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Abstract: Dynamic recrystallization is one of the main phenomena responsible for microstructure
evolution during hot forming. Consequently, obtaining a better understanding of dynamic recrys-
tallization mechanisms and being able to predict them is crucial. This paper proposes a full-field
numerical framework to predict the evolution of subgrain structures upon grain growth, continuous
dynamic recrystallization, and post-dynamic recrystallization. To be able to consider a subgrain
structure, two strategies are proposed. One relies on a two-step tessellation algorithm to generate a
fully substructured microstructure. The second strategy enables for the simulation of the formation
of new subgrains during hot deformation. Using these tools, the grain growth of a fully substruc-
tured microstructure is modeled. The influence of microstructure topology, subgrain parameters,
and some remaining stored energy due to plastic deformation is discussed. The results highlight
that the selective growth of a limited number of subgrains is observed only when mobility is a
sigmoidal function of disorientation. The recrystallization kinetics predicted with different criteria
for discrimination of recrystallized grains are quantitatively compared. Finally, the ability of the
framework to model continuous dynamic and post-dynamic recrystallization is assessed upon a case
study representative of the hot extrusion of a zircaloy-4 billet (T = 650 ◦C; ε̇ = 1.0 s−1; ε f = 1.35).
The influence of grain boundary properties and nucleation rules are quantified to evaluate the model
sensitivity and suitability. Application of these numerical tools to other thermomechanical conditions
and microstructures will be presented in an upcoming article.

Keywords: level-set; grain growth; continuous dynamic recrystallization; numerical simulation;
hot forming

1. Introduction

Dynamic recrystallization (DRX) is one of the main phenomena responsible for mi-
crostructure evolution during the hot forming operations of metallic materials. Improving
our ability to model those mechanisms is of critical interest because it would allow for an
assessment of the influence of material and processing parameters and a reduction in the
number of experiments required to optimize industrial manufacturing paths [1]. DRX is
defined as the formation of new grains with low dislocation density that progressively
consume the deformed microstructure under hot deformation conditions [1,2]. However,
this mechanism of microstructure evolution can exhibit various typical features. Therefore,
based on those characteristics, DRX is commonly classified into three categories [3]:

• Discontinuous DRX (DDRX), if recrystallized grains nucleate at some specific locations,
generally close to grain boundaries (GB), and then grow and consume the deformed
grains surrounding them. DDRX is therefore characterized by spatial and temporal
discontinuity at the polycrystal scale.

• Continuous DRX (CDRX), when recrystallized grains form slowly and continuously
during deformation. In that case, grain formation is induced by the progressive
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reorganization of dislocations into cells or subgrains and the gradual increase in
misorientation angle between those subgrains.

• Geometric DRX (GDRX), at large strains when grains become serrated and some GBs
start to meet and enclose new grains.

It should be pointed out that, depending on the material and on the thermomechanical
conditions, classifying a mechanism as discontinuous or continuous is not straightfor-
ward [1]. CDRX and DDRX are based on the same physical phenomena taking place at
different spatial and temporal scales which leads to the different features mentioned pre-
viously. The predominance of one or the other mechanism is influenced by both material
characteristics and thermomechanical conditions. DDRX is known to happen in low to
medium stacking fault energy (SFE) materials whereas CDRX is mostly found in high SFE
metals [4]. This is explained by the fact that low SFE materials exhibit much less dynamic
recovery (DRV) and are less ready to form low-angle grain boundaries (GBs that have a
disorientation lower than a given threshold, often fixed to 15◦ and denoted as LAGB) or
substructures as a result. Regarding processing parameters, it has been found that low
strain rates tend to favor CDRX [1].

Until now, most of the research efforts at the mesoscopic scale have been applied to
observe, characterize, and model DDRX. This appears natural, because common study
materials such as stainless steels and nickel-based superalloys undergo these mechanisms
under a usual range of thermomechanical parameters [5,6]. In addition, it should be
mentioned that modeling DDRX at the mesoscale is more evident because nucleation of
recrystallized grains can be implemented naturally within common simulation frame-
works [7], whereas modeling CDRX requires the ability to describe substructure formation
and evolution. Therefore, one can easily understand why the majority of numerical studies
focus on DDRX [8–10].

