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A B S T R A C T

This study proposes a new analytical model for grain boundary pinning by second phase particles in
two-dimensional polycrystals. This approach not only considers how particles impede grain growth, but
also elucidates their role in preventing grain disappearance, thereby leading to stabilised microstructures
characterised by heterogeneous grain size distribution comprising a mixture of small and large grains. By
quantifying the number of particles intercepted by grain boundaries during grain growth or shrinkage, we are
able to calculate the respective sizes and fractions of large and small grains. Furthermore, we identify ranges
of particle surface fractions and particle sizes that maximise the heterogeneity in grain size. Additionally, we
demonstrate the significant influence of initial grain size on the limiting grain size in pinned microstructures.
Our analytical model’s results are compared with those obtained from full-field level-set simulations conducted
in this study and from phase-field calculations reported in the literature, revealing very good agreement.
Finally, the differences between the proposed model and existing ones in the literature are discussed.
1. Introduction

The control of grain size in polycrystalline materials, such as metal-
lic alloys, ceramics, minerals, or composites, is an important issue.
Second phase particles are commonly used to limit capillarity-driven
grain growth in materials such as steels [1], nickel alloys, aluminium
alloys, magnesium alloys [2], or alumina-zirconia composites [3]. This
phenomenon is known as particle pinning, or Smith–Zener pinning, and
usually results in the grains reaching a stagnated size 𝑅lim. Predicting
the effects of particles on grain growth is essential for controlling
microstructure and thus material properties.

Particle pinning occurs when a grain boundary meets a particle,
reducing the total surface occupied by grain boundaries and conse-
quently lowering the system’s free energy. This phenomenon was first
rationalised by Smith and Zener who proposed a model for stagnated
grain size in particle containing materials [4]. In their original treat-
ment, the limiting grain size is calculated as the critical size at which
the pressure 𝑃𝛾 , driven by the reduction in surface energy, is balanced
by an equivalent pressure 𝑃𝑧 exerted by all particles in contact with
the boundary [4,5]. The limiting grain size 𝑅lim is determined such
that 𝑃𝑧 = 𝑃𝛾 , and the grain boundaries are thought to detach from
particles when the pressure induced by capillarity exceeds that exerted
by particles (|𝑃𝛾 | > |𝑃𝑧|).

∗ Corresponding author.
E-mail address: madeleine.bignon@minesparis.psl.eu (M. Bignon).

Since Smith and Zener’s initial treatment, particle pinning modelling
has attracted significant attention in the material science community,
leading to the development of increasingly sophisticated analytical
models. Most of these treatments converge on how to treat the interac-
tion between a single segment of grain boundary and a single particle,
as originally suggested by Smith and Zener [4]. The problem has
been much more debated when it comes to dealing with a polycrystal
containing an array of particles [6,7].

Various modelling strategies have been proposed in the literature
to enhance the Smith–Zener model, many of which are summarised
in [5,8]. Some authors modified the calculation of 𝑃𝑧 by considering the
attractive effect of particles on boundaries [9,10]. Others demonstrated
that the pinning pressure should depend on the relative position of the
particle centres with respect to the boundary and proposed a corrected
expression of 𝑃𝑧 [9–12]. Other modifications involve models where the
stagnated grain size is influenced by the particle location [13] or size
distribution [14,15]. Some researchers also attempted to develop more
realistic expressions for the grain boundary driving pressure [15].

Most of these models, although starting from varying hypotheses,
reach the conclusion that the limiting grain size follows a law of the
form 𝑅lim = 𝛽𝑟𝑝∕𝑓𝑚

𝑣 , where 𝑓𝑣 and 𝑟𝑝 are the particle volume fraction
and mean radius, respectively, and 𝑚 and 𝛽 are model parameters [8].
vailable online 14 July 2024
359-6454/© 2024 The Author(s). Published by Elsevier Ltd on behalf of Act
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.actamat.2024.120174
Received 29 March 2024; Received in revised form 3 July 2024; Accepted 9 July 2
a Materialia Inc. This is an open access article under the CC BY license

