is characteristic of the crystal structure and orientation in the
indexed point. The crystal orientation and phase is determined for each point.
In practice, data sets present non-indexed points that correspond to bad quality
patterns.

Figure 4.1: (a) Schematic of the EBSD geometry in a SEM showing the pole
piece of the SEM, the electron beam, the tilted specimen, and the detector. (b)
Experimental Kikuchi pattern showing the 10-fold rotation axis of AlCoNi, image
from [206].

A TESCAN FERA 3 scanning electron microscope (SEM) is used to char-
acterize the microstructure. It is equipped with several detectors including a
Symmetry and C-Nano EBSD detectors. In this work the Symmetry EBSD de-
tector was used. Post-processing was conducted using the MTEX toolbox in a
Matlab environment [207].
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4.2.2 Material characterisation
The chemical composition of the 316L stainless steel is reported in Table 4.1.
The samples were machined in the form of rectangular parallelepipeds of 8.5mm
× 8.5mm ×12mm. The samples were then annealed at 1050◦C during 30min,
1h and 2h. Afterwards, the samples were prepared for EBSD characterization.
The preparation consisted of mechanical polishing, followed by fine polishing and
finally electrolitic polishing, the details of the polishing are listed in Table 4.2.

Elem. Wgt% Fe Si P S Cr Mn Ni Mo N
Min bal. - - - 16.0 - 10.0 2.0 -
Real 65.85 0.65 0.01 0.14 18.02 1.13 11.65 2.55
Max bal. 0.75 0.045 0.03 18.0 2.0 14.0 3.0 0.1

Table 4.1: Chemical composition of the 316L stainless steel (Weight percent).

Table 4.2: Polishing procedure applied to the 316L stainless steel samples. Plate
and tower rate are the parameter of the used automatic polisher.

Abrasive time Plate Tower Force
[s] [rpm] [rpm] [dN]

320 SiC paper 60 250 150 2.5
600 SiC paper 60 250 150 2.5
1200 SiC paper 60 250 150 2.5
2400 SiC paper 60 150 100 1

HSV - 3µm Diamond 120 150 100 2
solution 0.12mL/8s

electrolytic polishing 30s 30V Electrolyte A2 (Struers)

Microstructures were analyzed at the center of the sample using a TES-
CAN FERA 3 Field Emission Gun Scanning Electron Microscope (FEGSEM),
equipped with a Symmetry EBSD detector from the Oxford company. The EBSD
map at t = 0h has a size of 1.138 mm× 0.856 mm and was acquired with a con-
stant step size of 1.5 µm. The other three EBSD maps at t = 30min, 1h, 2h
have a size of 1.518 mm× 1.142 mm and were acquired with a constant step size
of 2 µm. Grain boundaries have a disorientation above 5 degrees (θ > 5◦) and
Σ3 twin boundaries have a misorientation axis <111> ±5◦ and θ = 60 ± 5◦.

The main properties of the initial microstructure are reported in Figure 4.2.
Figure 4.2(b) illustrates the grain size and disorientation distribution ignoring
Σ3 twin boundaries (TB). The grain size is defined as an equivalent radius,
R =

√
S/π, where S is the grain area. The microstructure consists in equiaxed

grains with an arithmetic mean radius of 15 µm, and few bigger grains with a
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radius around 60 µm. Additionally, the microstructure presents a Mackenzie-like
disorientation distribution function (DDF) typical of random grain orientations.
On the other hand, if Σ3 TBs are considered, the DDF presents an additional
sharp peak at a disorientation angle θ = 60◦, which come from the TBs and
then constitute a strong source of anisotropy with regards to GB properties (see
Figure 4.2(c)).

(a)

200µm

(c)

(b)

(d)

Figure 4.2: Initial microstructure properties determined by EBSD measurements.
(a) IPF-z map. (b) Grain size distribution and DDF of grain boundaries excluding
Σ3 TBs. (c) Grain size distribution as measured in 2D sections and DDF of grain
boundaries including Σ3 TBs; the sharp peak on the DDF at 60◦ corresponds to
Σ3 TBs. (d) Standar triangle used to color the orientation maps IPF-Z (indicating
which crystallographic direction is lying parallel to the direction perpendicular
to the scanned section).

Figures 4.3, 4.4 and 4.5 show the band contrast maps and the grain size
distributions at t = 0s, 30min, 1h, 2h. Based on Figures 4.3 and 4.4, the
evolution of the microstructure seems to mostly proceed by normal grain growth
(NGG) but the surface grain size distribution shows that the microstrucuture has
a bimodal population of grains (see Figure 4.5). However, some of the grains can
reach an equivalent diameter above 0.1 mm, much larger than the average grain
size.
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Figure 4.3: Annealing at 1050◦C: band contrast map of the microstructure of
316L steel at (a)t=0 s, (b)t=30 min, (c)t= 1 h, and (d)t= 2 h. Grain boundaries
are depicted in white and Σ3 TBs in red.

Figure 4.4: From left to right: evolution of the grain size histograms at t=0 s,
t=30 min, t=1 h and t=2 h. Top: All boundaries are considered. Bottom: Σ3
twin boundaries are excluded.
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Figure 4.5: From left to right: evolution of the grain size histograms (in surface)
at t = 0s, t = 30min, t = 1h and t = 2h. Top: All boundaries are considered.
Bottom: Σ3 twin boundaries are excluded.

4.2.3 Estimation of the average grain boundary mobility
based on the Burke and Turnbull GG method

In order to compute the average mobility necessary to run full-field simulations,
the evolution of the arithmetic mean grain radius R̄Nb must be known. Fig-
ure 4.6 shows the evolution of R̄Nb as a function of the annealing time. Using the
methodology discussed in [173,208], one can obtain an average reduced mobility
µγ using the Burke and Turnbull model [209]. This model, where topological
and neighboring effects are neglected, is based on five main assumptions: the
driving pressure is proportional to the mean curvature, grains are equixaed, the
GB mobility and energy are isotropic, the annealing temperature is constant and
no second phase particles are present in the material. In this context, one can
obtain a simplified equation describing the mean radius evolution:

R̄Nb(t)2 − R̄Nb(t = 0)2 = 1
2
µγt. (4.1)

This methodology has been used in [173, 208, 210–212] assuming general grain
boundaries with homogeneous GB energy and mobility. From the evolution of
R̄Nb in Figure 4.6 (excluding the Σ3 TBs), one can then obtain a first approxima-
tion of the product µγ for the general boundaries at 1050◦C. This approximation
will be used for the µγ definition in isotropic simulations. Nevertheless, as illus-
trated by the second orange curve in Figure 4.6, when Σ3 TBs are considered in
the analysis, grains are of course smaller, but they also grow much slower, with
a direct impact on the apparent reduced mobility. This slow evolution can be
produced by the strong anisotropy brought by special GBs in the global grain
boundary network migration. Different ways to improve the description of the
reduced mobility and their impacts in the results are discussed in the following.
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Figure 4.6: Mean grain radius evolution at 1050◦C from experimental data mea-
sured in 2D sections by taking into account all boundaries (in orange) and without
TBs (in green). The outer grains which share a boundary with the image borders
are not taken into account in the analysis.

In the following sections, general boundaries make reference to the case with-
out Σ3 TBs and the case with Σ3 is referred to as all boundaries.

4.3 Statistical cases
In this section, the 2D GB network is created from the initial experimental grain
size distribution shown in Figure 4.7. The square domain has a length L = 2.0mm
and grains are generated using a Laguerre-Voronoi tessellation [193] based on an
optimized sphere packing algorithm [194]. Anisotropic remeshing is used with
a refinement close to the interfaces, the mesh size in the tangential direction
(and far from the interface) is set to hmax = 5 µm and in the normal direction
hmin = 1 µm, with transition distances set to ϕmin = 1.2 µm and ϕmax = 5 µm
(see [38, 186, 188] and Equation 3.6 for more details concerning the remeshing
procedure and parameters). The time step is set to ∆t = 10 s. The orientation
field was generated randomly from the grain orientations measured by EBSD in
the initial microstructure (Figure 4.2a). The first part studies grain boundaries
without Σ3 TB, (Section 4.3.1). In the second part, Σ3 TBs are included in the
analysis, (Section 4.3.2).
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(a) Excluding TBs (b) Including TBs

Figure 4.7: Initial grain size distributions (a) excluding TBs and (b) all grain
boundaries obtained from the initial EBSD map shown in Figure 4.2.

The interfacial energy and average GB properties are computed as

EΓ = 1
2
∑

i

∑
e∈T

le(ϕi)γe and x̄ = 1
2LΓ

∑
i

∑
e∈T

le(ϕi)xe, (4.2)

where T is the set of elements in the FE mesh, le the length of the LS zero iso-
values existing in the element e and i refers to the number of LS functions, LΓ
the total length of the GB network Γ, and xe the GB property of the element e.

4.3.1 Statistical case with general boundaries
The first case with general boundaries is composed of NG = 4397 initial grains.
Figures 4.8a and 4.8b show the initial GB disorientation and the initial DDF
distribution. Most of the interfaces have a disorientation higher than 15◦ due to
the random generation of orientations that leads to a Mackenzie-like DDF, see
Figure 4.8b.

(a) Microstructure disorientation
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(b) DDF

Figure 4.8: Initial (a) microstructure disorientation with a cyan circle which
represents the zone shown on the right and (b) the disorientation distribution.
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The GB energy and mobility are then defined as being disorientation depen-
dent, using a Read-Shockley (RS) [69] (see Equation 3.14) and a Sigmoidal (S)
function [77] (see Equation 3.15). The transition disorientation from low angle
GB (LAGB) to high angle GB (HAGB) is set to θ0 = 15◦. The maximal value
of GB energy is set to γmax = 6 × 10−7J · mm−2 and are typical for stainless
steel [111, 173]. The value of general HAGB mobility was computed using the
methodology presented in section 4.2.3 and is fixed at µmax = 0.476 mm4 ·J−1 ·s−1

for both Isotropic and Anisotropic formulations.
The simulations carried out using the Anisotropic formulation consider hetero-

geneous GB energy defined by Equation 3.14 and two descriptions of the mobility.
If GB mobility is isotropic, the formulation is referred as “Aniso(µ:Iso)” and in
the cases where GB mobility is heterogeneous (i.e. defined by Equation 3.15), the
formulation is referred as “Aniso(µ:S)”. Figure 4.9 shows the evolution of average
quantities: normalized total GB energy EΓ/EΓ(t = 0), normalized number of
grains NG/NG(t = 0), arithmetic mean grain radius R̄Nb, and normalized average
GB disorientation θ̄/θ̄(t = 0). One can see that the mean grain radius evolu-
tions agree with the experimental data and that the evolution of the other mean
values are close to each other when using the different formulations and present
reasonable variations from the experimental data. As stated in [38], the effect of
an heterogeneous GB mobility does not affect the evolution of the mean values
and distributions when orientations are generated randomly and the DDF is sim-
ilar to a Mackenzie distribution. On can see that the only mean value affected
by the GB mobility is the average GB disorientation θ̄, being the “Aniso(µ:S)”
formulation the one that is closer to the experimental evolution.
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Figure 4.9: Mean values time evolution for the isotropic (Iso) formulation,
anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heteroge-
neous GB mobility (Aniso(µ:S)) and the experimental data (EBSD). Numerical
results obtained from the initial microstructure shown in Figure 4.8a.

Figures 4.10 and 4.11, show a good match of GSD and DDF between sim-
ulation results and experimental data after one and two hours of annealing at
1050°C. One can see that the three cases are alike. The initial Mackenzie-like
DDF evolves slowly for cases with random orientations and low anisotropy (as
in [30, 38, 185, 196, 197]). Finally, in Figure 4.12, one can see the similarity be-
tween the microstructures obtained in the different simulations with most of the
grains being equiaxed and few LAGBs.
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Figure 4.10: Grain Size Distributions obtained excluding TBs at (a) t=1h and (b)
t=2h for the isotropic (Iso) formulation, anisotropic formulations with isotropic
GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the
experimental data (EBSD). NG refers to the number.
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Figure 4.11: Disorientation Distribution obtained excluding TBs at (a) t=1h
and (b) t=2h for the isotropic (Iso) formulation, anisotropic formulations with
isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S))
and the experimental data (EBSD). The y-axis represents the GB length percent-
age.