Recently, several articles focusing on the physical mechanisms underlying CDRX
have been published [11–13]. They provide an in-depth characterization of CDRX for
different alloys and provide some new insight upon substructure formation and evolution.
Regarding simulation of CDRX, Gourdet et al. [14] published one of the first articles on
this topic. They proposed a mean-field model, i.e., a model that considers the average
main microstructure characteristics and does not directly describe the microstructure
topology. They applied this model to simulate the CDRX of aluminum alloys. Their model
relies on a schematic representation of the microstructure as an aggregate of grains and
subgrains. LAGB are grouped into classes of same orientation that undergo a progressive
increase in disorientation. If sufficient deformation is applied, these LAGB could possibly
transform into high-angle grain boundaries (HAGB, i.e., GB that have a disorientation
higher than 15◦) and contribute to form recrystallized grains. This work still inspires many
researchers and some recent articles illustrate attempts at expanding it. These publications
especially highlight that additional phenomena can be considered, such as post-dynamic
recrystallization (PDRX) [15], precipitate–dislocation interactions [16], and saturation of
the average subgrain disorientation [17]. These studies [15–17] confirmed the ability of the
Gourdet–Montheillet model to simulate CDRX. Nevertheless, the models used within these
studies suffer from the intrinsic limitations of mean-field approximations, which makes
consideration of microstructure heterogeneities impossible.

The article presents a full-field model of CDRX that offers the possibility to assess the
influence of fine microstructural features upon CDRX. An extension of a DDRX modeling
framework [10,18] is proposed to simulate CDRX. It relies on a level-set (LS) formulation
to simulate microstructure evolution during heat treatment and hot deformation. It takes
advantage of recent developments regarding simulation of anisotropic grain growth [19,20]
to describe precise kinetic substructures. It is applied to 2D simulations because an extensive
comparison to 2D experimental results will be provided in an upcoming study. Two
strategies are employed to introduce substructures. In grain growth (GG) simulations, fully
substructured microstructures are initially generated and their migrations are modeled. In
dynamic and post-dynamic simulations, the formation and evolution of subgrains under
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deformation is tackled by implementing mean-field equations into the LS framework. With
these modifications, this paper presents the first numerical framework that is able to model
DDRX and CDRX with a high degree of consistency between the physical phenomena
considered, the numerical strategies and the material parameters.

The article first introduces the numerical framework, including the basic theory un-
derlying the LS method. Then, generation of digital microstructures and the physical
phenomena considered are detailed. The following sections are devoted to the presentation
of the simulation results for GG, CDRX, and PDRX. The influences of specific microstruc-
ture characteristics are pointed out and discussed in relation to the results available in the
recent literature.

2. Numerical Framework
2.1. Grain Boundary Description

The model used in this paper describes GB using an LS formulation. The iso-zero
values of level-set functions φ are used to track microstructure interfaces in space and time.
LS functions are initialized according to Equation (1):

{
φ(x, t) = ± d(x, Γ(t)), x ∈ Ω,
Γ(t) = {x ∈ Ω, φ(x, t) = 0},

(1)

where d is the signed Euclidean distance function and Ω is the simulation domain. φ(x, t)
is a positive value inside the grain and a negative value outside. Initially, one LS function
was defined per grain. To reduce the number of functions, a graph coloring strategy was
applied [21]. We can denote Φ = {φi, i = 1, ..., N} as the set of all distance functions used
to describe all the grains. N is the number of distance functions and is significantly smaller
than the number of grains (Ng).

The movement of interfaces is described by solving, for each considered distance
function, the following transport equation:

∂φ

∂t
+−→v · −→∇φ = 0, (2)

with −→v being the velocity of interfaces. At the mesoscopic scale, −→v is generally expressed
as the sum of a capillarity term (−→v c) and of a second one induced by stored energy due to
plastic deformation (−→v e). These two terms are defined such as [1,18]:

−→v c = −Mγκ−→n , (3)
−→v e = MJEK−→n , (4)

where M, γ, and κ are the mobility, energy, and trace of the curvature tensor of GB,
respectively. JEK is the stored energy gap between adjacent grains. At the grain boundary
vicinity, it can be expressed such as: JE(x, t)K = f (φi(x, t), l)× (Ej(t)− Ei(t)), where f is a
decreasing function equal to 1 for φi = 0 to 0 for φi = l and Ei(t) and Ej(t) are the stored
energy for grains i and j, respectively. Finally, −→n is the outward unitary normal of GB. The
detailed procedure of the computation of −→v e is presented in ref. [22]. Stored energy is
computed using a dislocation density field:

E = τρ (5)

τ is the unit dislocation line energy and is defined as a material parameter. Its value is

computed with the equation τ =
µb2

2
, where µ is the shear modulus and b is the Burgers
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vector [23]. This field is averaged per grain/subgrain. During simulation, the dislocation
density of the surface swept by each interface is reset to a low value (ρ0) and the energy
is averaged again. Therefore, the stored energy decreases in grains/subgrains that grow,
whereas it stays constant for the ones shrinking.