024

https://www.elsevier.com/locate/actamat
https://www.elsevier.com/locate/actamat
mailto:madeleine.bignon@minesparis.psl.eu
https://doi.org/10.1016/j.actamat.2024.120174
https://doi.org/10.1016/j.actamat.2024.120174
http://creativecommons.org/licenses/by/4.0/


Acta Materialia 277 (2024) 120174M. Bignon and M. Bernacki

s
o
a
m
i
r
m

m
d
f
p
m
l
i
g
r
g
s
p
p
f
t

s
d
t
c
h
a
m
t
o

u
i
a
t
e
w
d
o

Fig. 1. (a) Grain boundary in contact with two incoherent particles. The curvature pushes the boundary towards its centre of curvature. (b) Stable position of the grain boundary.
Once the boundary forms a straight line between the particles, the configuration is stable and it no longer moves. (c) Grain boundary in contact with two particles, with non-zero
angle between particle and boundary. The curvature pushes the boundary towards its centre of curvature. (d) Stable position of the grain boundary. Once the boundary forms a
straight line between the particles, the configuration is stable and it no longer moves.
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In this formulation, 𝑅lim is the radius of equivalent surface to that of the
tagnated grain. Manohar’s review demonstrated that no unique pair
f values for 𝑚 and 𝛽 can accurately predict the stagnated grain size
cross the full range of particle volume fractions found in engineering
aterials [8]. The parameters 𝛽 and 𝑚 are thus often fitted to exper-

mental data over a restricted range of particle volume fraction. As a
esult, there is room for improvement to predict particle pinning in a
ore reliable way and without the need for ad-hoc experimental data.

The long-term goal of this study is to propose a simple analytical
odel, free of empirical parameter, and capable of accurately pre-
icting stagnated grain size across a wide range of particle volume
ractions. For this purpose, this work presents, as a first step, a model
redicting limiting grain sizes in two-dimensional microstructures. The
ain difference between this model and existing ones from literature

ies in the way to address unpinning. The present model considers that,
n the absence of difference in plastic stored energy between adjacent
rains, grain boundaries are not able to break free from particles. This
esults in particles not only inhibiting grain growth, but also limiting
rain shrinkage. The model developed in this work shows how the
tagnated grain sizes in two-dimensional microstructures can be simply
redicted knowing the initial grain size, the mean free path between
articles, and their surface density. As opposed to most existing models
rom literature, the one proposed here does not result on a relation of
he type 𝑅lim = 𝛽𝑟𝑝∕𝑓𝑚

𝑣 .
The physical situation described by the model developed here corre-

ponds to a fibre-type microstructure [13]. Unfortunately, experimental
ata regarding particle-controlled grain growth in such a microstruc-
ure is not available as far as we are aware. As a result, our model
annot directly be validated using experimental data. On the other
and, mesoscale two-dimensional full-field simulations have long been
cknowledged as a precious tool to challenge particle pinning analytical
odels. Examples of such simulations include Monte Carlo simula-

ions [16–18], phase field models [19,20], front tracking models [7,21]
r level-set formulation [22–24].

In this work, mesoscale full-field simulations have been performed,
sing an already existing level-set numerical framework described
n [24]. These simulations offer an advantageous means of validation
s they operate independently of many of the assumptions inherent in
he analytical model. Additionally, simulations provide the flexibility to
xplore a wide range of particle surface fractions and initial grain sizes
hile circumventing complicating factors such as particle formation,
issolution or coarsening, as well as recrystallisation, which would
2

therwise complicate the validation process. i
. Analytical model for limiting grain size

The problem considered in this work is that of a two-dimensional
olycrystal, where grain boundaries interact with circular stable sec-
nd phase particles of uniform size, randomly distributed in space,
hat show no tendency to grow, dissolve or coarsen. We consider a
icrostructure free of deformation energy, where there is no difference

n free energy between the grains ahead and behind the migrating
oundaries. Thus, the boundaries only migrate under the effect of their
wn surface energy 𝛾, which is assumed homogeneous.

