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ARTICLE INFO ABSTRACT

Keywords: Numerous full-field numerical methods exist concerning the digital description of polycrystalline materials
Full-field method and the modeling of their evolution during thermomechanical treatments. However, these strategies are
Level-set

globally dedicated to the modeling of recrystallization and grain growth for single-phase materials, or to the
modeling of phase transformations without considering recrystallization and related phenomena. A generalized
numerical framework capable of making predictions in a multi-phase polycrystalline context while respecting
the concomitance of the different microstructural mechanisms is thus of prime interest. A novel finite
element level-set based full-field numerical formulation is proposed to principally simulate diffusive solid—
solid phase transformation at the mesoscopic scale in the context of two-phase metallic alloys. A global kinetic
framework, capable of accounting for other concomitant mechanisms such as recrystallization and grain growth
is considered in this numerical model. The proposed numerical framework is shown to be promising through
a couple of illustrative 1D and 2D test cases in the context of austenite decomposition in steels and compared
with ThermoCalc estimations.
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1. Introduction

It has been well established that the metallic material properties
have a direct correlation with the underlying microstructure. When a
material is subjected to thermomechanical treatments (TMTs) in the
context of metal forming, several microstructural changes [1] could
occur in the form of recovery, recrystallization (ReX), grain growth
(GG), phase transformation (PT) which in-turn modify the material’s
macroscopic properties. Phase transformation at the solid-state involves
crystallographic changes in the parent phase through rearrangement of
the lattice structure to form a different, more stable product phase at
the same solid state. PT can be either displacive or diffusive. Displacive
transformation [2] is characterized by the spontaneous, coherent, and
cooperative movement of atoms across distances that are typically
smaller than one nearest neighbor spacing. Diffusive transformation [3]
involves gradual reorganization of the lattice through short and long-
range diffusion of atoms. Two basic mechanisms drive diffusive PT:
(i) the diffusion of solutes across the phase interfaces and in the bulk
of the grains, resulting in a change in chemical composition, and (ii)
the interface migration resulting in the lattice rearrangement or struc-
tural changes. PT plays a critical role in producing diverse materials
with varying microstructural features during TMTs. Considering the
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large-scale use of metallurgical products in various strategic industries
(nuclear, aerospace, automotive, oil & gas, defense, and renewable
energies et cetera), a comprehensive understanding and modeling of
microstructural mechanisms during TMTs are of prime importance.
There is then a growing demand to develop more realistic numerical
models capable of precisely predicting the microstructural evolution
and in turn determine the in-service material performances.

To model microstructural evolution, depending on the level of
description desired, we broadly have three main modeling approaches:
mean-field modeling and full-field modeling at the mesoscopic scale,
and molecular dynamics. Mean-field models (MFM) [4-7] are based
on an averaged description of the microstructure by considering grains
or precipitates as spherical entities, and involving statistical evolution
related to different characteristics (grain size, precipitate size, dislo-
cation density, ...). MFM are then computationally efficient but do
not involve precise modeling of the topological changes. Advances in
computational resources have paved the way for more intricate models
(such as atomistic and full-field mesoscopic models) capable of explic-
itly reproducing the microstructural evolution. Molecular dynamics [8,
9] approaches consider the basic building blocks of material, atoms, as
the smallest entity. Such models provide a profound description of the
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involved mechanisms but also require large computational resources.
Thus, these models are often considered to analyze or quantify certain
characteristics over a localized region of the microstructure limited to
a few interfaces. By simplifying the interface description and approxi-
mating the interface properties and kinetics, the so-called mesoscopic
full-field models (FFM) [10], are based on an explicit description of
the microstructure topology at the polycrystalline scale by typically
considering few thousand to few ten thousand grains in 2D or 3D. FFM
have demonstrated an exciting potential to simulate a wide range of mi-
crostructural evolution such as the precise modeling of ReX in dynamic
(DRX) or post-dynamic (PDRX) conditions, GG, diffusive solid—solid
phase transformation (DSSPT), spheroidization and sintering. In the
context of microstructural evolution, FFM mainly comprise the fol-
lowing numerical methods: Monte Carlo (MC) Potts [11], Cellular
Automata (CA) [12], Phase-Field (PF) or Multi Phase-Field (MPF) [13—
18], Front-Tracking [19,20]/Vertex methods [21], and Level-Set (LS)
models [22,23].

In the context of DSSPT, phase-field methods (PFM) are popular
and extensively used. The thermodynamic consistency and the ability
to model arbitrary complex morphological changes without any pre-
sumption on their shape or mutual distribution make PFM a powerful
and an attractive tool. The early works of Wheeler et al. [24], Steinbach
et al. [25,26] on solidification using PFM provided some of the math-
ematical foundations of phase-field modeling for multi-component,
multi-phase systems involving solute diffusion. Yeon et al. [27] pre-
sented one of the first phase-field simulations of DSSPT, where
austenite-ferrite transitions in the Fe-Mn-C system were modeled under
para-equilibrium [28] assumptions. Pariser et al. [29] studied the phase
transformation behavior in ULC (Ultra Low Carbon) and IF (Interstitial
free) grade steels using the well-known MICRESS software [30] based
on the multi-component, multi phase-field method. Huang et al. [31]
performed 2D PF simulations for y — « transformation in low carbon
steels by considering an arbitrary number of grains at a large spatial
scale. The P.h.D. works of Mecozzi along with Militzer et al. [32,33]
were dedicated to the first 3D simulations of DSSPT for y — « transfor-
mation in a Fe-Mn-C system. In addition to austenite decomposition in
steels, there have been works dedicated to other alloyed materials also.
1D PF simulations for phase transformation in aluminum alloys have
been studied in [34]. Malik et al. [35] have used 2D PFM to simulate
the formation and growth of s—phase precipitates in a super duplex
stainless steel alloy. Some other works are based on MC [36] and CA
methods [37,38]. In most of these reported works, GG aspects were
either completely neglected or only the GG of the product phase was
accounted for while ignoring that of the parent phase.