κ and −→n can be defined naturally by taking advantages of the possibilities offered by
the LS framework. Indeed, considering that LS functions remain as distance functions all
along the simulation (i.e., that ‖−→∇φ‖ = 1), they can be defined as:

−→n = −−→∇φ, (6)

κ = −∆φ. (7)

M and γ are material parameters that should be identified carefully. The setting of those
parameters as well as other initial microstructure descriptors (such as initial stored energy)
is described in detail in Section 2.3.

Because CDRX involves a significant presence of LAGBs, being able to predict their
evolution is crucial. To perform this, the evolution of properties with misorientation must
be described properly. In the simulations presented in this work, γ is always considered as
heterogeneous (i.e., γ being a function of disorientation, γ = γ(θ)) and M is either consid-
ered homogeneous or heterogeneous, depending on cases. This induces the introduction of
an additional term inside the velocity Equation (Equation (3)) [19,20,24], such that:

−→v c = −M
(−→∇γ · −→n − γκ

)−→n , (8)

which, using Equations (6) and (7) becomes:

−→v c = −M
[(−→∇γ · −→∇φ

)−→∇φ− γ∆φ
−→∇φ
]
. (9)

Finally, the transport equation becomes:

∂φ

∂t
+−→v e ·

−→∇φ + M
[−→∇γ · −→∇φ− γ∆φ

]
= 0. (10)

The weak formulation of the previous equation, with ϕ ∈ H1
0(Ω) is defined as:

∫
Ω

∂φ

∂t
ϕdΩ +

∫
Ω

Mγ
−→∇ϕ · −→∇φdΩ−

∫
Ω

−→v e ·
−→∇φϕdΩ

+2
∫

Ω
M
−→∇γ · −→∇φϕdΩ +

∫
Ω

γ
−−→∇M · −→∇φϕdΩ

−
∫

∂Ω
Mγϕ

−→∇φ · −→n∂Ωd(∂Ω) = 0.

(11)

M and γ are by definition highly discontinuous because they present positive values in
elements crossed by GB and are null in all other elements. To avoid numerical issues during
computation of

−→∇γ and
−−→∇M, a Laplace equation is solved to obtain first order differentiable

fields with the correct values at GB [19].
This formulation is not the most complete available at the time, because some others

are able to consider anisotropic grain properties, e.g., that also depend on the normal
GB [25]. However, according to the conclusions of the study made by Murgas et al. [20],
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this heterogeneous formulation remains a good compromise between computation costs
and prediction of GB kinetics and morphology.

2.2. Generation and Evolution of Microstructures
2.2.1. Generation of A Two-Level Microstructure

A first method to obtain a microstructure exhibiting substructures is to employ a
two-level generation method. The generation strategy relies on a Laguerre–Voronoï algo-
rithm [26] using an optimized sphere packing strategy [27]. This generation algorithm is
called twice. First, it is used to generate the grain structure in a standard way. Then, it is
called again to generate the subgrain structure. The nuclei of the Voronoï cells located too
close to the initial GB are removed. Then, LS functions are defined based on those cells.

The generation algorithm is in charge of respecting the prescribed grain and subgrain
size distributions. Grain orientations are affected in order to respect a given distribution
taken from experimental data obtained on a zircaloy-4 sample. Subgrain orientation is
computed by applying a specific misorientation to the parent grain orientation, similarly
to what has been achieved in ref. [28]. This misorientation distribution is also taken from
experimental data. Finally, an image of an initial microstructure is shown in Figure 1. The
zone at the center that is enlarged is kept the same in Figure 5 to improve the readability.

30 µm

Figure 1. Initial microstructure example with color code corresponding to GB misorientation angle.

It is worth noting that this method allows for the generation of various initial configu-
rations and detailed study of the influence of topology. As illustrated in Section 3.1, this
enables the enrichment of the rare existing discussions about the full-field modeling of the
evolution of subgrain structures during grain growth [28–30].

2.2.2. Progressive Formation of Subgrains

As described in the introduction (Section 1), under deformation, the LAGB network
does not evolve only by capillarity growth. Dislocations could rearrange themselves to form
new LAGBs or accumulate into preexisting LAGBs. This last phenomenon is responsible
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for a progressive increase in LAGB misorientation [1,3]. To be able to consider these
mechanisms, laws introduced by the Gourdet–Montheillet model are implemented [14].