.1. Behaviour of a grain boundary meeting particles

We first consider the behaviour of a grain boundary, that is migrat-
ng under its own curvature and meets two particles. This situation is
hown in Fig. 1(a). The angle formed between the boundary and the
ormal to the particle at the junction between them is determined by
he coherency of the particle [25], and it is assumed hereafter that
he boundary meets the particle at right angle, which corresponds to
ncoherent particles [5]. This assumption is not expected to induce any
oss of generality for the model that follows, as will be discussed later.

A boundary segment, as illustrated in Fig. 1(a), is subject to a
riving pressure that pulls it towards its centre of curvature at a
elocity of ‖𝑣‖ = 𝑀 ⋅ 𝛾 ⋅ 𝜅, where 𝜅 represents the local curvature,
nd 𝑀 is the grain boundary mobility. This motion aims to minimise
he overall grain boundary energy, leading the boundary to adopt a
onfiguration that minimises its length, that is a straight line between
he two particles ( Fig. 1(b)). Once the boundary assumes this straight-
ine configuration, it ceases to move. Any deviation from this stable
onfiguration, shown in Fig. 1(b), would result in an increase in total
ength, consequently raising the system’s free energy. As a result, in a
wo-dimensional microstructure lacking free energy disparity between
eighbouring grains, a grain boundary cannot disengage from precipi-
ates. This holds true for coherent and semi-coherent particles that do
ot intersect the boundary normally, as depicted in Figs. 1(c) and 1(d).

Considering this, it becomes evident that an initially circular grain
mbedded in an homogeneous medium should migrate towards its
entre of curvature until it adopts a configuration where it forms
traight lines between particles, as depicted in Fig. 2. This aspect has
een pointed out by several authors before [13,26]. It is noteworthy
hat, once the boundaries of a grain align into straight lines between
recipitates, the grain no longer experiences any driving pressure,

rrespective of its size. This aspect will be discussed in more detail later.
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Fig. 2. Circular grain migrating toward its centre of curvature, with particles inside
he grain. The plain line shows the initial configuration and the dotted line shows the
inned or stabilised configuration.

.2. Calculation of the limiting grain sizes

When the boundary of a grain of initial surface S0 moves (Fig. 3),
the grain can either grow (Fig. 3(a)) or shrink (Fig. 3(b)). In the absence
of second phase particles, there is no theoretical limit for shrinkage or
growth; the largest grains keep growing until a metastable configura-
tion is reached while smallest grains keep shrinking, and eventually
disappear.

In the case where second phase particles are present, however, the
situation is different. As mentioned above, in two dimensions and in the
absence of any driving pressure other than capillarity, grain boundaries
do not break free from particles [26], and simply assume the shape
that reduces the grain boundary length to its minimum. This leads
to three possible evolutions for a grain of initial surface S0. (a) The
grain grows until it reaches a stable configuration where all segments
between the particles encountered during growth are straight lines
(Fig. 3(a)). The grain then reaches an equilibrium surface Sg and stops
growing. (b) The grain shrinks and there are at least three particles
inside the grain, as in Fig. 3(b). It keeps shrinking until it reaches
an equilibrium configuration where all segments between the particles
encountered during shrinking are straight lines. The grain then reaches
an equilibrium surface Ss and stops shrinking. (c) The grain shrinks and
there are less than three particles inside the initial grain of surface S0.
The grain keeps shrinking and eventually disappears.

Therefore, in the presence of particles, there should not be a single
equilibrium grain size, as usually assumed in the literature, but two
equilibrium grain sizes, namely 𝑅𝑔 and 𝑅𝑠, corresponding respectively
o a growing grain limited in its growth by the presence of particles,
nd to a shrinking grain prevented from vanishing by the particles. The
alculation of the two possible equilibrium grain sizes 𝑅𝑔 and 𝑅𝑠 is
erived below.