Moreover, in the context of industrial processes where high plastic
deformation can be achieved and complex thermomechanical paths are
the norm, none of the existing approaches provide easily an appropriate
framework to perform large simulations of DRX concomitant with
phase transformation in multi-phase materials. On the other hand,
level-sets (LS) have been successfully used to simulate DRX [39,40] and
GG phenomena [41-43] for single-phase materials in such conditions.
So, in the current state of the art, most of the numerical predictions
are dedicated to single-phase microstructural evolution, or only based
on phase transformation without taking into account other phenomena
such as ReX or GG. Such numerical approaches can then be insufficient
when complex thermomechanical treatments with large temperature
ranges are investigated. Thus, there is a need for a generalized nu-
merical framework capable of making predictions of DSSPT, DRX, and
GG in a multi-phase polycrystalline context [44]. So, the perspective of
this work is to explore the potential of the LS method for the modeling
of DSSPT. We thus propose a global finite-element (FE) LS formalism
capable of simulating diffusive phase transformation and ReX in the
context of large plastic deformation for multi-phase polycrystalline
materials by considering the driving pressures acting on grain and
phase interfaces.

Computational Materials Science 216 (2023) 111840

The proposed LS based numerical formulation in the context of
austenite decomposition (austenite to ferrite phase transformation)
is described in Section 2. In Section 3, a couple of representative
illustrations are used to demonstrate the potential of the numerical
model. Finally, in Section 4, we discuss the key remarks of the proposed
approach and also some perspectives for future work.

2. Numerical formulation: Diffusive phase transformation model-
ing

DSSPT modeling at the mesoscopic scale typically involves two
governing equations: a diffusion equation that governs the partitioning
of solute atoms (such as carbon) across different phases, and another
governing equation that takes care of the resulting interface network
migration. As mentioned earlier, our interest is to use a global LS
formalism to simulate the considered phenomena. Classically, the diffu-
sion equation could be resolved within a LS framework. However, due
to the presence of material discontinuities across the phase interfaces,
the sharp interface approach considered in the LS framework enforces
the explicit consideration of interface jump conditions during the res-
olution of the diffusion equation. This demands explicit localization
of the interface at each instant to treat numerically the necessary
jump conditions. Thus, to avoid this cumbersome step, we propose
to consider a diffuse interface hypothesis across the phase interfaces
during the resolution of the diffusion equation. In other words, we
represent and migrate the multi-phase grain interface network using
a LS description while resolving a global diffusion equation based on
a diffusive interface assumption for the phase interfaces. The diffuse
interface description is realized using a phase-field like function which
ensures that any material discontinuities across the interface are natu-
rally smoothened. This enables us to resolve a single diffusion equation
in the whole computational domain without the need for any interface
jump conditions.

This transition to a diffuse interface description is established,
thanks to a hyperbolic tangent relation [32,45] between a phase-field
like function (¢) and a signed distance LS function (¢) of the following
form:
¢ = %tanh<%>+%, (@D)]
where 7 is a diffuse interface thickness parameter. In the following,
we shall refer this function (¢) yielding the diffuse interface as the
phase-field function. Fig. 1 illustrates the trend of this function in a
1D context.

2.1. Solute partitioning

Let us assume the solute concentration in the parent phase (austen-
ite, y) and the product phase (ferrite, a) to be C, and C, respectively.
After having established a diffuse interface description, the total carbon
concentration field (C) can be expressed as a continuous variable:

C=¢C, +(1-)C,. (2)

Likewise, we then assume continuity of the solute fluxes of each phase
(J,,J,) weighted by the phase-field variable across the phase interface:

T=¢l +(1-DJ,. ©)

The diffuse phase interface is assumed to be composed of a mixture of
the two phases. A constant concentration ratio is imposed between the
phases, such that the redistribution of the solute atoms between them
at the interface respects a partitioning ratio (k) equal to that at the
equilibrium:

G _ G
k=t = @

4 14
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Hyperbolic tangent relation
1.2

Yy — phase

—— Phase field function, ¢

a — phase

-2 =1

Signed distance function, ¢

Fig. 1. Hyperbolic tangent relation yielding the diffuse phase interface between phases a and y.

where C;? and C;? are the equilibrium concentrations of « and y phases
respectively at temperature 7T.

Following Fick’s laws of diffusion, the diffusion equation for carbon
partitioning can be expressed as:

‘;—f =-V-J=-V-[¢pJ, +(U-PJ,].

with,

J,=-D{VC,; J, =-DSVC,.

We then obtain,

% = v [oDSVC, + (1 - pDEVC, ], ®)
ot « v

where DS and Df represent the diffusivity of the carbon element in
ferrite and austenite phases respectively.
Invoking Egs. (2) and (4) in Eq. (5), a modified carbon diffusion
equation [26,32] is obtained:
] ). ®

_Clk=1)
T+otk—1) 1)
where D*(¢) is called “mixed diffusivity” and is defined as,
fel c c
Dy +q.'7(kD0t - Dy )
l+pk—-1

With further simplifications, the above Eq. (6) can be transformed
into a Convective-Diffusive-Reactive (CDR) form as follows:

6C_v

E { D*(¢) [VC -

D*(¢) =

- [D*(@)VC - CA(9)]

%+ (A-VD") - ¥C - D'AC + RC =0, @
where,
A =2 DPE=Vgy na R=V-A

I+¢k-1)

Let w € H'(Q) be a test function, the FE weak formulation of Eq. (7)
can be written as follows:

/0—Cwm+/ (A—VD*)-VCy/d.Q—/ D*ACI//d.Q+/ RCy dQ=0.
Q0 Q o Q

(8)

Since we assume no influx or outflux of solute atoms into or from
the domain respectively, solute mass is conserved at any instant. Thus
imposing pure Neumann boundary conditions on the boundaries of the
computational domain (VC - n|;o = 0), and applying the divergence

theorem, we have:
/ D*ACy dQ = / wD*VC -n dS—/ V(D*y)-VC dQ
Q 00 Q

= —/ V(D*y) - VC dQ.
Q

Substituting the above term in Eq. (8), and after simplification, we

/—1,/ d9+/ A-VCy d.Q+/ D*Vy-VC d.Q+/ RCy d2=0. (9)
Q Q

It can be highlighted that compared to the strong formulation in Eq. (7),
the gradient of the mixed diffusivity term (VD*) vanishes in the weak
formulation. In terms of numerical stability, this is of great interest
considering the abrupt evolution of this term across a phase interface.