The results presented here show that the evolution of an untextured poly-
crystal with an initial Mackenzie-like DDF could be simulated using an Isotropic
formulation or an Anisotropic formulation with heterogeneous GB energy or both
heterogeneous GB mobility and energy. This methodology has been used in dif-
ferent contexts under different annealing process [173,210–212] and with academic
microstructures in [38]. In the next section, the same analysis is performed by
considering the same domain but by introducing special grain boundaries through
an update of the µ and γ fields.
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Figure 4.12: Detail of the GB disorientation at t = 2 h in radians, GBs with
a disorientation higher than 0.26 radians (15◦) are colored in red: (a) Isotropic
framework, (b) Anisotropic framework with γ function of θ (Equation 3.14) and
µ constant, and (c) Anisotropic framework with γ and µ functions of θ through
Equation 3.14 and Equation 3.15, respectively. Due to the few GBs with θ < 0.26
just a square section at the top-left of the hole microstructure is shown.

4.3.2 Statistical case with an improved description of the
γ and µ fields

The microstructure used in this section was generated using the same domain with
L = 2.0mm and the GSD shown in Figure 4.7b. The initial number of grains
is NG = 14956 and their orientation is also generated randomly from the EBSD
orientations. The initial number of grains is more important comparatively to
the previous test case as the GSD described in Figure 4.2(c - left side), where Σ3
TBs are taken into account, is used to generate the Laguerre-Voronoï polycrystal.
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Figure 4.13: Initial (a) microstructure disorientation with a cyan circle which
represents the zone shown on the right and (b) the disorientation distribution.
In (a), the blue circle shows the same zone as in Figure 4.17.

The same mesh and time step than the previous simulations are used in order
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to be able to fairly compare the obtained results. In order to define the behavior
of special GBs with properties close to Σ3 TBs, the µ and γ fields are updated
as follow:



γ(θ) = γmax
θ
θ0

(
1 − ln

(
θ
θ0

))
, θ < θ0

γ(θ) = γmax, θ0 ≤ θ < θΣ3

γ(θ) = γmax ∗ 0.1, θ ≥ θΣ3

(4.3)


µ(θ) = µmax

(
1 − exp

(
−5

(
θ
θ0

)4
))

, θ < θΣ3

µ(θ) = µmax ∗ 0.1, θ ≥ θΣ3

(4.4)

with θ0 = 15◦ and θΣ3 = 60◦ and a value of GB energy and mobility set to
γmax ∗ 0.1 and µmax ∗ 0.1 for GBs with θ ≥ θΣ3. The value of µmax is estimated
using the evolution of R̄Nb[%] considering all GBs (see Figure 4.6). The estimated
GB mobility is µmax = 0.069 mm4 · J−1 · s−1, and is one order of magnitude
lower from the GB mobility estimated without Σ3 TBs. The decrease of the GB
mobility is proportional to the decrease of grain size (see Figure 4.6) due to the
high number of TBs.

From the results shown in Figure 4.14, one can see that all formulations min-
imize the energy with the same efficiency (Figure 4.14a) and the microstructure
evolve at a same rate leading to a good fit of mean grain size and number of
grain evolutions comparatively to the experimental data. On the other hand, the
Anisotropic formulation shows a better agreement in terms of mean disorientation
evolution.

Figure 4.15 shows the evolution of the grain size distribution at t = 1h and
2h. GSDs present a good match (Figure 4.15) with small differences between the
Iso and Anisotropic formulations. However the DDF predictions (Figure 4.16)
are quite bad for all formulations even if the Anisotropic calculations tends to
be better. This result can easily be explained by the use of statistics (GSD and
orientations) from EBSD data which are not sufficient to accurately describe the
real microstructure. First, the initial topology is simplified but above all, even
if the orientation data come from the EBSD measurements, the resulting intial
DDF is not accurate as a Mackenzie-like distribution is obtained as illustrated
in Figure 4.13(b). Hence, the effect of heterogeneous GB energy and mobility
anisotropy of the real microstructure are underestimated. A way of improvement
of the proposed statistical generation methodology will be to modify the algorithm
dedicated to the assignment of the orientation of each virtual grain by imposing
also a better respect of the experimental DDF [213].
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Figure 4.14: Mean values time evolution for the isotropic (Iso) formulation,
anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heteroge-
neous GB mobility (Aniso(µ:S)) and the experimental data (EBSD). Numerical
results obtained from the initial microstructure shown in Figure 4.13a.
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Figure 4.15: Grain Size Distributions obtained including TBs at (a) t=1h and (b)
t=2h for the isotropic (Iso) formulation, anisotropic formulations with isotropic
GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the
experimental data (EBSD). NG refers to the number of grains.
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Figure 4.16: Disorientation Distribution obtained including TBs at (a) t=1h
and (b) t=2h for the isotropic (Iso) formulation, anisotropic formulations with
isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S))
and the experimental data (EBSD). The y-axis represents the GB length percent-
age.

The GB energy of the microstructure at t = 2h is shown in Figure 4.17, a
higher number of blue GBs, which correspond to TBs (low value of γ), is obtained
using the Anisotropic formulations and the effect of heterogeneous GB mobility
seems negligible.

Figure 4.17: GB energy of the microstructure obtained with the (a) isotropic and
anisotropic formulations using (b) isotropic GB mobility and (c) heterogeneous
GB mobility at t = 2 h in the same zone shown in Figure 4.13a.

The next simulations are carried out by immersing the EBSD data in order
to overcome the limits discussed above.
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4.4 Immersion of EBSD data

In this section, a digital twin microstructure obtained by immersion of the EBSD
map acquired on the initial microstructure (Figure 4.2) is discussed. Figure 4.18
shows the Band Contrast (BC) map of the microstructure and its numerical twin.
The dimensions of the domain are Lx = 0.856 mm and Ly = 1.138 mm and
contains 3472 crystallites. The time step is fixed at ∆t = 10 s and the domain is
discretized here using an unstructured static triangular mesh with a mesh size of
h = 1 µm. This microstructure is more appropriate to compare simulations and
experimental data. The evolution of the numerical microstructure is compared
to EBSD maps obtained at three different times: t = 30min, 1h and 2h (see
Figure 4.3).

Figure 4.18: (left) EBSD band contrast map with GBs depicted in white and
Σ3 TBs colored in red, and (right) its numerical microstructure displayed with a
color code related to the grain size and GBs are colored in yellow. Here TBs are
considered to calculate grain size, i.e., crystallite size.

GB energy and mobility are defined using Equations 4.3 and 4.4, respectively.
The maximal value of GB energy is set to γmax = 6 × 10−7 J · mm−2 and the
maximal value of GB mobility is set to fit the mean grain size evolution. The
maximal value of GB mobility for the Aniso(µ:Iso) and Aniso(µ:S) formulations
are µmax = 0.146 mm4 · J−1 · s−1 and µmax = 0.272 mm4 · J−1 · s−1 respectively.
Regarding the isotropic formulation, the value of GB reduced mobility remains
constant µγ = 0.414 × 10−7 mm2 · s−1. The changes in µmax are due to the more
complex geometry and the higher quantity of special boundaries that produce
additional gradients of GB energy and GB mobility (see Equation 3.5). As stated
before, the additional jump at θΣ3 is set to define special boundaries similar to
Σ3 TBs. Figure 4.19 confirms the good match between the TBs colored in red in
the EBSD band contrast map (left side) and TBs colored in blue corresponding
to a low GB energy in the numerical twin microstructure (right side).
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Figure 4.19: Detail of the (a) EBSD band contrast map and (b) its numerical
twin showing the GB Energy field. Twin boundaries depicted in red on the left
image have low energy on the right image.

With the immersed data, one can obtain a close digital twin of the real mi-
crostructure with the initial GB distributions presented in Figure 4.20. The initial
GB energy distribution (GBED) is shown in Figure 4.20b. With this particular
distribution, several junctions will have a high anisotropy level, and as stated
in [38, 185], one can expect different behaviours using the different formulations.
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Figure 4.20: Initial DDF and GBED of the initial immersed microstructure pro-
duced by the modified Read-Shockley equation.

As illustrated in Figure 4.21, the three simulations predict similar trends con-
cerning the mean grain size and the grain number evolution. Comparatively to
experimental EBSD data, these predictions are very good concerning the mean
grain size prediction but all of them tend to predict, at the beginning, a faster
disappearance of the small grains. Concerning the total energy, mean GB disori-
entation and mean GB energy evolutions, the Anisotropic formulation is closer
to the EBSD data. This means that the Aniso formulation is more physical and
promotes GBs with low GB energy.
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Figure 4.21: Mean values time evolution for the isotropic (Iso) formulation,
anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heteroge-
neous GB mobility (Aniso(µ:S)) and the experimental data (EBSD). Numerical
results obtained from the initial microstructure shown in Figure 4.18.

Figure 4.22 illustrates the topology of grains at t = 2h. One can notice the
higher quantity of GBs with low GB energy using the Anisotropic formulation
and its similarity to the EBSD band contrast map even if one can notice from
the EBSD data that the real microstructure contains more TBs that creates
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small grains as reflected in the GSD in Figure 4.23. Another advantage of the
Anisotropic formulation is the better reproduction of the DDF compared to the
Iso formulation which contains a lower percentage of GBs with θ ≈ θΣ3 and
tends to promote a Mackenzie-like DDF (see Figure 4.24). One can also see in
Figures 4.22, 4.23 and 4.24 that the heterogeneous GB mobility improves the
morphology of grain, the GSD and the DDF.

Figure 4.22: GB energy of the microstructures obtained numerically using the (a)
isotropic formulation and the anisotropic formulations with (b) isotropic and (d)
heterogeneous GB mobility and the experimental band contrast map at t=2h.

In this section it has been shown that the immersed data gives a better insight
of the real microstructure evolution. In terms of mean values, there is small
differences between the results from the Laguerre-Voronoï tessellation and the
immersed microstructure. However, the GSD and DDF distributions are better
reproduced for the immersed case when the anisotropic formalism is adopted.
The heterogeneous GB mobility affects the grain topology, the GSD and the
DDF due to its additional retarding effect. Regarding the GSD, the Aniso(µ:S)
formulation can reproduce the peak at low values of grain size and the peak
around θΣ3 for the DDF which are due to the TBs. Nevertheless, the behavior
of TBs is still not perfectly reproduced by the proposed simulations, being the
anisotropic formulation the one that seems more physical. In the next section
this issue is addressed using the GB5DOF code which allows to define the GB
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energy in terms of misorientation and GB inclination (in 2D) in order to better
characterize the evolution of TBs.
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Figure 4.23: Grain Size Distributions obtained at (a) t=1h and (b) t=2h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility
(Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the experimental
data (EBSD), NG refers to the number. Numerical results obtained from the
initial immersed microstructure shown in Figure 4.18 and the RS and Sigmoidal
model to define GB energy and mobility.
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Figure 4.24: Disorientation Distribution obtained at (a) t=1h and (b) t=2h for
the isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobil-
ity (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the experi-
mental data (EBSD). The y-axis represents the GB length percentage. Numerical
results obtained from the initial immersed microstructure shown in Figure 4.18
and the RS and Sigmoidal model to define GB energy and mobility.
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4.5 Using anisotropic GB energy and heteroge-
neous GB mobility

4.5.1 Simulation results using immersed EBSD data
In this section, the immersed polycrystalline microstructure and the FE mesh
presented in section 4.4 are used. Anisotropic GB energy values are defined us-
ing the GB5DOF code [34] and heterogeneous GB mobility are described using
Equation 4.4. It means that the GB energy can vary with the GB misorienta-
tion and inclination even if the torque terms are neglected. Note that the GB
inclination is measured in 2D and not 3D, in other words, the GB is supposed
to be perpendicular to the EBSD map. The GB Energy of the microstructure
and its GBED are shown in Figure 4.25. The initial microstructure is shown in
Figure 4.25a, one can see that the maximum value of GB energy is set around
γmax ≈ 7×10−7J ·mm−2. As discussed in [34], incoherent Σ3 TBs have a GB en-
ergy defined as γΣ3 ≈ 0.6 ∗γmax meaning that the modified Read-Shockley model
described by Equation 4.3 seems exaggerated. In Figure 4.25b the GBED is con-
centrated within the values 4×10−7J ·mm−2 ≤ γ ≤ 7×10−7J ·mm−2 which means
that the level of heterogeneity is low and the different formulations are expected
to promote similar trends as stated in [38]. The GB mobility was set to fit the
evolution of the mean grain size, the maximal GB mobility for the Aniso(µ:Iso)
and Aniso(µ:S) formulations are respectively set to µmax = 0.0767 mm4 ·J−1 ·s−1

and µmax = 0.1423 mm4 · J−1 · s−1. The difference between the µmax values are
generated by the higher values of GB energy produced by the GB5DOF code, note
that with the RS model all the TBs are defined as coherent while the GB5DOF
code can distinguish between a coherent twin boundaries and incoherent twin
boundaries as pointed out in [32, 38].