Each grain has an average dislocation density ρ which evolves according to the Yoshie–
Laasraoui–Jonas Equation [31]:

dρ = (K1 − K2ρ)dε, (12)

where K1 and K2 are two material constants describing the strain hardening and recovery,
respectively. To be able to reproduce to some extent heterogeneous grain deformation, K1
varies from grain to grain according to a distribution defined using experimental data (see
Section 2.3). This strategy is preferred over the coupling with a crystal plasticity model
because it would unreasonably increase the computational costs. Several mechanisms of
dislocation density evolution are taken into account in the current model:

• Rearrangement into LAGB that bound new subgrains. Subgrain formation is described
through following Equation [14]:

dS+ =
αbK2ρdε

ηθ0
, (13)

where dS+ is the surface of LAGB created. α = 1 − exp
(

D
D0

)m
is a coefficient

describing the fraction of dislocations recovered to form new subgrains. D is the grain
diameter, D0 is a grain reference diameter, and m is a fixed coefficient. η is the number
of sets of dislocations and θ0 the disorientation of newly formed subgrains.

• Stacking into pre-existing LAGBs, which is modeled according to the following Equa-
tion [14]:

dθ =
b

2η
(1− α)DK2ρdε. (14)

• Absorption during HAGB migration. This is naturally captured by affecting the areas
swept by moving boundaries with a low dislocation density as described earlier.

At each time step, dislocation density of each grain is updated using Equation (12) which
impacts the computation of the velocity term related to the stored energy differences. Then,
the length of subgrain interfaces formed into each grain is computed using Equation (13).
Depending on the simulation case (see Section 3.2), subgrains are added grain by grain based
on the value of the grain property or globally, after having summed the length of subgrain
interfaces for all grains. Subgrain orientation is initialized by applying a small misorientation to
the parent grain orientation (similarly to what is described in Section 2.2.1). The misorientation
angle is selected to respect a distribution measured experimentally, whereas the misorientation
axis satisfies a uniform distribution. The misorientation axis attributed to a subgrain at its
formation is kept constant. Then, during the next increments, the misorientation increase
described by Equation (14) is realized by rotating of dθ around this axis. In addition, to
evaluate the influence of subgrain formation localization, a distance from the pre-existing
boundaries criterion is tested. Therefore, for the cases where this option is enabled, subgrain
centers cannot be set closer to pre-existing interfaces than d f

SG. This will be discussed in more
details in Section 3.2.

Finally, at each time step, isotropic remeshing is performed to keep a fine mesh around
GB and precise description of interfaces [32,33]. All those operations are presented in an
algorithmic diagram in Figure A2.

2.3. Material Parameters

GB energy is defined according to Read–Schockley Equation [34]:
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γ(θ) =

γmax

(
θ

θmax

)(
1− ln

θ

θmax

)
, θ < θmax,

γmax, θ ≥ θmax,
(15)

where θmax is the limit between LAGB and HAGB, taken equal to 15◦.
If not explicitly written, GB mobility, M, is considered isotropic and does not vary with

disorientation (i.e., M = Mmax). HAGB mobility (Mmax) is identified using experimental
data. Its dependence to temperature is supposed to follow Arrhenius’ law. In some given
simulation cases and to enable the discussion and comparison of the results to the ones
described by Suwa et al. [30], mobility is described by the following relation [35]:

M(θ) =

Mmax

(
1− exp

[
−5
(

θ

θmax

)4
])

,

Mmax, θ ≥ θmax.

(16)

3. Results and Discussion
3.1. Modeling of GG of a Fully Substructured Microstructure
3.1.1. Influence of Microstructure Topology

To evaluate the influence of microstructure topology, two different initial microstruc-
tures are considered:

• With subgrains located inside grains using the generation method described in Sec-
tion 2.2.1 (Figure 2a);

• With LAGB and HAGB evenly distributed throughout the whole representative vol-
ume element (RVE) (see Figure 2b).

The first microstructure topology is named in the following discussions as standard
grain/subgrain topology. The second is named the no grain/subgrain topology. The two initial
microstructures are presented in Figure 2

30 µm

(a)

30 µm

(b)
Figure 2. Initial GB network with color code corresponding to GB disorientation. (a) Standard
grain/subgrain topology; (b) No grain/subgrain topology.

For all simulation cases presented in this section, GB energy is taken to be heteroge-
neous, GB mobility is considered isotropic, and stored energy is considered negligible (i.e.,
ve = 0). The RVE area is equal to 0.01 mm2.