2.2. Interface migration

To govern the motion of the multi-phase grain interface network, we
revert to the LS description for the interfaces. Considering the interface
of interest, I', of a closed domain G, our LS is classically initialized as
a signed Euclidean distance function to I" such that the zero isovalue
of this function localizes the interface I:

px)==xd(x,I'), x€Q
I'=0G = {x€ L,p(x)=0}.

In the following, ¢ will be assumed positive inside G and negative
outside. Considering v, the kinetic of the I" interface, at any time, I'(r)
can be obtained by solving the following convective equation [46]:

{ % vV, =0
@;(x,1=0) = p(x)
where N, ¢ is the number of active level-set functions used to represent
different grains of different phases in the microstructure. The classical
approach is to consider one level-set function per grain. However, such
an approach is totally inefficient when a large number of grains is
considered. Thus, a grain coloration/ re-coloration scheme proposed
in [47] is used to limit the number of LS functions required. The re-
coloration scheme ensures that there are no instances of numerical
coalescence of two or more grains close to each other during the
migration of the grain and phase boundary network.

In the context of microstructural evolution at the mesoscopic scale,
the velocity field, v is assumed to be a product of the interface mobil-
ity (4) and the different driving pressures P, describing the involved
phenomena [48,49]:

vie{l,2,...,Npg} (10$)

v = uPn, an
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/v phase boundary

a/a grain boundary

v/ grain boundary

Fig. 2. A two-phase polycrystal with grains of phases a and y illustrating the velocity field at different types of interfaces.

where n is the outward unit normal vector to the considered interface.

Typically, in the context of hot metal forming, the main driving
pressures leading to phase and grain evolution are: (i) P, = AG, which
is the difference in Gibbs free energy between different phases and is
the principal component responsible for phase transformation, (ii) P, =
[ET, which is the jump in stored energy due to plastic deformation,
responsible for recrystallization phenomenon, and (iii) P, = -«o,
where « is the trace of the curvature tensor of the interface and ¢ is the
interfacial energy. This pressure corresponds to the capillarity effects
through the minimization of surface energy due to the presence of grain
and phase interfaces (well known as the Gibbs-Thomson effect), and is
responsible for grain growth phenomenon. Finally, P can be defined as,

P = AG + [[E] - xo. 12)

The AG component acts only across the phase interfaces while
vanishing across the grain interfaces of similar phases. Also, the sense
and value of interface mobility, and interface energy could be different
depending on the type of interface (i.e., «/y phase interface, a/a grain
interface, and the y/y grain interface). Thus, the velocity field, v needs
to be dissected to be able to accommodate various driving pressure
contributions relevant to specific interfaces. If we consider a classic
two-phase polycrystal as illustrated in Fig. 2 with phases « and y, v
can be rewritten in the following form through interface characteristic
functions:

U= XayVay + XeaVaa +)(yyvyy’ 13)

where y,, is a characteristic function of the phase boundaries between
the « and the y grains, y,, characterizes the grain boundaries between
two « grains and likewise y,, for the grain boundaries between two y
grains.

Hence, taking into account interface specific properties and driving
pressures from the phase interfaces as well as the grain interfaces of
both the parent and the product phase, we can formulate a generalized
kinetic framework:
v= Zay”ay (AGay - Ko-aty + |IE]]ay) n+ XaaMaa (_Ko-aa + |[E]]aa) n

+2yyyy (-0, +1LED,, ) n.

Now, if we prescribe the above velocity field into Eq. (10), and if

we consider S = {ay,aa,yy}, we get:

14)

ot les

- |:Z )(lﬂlo'l:| kin; - Vo; = 0.

IeS

09;
+ [Iay”ayAGay + 2 IIMIIIE]]I:| n;: V(pi
15)

By verifying the metric property of a signed distance function,
IVe;|l = 1 all along the simulation, we can write:
n=— Vo, _
Vel
We can then rewrite Eq. (15) in a convective—diffusive form to be
resolved for interface migration:

Vo, = k; =V -n; = -Ag,.

09;
o T [vac +viey]; - Voi = [Z 11141"1] 49, =0 16)

les
Vie {1.2,....N.g}.

where v = ¥y Moy AG,,n, and vpgy = [Xcs xim[E]] n.

The resolution of the above equations must be followed by a reini-
tialization procedure to restore the metric properties of the LS functions
at each time step. This ensures ¢, regularity, thus preserving good
conditioning of the LS transport equation. Conserving signed Euclidean
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distance functions also ensure that the above LS transport Egs. (16) re-
main true in their convective—diffusive form (which allows for avoiding
an explicit calculation of the curvature term). In addition, by keeping ¢;
a distance function, some parts of the global level-set resolution such
as the remeshing algorithms can be properly based on the notion of
Euclidean distance to the interface. In the context of this work, a recent
reinitialization strategy [50] that involves a fast, direct calculation
based on an optimized brute force algorithm is adopted.