(a) GB energy of the initial microstruc-
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Figure 4.25: (a) GB energy field and (b) GBED of the initial immersed mi-
crostructure obtained using the GB5DOF code with the parameters ϵRGB =
0.763 Jmm−2 and AlCu-parameter= 0. In (a) the blue circle shows a zone of
interest with a twin boundary composed of a coherent and incoherent part, sim-
ilar to the one shown in [38].
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First the mean grain size evolution is well reproduced by the different sim-
ulations. The mean GB disorientation is not well represented by none of the
formulations, the EBSD data show a stable value around 50◦ while all numerical
results exhibit a decreasing trend. This effect is due to the TBs and illustrates
the inability for the numerical formulations to preserve or generate them. Addi-
tionally, the DDF from both formulations are similar and do not correspond to
the experimental DDF (see Figure 4.28). The similarity between the isotropic
and anisotropic simulations is due to the low anisotropy level, that may be pro-
duced by the lack of information of the GB inclination (see Figure 4.29). As
stated in [38], when the GBED is concentrated around a specific value, both for-
mulations can present a similar trend. This is confirmed with Figure 4.30 where
a zoom on the GB network is shown at four different times and one cannot see
any obvious difference among the obtained microstructures with the three dif-
ferent simulations. The main difference of these results lay in the ability of the
anisotropic formulation to keep more Σ3 TBs when the sigmoid description of µ
is used.
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Figure 4.26: Mean values time evolution for the isotropic (Iso) formulation,
anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and heteroge-
neous GB mobility (Aniso(µ:S)) and the experimental data (EBSD): (a) number
of grains, (b) average grain radius. Numerical results obtained from the initial
immersed microstructure shown in Figure 4.25a and the GB5DOF code to define
the GB energy.
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Figure 4.27: Grain Size Distributions obtained at (a) t=1h and (b) t=2h for the
isotropic (Iso) formulation, anisotropic formulations with isotropic GB mobility
(Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the experimental
data (EBSD), NG refers to the number. Initial immersed microstructure shown
in Figure 4.25a and the GB5DOF code to define the GB energy.
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Figure 4.28: Disorientation Distribution obtained at (a) t=1h and (b) t=2h for
the isotropic (Iso) formulation, anisotropic formulations with isotropic GB mo-
bility (Aniso(µ:Iso)) and heterogeneous GB mobility (Aniso(µ:S)) and the exper-
imental data (EBSD). The y-axis represents the GB length percentage. Initial
immersed microstructure shown in Figure 4.25a and the GB5DOF code to define
the GB energy.
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Figure 4.29: GBED obtained at (a) t=1h and (b) t=2h for the isotropic (Iso) for-
mulation, anisotropic formulations with isotropic GB mobility (Aniso(µ:Iso)) and
heterogeneous GB mobility (Aniso(µ:S)). The y-axis represents the GB length
percentage. Initial immersed microstructure shown in Figure 4.25a and the
GB5DOF code to define the GB energy.
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Figure 4.30: Microstructure evolution using the Isotropic formulation and
Anisotropic formulation with isotropic and heterogeneous GB mobility at t =
30min, 1h and 2h. The zone shown here is encircled in blue in Figure 4.25a.
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4.5.2 Current state of the modeling of 3D anisotropic grain
growth

A final question regarding the anisotropy of GB properties is still open: do the
3D description of GB properties can affect the microstructure evolution? Until
now, most of the studies of GG in 3D have presented simulations of polycrys-
talline microstructures using different textures and a mathematical description
of GB properties [137,214–216] or using data bases of GB energy [217,218]. The
following conclusions are pointed out:

• The effect of the heterogeneity is stronger when the material is textured
or the disorientation transition between LAGBs and HAGBs, θ0, is high
[215, 216, 218],

• The individual effect of GB energy and mobility is small on the GG [216].

Note that similar conclusions were presented in the first part of this work [38]. In
[137,214–216], GB properties are defined as heterogeneous and not as anisotropic.
The inclination dependency can have an important impact, hence, a complete
description of the GB properties is necessary, i.e. µ(M(θ, a⃗), n⃗) and γ(M(θ, a⃗), n⃗),
as well as 3D non-destructive in-situ characterization [92,94–96] in order to obtain
more realistic values of GB mobility must be considered as a crucial perspective
concerning full-field modeling of GG.

In the simulations presented in this section, the GB inclination is simplified
as it is projected in the observation plane. In other words, the description of the
GB properties is simplified and only a slice of the GB energy is considered. For
instance, Figure 4.31 shows the GB energy and mobility of a Σ3 TB. One can see
that the 3D surface of the TB properties have a complex geometry. On the other
hand, the anisotropy of the GB mobility is simplified to a Sigmoidal model with
a cusp at θΣ3. Unluckily, the GB mobility data is not available for the complete
GB space and at different temperatures.
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Figure 4.31: (a) GB Energy and (b) Mobility of a Σ3 TB in Ni computed using the
fits proposed in [104] of the atomistic simulation data in the study by Olmsted
et al. [33, 90]. The minimum, maximum and average values of γ and µ are
{1.803, 6.793, 10.064} ×10−7 J · mm−2 and {0.032, 1.518, 2.995} ×106 mm4 ·
J−1 · s−1.

4.6 Conclusions
Different 2D FE-LS formulations to study GG of 316L stainless steel were com-
pared. The isotropic formulation is able to reproduce, for statistically generated
or immersed polycrystals, the average grain size and grain size distribution for a
wide range of anisotropy levels.

The results obtained using representative Laguerre-Voronoï polycrystals show
that the heterogeneous GB mobility values do not affect the response of the
different formulations and that the anisotropic formulation is more physical being
the only formulation that enables to promote GBs with low energy. However, the
anisotropy level was largely underestimated because of the initial Mackenzie-like
DDF which could not be controlled during the polycrystal generation.

Two additional cases were presented with a twin numerical microstructure
obtained directly from EBSD data. The main advantage is that the initial DDF
and topology are accurately defined. First, GB energy and mobility were defined
using the modified Read-Shockley and sigmoidal models already tested for the
virtual polycrystals. Then, the model was coupled with an anisotropic model of
GB energy that takes into account the GB misorientation and inclination [34].
However, it is highlighted again that the GB inclination is not well defined as the
GB is supposed to be perpendicular to the observation plane. The proposed RS
model seemed to exaggerate the anisotropy level comparatively to the GB5DOF
code. However, the predictions are clearly better with the proposed RS and
sigmoid models associated to the anisotropic formulation while not allowing to
be predictive concerning the DDF whatever the method choosen.
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These results illustrate that the prediction of grain growth at the polycrystal
scale can be ambiguous depending the aimed attributes and the available data.
First of all, 3D simulations should be considered. Of course, this aspect is, firstly,
essential to improve the representativy of the considered polycrystals but is also
essential to describe correctly the γ dependence to the inclination. Indeed, the
proposed 2D model/data context limits the actual use of the inclination as this
parameter is described here with one degree of freedom and not in a 3D framework
with 3D experimental data. This aspect can explain the low anisotropy level
obtained using the GB5DOF code. Finally, this objective must also be correlated
to the fact to integrate the torque effects, and so the GB stiffness tensor, in
the simulations and analysis. It should be highlighted that this conclusion is
common to all existing works of the state of the art involving anisotropic 2D GG
simulations and 3D simulations were the inclination dependence, or torque terms,
or both are not taken into account.
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4.7 Résumé en Français du Chapitre 4
Différentes formulations 2D FE-LS permettant d’étudier la croissance des grains
de l’acier 316L ont été comparées. La formulation isotrope est capable de re-
produire, pour des polycristaux générés statistiquement ou immergés, la taille
moyenne des grains et la distribution des grains pour un large intervalle de niveau
d’anisotropie.

Des résultats obtenus à partir des polycristaux de type Laguerre-Voronoï, il
est possible de conclure que les valeurs hétérogènes de la mobilité des joints de
grains n’affectent pas le comportement des différentes formulations, et la formu-
lation anisotrope est la plus physique. C’est en effet la seule formulation qui
permet de favoriser les joints de grains de faible énergie. Cependant, le niveau
d’anisotropie est en grande partie sous-estimé du fait que la distribution de dé-
sorientations initiales est de type Mackenzie; donnée qui ne peut être controlée
durant la génération du polycristal à l’heure actuelle.

Deux cas supplémentaires ont été présentés, à partir d’une microstructure
jumeau numérique des données EBSD. L’avantage principal est que la distribution
de désorientation initiale et la topologie sont définies de manière fidèle. Dans le
premier cas, l’énergie et la mobilité des joints de grains sont définies en utilisant les
modèles modifiés de Read-Shockley et sigmoidal, déjà testés pour les polycristaux
générés statistiquement. Enfin, le modèle est couplé à un modèle anisotrope de
l’énergie des joints de grains prenant en compte la désorientation et l’inclinaison.
Cela permet d’illustrer que le modèle RS proposé semble sur-évaluer le niveau
d’anisotropie comparé au code GB5DOF. Cependant, les prédictions sont bien
meilleures avec les modèles RS et sigmoidal proposés associés à la formulation
anisotrope, tout en ne permettant pas de prédire efficacement la distribution de
désorientation, comme pour toutes les autres méthodes étudiées.

Ces résultats illustrent l’ambiguité qui peut exister dans la notion des modèles
prédictifs en croissance de grains. En effet, cette notion est dépendante des
attributs que l’on cherche à prédire et des données à disposition.
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Chapter 5

Conclusions and perspectives

5.1 Conclusions
One goal of this PhD work was to improve the definition of the GB mobility in
a Finite Element Level-Set (FE-LS) framework for the modeling of grain growth
and recrystallization. As such, the first chapter presents the basic concepts related
to the grain boundaries (GB) and microstructures, and a brief review of the state
of the art of GB mobility measurements. This bibliography led to the conclusion,
and points out, that most of the GB mobility measurements are in fact GB
reduced mobility measurements. This implies that the anisotropy effect of both
GB energy and GB mobility are measured at the same time. The experimental
estimations led to GB properties that depends on the disorientation, µ(θ) and
γ(θ), i.e., heterogeneous GB properties. Molecular dynamics (MD) data led to a
more complete description of the GB properties as a function of misorientation
and inclination, µ(M, n⃗) and γ(M, n⃗), i.e., anisotropic GB properties in short time
and space scales and also following the hypothesis done in these MD simulations.
Thanks to the new description of GB properties three questions arise: How can
we take into account the crystalline description of the GB? Can GB properties
be described in 2D using a classical Read-Shockley and a Sigmoidal model? Is
the effect of anisotropy stronger in 3D? The latter implying to carry out 3D
simulations instead of 2D, thus using a better description of GB properties in the
5D GB space.

The first question was discussed in Chapter 2. First, a brief review of how dif-
ferent approaches take into account heterogeneity and anisotropy was presented.
Second, a FE-LS framework is presented, as well as the mathematical description
of GB dynamics and properties. Most of the existing mesoscopic approaches con-
sider heterogeneous GB properties described by the disorientation. Regarding the
effect of the misorientation and inclination, a couple of examples where MD data
can be used as input of GB properties was described. Another option is to treat
the effect of the inclination separately from the effect of the GB misorientation.

As the FE-LS framework has different variants, it was necessary to compare
them and select the best formulation. As such, Chapter 3 was dedicated to
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compare and improve the different existing formulations: Isotropic, Heteroge-
neous, Heterogeneous with Gradient, and Anisotropic. The numerical tools were
tested using academic cases of triple junctions (three grains) and polycrystalline
microstructures using heterogeneous (anisotropic) GB energy and heterogeneous
GB mobility. The Isotropic and Anisotropic formulations were selected as the
more suitable to model GB migration. The LS framework was then improved to
take into account heterogeneous GB mobility.

The formulation was extended toward full anisotropy using heterogeneous GB
mobility and anisotropic GB energy. To accomplish this, MD data of GB energy
was included using the GB5DOF code. In Chapter 4, a comparison of experimen-
tal and numerical simulations using the Isotropic and Anisotropic formulation was
presented. The improvements of the GB properties description showed a different
behavior of twin boundaries. Also, it was shown that the effect of the GB mobil-
ity plays an important role on the morphology of grains, specifically where twin
boundaries are involved. Note that in Chapters 3 and 4, the parameter describ-
ing the level of anisotropy was the GB energy distribution. When the level of
anisotropy is low, the results between the Isotropic and Anisotropic formulations
are similar. However, when the anisotropy level increases the results obtained by
the two formulations are really different.