Figures 3 and 4 point out how spatial correlation of HAGB and LAGB impacts mi-
crostructure evolution. First, it is interesting to note that the absence of spatial correlation
decreases the grain growth kinetic. This can be explained partly by the fact that grains
(i.e., bounded by HAGB) disappear faster when no correlation is assumed (as illustrated in
Figure 4a). Therefore, this leads to a lowering of the global grain growth kinetic because
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the global system energy is initially lowered much faster. It is interesting to note that this
behavior is different from the one expected by Desprès et al. [28]. Two reasons can lead to
these differences. First, Desprès et al. [28] consider subgrains partly bounded by HAGB.
Second, the initial subgrain distribution is different from our study case, which could also
impact the microstructure evolution.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

1.0

1.5

2.0

2.5

3.0
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D
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m
)

Standard grain/subgrain topology
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Figure 3. Evolution of subgrain average equivalent circle diameter (ECD) as a function of time.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

HA
GB

 le
ng

th
 (m

m
)

Standard grain/subgrain topology
No grain/subgrain topology

(a)

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

4

6

8

10

12

14

16

18
LA

GB
 le

ng
th

 (m
m

)
Standard grain/subgrain topology
No grain/subgrain topology

(b)

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

1.0

1.5

2.0

2.5

3.0

3.5

To
ta

l G
B 

en
er

gy
 (J

m
1 ) Standard grain/subgrain topology

No grain/subgrain topology

(c)
Figure 4. Evolution of GB length and energy with time. (a) Total HAGB length; (b) Total LAGB
length; (c) Total GB energy.

Finally, when considering the influence of spatial distribution of orientations and
misorientations, one limitation of this work should be pointed out. Indeed, using the
generation method presented earlier, it is not possible to generate subgrains inside a grain
presenting a misorientation gradient, a feature which is commonly observed in experiments
and which could also impact the microstructure evolutions. This could, for instance, lead
to an acceleration of the formation of HAGBs by putting in contact two subgrains with a
disorientation greater than 15◦. Nevertheless, this limitation can be overcome by directly
immersing experimental data.
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3.1.2. Influence of Subgrain Parameters

To assess the influence of subgrain parameters, two different initial microstructures
are considered:

• With grain and subgrain size distributions taken from experimental data;
• With grain distribution taken from experimental data and a unique subgrain size.

For each of these initial microstructures, two cases are considered in which some
material parameters differ:

• GB energy is taken heterogeneous and GB mobility is considered constant;
• GB energy and mobility are both considered heterogeneous.

In these cases, the standard grain/subgrain topology is assumed and stored energy is
neglected (i.e., ve = 0).

Figure 5 presents for each simulation case the GB network in a part of the RVE. Evo-
lution of the whole RVE are available in Appendix A. This illustrates how microstructure
evolves in a noticeable manner in case (d).

15 µm

(a)

15 µm

(b)

15 µm

(c)

15 µm

(d)
Figure 5. Evolution of the GB network with time for the four test cases in a zone at the cen-
ter of the RVE. (a) Experimental subgrain size distribution—γh. (b) Experimental subgrain size
distribution—γh, Mh. (c) Uniform subgrain size distribution—γh. (d) Uniform subgrain size
distribution—γh, Mh.

Figure 6 describes how the mean ECD evolves with time during simulation. First, it is
interesting to note that considering heterogeneous mobility (according to Equation (16))
significantly affects subgrain growth and that its impact depends on initial subgrain size
distribution. To assess this in more detail, the evolution of total HAGB and LAGB length
and of HAGB length fraction are plotted in Figure 7. HAGB length ratio (Figure 7) exhibits
how heterogeneous mobility favors the migration of HAGB and their formation by putting
in contact subgrains originally located in different grains. At the end of the simulation,
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this leads to a higher HAGB length fraction. Moreover, as heterogeneous mobility favors
HAGB migration, subgrains partially bounded by HAGB have a greater chance to grow.
This is particularly true in case d of Figure 5, in which all subgrains initially have the
same size. Consequently, the advantage given by the high mobility of those boundaries
is increased and their growth dominates the whole microstructure evolution. Figure 7b,c
confirm these remarks by showing a temporary increase in HAGB total length if mobility
is heterogeneous. Finally, it is interesting to note that if subgrains initially have the same
diameter, an incubation time is needed for the subgrains partially closed by HAGB to gain
a significant advantage and start to consume the whole microstructure. Finally, Figure 8
confirms these observations. It is noteworthy that both study cases assuming homogeneous
mobility tend to keep a significantly higher fraction of LAGB. This illustrates that a higher
heterogeneity of GB induces a change in the behavior adopted to lower the total energy
of the system. It changes from a global reduction in both LAGB and HAGB length to a
temporary increase in HAGB length in order to accelerate the decrease in total GB length.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

1.0

1.5

2.0

2.5

3.0

EC
D

 (
m

)

Exp. subgrain size distribution - h

Exp. subgrain size distribution - h, Mh

Homogeneous subgrain size - h

Homogeneous subgrain size - h, Mh

Figure 6. Evolution of subgrain average ECD as a function of time.
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(c)
Figure 7. Evolution of GB length with time. (a) HAGB length ratio. (b) Total LAGB length. (c) Total
HAGB length.
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(a) (b)

(c)
Figure 8. Disorientation histograms at three instances of the simulation. (a) Initial state. (b) After
1000 s. (c) Final state.