Better description for vg:

In the context of a polycrystal with multiple junctions, for the
convective part of Eq. (16), the above description of v,; (and also
vpgp) is not sufficient if we seek to avoid discontinuous velocity fields
or kinematic incompatibilities at the multiple junctions. For that, it
is more efficient to work with a common velocity field for all the
N; s level-set functions and the velocity field needs to be as regular
as possible around the multiple junctions. In their work dedicated to
the simulation of recrystallization in single-phase polycrystals, Bernacki
et al. [51] proposed the following formulation for v gy:

Nps Nips
vpgp(x, 1) = 2 Z [)(G,.(’Q )H;j exp (_ﬁl(pjl)[[El]ij(x’ ’)] (=n;), a7
T
where g is the characteristic function of the grain G;, u;; is the inter-
face mobility between the neighboring grains i and j, the exponential
term is a continuous decreasing function varying from 1 to 0 on either
side of the interface and has the function of smoothening the velocity
field across the interface, § is a positive parameter that controls the
degree of smoothness, [E]|;(x,) = £;(x,1)—&;(x, 1) is the jump in stored
energy of two neighboring grains i and j where &;(x,1) and &;(x,1) can
be the average stored energies of the grains i and j respectively [51]
or more local approximations [52], and n ; is the outward unit normal
to the neighboring grain ;.
So for v, component, we take inspiration from the above equa-
tion and propose an analogous formulation, albeit with a couple of
additional functions:

Nps Nips
vax.0= Y, X (16,50 (~P10)1) 20y 4G, 7| (=), as)

G
where y,,, as seen earlier, helps to filter this component of velocity
field only on the phase interfaces. In Eq. (17), the jump in stored
energies [E];; ensures that the velocity vectors are oriented in a
consistent direction on the nodes close to both the sides of the interface,
thanks to a flip in sign as shown in Fig. 3(a). However in Eq. (18), since
4G,, already gives a measure of the Gibbs free energy difference on the
phase interface, there is no natural flip in sign. Hence &, is used as a
sense function that ensures that the velocity vectors of this component
on the nodes close to either side of the phase interface are oriented
consistently as observed in Fig. 3(b). &%, in the context of austenite
decomposition (y — a) is defined as follows:

F(x,0) = 2%, 1) — x,(x,0) =2x,(x,0) — 1, (19)

where y,(x,f) and y,(x,?) are the characteristic functions of a and y
phase respectively.

Description for AG,,,:

The last ingredient missing to completely prescribe the above ki-
netics is the change in Gibbs free energy between the two phases.
4G,, is typically dependent on the local composition of the solutes,
temperature, and the pressure. In many works, the description for 4G,,
has been established by thermodynamic evaluations based on Calphad
data [53] or ThermoCalc software [54]. For certain sharp interface
descriptive models, the diffusion in the product phase is assumed to be
instantaneous and so 4G, is simply assumed to be proportional to the
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deviation in concentration at the interface in the parent phase (C,

)
v
from the equilibrium concentration in this phase (C, ;) [55,56]:

4G,, =Y (C,

v.eq ¢

%}"X) >

where Y is a proportionality factor that could be temperature depen-
dent and is derived from thermodynamic databases.

In the current work, AG,, is described based on a local linearization
of the phase diagram as seen in the works of Mecozzi et al. [32].
AG is basically assumed to be proportional to a small undercooling
(AT = T¢ — T). At low undercooling with the assumptions that
the actual temperature T is close to the equilibrium temperature 7¢
(corresponding to a local composition of C, and C,), the variations
of enthalpy (4H), and the entropy (4S) with temperature could be
considered to be negligible (45 ~ AS, AH*! ~ AH) [29,57]. AG is
thus given by:

AH®
AG(T,C) = == (T* — T) = AS“/AT. (20

Linearizing at a reference temperature (TR), and assuming only carbon
element partitions, we can write:

79 =TR + mR (C, - CR),

T =TR+mk (C, - CF). @y
where m® and mR are the slopes of the boundary lines of the a and
v phases respectively, linearized at T®. CR and CVR are the equilib-
rium carbon concentrations at TR of ferrite and austenite respectively.
These are deduced by thermodynamic evaluations using ThermoCalc
software [54] as shown in Fig. 4.
The undercooling is expressed as:
T+ 11
AT = — - T (22)

So, if we substitute the two Egs. in (21) into Eq. (22), we can then write
AT as:

AT =T +0.5m (C, - CR) +0.5m (C, - CK) - T. (23)

From Egs. (20) and (23), 4G,, component is then expressed as a
function of the local concentrations and temperature as follows:

4G,,(T.C,.C,) = A4S [(TX = T) +0.5mF (C, - CF)
R R
+05mf (¢, - cx)]. 24

With the help of Egs. (2) and (4), the above description could be further
expressed as a function of the total concentration variable, C, for each
configuration of the phase-field function, ¢(x,?):

c
AG,, =AS |[TR-T +05m% [ ———— - CR
ay [ +05m7<1+¢(k_1) y

R kC _ R
+0.5ma<1+¢(k_1) ca>]

Based on the same linearization, the equilibrium carbon concen-
trations of each phase at temperature T can be estimated as follows:

(25)

eq _ ~r, T—TK
cl'=cf+ e
m;

with i={a,y}. (26)

Using Egs. (26), the equilibrium partitioning ratio (k) can be expressed
at each temperature T as:

R, T-TR
C, +—x

M

k(T) = . 27)
R T-TR
C7 + mf

The presence of a jump in stored energy [ E] due to a plastic deforma-
tion will not be considered in the illustrative test cases of this article
but will be discussed in a forthcoming publication. So, in the following,
vpgy is neglected.
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2.3. Additional numerical considerations in the context of polycrystals

To simulate DSSPT in the context of polycrystals with N, ¢ global
level-set functions (¢,), along with the above numerical formalism, we
need to consider some supplementary fields and particular numerical
treatments to support certain aspects of the simulation.