In Chapter 4, the Anisotropic formulation is depicted as more physical than
the Isotropic formulation by reproducing the experimental results with more ac-
curacy. However, in terms of GB disorientation, both formulations were not
sufficiently accurate. Two models of GB energy were used, the first was a clas-
sic Read-Shockley (heterogeneous) model and the second an anisotropic model
called GB5DOF. The predictions were better with the Read-Shockley model but
both GB energy models does not predict the disorientation distribution function
correctly.

In the appendix of this work, some perspectives concerning the improvement
of the classical estimation of GB mobility using EBSD data are detailed. The
methodology detailed in Appendix A.2 consist in:

• the dissociation of GB energy γ and GB mobility µ using an additional
driving pressure (stored deformation energy),

• the tracking of GBs (instead of grains in precedent studies),

• to introduce a better description of the stored deformation energy using the
geometrically necessary dislocation density.

However, it was also highlighted that the method presented must be improved to
take into account the 3D description of GBs and the volumetric value of GND
density instead of a surface value.

This work does not present a unequivocal answer to the anisotropic behavior of
GB mobility. Instead, this work has contributed towards the full field modeling
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of anisotropic grain growth and recrystallization. It has been shown that the
classical isotropic FE-LS framework can be used for different cases with a narrow
GB energy distribution, but the Anisotropic formulation is more physical and
can take into account the torque terms (GB stiffness tensor). The role of GB
mobility during grain growth has been shown using different definitions and it’s
now better understood in the context of full-field at the mesoscopic scale.

5.2 Perspectives
In order to move forward some supplemental issues must be addressed. As the
research project finished new questions started to arise. One of them was about
the correct description of GB energy. Do the GB mobility can be correctly stud-
ied using a simplified description of the GB energy? That’s the main reason
of the inclusion of MD data towards the GB5DOF code that can describe the
GB energy in the 5D space. As this work was composed of both experimental
and numerical techniques not all the questions were tackled due to time limits.
Some problems were unexplored and should be presented as perspectives. A few
of these propositions will be tackled in different future research projects of the
MSR Team. The first perspective is the 3D data acquisition, estimation of GB
properties and comparison with 3D numerical results. The second one is the intro-
duction of the GB stiffness tensor or torque terms, this parameter may be take
into account as it can, at some particular misorientation, introduce additional
derivative values of the same order of magnitude that the GB energy. Finally, as
it was shown in Chapter 4, the current framework cannot take into account the
creation of annealing twins. Annealing twins can be included via the disconnec-
tion character of GBs that induce internal stresses. Some pre-results concerning
the aforementioned perspectives are presented in detail in the following.

5.2.1 3D Immersion and GG simulations
Until now, most of the results presented in this text are in 2D. First, grain
morphology is simplified. Second, the anisotropic nature of Γ(n⃗) and µ(n⃗) is
partially lost. Due to the lack of time, comparisons between real microstructures
and simulation during heat treatments were not performed in 3D. The initial
microstructure is obtained thanks to serial sectioning on a selected region of
interest. Between every section an amount of material is removed from the surface
and an image is collected (EBSD/EDS map or SE/BSE images).

A data treatment is necessary in order to link the 2D layers and reconstruct
the 3D microstructure properly: alignment of the sections, post-processing filters
and grain segmentation is performed with DREAM.3D [219]. Finally, 3D data is
exported and immersed in our in-house FE code and one can perform simulations
based on a real microstructure. Figure 5.1 shows the 3D microstructure and 2D
layers at different positions. Note that TBs can be present in several 2D layers.
Thanks to the 3D data one can study and analyze the behavior of TBs correctly.
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Figure 5.1: (a) 3D microstructure immersed from EBSD data. (b) Position and
numbering of the slides shown in (c). (c) Slides from the 3D microstructure. The
color represents the magnitude of the Euler angles vector. Material: Inconel 718.
Domain: 25 × 20 × 14.5µm. Voxel size: 0.5 × 0.5 × 0.5µm. Data from Franco
Jaime and Dr. Alexis Nicolay, Cemef, Mines ParisTech.

Figure 5.2 shows the φ1 Euler angle of a 3D microstructure and the disorien-
tation of two central grains composed of two TBs colored in red. A simulation
of 60 seconds is performed using the Isotropic (Iso) and the Anisotropic formula-
tions with Isotropic GB mobility (Aniso(µ:Iso)) and heterogeneous GB mobility
(Aniso(µ:S)). The time step is fixed at ∆t = 1s and the domain is discretized
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using an unstructured static tetrahedral mesh with a mesh size of h = 0.5µm.

Front Back

(a) (b)

Figure 5.2: (a) Euler angle field φ1 of 3D microstructure immersed from EBSD
data. (b) Front and back view of two twin boundaries near the center of the
volume. The color map is referring to the disorientation and the cyan and ma-
genta arrows point out the two grains of interest. Material: Inconel 718. Domain:
40 × 40 × 27.5µm. Voxel size: 0.5 × 0.5 × 0.5µm. Data from Franco Jaime and
Dr. Alexis Nicolay, Cemef, Mines ParisTech.

GB mobility and energy are respectively defined with a modified sigmoidal
model (Equation 4.4) and the GB5DOF code. The maximal values are set to
unitary values γmax = 1×10−7J/mm2 (Defined as ϵRGB in the GB5DOF code) and
µmax = 1mm4/(Js). Figure 5.3 shows the DDF and GBED of the microstructure.
In Figure 5.3a the peak around 60◦ is typical from Σ3 TBs and is also present in
the DDF of a 2D microstructure in 316L (See Chapter 4).
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Figure 5.3: Initial GB characteristics (a) disorientation distribution function and
(b) GB energy distribution.

As in the 2D examples presented in Chapters 3 and 4, the Iso formulation
is faster. Figure 5.4 shows the evolution of the number of grains and average
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disorientation. The faster evolution of NG obtained with the Iso formulation ex-
plains the faster minimization of the average disorientation and the total energy
(Figure 5.4c). Figure 5.4d shows the total interfacial energy as a function of
the total GB length. Note the linear behavior of the Iso formulation, this can
be seen as a transition between efficient (above) and inefficient (below) energy
minimization. In [35], a similar behavior is reported using an Anisotropic for-
mulation without torque terms. Additionally, one can see the little difference
between the Aniso(µ:Iso) and Aniso(µ:S) formulations. In Figures 5.5 and 5.6,
the evolution of the TBs is shown. One can see that the difference between the
Iso and Aniso(µ:Iso) is slight, similar to the 2D simulations.
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Figure 5.4: Time series of 3D immersed simulations obtained using the Isotropic
and Anisotropic formulations.

This study is in development and future simulations will be carried out using
bigger volumes with a higher number of grains. In addition to the technical
problems related to the characterization of bigger volumes, three additional items
must be considered to understand GB movement in 3D:

• to estimate the GB reduced mobility µγ using in-situ (sequential) heat
treatments
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• To introduce the effect of the GB stiffness tensor

• to dissociate the GB mobility from the GB energy thanks to an additional
driving pressure by using a methodology similar to the one presented in the
Appendix A.2.

A new project of the MSR Team is focused on the 3D characterization of mi-
crostructures. On the other hand, the basis of the integration of the GB stiffness
tensor will be presented in the next section.
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Figure 5.5: Grain evolution at different times, t = {30, 60}s. Front view. The
two arrows point the same grains in Figure 5.2.
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Figure 5.6: Grain evolution at different times, t = {30, 60}s. Back view. The
arrow point the same grain in Figure 5.2.
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5.2.2 Grain boundary stiffness tensor
GB stiffness tensor has been studied numerically using MD [104, 108–110, 220–
222]. In [220], the authors pointed out that in some cases with high symmetry
misorientation the minima of GB mobility can be canceled by a maximum value
of the GB stiffness tensor Γ(n) and vice versa. In [221], the authors studied the
GB reduced mobility of a HL (half-loop) bicrystal, they found a linear relation
between the GB velocity and curvature, and an Arrhenius behavior of the GB
mobility but they computed average values of reduced mobility. Moreover, they
couldn’t dissociate the effect of the GB mobility anisotropy and GB stiffness
tensor anisotropy from the average reduced mobility. Several question are still
open regarding the effect of the GB stiffness tensor during GG and the impact
over the actual knowledge of GB mobility. Additionally, for the author knowledge
experiment research haven’t been published about Γ(n) that can confirm the
hypothesis made in [220, 221].

Recent studies were carried out by Abdeljawad et al. in [104, 223], the GB
stiffness tensor of Σ3, Σ5, Σ7, Σ9 and Σ11 TBs in Ni is studied using a spherical
grain. The work was based on the data coming from the works of Olmsted et
al. [33, 90]. GB energy and mobility are fitted using Olmsted’s database and the
second derivative of γ, with respect to the inclination, is determined. The main
observations obtained by the authors is that the anisotropy of the GB stiffness
tensor is bigger than the anisotropy of GB energy for the aforementioned TBs
and the GB stiffness tensor contribution can lead to faceted GBs.

The Anisotropic FE-LS formulation presented in chapter 2 has an intrinsic
definition of the GB stiffness tensor. Combining the Anisotropic formulation
[38,134,175] and the GB5DOF code to compute GB energy [34], the GB stiffness
tensor could be studied for ideal cases such as TBs and more complex cases using
polycrystalline microstructures. With the GB5DOF code, one can obtain the
GB energy as a function of the grain boundary normal, Figure 5.7 shows the GB
energy of the TBs Σ3, Σ5, Σ7, Σ9 and Σ11. In this section we try to compute
the GB stiffness tensor using the data obtained from the GB5DOF code.

The GB stiffness tensor is defined as:

Γ(n⃗) = ∇⃗n⃗∇⃗n⃗γ + γI, (5.1)

with

∇⃗n⃗γ = P∇⃗γ = (I − n⃗⊗ n⃗)∇⃗γ. (5.2)

For a given misorientation M , the GB energy is defined as a function of the
GB inclination γ(n⃗). In [104], the spherical coordinate system was preferred to
define the term ∇⃗n⃗∇⃗n⃗γ. Thus, n⃗ is defined in a unitary sphere using the polar
θs and azimuthal ϕs angles with n⃗ = (cos(ϕs)sin(θs), sin(ϕs)sin(θs), cos(θs)) and
γ(n⃗) = γ(θs, ϕs). In that way, Equation 5.2 may be rewritten as

∇⃗n⃗γ = γθs

R
θ̂s + γϕs

Rsin(θs)
ϕ̂s, (5.3)
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Figure 5.7: Grain boundary energy of the TBs Σ3, Σ5, Σ7, Σ9 and Σ11 obtained
using the code GB5DOF. The top corresponds to the GB energy computed using
the GB5DOF code and the bottom is the GB energy fitted by Abdeljawad et al.
in [104, 223].

where γθs = ∂γ/∂θs and similar expressions for γϕs or γϕsθs . The relation of the
second surface gradient is defined and the GB stiffness tensor is obtained using
the spherical coordinate system [104]

Γ(n⃗) = Γ(θs, ϕs) =
γ + γθsθs

1
sinθs

γθsϕs − cosθs

sin2θs

γϕs

1
sinθs

γθsϕs − cosθs

sin2θs

γϕs γ + 1
sin2θs

γϕsϕs + cosθs

sinθs

γθs

 , (5.4)

after this parameterization, diagonalization of Γ leads to a simpler equation

Γ∗(n⃗) = Γ∗(θs, ϕs) =
[
λ1 0
0 λ2

]
= AΓ(n⃗)AT , (5.5)

being A the matrix of principal directions (eigenvectors) and λ1,2 the eigenvalues
defined as λ1,2 = f(θs, ϕs) ± g(θs, ϕs). The functions f and g are defined as

f(θs, ϕs) = γ + 1
2
γθsθs + 1

2
cosθs

sinθs

γθs + 1
2

1
sin2θs

γϕsϕs , (5.6)
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and

g(θs, ϕs) = 1
2

(γθsθs − 1
sin2θs

γϕsϕs − cosθs

sinθs

γθs

)2

+

+4
(

1
sinθs

γθsϕs − cosθs

sin2θs

γϕs

)2
1/2

. (5.7)

In order to make easier the implementation, one can make the following assump-
tions: first, the energy varies smoothly. Second, the variations are allowed along
the constant polar or azimuthal curves. Thus, the eigenvalues may be redefined
as

λ1 = γ + γθsθs , (5.8)

and

λ2 = γ + γϕsϕs . (5.9)

Figures 5.8, 5.9 and 5.10 show some of the results obtained in [104]. Figure 5.8
shows the principal GB stiffness values of the Σ3 TB in a 3D spherical grain. One
can see the abrupt changes of λ1 and λ2 and the symmetries which are different
from the symmetry of µ and γ. The negative values represent instabilities and
can be the origin of faceted GBs. Figure 5.9 shows the change of γ, λ1 and λ2
in 2D for a given value of polar and azimuthal angles. It is pointed out that the
principal values of the GB stiffness tensor are more anisotropic (sensible to the
inclination) than the GB energy itself.