.2.1. Equilibrium size for a growing grain
Accepting that a grain boundary cannot break away from particles

n the absence of stored energy, the number of particles Ng intercepting
grain boundary when it has grown and eventually reached its equi-

ibrium surface Sg ( Fig. 3) can be calculated by multiplying the area
wept by the grain during its growth by the number of particles per
urface unit 𝜌𝑠:

g ⋅
𝛼𝑔
2𝜋

= 𝜌𝑠 ⋅ (Sg − S0) (1)

where 𝛼𝑔 is the average angle between two segments of the boundary
(Fig. 3(a)), that can be related to Ng using the formula for the sum of
the angles of a polygon:

𝛼𝑔 =
(Ng − 2)𝜋

(2)
3

Ng
The factor 𝛼𝑔
2𝜋 in Eq. (1) arises because only a fraction of each

particle intercepting the boundary is inside the grain. In Eq. (1), Ng
is unknown, but can be related to the number density of the particles.
Indeed, if the grain is approximated by a regular polygon with Ng sides
of length ⟨𝑑⟩ as in Fig. 3, the surface of the grain is:

g =
⟨𝑑⟩2

4
⋅ Ng ⋅ cotan

(

𝜋
Ng

)

(3)

where ⟨𝑑⟩ can be eliminated by considering that, once the grain has
eached its equilibrium size, the mean length of its sides ⟨𝑑⟩ is equal to
he average free path between particles, and can thus be calculated as
function of the particle surface fraction 𝑓𝑠 and particle radius 𝑟𝑝 as:

⟨𝑑⟩ = 1
√

𝜌𝑠
=
√

𝜋
𝑓𝑠

⋅ 𝑟𝑝 (4)

When considering grain growth in presence of particles, it is usually
more convenient to express the equilibrium configuration in terms of
grain size rather than grain surface. The initial and equilibrium grain
sizes 𝑅0 and 𝑅𝑔 are defined here as the radii of the circles of equivalent
surfaces (S0= 𝜋 ⋅𝑅0

2, Sg= 𝜋 ⋅𝑅𝑔
2). For convenience, we also define the

normalised grain sizes as 𝑟0 = 𝑅0∕𝑟𝑝 and 𝑟𝑔 = 𝑅𝑔∕𝑟𝑝. Finally, a growing
grain of initial normalised size 𝑟0 stops growing when it reaches an
equilibrium size 𝑟𝑔 such that - (Eq. (1) to (4)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑟2𝑔 − 𝑟20
)

𝑓𝑠 =
Ng − 2

2
(a)

𝑟2𝑔 =
Ng

4𝑓𝑠 tan
(

𝜋
Ng

) (b) (5)

For all values of 𝑟0 and 𝑓𝑠 considered here, the equation system (5)
admits a unique solution for the couple (𝑁𝑔 , 𝑟𝑔).

2.2.2. Equilibrium size for a shrinking grain
If the shape of a grain of initial normalised size 𝑟0 is such that this

grain shrinks, and if there are more than two particles inside the grain,
as shown in Fig. 3(b), then the grain stops shrinking when it reaches
an equilibrium normalised size 𝑟𝑠. At that point, the polygonal grain
has 𝑁𝑠 sides, and the values of 𝑁𝑠 and 𝑟𝑠 can be calculated in a similar
way as in Section 2.2.1, giving:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑟20 − 𝑟2𝑠
)

𝑓𝑠 =
Ns − 2

2
(a)

𝑟2𝑠 =
Ns

4𝑓𝑠 tan
(

𝜋
Ns

) (b) (6)

where the difference with the system of Eq. (5) lies on the fact that the
grain has shrunk rather than grown, resulting in a difference on the left
hand side of Eq. 2.2.2 compared to the left hand side of Eq. (5).

2.2.3. Equilibrium fractions of large and small grains
Once the mean size of large and small grains are calculated, it is use-

ful to calculate the average grain size Rlim in the pinned microstructure.
Throughout this work, the average grain size is defined as:

Rlim =

√

S̄
𝜋

=

√

∑nf
i=1 Si
𝜋nf

(7)

where 𝑛𝑓 is the total number of grains in the final microstructure
and S𝑖 the surface of grain number 𝑖 (for 𝑖 = 1..𝑛𝑝) in the pinned
microstructure.