Computation of phase-field variable, ¢:

In order to compute the phase-field function using the hyper tangent
relation in Eq. (1) at each time, we need a signed distance LS function
that represents all the zones of the product ferrite phase (¢,_,,,.) in
the overall domain. In order to facilitate the computation of such a
function, we need to use the characteristic function of the a phase
(x,(x,0). This phase characteristic function, y,, is updated at each time
step after the resolution of Eq. (16). Then, ¢,_.,,. is obtained through
the reinitialization of the F (x,N)@,. (%, 1) = (22(x,1) = 1) @ ey (x,1)
function (with @, (x, 1) = max,_, __y, ; @;(x,1) through an imposed 2e
thickness around its O-isovalue. A similar result can be obtained by a
direct reinitialization of the %,(x, ) function but the interest to multiply
it by the ¢,,,.(x,1) function is to increase the 0-isocontour precision
before the reinitialization. The hyper tangent relation Eq. (1) is then
applied to ¢,_.,,, to compute the phase-field function. Fig. 5 illustrates
the methodology.

Interface characteristic functions:
The interface characteristic functions are computed at each instant
as follows:

1 lf |¢(1770I18(x’ t)l < 6
(x,0) = '
Kar {0 otherwise

){aa(x, H= {([)1 - /Ynty(xv l)] /Ya(x7 1) lf (pmax(x7 1)< 5 . (28)

otherwise

L= Xy 1) = Xoa(X, D) if  @rax(x,1) <6
Xyy(X,1) = )
0 otherwise

where § is a small positive distance threshold chosen based on the mesh
resolution at the interface and always smaller than e. Fig. 6 shows an
illustration of these functions.

Numerical treatment at the multiple junctions and reinitialization:

Following the LS transport resolution, due to the presence of multi-
ple junctions, in order to remove any kinematic incompatibilities at the
multiple junctions such as vacuum or overlapping regions, a particular
numerical treatment according to [22] is performed to modify the LS
functions:

| .
‘/’i=§<‘/’i_ ji_x(pj> Vie{l,...,Npg}. (29)

Following this multiple junctions treatment, ¢;(x, ) are reinitialized in
the 2e-narrow band around their 0-isovalues at each time step. The term
e is taken to be equal to at least 2 times the » value to ensure that ¢;,
@maxs and hence ¢,_.,,, are all regular and well defined far enough
from the corresponding interfaces such that ¢ is properly computed for
the considered 5 parameter value.

The simulations presented in the next section were carried out
with unstructured triangular meshes, a P1 interpolation, and using an
implicit backward Euler time scheme for the time discretization. Each
system linked to Eq. (9) and the weak formulation of Egs. (16) is
assembled using typical P1 finite elements with a Streamline Upwind
Petrov-Galerkin (SUPG) stabilization for the convective terms [58]. The
boundary conditions (BCs) are classical null-von Neumann BCs applied
to all the LS functions and carbon concentration. Each plane of the
boundary domain can be seen as a symmetric plane for the LS functions
and the carbon field.
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3. Results and discussion

The following hypotheses have been imposed for the illustration
cases considered here to simulate DSSPT:

» The character of the phase transformation kinetics are assumed
to be of mixed-mode [59] with both interface and diffusion
controlled modes. So, the solute concentration at the interface
does not attain the equilibrium concentration right away, and the
diffusion in the bulk of the phase is not instantaneous.
Para-equilibrium [28] conditions are assumed. In other words,
the partitioning of any substitutional solute elements such as
manganese is neglected since the diffusion of such elements is
generally several orders slower than that of interstitial elements.
So only interstitial elements such as carbon are assumed to be
redistributed and contribute to the AG driving pressure.

The interface mobility, u, and the interface energy, o are both
assumed to be isotropic for now. The interface mobility is given
a temperature dependence through an Arrhenius type law [60]:

9,

s -mon(-)

where, O, is the activation energy for grain boundary migration
taken as 140kJ mol~! [61], R is the universal gas constant, and
o is the pre-exponential factor taken as 2x10'7 ym* J—1 s~1
for low cooling rates or as 6x1017 um* J=1 s~ for high cool-
ing rates [32]. Diffusivities of the two phases are also assumed
temperature dependent using a similar Arrhenius type law. The
diffusivity pre-factors are taken from [32] as well.

3.1. Pseudo-1D case with planar interface

As a first case, we consider a slender 2D domain (Pseudo-1D since
w < 1) with a planar interface between one austenite grain and one
ferrite grain as shown in Fig. 7. A simple material with a composition
of Fe—C 0.02wt% is assumed. The initial condition is assumed to be at
a temperature, 7' = 1173 K, with corresponding initial concentrations
of C!' = 0.0014022wt% and C; = 0.024575wt% (extracted from
ThermoCalc). The a/y phase interface is initially imposed to be at I'" =
1.1838 um from the left boundary. A reference temperature of TR =
1160K is taken and the necessary thermodynamic data (summarized
in Table 1) are extracted using ThermoCalc. The final state is imposed
to be at a temperature, T/ = 1140K, and the corresponding equilibrium
data are summarized in Table 2. The final steady state interface position
is expected to be at, I'* = 5.11296 ym. No capillarity effects are
considered for the planar interface (null curvature). The thickness of
the diffuse phase interface for this case is taken as n = 0.5 pym. The FE
mesh is static with a mesh size, h equals to 0.8 nm. The time step is
fixed to 0.2 ms.

We consider three different scenarios of cooling: (i) instantaneous
cooling from 1173K to 1140K, thus giving isothermal phase transfor-
mation, (ii) rapid cooling rate of 10K s—!, and (iii) gradual cooling rate
of 3K s~ 1.