Figure 5.8: Plots of the of the principal stiffness values of the Σ3 TB in Ni. Figure
from [104].
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Figure 5.9: Plots of the principal stiffness values along (a) θs = π/2 and (b) ϕ = 0
of the Σ3 TB in Ni. Figure from [104].

Figure 5.10: Evolution of the inner grain of the Σ3 TB in Ni at (a) t=0, (b) t=0.1
ns and (c) t=6.1 ns using MD. (111) (green), (1̄10) (blue), (112̄) (red) fiducial
planes are included. The GB surface mesh is colored in gray. Figure from [104].
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Figure 5.11: (a) Polar and (b) Spherical coordinates used in this section. In the
spherical coordinates, θs and ϕs are the polar and azimuthal angles, respectively.
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The evolution of the initial spherical grain is depicted in Figure 5.10 at T =
500K ≈ 0.3Tm. One can see that after 0.1 ns, the GB is faceted and the interfaces
along the [111] axis evolves slowly.

In order to study the effect of the GB stiffness tensor using the LS-FE frame-
work, the coordinates must be changed from Spherical to Cartesian. Figure 5.11
illustrates, on a unitary sphere, the polar and spherical coordinates system used
during the development of this section.

The GB stiffness tensor is constructed term by term. First, the surface gra-
dient which is defined in Equation 5.2 must be redefined using Cartesian coordi-
nates:

∇⃗nγ =


(1 − x2)γx − xyγy − xzγz

−xyγx + (1 − y2)γy − yzγz

−xzγx − yzγy + (1 − z2)γz

 , (5.10)

where γy = ∂γ/∂y is the first derivative.
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The second surface gradient is defined as:

∇⃗n∇⃗nγ =
−2x(1 − x)γx + (1 − x2)2γxx − 2xy(1 − x2)γxy − 2xz(1 − x2)γxz

−y(1 − 2x2)γy + x2y2γyy + 2x2yzγyz − z(1 − 2x2)γz + x2z2γzza1a1

y(1 − 2x2)γx − xy(1 − x2)γxx + (z2 + 2x2y2)γxy − yz(1 − 2x2)γxz

+2xy2γy − xy(1 − y2)γyy − xz(1 − 2y2)γyz + 2xyzγz + xyz2γzza1a2

−z(1 − 2x2)γx − xz(1 − x2)γxx − yz(1 − 2x2)γxy + (y2 + 2x2z2)γxz

2xyzγy + xy2zγyy − xy(1 − 2z2)γyz + 2xz2γz − xz(1 − z2)γzza1a3

2x2yγx − xy(1 − x2)γxx + (z2 + 2x2y2)γxy − yz(1 − 2x2)γxz

−x(1 − 2y2)γy − xy(1 − y2)γyy − xz(1 − 2y2)γyz + 2xyzγz + xyz2γzza2a1

−x(1 − 2y2)γx + x2y2γxx − 2xy(1 − y2)γxy + 2xy2zγxz

−2y(1 − y2)γy + (1 − y2)2γyy − 2yz(1 − y2)γyz − z(1 − 2y2)γz + y2z2γzza2a2

2xyzγx + x2yzγxx − xz(1 − 2y2)γxy − xy(1 − 2z2)γxz

−z(1 − 2y2)γy − yz(1 − y2)γyy + (x2 + 2y2z2)γyz + 2yz2γz − yz(1 − z2)γzza2a3

2x2zγx − xz(1 − x2)γxx − yz(1 − 2x2)γxy + (2x2z2 + y2)γxz

2xyzγy + xy2zγyy − xy(1 − 2z2)γyz − x(1 − 2z2)γz − xz(1 − z2)γzza3a1

2xyzγx + x2yzγxx − xz(1 − 2y2)γxy − xy(1 − 2z2)γxz

2y2zγy − yz(1 − y2)γyy + (2y2z2 + x2)γyz − y(1 − 2z2)γz − yz(1 − z2)γzza3a2

−x(1 − 2z2)γx + x2z2γxx + 2xyz2γxy − 2xz(1 − z2)γxz

−y(1 − 2z2)γy + y2z2γyy − 2yz(1 − z2)γyz − 2z(1 − z2)γz + (1 − z2)2γzza3a3

(5.11)

where a1 = x̂, a2 = ŷ and a3 = ẑ denote the matrix components and the terms
with two subscripts as γxx denote second derivatives.
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Hence, the GB stiffness tensor may be redefined as:

Γ(n⃗) = Γ(x, y, z) =
γ − 2x(1 − x)γx + (1 − x2)2γxx − 2xy(1 − x2)γxy − 2xz(1 − x2)γxz

−y(1 − 2x2)γy + x2y2γyy + 2x2yzγyz − z(1 − 2x2)γz + x2z2γzza1a1

y(1 − 2x2)γx − xy(1 − x2)γxx + (z2 + 2x2y2)γxy − yz(1 − 2x2)γxz

+2xy2γy − xy(1 − y2)γyy − xz(1 − 2y2)γyz + 2xyzγz + xyz2γzza1a2

−z(1 − 2x2)γx − xz(1 − x2)γxx − yz(1 − 2x2)γxy + (y2 + 2x2z2)γxz

2xyzγy + xy2zγyy − xy(1 − 2z2)γyz + 2xz2γz − xz(1 − z2)γzza1a3

2x2yγx − xy(1 − x2)γxx + (z2 + 2x2y2)γxy − yz(1 − 2x2)γxz

−x(1 − 2y2)γy − xy(1 − y2)γyy − xz(1 − 2y2)γyz + 2xyzγz + xyz2γzza2a1

γ − x(1 − 2y2)γx + x2y2γxx − 2xy(1 − y2)γxy + 2xy2zγxz

−2y(1 − y2)γy + (1 − y2)2γyy − 2yz(1 − y2)γyz − z(1 − 2y2)γz + y2z2γzza2a2

2xyzγx + x2yzγxx − xz(1 − 2y2)γxy − xy(1 − 2z2)γxz

−z(1 − 2y2)γy − yz(1 − y2)γyy + (x2 + 2y2z2)γyz + 2yz2γz − yz(1 − z2)γzza2a3

2x2zγx − xz(1 − x2)γxx − yz(1 − 2x2)γxy + (2x2z2 + y2)γxz

2xyzγy + xy2zγyy − xy(1 − 2z2)γyz − x(1 − 2z2)γz − xz(1 − z2)γzza3a1

2xyzγx + x2yzγxx − xz(1 − 2y2)γxy − xy(1 − 2z2)γxz

2y2zγy − yz(1 − y2)γyy + (2y2z2 + x2)γyz − y(1 − 2z2)γz − yz(1 − z2)γzza3a2

γ − x(1 − 2z2)γx + x2z2γxx + 2xyz2γxy − 2xz(1 − z2)γxz

−y(1 − 2z2)γy + y2z2γyy − 2yz(1 − z2)γyz − 2z(1 − z2)γz + (1 − z2)2γzza3a3

(5.12)

In practical terms, the GB stiffness tensor can be constructed as follows:

1. Compute ∇⃗γ (γ,i)

2. Compute P∇⃗γ (Pjiγ,i)

3. Construct and compute ∇⃗P∇⃗γ ((Pjiγ,i),k)

4. Compute P∇⃗P∇⃗γ (Plk(Pjiγ,i),k)

5. Compute Γ = Iγ + P∇⃗P∇⃗γ (Γlj = Iljγ + Plk(Pjiγ,i),k)
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In [104], the authors used the following functions of GB mobility and energy
of the TB Σ3 fitted from atomistic data

γΣ3 = 681.8 − 355.6cos(2θ) − 70.3cos(4θ) − 30.2cos(6ϕ)
− 17cos(6ϕ)cos(2θ) − 27.3cos(6ϕ)cos(4θ) − 1.1cos(12ϕ), (5.13)

µΣ3 = 1.527 − 0.535cos(2θ) − 0.361cos(4θ) − 0.976cos(6ϕ)
+ 0.41cos(6ϕ)cos(2θ) + 0.359cos(6ϕ)cos(4θ) − 0.392cos(12ϕ). (5.14)

The 3D plots of the GB mobility and energy are shown in Figure 5.12. One can
see that both GB properties have different symmetries and cusps. The anisotropy
of the GB mobility is stronger for this particular case.
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Figure 5.12: GB Energy and Mobility of a Σ3 TB in Ni computed using Equa-
tions 5.13 and 5.14.

The GB reduced mobility and the product µΓ are shown in Figure 5.13 using
a constant GB mobility (Isotropic) and Figure 5.14 using the anisotropic GB
mobility defined in Equation 5.14. The main difference between µγ and µΓ is the
magnitude. The GB stiffness tensor has a bigger magnitude which is produced
by its non-diagonal components.

The simulations were performed using the Het and Aniso formulations with
isotropic and anisotropic GB mobility. The initial microstructure is composed
of an initial spherical grain with initial radius R = 20.35nm centered inside a
domain of 50nm×50nm×50nm [104]. The geometry is discretized with a non-
structured static mesh with a size of h = 1nm and the time step is fixed at
∆t = 0.0005ns. This geometry is adequate to study the effect of the GB stiffness
tensor because the 3D anisotropy of the GB is taken into account.

Figures 5.13 and 5.14 show the initial GB reduced mobility and the initial
magnitude of µΓ which is computed as µ(Γ2

11 + Γ2
12 + Γ2

13 + Γ2
21 + Γ2

22 + Γ2
23Γ2

31 +
Γ2

32 + Γ2
33)0.5. For the case shown in Figure 5.13 the GB mobility is isotropic and
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is set to an average value µ = 1.518 × 1021 nm4/(J · ns). And for the case shown
in Figure 5.14, the GB mobility is computed using Equation 5.14.

Figure 5.13: (a) Initial GB reduced mobility (nm2/ns) used for the Het(µ:Iso)
and Aniso(µ:Iso) formulations. (b) Initial µΓ tensor magnitude (nm2/ns) used
for the Aniso5(µ:Iso) formulation. The black lines represent the XY , Y Z and
XZ planes.

Figure 5.14: (a) Initial GB reduced mobility (nm2/ns) used for the Het(µ(θs,ϕs))
and Aniso(µ(θs,ϕs)) formulations. (b) Initial µΓ tensor magnitude (nm2/ns) used
for the Aniso5(µ(θs,ϕs)) formulation. The black lines represent the XY , Y Z and
XZ planes.

The evolution of the spherical grain is shown in Figure 5.16 using the isotropic

166



CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

GB mobility and Figure 5.17 using the anisotropic GB mobility. Note there is no
a noticeable difference in the GB morphology using the three formulations. The
main change is produced by the definition of the GB mobility. The case with
the isotropic GB mobility produces a ellipsoid-like grain, while the case with the
anisotropic GB mobility generates a grain with an hexagonal profile in the XY
plane that follows the symmetry of GB mobility, see Figure 5.15.

z x

y

Figure 5.15: Top view (XY plane) of the grain at t = 0.03 ns obtained with the
three formulations, and isotropic (top) and anisotropic (bottom) GB mobility.
The black circle represents the initial radius of the grain in the XY plane.