These detailed observations confirm that the faster growth of a small fraction of
subgrains is only observable if mobility is considered heterogeneous, as described by
Holm et al. [29]. They also broaden the remarks made by Suwa et al. [30] about the
conditions allowing preferential subgrain growth. Indeed, this phenomenon is much less
significant if the initial subgrain size is not homogeneous and representative of experimen-
tal data.

3.1.3. Influence of Stored Energy

In previous papers describing similar full-field simulations, driving pressure due
to dislocation density heterogeneities is generally neglected [28–30]. This rests upon the
simplification that deformation energy is fully consumed thanks to recovery by annihilation
and/or organization into the GB network. The available framework allows us to assess
the influence of the assumptions by considering that each subgrain has its own dislocation
density. Two simulation cases are defined:

• Stored energy is initialized per subgrain by considering a dislocation density dis-
tribution taken from estimation of geometrically necessary dislocations (GND) by
EBSD measurements.

• Stored energy is initialized per grain using the same distribution. Then, subgrain
energy is initialized weighing the parent grain using coefficients (named wi) respecting
normal distribution. The parameters of this normal distribution are defined as follows:
w ∈ [0.1; 2.0] ; w = 1.0 ; σ2 = 0.2. The distribution parameters have been set to ensure
that subgrains inside grains do not have the exact same energy and that it is still a
driving pressure.

Figure 9 presents the main microstructure features that are influenced by the presence
of stored energy. As expected, considering stored energy variations between grains leads
to an increase in the driving pressures and consequently to a faster growth of subgrains
presenting an initial stored energy advantage. Because the total stored energy in the two
last simulations is the same, differences in terms of the kinetics are rather small. However,
it is interesting to note that in the second case considering stored energy, the main subgrain
size evolves slightly slower, whereas the total HAGB length decreases faster. The faster
disappearance of HAGB is likely related to the stored energy distribution. Indeed, stored
energy gaps between subgrains located at grain interfaces is higher than between subgrains
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belonging to the same parent grain. This contributes to the acceleration of the movement of
HAGB and reduce the growth of subgrains located in inner grain regions.
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Figure 9. Main microstructural feature evolutions impacted by initial stored energy. (a) Evolution of
ECD as a function of time. (b) HAGB total length as a function of time.

3.1.4. Discussion of The Numerical Criterion for Identification of Recrystallized Grains

In all of the papers presenting full-field simulations of microstructure evolution in-
cluding substructures, recrystallized grains are identified based on their size. Subgrains are
generally considered as recrystallized grains as soon as they are six to eight times bigger
than the initial mean subgrain size [28–30]. This relies on the hypothesis that all subgrains
are free of energy and could become recrystallized grains. However, in recent experimental
studies, recrystallized grains are generally identified based on some parameter quantifying
internal disorientation or directly upon GND density [1,36]. To correctly evaluate the
recrystallized fraction and to compare the experimental data to numerical data, several
criteria are defined and compared. Subgrains are considered as recrystallized if:

• They are eight times bigger than the initial mean subgrain size;
• Their internal dislocation density is lower than a given threshold;
• Their internal dislocation density is lower than a given threshold and at least half of

the boundaries surrounding it are HAGBs.

Obviously, the last two criteria are only tested against the simulations that consider
stored energy (see Section 3.1.3).

Figure 10 illustrates how the recrystallized surface fraction evolves during simulation,
for the first simulation case described in Section 3.1.3. As one could have expected, the
recrystallized fraction behaves differently depending on its definition. Consequently,
ensuring that the criteria used to discriminate recrystallized grains from experimental and
simulation data are consistent is critical.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
cr

ys
ta

lliz
ed

 fr
ac

tio
n ECD >  8 × ECDi

< t

< t and fHAGB > 0.5

Figure 10. Evolution of recrystallized fractions with time.
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3.2. Modeling of CDRX and PDRX