Fig. 8 illustrates the evolution of carbon concentration at differ-
ent times for the instantaneous cooling case. As the interface starts
to migrate, we can observe the development of peaks in the pro-
files close to the interface on the austenite side as the ferrite phase
rejects carbon into the austenite phase. This indicates the expected
solute enrichment in austenite during the transformation as carbon
is generally more soluble in austenite than ferrite. Carbon profiles
on the ferrite side are mostly plain since the diffusivity of carbon in
ferrite is higher, and hence diffusion is faster compared to that in
austenite. The concentration in the austenite side continues to increase
until the steady state between the two phases with the corresponding
equilibrium concentrations. As the steady state is reached, plain carbon
profiles are obtained in both phases. At steady state, the simulated
equilibrium concentrations are found to be: C;* ™" = 0.005202 wt%
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Fig. 5. Illustrations for computing phase-field function in a two-phase polycrystal.
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Fig. 6. Illustrations of various interface characteristic functions in a two-phase polycrystal. Respective interfaces are highlighted in white.
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Fig. 7. Pseudo-1D case (w < ) with a planar interface between a ferrite (red) and an austenite (blue) phase.

Carbon profile evolution
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Fig. 8. Evolution of carbon profiles at different instants till the steady state for the case with instantaneous cooling.

Table 1

ThermoCalc data extracted at TR = 1160 K for Fe — C 0.02wt%.

T® (K) CER (wt%) Cf (wt%)

AS (J K~ pm—3)

mR (K wt% 1) mf (K wt% 1)

1160 0.0029083 0.054289

2.8481175 x 10713

—8746.564 -416.959

Table 2
Expected steady state at T/ = 1140 K.

T/ (K) Cy (wt%)
1140 0.0051473

C;7 (wt%)
0.10593

Ferrite fraction, f;

0.85216

and C; ™" = 0.10234 wt%. Fig. 9(a) describes the interface evolution
converging to its steady state position of I, = 5.1076 pm equivalent
to an equilibrium ferrite fraction of f;*"™" = 0.85127. The steady
state values obtained are in close agreement with the expected state
tabulated in Table 2. Minor differences in numerically predicted con-
centrations from the expected values stem from the linearization of
the phase diagram. For the cases with continuous cooling, the steady
state predictions could be further improved by considering multiple
reference points (TR, TRz, ..., TR) properly spaced along the consid-
ered thermal path (77 to T/) in the phase diagram and by extracting
necessary data from ThermoCalc at multiple reference temperatures.
Fig. 9(b) quantifies the quality of mass conservation during the course
of the simulation. The maximum variation is limited to 2.6223%. This
variation generally stems from the mesh quality, the choice of the time
step, diffuse interface thickness (i) et cetera. Solute mass variation is
also found to be more prominent as the interface gets closer to the
domain boundaries. This is because of the nature of the boundary

conditions imposed as opposed to the sense of the resulting solute flux
from interface migration.

Fig. 10 compares the kinetics of interface evolution for different
cases of cooling. Clearly, the case with gradual cooling is slow to start
as it steadily departs from the initial equilibrium state and is the slowest
to reach equilibrium. On the other hand, the case with instantaneous
cooling takes off immediately and swiftly reaches the steady state. All
three cases yield similar steady states with differences only in their
kinetics.

Comparison with a semi-analytic 1D sharp interface model:

A 1D semi-analytic sharp interface model for mixed-mode phase
transformation was implemented to be able to compare with the LS
predictions. The reader is referred to the Appendix A.1 for more details
on this semi-analytic formulation which is an extension of the model
proposed in [62]. Fig. 11 shows the evolution of carbon profiles along
with the equilibrium concentrations predicted by the semi-analytical
model for the instantaneous cooling case. The concentrations obtained
correspond closely with that of the LS simulations. Fig. 12 compares
the kinetics of interface evolution by the two methods. The kinetics and
also the steady state interface position obtained are in good agreement
between the two methods. Fig. 13 demonstrates that the interface
concentrations predicted by the two methods are congruent which
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Fig. 9. Interface migration to a steady state position, and the variation of solute mass in the domain for the instantaneous cooling case.
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Fig. 10. Comparison of the kinetics of interface evolution for the different scenarios
of cooling.
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Fig. 11. Carbon profiles predicted by the semi-analytical model for the case with
instantaneous cooling.

explains the good agreement in interface kinetics since both methods
use the same description of the driving pressure.

It has been found that there is good accordance between the two
methods for the non-isothermal scenarios also.

3.2. 2D two-phase polycrystal case
We now consider a 2D polycrystal with a total of 492 parent austen-

ite grains in a square domain of side 1mm. The ferrite nuclei are
imposed randomly along the austenite grain boundaries with an initial

10

Comparison of interface evolution

r(t) in um

—— Numerical method
Semi-Analytical method

0 2 4 6 8
time (s)

10 12 14

Fig. 12. Comparison of interface evolution predicted by the semi-analytical and the
LS based numerical model.

radius of 6 um. All nuclei have been imposed at the initial state in
the sense of a site-saturated nucleation configuration. It should be
remarked that no specific nucleation criteria have been considered
for this case and that the values chosen are only illustrative. Fig. 14
describes the initial morphology of the considered two-phase poly-
crystal represented using the grain coloration algorithm [47]. The
color map indicates the LS-Id which means that all the grains with
the same color belong initially to the same LS function. The initial
conditions are considered at T/ = 1175K with C! = 0.001167 wt%,
and C; = 0.020256 wt%. A total of 450 ferrite nuclei are considered
which corresponds to an initial ferrite fraction of f! = 0.05089. A non-
isothermal phase transformation with a cooling rate of —1K s ! till
the final temperature of T/ = 1075K is imposed. In this case, since the
thermal path corresponds to a global cooling of 100K, to reduce the
potential error in the steady state predictions due to the linearization
of the phase diagram, the reference states are considered in two folds:

TR _ { 1160K

1090K
The data extracted at TR = 1160K are the same as the previous case (
Table 1), while at TR = 1090K, the ThermoCalc data are summarized
in Table 3. The expected final state has been summarized in Table 4.
Mobility and interface energy are considered to be homogeneous in
phase interfaces as well as the grain interfaces of both the phases
(Hay Haa Hy, = 6 x 10717 ym? J!' s7! | and Opy = Opq =

aa
6,, = 1.0 x 10712 J um=2). The value for the interface energy is taken

if 1125K<T <1175K
if 1075K<T <1125K

(30)
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Fig. 13. Comparison of the evolution of carbon concentration at the interface predicted by the semi-analytical and the numerical model.