The study of the GB stiffness tensor is relatively new, the first article that
propose a clear way to study the tensor was published in 2018 [104] and a second
one was published by the same group of authors in 2021 [223]. The introduction
of the GB stiffness tensor in a mesoscopic framework needs more data concerning
the GB mobility and energy as a function of the normal as well as the introduction
of the disconnection nature of GBs. First ideas concerning a disconnection-based
LS framework are detailed in the next section.
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Figure 5.16: Evolution of the GB using the (a) Het(µ:Iso), (b) Aniso(µ:Iso) and
(c) Aniso5(µ:Iso) formulations at t = 0.01, 0.02, 0.03, 0.04 ns using an isotropic
GB mobility. The colorbar is the same as in Figure 5.13. The black lines represent
the initial grain in the XY , Y Z and XZ planes.
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Figure 5.17: Evolution of the GB using the (a) Het(µ(θs,ϕs)), (b) Aniso(µ(θs,ϕs))
and (c) Aniso5(µ(θs,ϕs)) formulations at t =0.01, 0.02, 0.03, 0.04 ns using an
anisotropic GB mobility. The colorbar is the same as in Figure 5.14. The black
lines represent the initial grain in the XY , Y Z and XZ planes.
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5.2.3 LS Disconnection-based approach
Another ingredient that one can add to the FE-LS formulation is the disconnec-
tion character of the GB. The Anisotropic FE-LS formulation may be redefined
as:

vi = (Pkjγ,jnk − ΓmnKmn + τΛ)µni, (5.15)

where τ = τdisc + τext is the shear stress composed of the external shear stress τext

and the stress generated by the disconnections along the interface τdisc, and Λ
describes the shear coupling. The driving pressure generated by vd

i = µτΛni can
change the profile of the interfaces and generate a stepped interface. The driving
force produced by disconnections is defined as [181]:

P d = τΛ, (5.16)

with
Λ ≡ β(2) − β(1) = b(2)

h(2) − b(1)

h(1) , (5.17)

where β(m) is the shear-coupling factor and m = 1, 2 represent the x and y axis,
also called interface references. The stress generated by the disconnections is
defined as:

τdisc(s) = β(1)I
(1)
Σ (s) + β(2)I

(2)
Σ (s), (5.18)

where

I
(m)
Σ (s) = G

2π(1 − ν)

∫
Σ

{(
dxn

ds

)
s=s0

xm(s) − xm(s0)
ϱ2

a

×
[
1 − 2(xn(s) − xn(s0))2

ϱ2
a

]}
ds0, (5.19)

(m,n) ∈ {(1, 2), (2, 1)}, ϱ2
a ≡ [x1(s)−x1(s0)]2+[x2(s)−x2(s0)]2+a2, and G, ν and

a are respectively the shear modulus, Poisson ratio and a parameter related to the
disconnection core size [181,224]. In the finite element mesh the stress is computed
in the set of points around the zero iso-value of the level set function xi ∈ Σϕ±δ

describing the GB, τdisc(s) ≡ τdisc(xi) using the following equation [181]:

τdisc(xi) =
∑

xj∈Σ

[
∆Sβ(1)dx2

ds
(xj)τ (1)(xi, xj) + β(2)dx1

ds
(xi)τ (2)(xi, xj)

]
, (5.20)

with

τ (m)(xi, xj) = G

2π(1 − ν)
xm(xi) − xm(xj)

ϱ2
a(xi, xj)

[
1 − 2(xn(xi) − xn(xj))2

ϱ2
a(xi, xj)

]
, (5.21)

and
ϱ2

a(xi, xj) = [x1(xi) − x1(xj)]2 + [x2(xi) − x2(xj)]2 + a2, (5.22)
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(m,n) = (1, 2) or (2, 1), dxj/ds = (xj
i+1 − xj

i−1)(∆S), ∆S = (|xi+1 − xi| + |xi −
xi−1|)0.5.

Due to a lack of time, the aforementioned equations were not tested in our
FE-LS framework. Two important questions may be studied: what is the effect
of the temperature on β and how can it be studied experimentally? Do the
driving force P d = τΛ have an important effect in the context of hot metal
forming? These studies are relatively new in the state of the art and we need
more data to answer to these questions. Although, it has been shown that the
effect of disconnections can highly affect the shape of GBs [181], and there is an
infinite set of disconnections modes (b,h) that describes an interface; but at high
temperatures, one can describe the kinetics of a GB using a statistical average of
the contribution of all the activated modes [128].
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5.3 Résumé en Français du Chapitre 5
Outre un résumé des principaux résultats exposés dans les chapitres précédents,
ce chapitre a permis de décrire différentes perspectives immédiates de ce travail
et différents résultats préliminaires ont été détaillés.

Ces perspectives concernent une discussion 3D des modèles développés, l’introduction
du tenseur de rigidité dans l’ensemble des discussions et l’intérêt ou non à intro-
duire le concept de disconnections dans nos approches LS lorsque des prédictions
à l’échelle mésoscopique et dans un contexte de mise en forme à chaud sont visées.
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Appendix

A.1 Analytical case of the Quarter Loop bicrys-
tal model

Figure A.1 shows a diagram of the QL technique, where the velocity of the GB
tip at x = 0 (magenta dot) is called vt. After a transitory phase, the GB profile
keeps its shape.

Figure A.1: Diagram of the QL geometry. a is the QL width, vt the tip velocity,
(x, y) the GB profile coordinates attached to the tip of the QL profile, α the GB
inclination measured with respect to the x-axis and n the GB normal.

In [52], the exhibit proposed an analytical solution for the tip velocity and
the interface profile of the QL under three boundary conditions:

y(0) = 0,
y(∞) = a,
y′(0) = ∞.

(A.1)

where y′ = dy/dx is the first derivative with respect to x. The evolution of
the interface is measured experimentally at x = 0. Its velocity and profile are
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respectively defined as

vt = 1
a

∫ αmax

0
µγdα = γ

a

µπ

2
, (A.2)

and

y = a

π
arccos

(
exp

(−πx
a

))
, (A.3)

where αmax = 90◦.
In other words, inserting Equation 1.32 into Equation A.2 the measured av-

erage mobility is defined as µ̄ = µπ/2. This measurement does not capture
the anisotropic nature of GBs, thus, the system can be reproduced using the
Isotropic FE-LS formulation. A dimensionless example is shown in Figure A.2,
the HL width is set to a = 0.2 and GB mobility is set to µ = 0.1273. One can
see the little difference between the evolution of the analytical profile and the
numerical result.

These techniques were presented very early and revealed the dependence of the
GB reduced mobility on the misorientation. However, the anisotropy of the GB
properties is neglected and average values of GB reduced mobility are measured.
Hence, the anisotropy of the GB mobility may be compensated by the anisotropy
of the GB stiffness tensor (γI+∇⃗n⃗∇⃗n⃗γ). However, the GB stiffness tensor is only
known for a few twin boundaries (TBs) [104, 223] and it must be known for a
more general set of GBs.

Figure A.2: Comparison of the interface between the isotropic FE-LS formulation
and the analytical model of the QL technique at t = {0, 0.125, 0.25, 0.375, 0.5}.
The domain is set to 1.5 × 0.5, the non-structured isotropic mesh size is set to
h = 0.003, the time step is set to ∆t = 2.5 × 10−4. The QL width is a = 0.2 and
the numerical GB mobility is µ = 2µ̄

π
.
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A.2 GB mobility estimation from the growth of
recrystallized grains in a polycrystalline de-
formed matrix

As GB mobility is difficult to dissociate from the GB energy in capillarity driven
grain growth experiments, an alternative methodology was investigated and pre-
liminary results are presented here. It is based on the classical GB motion equa-
tion v = µP but the mobility is separated thanks to the additional driving pres-
sure associated with stored energy (dislocations stored during plastic deforma-
tion).

Section A.2.1 presents the material, specimen preparation, compression tests
and the way sequential annealing has been conducted. The evolution of the mean
values and distributions of quantities such as grain size, GB energy and total
interfacial energy are presented in section A.2.2. The methodology to compute
the normal velocity vn and the driving pressure P , and the sequential annealing
experiments are presented in section A.2.3. The section ends with conclusions
and remarks about possible improvements for such experiments in section A.2.4.

A.2.1 Materials and methods
Austenitic 304L Stainless steel

Stainless steels are widely used for their good corrosion resistance thanks to their
high chromium content. Depending on the chemical composition and the ther-
momechanical path they can be composed of different phases: martensite, ferrite,
austenite, or a combination of them. 304L used in this study is an austenitic stain-
less steel used in different applications such as automotive, aerospace or nuclear
industry. The chemical composition of the 304L steel is reported in Table A.1.

Table A.1: Chemical composition (wt %) of the 304L stainless steel used in this
study.

Elem. wt % C Mn P S Si Cr Ni N Fe

Min 17.8 7.9 Bal.
Measured 0.023 1.92 0.028 0.003 0.28 18.0 8.0 0.09 Bal.

Max 0.035 2.04 0.055 0.035 0.8 20.2 10.7 0.11 Bal.

The material was provided by the ArcelorMittal company, together with the
actual composition indicated as the “measured” one in Table A.1. It was hot
rolled, solution annealed at T=1055°C and water quenched. The initial mi-
crostructure is mainly composed of the austenitic phase but with secondary fer-
ritic phase corresponding to a fcc and bcc crystalline structure, respectively. The
ferrite phase found in the as received state is remnant from the hot rolling (shown
by blue rectangles in Figure A.3).
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Figure A.3: BSE images of the as received microstructure of the 304L stainless
steel. Blue rectangles show ferrite strings as appearing in two different planes
perpendicular to (a) TD and (b) RD directions. The RD, ND and TD direc-
tions are the rolling, normal and transverse directions of the hot rolling process,
respectively.

Compression test

Hot deformation was performed on cylindrical samples with diameter of 8.5 mm
and height of 12 mm and in a compression machine MTS Landmark 370-25. A
schematic representation of the machine is shown in Figure A.4. Compression is
performed by controlling the displacement of the upper tool while the bottom tool
is fixed. The tools are made of Udimet 720 (Nickel based superalloy) with silicon
nitride (Si3N4) insert at the tool extremity. Molybdenum disulphide powder is
added on the bottom and top of the samples to reduce friction and sticking with
the ceramic inserts. The machine is equipped with a furnace. Temperature is
controlled with 2 thermocouples (TC1 and TC2 on Figure A.4) at the upper and
lower tools.

The thermomechanical path that followed the sample is shown in Figure A.5a.
When the furnace reaches the desired temperature (1000◦C), the sample is in-
serted and is maintained during 30 minutes before compression to homogenize
temperature inside the sample. Since the as-received state has undergone solu-
tion annealing at 1055◦C, this holding for 30 min at 1000◦C is not expected to
make the microstructure evolve. After compression, the furnace slides up and the
sample is pushed manually into water. The time between the end of deformation
and the quenching is measured to 1.1 second based on video recording.

As the strain and strain rate fields are heterogeneous inside the sample, the
compression test was simulated using the Forge® finite element software in order
to get to know about the local thermomechanical conditions at the center of the
sample where the microstructure will be analized (Figure A.5b).
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Figure A.4: Scheme of the compression machine and mobile furnace.

(a) (b)

Figure A.5: (a) Thermomechanical path applied to the samples in order to obtain
the initial state (Deformed) for the sequential annealing series. (b) Finite element
simulations performed on a cylindrical sample at 1000◦C and ε̇ = 0.008 s−1 up
to ε = 0.26 (macroscopic values). The numerical fields represent the equivalent
strain and strain rate at the end of the deformation. The square in figure (b)
represents the EBSD map.

For the applied macroscopic strain ε = 0.26, the local equivalent strain at
the center of the sample (where microstructure will be analyzed) is ε ≈ 0.37
and is relatively homogeneous over a few mm wide (see Figure A.5b). As it will
be shown later, under this deformation condition, dynamic recrystallization was
initiated but not completed at the center of the sample.
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Sample preparation and sequential annealing

The extraction of the samples for the sequential annealing series from the de-
formed material was carried out carefully to ensure its repeatability in terms of
position and thus of deformation levels, Figure A.6a shows the steps of the sample
preparation. A rectangular cuboid was extracted from one half of the barrel-like
deformed sample. The face near the center was polished following the steps listed
in Table A.2. The sample was cut using a wire saw. The final dimension of the
samples is 4 mm× 5 mm× 250 µm.

Figure A.6: (a) Steps followed to prepare the samples. (b) Sample welded to the
Ta foil mounted onto the heating stage.

Table A.2: Polishing procedure applied to the 304L stainless steel samples. Plate
and tower rate are the parameter of the used automatic polisher.

Abrasive time Plate Tower Force
[s] [rpm] [rpm] [dN]

320 SiC paper 60 250 150 2.5
600 SiC paper 60 250 150 2.5
1200 SiC paper 60 250 150 2.5
2400 SiC paper 60 150 100 1

HSV - 3µm Diamond 120 150 100 2
solution 0.12mL/8s

electrolytic polishing 30s 30V Electrolyte A2 (Struers)

The samples were welded onto a Tantalum foil (30 µm thick). Then, the two
thermocouples are welded to the sample in order to control the temperature and
evaluate its gradient through the sample. The assembly is then mounted onto
a stage (Figure A.6b) that will be moved between the heat treatment chamber
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and the SEM chamber at every heat treatment step (Figure A.7). In the heat
treatment chamber the stage is connected to a power supply and the Tantalum
foil is heated by Joule effect.