Let us now examine simulations of CDRX and PDRX. To present the abilities of the
model and evaluate the influence of subgrain formation rules, the results obtained with
four different test cases are described below. All of them consider initial microstructures
respecting the same grain size and hardening coefficient distributions. They include
approximately 300 grains. The initial number of grains is taken to be low because it will
increase substantially during deformation. Material parameters have been estimated based
on experimental results obtained from conducting a thermomechanical testing campaign
associated with extensive EBSD characterization. A detailed article will be dedicated to the
presentation of these results and the comparison with some simulation results acquired
using this numerical framework. The thermomechanical conditions corresponding to these
simulations are the following: T = 650 ◦C ; ε̇ = 1.0 s−1; ε f = 1.35. They are representative of
the conditions experienced by a billet during the hot extrusion process. Additional details
about the manufacture of zirconium alloys can be found in reference [37]. The four test
cases differ with the GB properties and the restrictions set for formation of subgrains. In all
of the cases except the last ones, subgrains cannot be placed too close to grain boundaries
to avoid topological events that are not seen experimentally such as bulging boundaries.
They are defined as followed:

(a) The number of subgrains that are formed at each deformation increment is computed
individually per grain/subgrain. GB energy is described by the RS equation and GB
mobility is isotropic.

(b) The number of subgrains that are formed at each deformation increment is computed
for the whole domain. Then, new subgrains are positioned randomly within the RVE.
GB energy is described by RS Equation (Equation (15)) and GB mobility is isotropic.

(c) The number of subgrains that are formed at each deformation increment is computed
individually per grain/subgrain. GB energy is described by RS Equation (Equation (15))
and GB mobility is heterogeneous and computed using Equation (16).

(d) This last case respects the same rules than the first one, except that new subgrains can
be placed on pre-existing grain boundaries.

Based on the discussion presented previously (see Section 3.1.4) and to be as close as
possible to the criterion used commonly when working with experimental data, it has been
decided to define as recrystallized the grains that fulfill the two following criteria:

• ρ ≤ ρth = 1.0× 1014 m−2,
• only grains, i.e., entities bounded by at least 50% of HAGB, are included in the measure

of recrystallized grains.

Setting threshold values for these two variables is performed arbitrarily using experi-
mental data.

3.2.1. Evolution of Main Microstructure Descriptors during CDRX and PDRX

Figure 11 presents the evolution of digital microstructures for the four test cases after
a deformation of 1.35 and a subsequent holding at temperature (hundreds of seconds at
650 ◦C). Figure 12 presents the evolution of the main microstructural descriptors with time.
First, one can see that the recrystallized fraction is null during the deformation process and
starts to increase significantly only after tens of seconds of holding at temperature. This
can be explained easily by analyzing the criteria defined previously for discrimination of
recrystallized grains in regard to the mechanisms introduced in the numerical framework.
First, only subgrains are formed during deformation due to recovery of a certain fraction
of dislocations. These objects do not fulfill the second criterion. Then, under subsequent
deformation, their misorientation increases as prescribed by Equation (14). However, at the
same time, their internal dislocation density increases. Therefore, with the material parame-
ters considered here, new subgrains see their dislocation density exceed the threshold value
before they have time to transform into grains. Then, under holding at temperature, grains
and subgrains that have an energetic advantage over the surrounding grains start to grow.
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Their dislocation density is progressively lowered. They are also likely to encounter new
grains which generally lead to an increase in the bounding HAGB fraction. Consequently,
more and more candidates are meeting both of the criteria and are flagged as recrystallized.
Finally, evolution of average recrystallized grain size presents a sigmoidal shape, except
for the first instants where there are abrupt and erratic variations. This is due to the small
number of grains considered as recrystallized at those times. Finally, it is interesting to
discuss how the HAGB length ratio evolves during the whole process (Figure 12). First, it
decreases quickly with strain due to the fact that some new subgrains form. Then, once
deformation is stopped, it increases by approximately 10% instantaneously. One reason
for that observation is that the hardening parameter, K1, attributed to each subgrain is
taken from a distribution. Therefore, some subgrains have a higher hardening parameters
than the parent grains and disappear as soon as their dislocation density is higher than the
one of the parent grain. This is not visible during deformation because the formation of
new subgrains is much more significant. Secondly, it is noteworthy to mention the rapid
stagnation of the HAGB length ratio. This would mean that grains and subgrains that have
a lower dislocation density grow with similar rates. This makes sense because the driving
pressure induced by interface energy is negligible compared to the driving pressure linked
to differences in the deformation stored energy.

20 µm

(a)

20 µm

(b)

20 µm

(c)

20 µm

(d)
Figure 11. Evolution of digital microstructures with time for the four different test cases. (a) Local
nucleation—γh. (b) Global nucleation—γh. (c) Local nucleation—γh, Mh. (d) Local nucleation—
γh, dGB

NewLAGB = 0.
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Figure 12. Main microstructural features’ evolution with time. (a) Recrystallized surface fraction.
(b) GND density. (c) Mean recrystallized grain size. (d) HAGB length ratio.