Table 3

Additional ThermoCalc data extracted at TR = 1090 K for Fe — C 0.02wt% for the 2D case.

T (K) CR (Wt%) CR (wt%)

AS UK ! pm—3)

mR (K wt% 1) mf (K wt% 1)

1090 0.0103363 0.271627

4.5486017 x 10713

—-10161.375 —255.83304

24.0

Grain coloration

6
4
2
0.0

Fig. 14. Initial 2D two-phase polycrystal represented using the grain coloration
algorithm.

Table 4
Expected steady state at T/ = 1075 K with the final ferrite fraction estimated for an
initial ferrite fraction of 0.019717.

T/ (K) Cy! (Wt%)
1075 0.01179

Ferrite fraction, f3

0.97669

C! (Wt%)
0.33329

following [31,63]. The diffuse phase interface thickness for this case is
taken as n = 8 pum and the time step is fixed to 0.01s.

A local adaptive isotropic meshing and remeshing strategy is em-
ployed [51]. A coarse mesh size is adopted in the bulk of the grains
(Aeoarse = 7 pm), whereas an intermediate mesh size (h,, = h,, =
1.2pm) is used at the a/a and f/pf grain interfaces and a fine mesh
size (h,, = 0.7pm) is adopted in the phase interfaces. This strategy
is illustrated in Fig. 15 and is performed through an intersection of
two different mesh metric tensors [64] and the use of a metric-based
mesher/remesher [51]. A remeshing operation is performed each forty
time increments to follow the interface network migration. Such a

11

Coarse

Coarse
mesh

Fig. 15. Illustration of the adopted meshing strategy.

remeshing strategy near the interfaces is not correlated to the fact to
track them explicitly (the LS approach is a front-capturing method)
but is important for saving computational time by avoiding the use of
fine meshes in the whole domain. It also illustrates that the precision
needed at the phase interfaces is more important than the one needed
to capture only capillarity effects at the grain interfaces in each phase.

Fig. 16 illustrates the evolution of the ferrite grains at different times
during the phase transformation. Fig. 17 exhibits the corresponding
carbon field during the transformation. Due to the initial equilibrium,
the transformation kinetics is initially slow. However, following the
temperature evolution, the transformation kinetics become more im-
portant and one can observe a faster evolution of ferrite grains as
indicated by the ferrite fraction curve in Fig. 18. The kinetics is then
slowed down when approaching the new steady state at the final
temperature. The transformation kinetics of certain clustered ferrite
grains are also delayed due to the soft impingement of their diffusion
fields as they continue to grow into each other. In Fig. 17, one can
observe carbon enrichment in the austenite grains due to the rejection
of carbon from the ferrite grains. This enrichment is much more sig-
nificant in those smaller austenite domains which are surrounded by
several ferrite grains. Due to the high diffusivity of carbon in ferrite,
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Fig. 16. Snapshots of phase evolution in the considered 2D two-phase polycrystal.
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Fig. 17. Snapshots of solute diffusion in the considered 2D two-phase polycrystal.

the concentration distribution seems to be more homogeneous in the
ferrite grains compared to that in the austenite grains.

For the considered final state, we observe almost a complete phase
transformation, with a final ferrite fraction expected to be 0.9767 for
the imposed initial grain morphology. It should be highlighted that
the expected final ferrite fraction is computed analytically by applying
mass conservation while not accounting for any capillarity effects.
However, in the numerical simulation, capillarity effects are taken
into account. So, considering this aspect and the fact that the solute
mass is never perfectly conserved during the simulation, it is normal
to obtain small differences between the expected and the numerically
estimated final ferrite fraction. From Fig. 18, one can observe that the
ferrite fraction converges towards f;” ™" = 0.9683 at the final state of
1075 K. The final equilibrium concentrations are found to be C;* ™" =
0.01061 wt%, and C;* ™" = 0.327 wt%, which are in agreement with
the ThermoCalc estimations summarized in Table 4. When performed
only with one reference state at T = 1160K (see Table 1), the same
simulation yields a final equilibrium concentration of 0.266 wt% and
0.0122 wt% for y and « phase, respectively. These estimations are much
farther from the expected values, thus vindicating the choice of using
multiple reference states when the thermal paths are longer.

Figs. 19(a) and 19(b) illustrate the initial and the final grain size
distribution respectively. For a given grain, its size is here defined as
the radius of an equivalent circle with the same area. Fig. 20 shows
the evolution of the arithmetic mean grain size for the two phases.
At the initial state, one can see that all the ferrite nuclei have been
imposed with the same radius of 6 pm, while the austenite grains
are normally distributed with an initial arithmetic mean grain size of
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9 Evolution of ferrite fraction
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Fig. 18.
case.

Evolution of ferrite fraction with temperature for the 2D two-phase polycrystal

around 24.75 pm. At the final state, one can observe a bimodal normal
distribution with large evolution for the two phases. The austenite grain
distribution shifts to the left while the ferrite distribution shifts to the
right as the austenite phase decomposes at the expense of the product
ferrite phase. From Fig. 20, one can observe that the ferrite grains
converge to an arithmetic mean grain size of 25.634 um, while austenite
grains converge to an arithmetic mean grain size of 5.943 pm.
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Fig. 19. Grain size distributions at the initial and the final state for the two phases.
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Fig. 20. Mean grain radii evolution for the parent and the product phase.