The microscope is a TESCAN FERA 3 Field Emission Gun Scanning Electron
Microscope (FEGSEM), equipped with several analytical devices, among which
the C-nano EBSD detector from the Oxford company that has been used in this
work.

Figure A.7: View of the in-house heat treatment chamber mounted on the FERA3
SEM chamber.

The in-situ test consists in a series of short interrupted heat treatments (Fig-
ure A.8a) followed by fast cooling and transfer to the SEM chamber for analyzing
the region of interest by EBSD. Temperature regulation is performed with a PID
control using the signal from one of the thermocouples. In the real in-situ heat
treatment shown on Figure A.8b one can see that the regulated thermocouple
(TC2) follows the setpoint temperature. However, the thermocouple TC1 pro-
vides a temperature value that is about 70°C higher than the regulation thermo-
couple. This difference may be due to the slight difference of thickness in the
sample or bad contact between the thermocouple and the sample. The zone of
interest has been chosen close to the regulation thermocouple. The aim of this
experiment is not to establish the temperature dependence of recrystallization ki-
netics but to evaluate the possibility of assessing relevant information regarding
the GB mobility. In this attempt, there is thus an uncertainty about the exact
temperature undergone by the sample, which could be fixed in further experi-
ments if these first trials are successful.

After the heat treatment is finished the sample is transferred to the SEM
chamber and EBSD is performed on the exact same area measured before. This
process is repeated several times until recrystallization significantly progressed.
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Figure A.8: (a) Schema of the heat treatments series, T is the heat treatment
temperature and ti the time of each heat treatment step. (b) A real annealing
step performed with a target temperature of 900°C for 5 seconds, the blue, red
and yellow lines are the temperature of the thermocouples (TC1 and TC2 shown
in Figure A.6) and the set point, respectively.

Furthermore, the Ta foil can undergo distortions due to the cooling and heat-
ing cycles. This can change the initial orientation of the samples with respect to
the laboratory coordinate system, which induces distortions in the EBSD maps
which then do not coincide exactly.

Microstructure of the as-received state and of the initial deformed
sample used for the sequential annealing experiment

Microstructures were analyzed at the center of the sample where the strain and
strain rate are relatively homogeneous (see Figure A.5b). The EBSD maps pre-
sented in this section have a size of 0.984 mm×0.739 mm and were acquired with
a constant step size of 1 µm.

Figure A.9 show the IPF-Z orientation and Kernel Average Misorientation
(KAM) maps of the as-received and after hot-compression and quenching mi-
crostructures. The KAM represents the average of the misorientation angles θij

between a point i and its first and second neighbors (n = 2 in Equation A.4,
see Figure A.9e). Given that this parameter varies as the geometrical necessary
dislocation (GND) density, small recrystallized grains can be recognized owing
to their low grain average KAM (GAKAM) value. The GAKAM is the average
value of KAM values of the N points within a grain (Equation A.5). In Fig-
ure A.9d, recrystallized grains have a GAKAM below 0.35°. Figure A.10 shows
the difference between the as-received and deformed materials, the main changes
are the decrease of GBs at θ = 60◦ (which mostly correspond to annealing twin
boundaries (TB) which are present in the as-received state and have been modi-
fied during deformation) in the disorientation distribution and the increase of the
GAKAM.

KAMi = 1
n

n∑
j=1

θij (A.4)
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GAKAM = 1
N

N∑
k=1

1
n

n∑
j=1

θij. (A.5)

(a) As-received (b) Deformed

(c) As-received (d) Deformed

(e) (f)

Figure A.9: Orientation map obtained by EBSD on the (a) as-received and (b)
deformed states. KAM map of the microstructure of the (c) as-received sample
and (d) deformed sample. The compression is performed in the Z direction per-
pendicular to the scanned section. The same color coding is used during this
chapter unless it is specified. (e) First and second order neighbors considered to
compute the KAM. (f) Standard triangle used to color the orientation maps IPF-
Z (indicating which crystallographic direction is lying parallel to the direction
perpendicular to the scanned section).
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(a) As-received (b) Deformed

(c) GAKAM As-received (d) GAKAM Deformed

Figure A.10: (a,c) GB disorientation distribution and (c,d) GAKAM distribu-
tion obtained from the EBSD maps of Figures A.9(a,c) of the as-received, and
Figures A.9(b,d) of the deformed states.

A.2.2 Microstructure evolution

Two heat treatment series were perfomed, one at 900°C and the other at 950°C,
starting from distinct samples that have undergone the same thermomechanical
path decribed above. Figures A.11 and A.12 show the evolution of the microstruc-
tures. From these two series, it is clear that recrystallization proceeds faster at
higher temperatures, as expected.
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Figure A.11: Microstructure of the 304L stainless submitted to sequential anneal-
ing at a target temperature of 900°C. The KAM map is shown at t=0 (Deformed),
2, 4, 6, 10, 20, 40, 70, 100, 130s (cumulative time). GBs (θ > 5◦) of the nuclei
and deformed grains are depicted in black.
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Figure A.12: Microstructure of the 304L stainless submitted to sequential anneal-
ing at a target temperature of 950°C. The KAM map is shown at t=0 (Deformed),
3, 6, 11, 16, 21, 31, 41, 56, 71s (cumulative time). GBs (θ > 5◦) of the nuclei and
deformed grains are depicted in black.
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Two other important aspects of the microstructure evolution must be pointed
out: First, the KAM does not decrease during the heat treatments within the
deformed grains. Second, the GBs between deformed grains remain static. The
static behavior of the deformed grains may be due to the ferritic phase which block
their evolution [225, 226]. This was confirmed by carrying out heat treatment
tests of the as-received material at 1000°C without any evolution of the grains,
see Figure A.13. Thus, tracking the growth of the recrystallized grains is simpler
because they are the only grains that evolve. On the other hand, one should keep
in mind that the ferritic phase can also interrupt the growth of the recrystallized
grains.

(a) As-received (b) 1 h

Figure A.13: Orientation map (IPF-Z) of 304L of the (a) as-received sample and
(b) after 1 hour at 1000°C.

Figure A.14 shows the recrystallized fraction (Rx-Fraction[%]), the stored
energy related to the GND density (EΩ), the mean GB disorientation and the
twin boundary length fraction (TB-Fraction[%]). The recrystallized fraction is
computed using the following equations:

Rx− Fraction[%] = SRX

SΩ
∗ 100, (A.6)

where SRX is the surface of the recrystallized grains, SΩ the surface of the austen-
ite phase and the recrystallized grains are identified based on a GAKAM value
threshold (GAKAM<0.35°). The stored energy is approximated as:

EΩ = τ
∑

pixels

ρGND, (A.7)

where ∑pixels is a sum in all the austenite pixels, τ is the energy per unit dislo-
cation line and ρGND is the GND density which is calculated using the method
proposed in [227]. This force is underestimated because the statistically stored
dislocations are neglected. Finally, TBs are recognized thanks to their misori-
entation axis <111> ±5◦ and disorientation θ = 60◦ ± 5◦, and the TB length
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fraction is computed as:

TB − Fraction[%] = LT B

LΓ
∗ 100, (A.8)

where LT B is the length of TBs and LΓ is the length of all GBs. In Figure A.14, the
faster evolution of recrystallized grains at higher temperature is represented by a
faster decrease of the stored energy. An increase in the average GB disorientation
is also observed as recrystallization progresses, which is mostly associated with
higher TB length fraction as annealing twins form as the ReX grain develop
[228, 229].
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Figure A.14: Mean values time evolution of the areas analyzed during the sequen-
tial annealing series at targeted temperatures of 900°C and 950°C. (a) Recrys-
tallized area fraction. (b) Estimated stored energy. (c) Mean GB disorientation.
(d) Twin boundary length fraction.
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A.2.3 Rough GB Mobility estimation using the classical
velocity equation

Zones around the growing recrystallized grains were selected to accelerate the
computation and see the GB movement clearly. Figure A.15 shows a scheme of
the zone selection, the recrystallized grain is identified and the area is selected
such that the surrounding grains are captured. The example shown is from the
initial microstructure mapped for the test at 900°C. The zone of interest is on
the bottom left in Figure A.15b and the movement of this recrystallized grain is
shown at t = 0s and t = 190s in Figure A.15c.

Figure A.15: (a) Scheme of the zone surrounding a recrystallized grain (blue)
that grows during the heat treatment (pink) and the grains around the grain
of interest (yellow) at the end of the test. (b) Initial microstructure mapped
along the sequential annealing series at T=900°C with three zones of interest in
magenta (Figure A.16), cyan (Figure A.17) and blue (Figure A.18). (c) The blue
zone is shown at t=6s with the initial grain colored in blue, at t=130s the blue
grain grows and is colored in pink, the blue and pink are overlapped to show the
same diagram in (a).

Within a grain, GBs can have different behaviors: they can be immobile, fast
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moving, slow moving or have mixed behavior along the GB. The behavior of a
grain boundary may be due to its nature, to the interaction with intermetallics
or carbide particles or to the nucleation of TBs. Hence, not all the boundaries
of a given recrystallized grain can be used to compute a GB mobility value. 11
grains were studied. In Figure A.16, the magenta arrow points a GB that evolved
smoothly and will be used to explain how the GB mobility has been estimated.

Figure A.16: KAM maps of the samples submitted to sequential annealing at
900°C in the magenta zone depicted in Figure A.15. The cyan arrow shows the
interface that will be used to explain the methodology adopted to compute the
GB mobility. The white zones are ferrite strings.
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Figure A.17: KAM maps of the samples submitted to sequential annealing at
900°C in the cyan zone depicted in Figure A.15. The cyan arrow shows the GB
shown in Figure A.20. The white zones are ferrite strings.

Figure A.18: KAM maps of the samples submitted to sequential annealing at
900°C in the blue zone depicted in Figure A.15. The white zones are ferrite
strings.
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Due to the presence of energy stored during hot deformation, the GB motion
equation may be redefined as:

v⃗ = µ(Pc + Pe)n⃗, (A.9)

the driving pressures associated with capillarity effects and with stored energy
difference across the boundary are defined as Pc = −γκ and Pe = [[E]] = τ [[ρ]]
(Equation 1.27), respectively. Theoretically, it is possible to compute GB mobility
from equation A.9 if the geometry (n⃗, κ), the position (x, y) and the orientation
(ρ(Oi)) are known. If the aforementioned data are known, one can approximate
the GB mobility using the following equation:

µ = vn

Pc + Pe

= vn

±γκ± τ [[ρ]]
, (A.10)

with vn the normal velocity and the ± sign is used because both driving forces
can act in either directions. EBSD performed on 2D sections provides an estimate
for the dislocation density, but the inclination of the GB below the section plane
is unknown, so that the normal to the boundary and its 3D curvature are unde-
termined. One must therefore make here the strong assumption that the GB are
perpendicular to the section plane to proceed further with a rough approximation
of the GB mobility. In addition, one must keep in mind that the estimated dis-
location density is actually an underestimated value, since only the contribution
of GNDs is accessible by EBSD. Moreover, torque terms can have an impact on
Equations A.10 and A.11 near the multiple junctions [35], which are neglected
here. Dealing with the growth of recrystallized grains, the stored energy pro-
vides a driving force that makes the GB move further to make the recrystallized
grain grows and consumes the deformed matrix. Because of the stored energy
consumption, the recrystallized grains often develop concave shapes. In this con-
figuration, the capillarity effects opposes that of GB movement, therefore must
then be seen as braking force.

Hence in this configuration, Equation A.10 may be approximated as:

µ = vn

τ [[ρ]] ± γ/R
, (A.11)

with R the equivalent radius of the GB segment.

212



APPENDIX A. APPENDIX

Figure A.19: Driving pressures of a GB from a recrystallized grain surrounded
by deformed grains.