Considering the differences between the results obtained with the four test cases,
it appears that setting GB mobility as heterogeneous does not significantly impact the
statistical descriptors presented here. One could notice that introducing subgrains over the
whole domain globally affect recrystallized fraction at intermediate times and induces an
increase in the average recrystallized grain size by approximately 15%. This difference in
recrystallized fraction can be explained by the fact that the main driving pressure for the
growth of recrystallized grains is the difference in stored energy between those grains and
the surrounding grains. Therefore, if the quantity of interfaces created during deformation
is individualized per grain, one can deduce from Equation (13) that more subgrains will be
placed in zones with high dislocation density. Thus, the kinetic of recrystallization will be
higher for intermediate holding times.

An explanation for the difference in the average recrystallized grain size can be found
by investigating the neighbors of viable subgrains. When nucleation is set globally, viable
subgrains that effectively form recrystallized grains can grow much significantly before
encountering other recrystallized grains. Finally, regarding the last test case, allowing new
subgrains to form at GB leads to a 10% higher recrystallized fraction. The reason behind
that difference is that subgrains that form over pre-existing GB have already a fraction of
their boundary as HAGB.

3.2.2. Evolution of the Subgrain Network during Deformation

The evolution of the HAGB length ratio and the mean LAGB disorientation with
strain are presented in Figure 13. Focusing on the HAGB length ratio first, it is interesting
to note that it reaches a steady state after a strain of 0.6. This is consistent with some
experimental observations reported by Chauvy et al. [38]. As discussed in the previous
section, some subgrains disappear during deformation because they harden too much
to stay viable. The average LAGB disorientation increases by approximately 1◦ during
deformation. This increase remains low because the disappearance and formation of
subgrains impact significantly the subgrain population.
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Figure 13. Main microstructural feature evolution with strain during deformation. (a) HAGB length
ratio. (b) Mean LAGB disorientation.

Finally, the last point worth mentioning is that the only case that exhibits different
results regarding those two features is the last one, in which subgrains can form onto the
GB. To investigate the reason behind this difference in HAGB length ratio, the evolution
of LAGB and HAGB length with strain is plotted in Figure 14. It is interesting to note
that both cases exhibit comparable HAGB length evolution. However, it appears that the
reference case in which subgrains form at a given distance from GB, the increase in LAGB
length is much higher. This is totally consistent, because the formation of subgrains over
HAGB gives rise to a lower quantity of LAGB and to the disappearance of HAGB.
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Figure 14. Evolution of LAGB and HAGB length with strain during deformation.

4. Conclusions

The present study has detailed the current abilities of the proposed numerical frame-
work to predict the evolution of subgrain structures by GG, CDRX, and PDRX phenomena.
The results concerning GG of a fully substructured microstructure have shone a light on:

• The influence of the microstructure topology;
• The significance of the definition of LAGB and subgrain properties. Indeed, it appeared

that the strategy adopted by the microstructure to reduce the total system energy is
different depending on those parameters. The observations have led to the deduction
that heterogeneous mobility encourages a temporary increase in HAGB length to
accelerate the general energy decrease. They also illustrated that preferential subgrain
growth is much more significant if subgrains all have initially the same size;

• The fact that internal dislocation density has a non-negligible impact.

The results regarding the simulations of CDRX and PDRX have illustrated that this
simulation environment coupled to the Gourdet–Montheillet model provides realistic and
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consistent results. They also show that the model is flexible enough to assess the impact of
several hypotheses and assumptions.

The results of the present CDRX model now need to be confronted to experimental
results to assess to which extent they are able to predict them. This will be presented
in an upcoming article regarding microstructure evolution of zircaloy-4 in hot forming
conditions. Moreover, the present CDRX and PDRX model could still be extended by being
applied to other materials which exhibit different microstructure features due to the same
CDRX mechanisms.
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Appendix A. Evolution of the GB Network in the Whole Simulated RVE

30 µm
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Figure A1. Evolution of GB network with time for the four test cases. (a) Experimental subgrain size
distribution—γh. (b) Experimental subgrain size distribution—γh, Mh. (c) Uniform subgrain size
distribution—γh. (d) Uniform subgrain size distribution—γh, Mh.
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Appendix B. Description of the Algorithm Underlying the Numerical Framework

Figure A2. Algorithm describing the numerical steps to simulate microstructure evolutions during
hot deformation and holding at temperature.
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