4. Conclusions and perspectives

A level-set (LS) based global numerical framework in a finite ele-
ment context has been presented to simulate microstructural evolution
in metallic two-phase polycrystalline materials. This framework has
been principally illustrated in the context of diffusive solid-solid phase
transformation (DSSPT). However, it has been shown that the kinetic
framework presented has the potential to seamlessly take into account
contributions from the stored energy due to plastic deformation as well
as the grain growth effects of both the parent and the product phase.
A pseudo-1D case was considered to simulate DSSPT in the context
of austenite decomposition in steels. The obtained steady state char-
acteristics were in good agreement with the ThermoCalc estimations
and the obtained kinetics were in good agreement with a proposed
1D semi-analytical sharp interface model based on an extension from
an existing approach. The potential of the proposed LS formulation
to simulate DSSPT in a polycrystal context was illustrated through a
representative 2D two-phase polycrystal case. To optimize the com-
putational time, a specific adaptive meshing/remeshing strategy has
been employed such that the local mesh refinement is finer across
the phase interfaces but relatively coarser across the grain interfaces
of similar phases. For a continuous cooling phase transformation, if
the thermal path is longer, it has been shown that the error in the
linearization of the phase diagram for deriving the driving pressure
could be minimized by considering multiple reference states. Since
in this work, no nucleation criterion has been implemented yet, one
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of the perspectives is to be able to implement different criteria as
a function of the cooling rate. Experimental validation of this new
numerical framework in the context of austenite decomposition in
steels is also planned. The current framework could also be adapted
to simulate DSSPT in a multi-component system by taking into account
the effects of substitutional elements on the transformation kinetics. It
would also be interesting to enrich the mobility and the grain boundary
energy description to be more physical concerning the anisotropy of
these parameters. With minor modifications, the current framework
could also be potentially adapted to simulate other diffusive solid-
state phenomena such as Ostwald ripening mechanism. It would also
be of interest to consider configurations with a residual stored energy
field to be able to simulate phase transformation with recrystallization
and grain growth. Some of these prospects will be addressed in a
forthcoming publication.
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Appendix

A.1. Mixed-mode semi-analytical 1D phase transformation model

As proposed in the works of Chen et al. [62], the idea is to consider
the solute concentration profile in y phase (Cy(x)) at time ¢ as a
quadratic function of position (x):

C,)=A +Ax -+ A;(x =T  V{x:T(O<x<X}, (Al

where A, A, and A; are pre-factors, I'(¢) is the phase interface position
at time t. Chen et al. assumed diffusion to be instantaneous in the «
phase, thus immediately attaining the equilibrium concentration, C.’.
This assumption is however not mandatory. Instead, one can assume
that the solute concentration profile in the a phase follows a similar
quadratic function of x:

C,(x)=B,+By(x-T)+By(x-T? VY{x:0<x<T®}. (A2

Fig. A.21 illustrates an example of concentration profiles expected in a
domain of length X. The length of austenite side at any instant is given
by L,(t), such that X = I'(t)+ L,(1). C" and C;"’ are the concentrations
at the sharp interface of the « and y phases respectively. Likewise, Cfx’
and CS are the far field concentrations in the corresponding phases.

The pre-factors of Egs. (A.1) and (A.2) can be determined by apply-
ing the following boundary conditions:

C,x=I")= C;’” C,(x= Irv= C;’”

C,(x=0)=C? C,(x=X)=C) Vi > 0. (A.3)
aC, _ 9, =
o Lo = =
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The concentration profiles (V¢ > 0) are then found to be:

-(7)"

— 0 i 0
¢, =cl+(cim-c?) (1

C,(x)=CY + (Cim V{x:0<x<T@®)}

(A.4)

L,

2
—ﬂ> , V{x:T@®)<x<X)
L, serves as the width of the concentration profile (Cy) on the austenite
side. Likewise, the width of the profile (C,) on the ferrite side is
controlled by I.

Considering the boundary conditions, the solute mass needs to be
conserved at any time. So, applying macroscopic solute mass balance

at the time, ¢ > 0, we obtain:
@ X o X
/ C,(x) dx+/ C,(x) dx =/ C,; dx+/ C}’, dx.
0 r(t) 0 ro

By imposing that the solute concentrations at the interface redis-
tribute at a constant ratio equal to the partitioning ratio at equilibrium
(Eq. (4)) and that the far-field concentrations also respect this ratio at
any instant, we obtain:

(A.5)

CM = kC™ and  C = kC?, (A.6)

with k computed using Eq. (27). Expanding Eq. (A.5) with the above
hypotheses, we obtain:

(=X k- 1,17 #3070 [ - ¢ + 30X

= . A
7 2L, T? +k [41% - X7
The kinetic equation for interface migration is given by:
%—{:wn:vn, (A.8)

with v, = uAG without capillarity effects. The driving pressure, AG is
given by the linearization of the phase diagram as already detailed in
Section 2.2:

4G = 45 [(TF =)+ 0.5m (€' = CK) + 0.5mR (ci ~cR)]. a9

Considering no accumulation of solutes at the interface, the inward
and outward solute fluxes at the interface must respect the following
balance equation:

aC,

o

ox

Dca&

cint _ Cint] =J .n=DC —
e R L R =l

(A.10)

Further expanding and making necessary substitutions, one can rewrite
this equation as:

c c
f(CM) = pAGC™ (1 - k) — 2Dk (c""’ - CO) _2 (c’"' - CO) =0
y )TH 4 T I4 Y L, y r) T

(A11)

Since AG, and C? are both functions of C}’;’” , the above Eq. (A.11) is a
non-linear equation.

Resolution procedure:

Eq. (A.11) is resolved iteratively for f (C;'”’ ) =0 to compute C;"”.

From C;""; Cit, and v, are computed.

The interface is then migrated using Eq. (A.8) with an explicit
Euler scheme:

="y,

where n is the index for time stepping and At is the chosen time
step. Ly*! = X — I'"*! can then be computed.

Cf, CY, and the concentration profiles C,(x) and C,(x) at time
"1 = (n + 1)4t are then computed
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