Post processing was conducted using the MTEX toolbox in a Matlab envi-
ronment [207]. First, capillarity pressure is computed directly using a constant
GB energy γ = 6 × 10−7[J/mm] [111] and the radius R is obtained directly from
MTEX. Second, stored energy Pe = τ [[ρ]] is estimated using a dislocation line
energy set to τ = Gb2 = 4.97 × 10−12 [J/mm] typical for a stainless steel [230].
The dislocation density is simplified to the contribution of the geometrically nec-
essary dislocations as [[ρ]] ≈ [[ρGND]]. ρGND is calculated through the relation
ρGND = 3.6

b
||α||1 [231], with ||α||1 = ∑

i

∑
j |αij| defined as the entry wise one

norm of the dislocation density tensor, ¯̄α = ¯̄κT
el − trace(¯̄κel) · I and the elastic cur-

vature tensor ¯̄κel = ¯̄∇Mi,i′ [232]. Here raw EBSD data was used. With standard
EBSD techniques, just 2D data is measured and the Nye tensor is incomplete,
thus the scaling factor 3.6 is used to correct the contribution of the unknown
terms [231]. Finally, for practical purposes the stored energy is defined with
ρGAGND the grain average of ρGND:

Pe = [[E]] ≈ τ [[ρGAGND]]. (A.12)

where [[ρGAGND]] is the jump of ρGAGND around the segment.
The velocity of the GB is approximated from its position using a backward

difference scheme
vi

n ≈ d̄GB

∆t
= xi − xi−1

∆t
(A.13)

where d̄GB is the average displacement of the GB in the normal direction mea-
sured at the sample surface, this relation is simple and its accuracy theoretically
depends on the time and EBSD step. In practice, it also depends on the quality
of the aligment of the successive EBSD maps. Figure A.20(a) shows the evolution
of the GB pointed by the cyan arrow in Figure A.16. One can see that along a GB
the interface does not evolve uniformly, so d̄GB is computed manually in different
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zones along the GB and averaged. Moreover, carbides and ferrite strings can
pin the interfaces and the evolution along one GB can drastically vary as shown
in Figure A.20(b). The computation of d̄GB presents another problem, one can
notice the overlap between GBs in Figure A.20. The origin of the deformation of
the Tantalum foil after the heating-cooling cycles which ends up with distortions
in the EBSD maps after the required tilt corrections. This is corrected using a
Fiji [233] plugin that align image stacks based on the article of D. Lowe [234]:
Linear Stack Alignment with SIFT. This plugin uses the common points of the
large microstructures shown in Figures A.11 and A.12 to realign the shift and
distortion among every EBSD map.

Figure A.20: (a) Evolution of the GB pointed out in Figure A.16 from the heat
treatment at 900°C and t=4, 6, 10, 20, 40 and 70 s. (b) Evolution of the GB
pointed out in Figure A.17 from the heat treatment at 900°C and t=4, 6, 10, 20,
40, 70, 100, 130 and 160 s.

Finally, GB mobility is computed using Equation A.11. Figure A.21 shows
the estimated driving pressure, GND density, GB velocity and GB mobility of
the GB shown in Figure A.20a. One can see that Pe, even though it is underes-
timated by considering only the contribution of GNDs, is much higher than Pc

(Figure A.21a) and ρGAGND values of both the recrystallized grain and of the de-
formed grain remain almost constant (Figure A.21b). Note that in Figure A.20a,
the GB displacement between t = 4s and 6s is important, hence the GB velocity
(mobility) presents an abrupt peak proportional to the displacement of the GB.
Also, the GB is blocked in the middle from t = 6s and 20s, but it evolves in the
bottom extremity. Thus, GB mobility estimated for this particular GB is the
average of the stable points, i.e., µ ≈ 0.05 mm4J−1s−1, see Figure A.21d. The
retarding effect is caused by the appearing annealing twins. Indeed, one can see
in Figure A.16, that both extremities of the GB are stopped while the annealing
twins appeared.
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(a) Pt(t), Pe(t) and Pc(t) (b) ρGAGND(t)

(c) vn(t) (d) µ(t)

Figure A.21: (a) Evolution of the estimated driving pressures (Total, capillarity
and stored energy jump), (b) the grain average geometrically necessary dislocation
density ρGAGND of the recrystallized grain (Rx) and the adjacent deformed grain
(Ngb), (c) GB velocity, and (d) GB mobility of the GB shown in Figure A.20(a)
and A.16

The boundary of Figure A.20b does not show a similar stagnation in its motion
all along the boundary, but clearly shows the effect of grain boundary pinning by
second phase particles. This boundary has met two particles at 6 and 10 seconds,
which could be crossed, and another one at 70 seconds where it remains hanged
on. In such situation, the migration distance has been measured along moving
segments, and the GB mobility value tends to µ → 0.05 mm4J−1s−1 as seen in
Figure A.22.

This analysis was repeated for 34 GBs in different zones. The relation be-
tween the GB mobility and the GB misorientation is shown in Figures A.23a and
A.23b. Figure A.23a shows the GB mobility seems to be higher at intermediate
disorientation values (θ = 30 − 50◦). Figure A.23b shows that the effect of the
angular deviation from the <111> axis (ω<111>) where the GB mobility seems to
be higher at 900◦C when the misorientation axis is close to <111> but there is
no clear trend at 950◦C. As expected, the GB mobility found at 950°C is higher
but the number of studied GBs are lower.
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(a) vn(t) mm
s (b) µ(t) mm4

Js

Figure A.22: (a) Evolution of the driving pressures (Total, capillarity and stored
energy), (b) the grain average geometrically necessary dislocation density ρGAGND

of the recrystallized grain (Rx) and the adjacent deformed grain (Ngb), (c) GB
velocity, and (d) GB mobility of the GB shown in Figure A.20(b) and A.17

(a) µ̄(θ) (b) µ̄(ω<111>)

Figure A.23: GB mobility as a function of (a) disorientation and (b) angular
deviation of the misorientation axis from the axis <111>.

This attempt of measuring GB velocity and mobility by performing sequential
annealing series and following the development of recrystallized grains has con-
firmed several difficulties and issues. Future experiments may be performed using
single-phase materials with low propency to form twins thus tracking GBs may be
easier. The following major issues should be pointed out as well. GBs traces can
be tracked during the sequential heat treatments (with an accuracy that could
be improved with better distortion correction of the aligned EBSD maps) but
the GB inclination cannot be assessed from 2D sections leading to wrong values
of GB velocity since the normal velocity is required. On the other hand, the
estimation of the dislocation density is over simplified, i.e., [[ρ]] ≈ [[ρGND]] being
another source of error in the estimation of the GB mobility.
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A.2.4 Discussion
In this chapter several methodologies have been presented to estimate (an appar-
ent) GB mobility. The main conclusion is that there is no ideal way to estimate
GB mobility. One may consider multiple time and length scales combining ap-
proaches from molecular dynamics to experimental results. In the literature, GB
mobility has been computed using molecular dynamics allowing to quantify GB
stiffness tensor which is worth noticing, but the time scale limit is still present
and long term effects are neglected. Moreover, MD simulations remain simula-
tions with some numerical choices. 3D measurements offer the great advantage
of allowing the mobility tensor to be estimated and to assess the real movement
of GBs in 3D, but the behavior of the GB mobility is difficult to exhibit using
such data.

An attempt to estimate GB mobility is presented in this section but suffers
from some limitations inherent to 2D section observations. Sequential annealing
experiments were carried out on deformed samples using a SEM equipped with
a heat treatment chamber. The peculiarity of these experiments is that they
started from a hot-deformed microstructure: the initial samples presented a few
small recrystallized grains and the estimation of GB mobility is performed by an-
alyzing the migration of their GBs under the driving pressure dominated by the
difference in dislocation densities on both sides of the moving boundaries. Resid-
ual ferrite phase present in the as-received 304L partially blocked the evolution
of the microstructure during GG [225,226].

One perspective of this work will be to perform equivalent analysis in 3D
in order to gain a better understanding of the mechanisms and kinetics of GB
motion. Especially, the peak between θ = 30 and 50◦ that was also found in
[55, 57]. Also, these experiments may be carried out in simpler microstructures
at different temperatures in order to avoid the effect of second phases particles.
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MOTS CLÉS
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RÉSUMÉ

La relation entre procédé de fabrication, microstructure, propriétés et performance des matériaux relève d’un grand intérêt
pour l’industrie de mise en forme des métaux. Cette relation est à l’origine d’une nouvelle branche de la science des
matériaux appelée ingénierie des joints de grains, qui vise à obtenir des propriétés spécifiques des matériaux métalliques
grâce au contrôle de la distribution des types de joints de grains. Les procédés de fabrication des métaux peuvent
être modélisés à une échelle mésoscopique grâce à l’utilisation d’outils numériques décrivant l’évolution des joints de
grains. L’approche Level-Set (LS), dans un contexte de formulation éléments finis (EF), est un outil puissant permettant
de reproduire les traitements thermodynamiques industriels où de grandes déformations peuvent avoir lieu.

Ce travail visait à améliorer une formulation EF-LS en y introduisant des modèles plus précis concernant la description de
l’énergie des joints de grains et de leur mobilité. L’objectif principal étant de construire des modèles encore plus prédictifs
en croissance de grains et recristallisation. Des cas applicatifs sur un acier austénitique ont été considérés. Lorsque des
joints de grains spéciaux ou des sous-joints sont étudiés, ils est en effet nécessaire d’améliorer les modèles décrivant
les propriétés des joints de grains. Ces améliorations ont été intégrées dans différents formulations EF-LS grâce à l’ajout
de termes dans le champ de vitesse et leur prise en compte, parfois complexe, dans les formulations faibles. La for-
mulation dite anisotrope, testée sur des simulations de cas analytiques de jonctions triples et sur des microstructures
polycristallines, s’est confirmée être la formulation la plus physique. Néanmoins, il convient de noter que la connaissance
actuelle des données et des modèles de propriétés des joints de grains souffre toujours du manque de données expéri-
mentales pertinentes et précises. La description complète des propriétés des joints de grains nécessite une analyse
spatiale tridimensionnelle de la microstructure, ainsi qu’une évolution temporelle dans les conditions thermomécaniques
données, ce qui reste impossible à réaliser avec les techniques les plus récentes.

En se basant donc sur des données expérimentales partielles obtenues durant ce travail de thèse, sur des données issues
de calculs pré-existants en dynamique moléculaire, et sur des simulations EF-LS réalisés sur des jonctions multiples
et des polycristaux de plusieurs milliers de grains, il a été mis en évidence que la formulation Anisotrope est la plus
physiquement pertinente parmi les formulations proposées pendant ce travail. Cependant, il a également été mis en
évidence que la formulation isotrope peut être utilisée pour des niveaux faibles d’hétérogénéité ou d’anisotropie avec une
précision équivalente aux prédictions du modèle anisotrope. Les développements réalisés permettent aussi aujourd’hui
de considérer, dans le formalisme LS, des macles cohérentes et incohérentes, isolées ou intégrées à une microstructure
polycristalline.

ABSTRACT

The relation among process, microstructure, properties, and performance of materials is of great interest to the metal
forming industries. The microstructure-properties relationship has opened an exciting branch of materials science called
Grain Boundary Engineering: control the grain boundary character distribution to promote specific materials properties.
The manufacturing processes of metallic materials can be modeled at the mesoscopic scale using numerical tools that
describe the evolution of grain boundaries. The Level-Set (LS) approach, in the context of Finite Element (FE) formulations,
remains a powerful tool that allows mimicking industrial thermomechanical treatments where large deformation can take
place.

This work aims to improve the FE-LS framework by including enriched grain boundary energy and mobility models and
to apply this enriched framework to the simulation of grain growth and recrystallization in a single phase austenitic steel.
Accounting for the heterogeneity or the anisotropy of GB properties is necessary if special boundaries or subgrains have
to be considered. The improvement of the GB property models was incorporated in different FE-LS formulations using
additional terms in the existing kinetic framework. Noteworthily, the current knowledge of GB property data and models still
suffers from the lack of relevant and accurate experimental data. The complete description of GB properties calls for high
spatial three-dimensional microstructure analysis, and for temporal evolution under given thermomechanical conditions,
which remains unattainable with the state-of-the-art techniques.

Based on partial experimental data acquired in this work, existing molecular dynamics data, triple junction test cases and
polycrystalline simulations, it was confirmed that the Anisotropic formulation was the most physical formulation. Neverthe-
less, when low levels of heterogeneity/anisotropy are involved in the considered microstructure, the isotropic formulation
can be used safely in grain growth and recrystallization simulations. Finally, the new proposed numerical framework
is shown to be able to model coherent and incoherent twin boundaries individually or immersed in a polycrystalline mi-
crostructure.

KEYWORDS

Finite Elements, Level-set, Grain Boundary, Mobility, Energy, Anisotropy, Heterogeneity.
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