To compute the average grain size Rlim in the pinned microstructure,
the respective fractions of large and small grains need to be estimated.
Considering an initial microstructure containing 𝑛0 grains, these grains
can be divided into 𝑛𝑔 grains that grow, and 𝑛𝑟 grains that contract.
Among the latter, those that contain at least three particles inside the
grain will be pinned (𝑛𝑠), while the others (𝑛𝑣) vanish. The situation is
schematised in Fig. 4. By definition, 𝑛 = 𝑛 +𝑛 +𝑛 (and 𝑛 = 𝑛 +𝑛 ),
0 𝑔 𝑠 𝑣 𝑓 𝑔 𝑠



Acta Materialia 277 (2024) 120174M. Bignon and M. Bernacki

a
m
l

𝑥

Fig. 3. Schematic representation of (a) a growing grain; (b) a shrinking grain in the presence of particles. The plain lines show the initial grain boundary while the dotted line
represents the grain boundary once the grain has reached its stable configuration.
Fig. 4. Probability tree for the evolution of an initial microstructure containing 𝑛0 grains.
nd it is convenient to define the fractions of grains of the initial
icrostructure that grow, vanish, or shrink and get pinned, respectively

abelled 𝑥0𝑔 , 𝑥0𝑣, and 𝑥0𝑠 , and verifying:

0
𝑔 + 𝑥0𝑠 + 𝑥0𝑣 = 1 (8)

If the probability 𝑝𝑣 for a contracting grain to vanish is known, 𝑥0𝑣 can
be expressed as:

𝑥0𝑣 = (1 − 𝑥0𝑔) ⋅ 𝑝𝑣 (9)

Considering that the total surface of the microstructure is the same
at the beginning and at the end of the simulation, it is clear that
𝑛0𝜋𝑟20 = 𝑛𝑠𝜋𝑟2𝑠 + 𝑛𝑔𝜋𝑟2𝑔 , and thus that:

𝑟20 = 𝑥0𝑠𝑟
2
𝑠 + 𝑥0𝑔𝑟

2
𝑔 (10)

Combining Eqs. (8), (9) and (10), the fraction of grains in the initial
microstructure that have grown, shrunk without disappearing, and
vanished, respectively, can be expressed as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥0𝑔 =
𝑟20 − (1 − 𝑝𝑣)𝑟2𝑠
𝑟2𝑔 − (1 − 𝑝𝑣)𝑟2𝑠

(a)

𝑥0𝑠 =
(

1 − 𝑝𝑣
)

(

1 − 𝑥0𝑔
)

(b)

𝑥0𝑣 = 𝑝𝑣
(

1 − 𝑥0𝑔
)

(c)

(11)

The probability 𝑝𝑣 for a contracting grain to vanish now needs to
be calculated. As previously mentioned, whether a contracting grain 𝐺𝑖
can vanish or not depends on the number of particles 𝑋𝑖 that intersect
with the surface of the grain 𝐺𝑖 in the initial microstructure. It should

𝑖

4

be noted that in this context, 𝑋 is necessarily an integer. In other
Fig. 5. Illustration of the intersections between grain surface and particles in the initial
microstructure. For each grain 𝐺𝑖, 𝑋𝑖 is the number of particles intersecting the grain.

words, every particle which intersects with the initial surface of the
grain should be accounted for in 𝑋𝑖, irrespective of whether the particle
touches the interface of the grain or is embedded in the grain. This is
illustrated in Fig. 5.

Consider an initial microstructure of 𝑛0 grains of radius 𝑅0, popu-
lated with 𝑁 randomly distributed particles of radius 𝑟 . The surface
𝑝 𝑝
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fraction 𝑓𝑠 of particles can be expressed as:

𝑓𝑠 =
𝑁𝑝𝜋𝑟2𝑝
𝑛0𝜋𝑅2

0

=
𝑁𝑝

𝑛0𝑟20
(12)

The probability 𝑝(𝑀𝑗 ∩ 𝐺𝑖) that a particle 𝑀𝑗 and a grain 𝐺𝑖 intersect
s:

(𝑀𝑗 ∩ 𝐺𝑖) =
𝜋
(

𝑅0 + 𝑟𝑝
)2

𝑛0𝜋𝑅2
0

=

(

1 + 𝑟0
)2

𝑛0𝑟20
(13)

where the addition of the term 𝑟𝑝 to the radius 𝑅0 of the grain in
the second term of the equation stems from the fact that any particle
which centre is located outside the grain but at a distance lower than 𝑟𝑝
intersects with the surface of the grain. Now the probability 𝑝(𝑋𝑖 = 𝑘)
for the grain 𝑖 to contain exactly 𝑘 particles is:

𝑝(𝑋𝑖 = 𝑘) =
(

𝑁𝑝

𝑘

)

(

(1 + 𝑟0)2

𝑛0𝑟20

)𝑘 (

1 −
(1 + 𝑟0)2

𝑛0𝑟20

)𝑁𝑝−𝑘

(14)

Eventually, assuming that every contracting grain that initially
intersects less than three particles disappears, the probability for a
contracting grain to vanish can be calculated as:

𝑝𝑣 = lim
𝑛0→∞

2
∑

𝑘=0

(

𝑁𝑝

𝑘

)

(

(1 + 𝑟0)2

𝑛0𝑟20

)𝑘 (

1 −
(1 + 𝑟0)2

𝑛0𝑟20

)𝑁𝑝−𝑘

(15)

This expression can be simplified, as demonstrated in Appendix B, and
𝑝𝑣 can eventually be explicitly expressed as:

𝑝𝑣 = exp
(

−𝑓𝑠 ⋅
(

1 + 𝑟0
)2
)

(

1 + 𝑓𝑠 ⋅
(

1 + 𝑟0
)2 +

𝑓 2
𝑠
2

⋅
(

1 + 𝑟0
)4
)

(16)

2.3. Mean grain size in a pinned microstructure

Knowing the equilibrium size of the grains that have grown and of
those that have shrunk, as well as the fraction of grains from the initial
microstructure that grow, shrink and vanish, respectively, the mean
grain size in the stabilised microstructure can be calculated. The frac-
tions 𝑥𝑙𝑖𝑚𝑔 and 𝑥𝑙𝑖𝑚𝑠 of large and small grains in the final microstructure
are given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑙𝑖𝑚𝑔 =
𝑥0𝑔

𝑥0𝑔 + 𝑥0𝑠
(a)

𝑥𝑙𝑖𝑚𝑠 =
𝑥0𝑠

𝑥0𝑔 + 𝑥0𝑠
(b)

(17)

and finally the mean normalised limiting size for grains in the pinned
microstructure is :

̄𝑙𝑖𝑚 =
√

𝑥𝑙𝑖𝑚𝑔 𝑟2𝑔 +
(

1 − 𝑥𝑙𝑖𝑚𝑔
)

𝑟2𝑠 (18)

3. Computer simulations

3.1. Computer model

Grain growth in 2D polycrystals containing particles is simulated
thanks to a finite element level set formulation that has been detailed
elsewhere [22–24]. This method represents interfaces between grains
via distance functions, defining contours or surfaces within the simula-
tion domain, where the isovalue zero corresponds to the interface. The
evolution of each grain’s interface follows a kinetics equation defined
as:

𝑣 = 𝑀𝑃𝑛 (19)

where 𝑛 is the outside unitary normal and 𝑃 = −𝛾𝜅, with 𝜅 the local
curvature.

Particles are introduced into the finite element mesh as voids,
with their interaction with grain boundaries considered via imposed
5

boundary conditions, specifically the contact angle between the bound-
ary and the particle. An advantage of this formulation is its explicit
consideration of particle–grain boundary interaction, eliminating the
need for computing an equivalent pressure exerted by particles on grain
boundaries. Consequently, each interface naturally evolves towards
locally reducing its surface (or length in two dimensions).

3.2. Microstructure generation

The initial microstructures are generated using Laguerre Voronoï
tessellation with an existing tool described in [27], so as to build
polycrystals with controlled average initial size 𝑅0.

3.3. Simulation set-up

The simulations were conducted across a range of particle surface
fractions 𝑓𝑠, spanning from 1% to 40%, and initial normalised grain
izes 𝑟0, spanning from 1 to 40. Details regarding the specific values
f 𝑓𝑠 and 𝑟0 used in the simulations can be found in Appendix A.

Each simulation proceeded until a stable configuration was attained,
meaning when the microstructure no longer evolves. The domain size
was selected to retain a statistically representative number of grains
at the end of each simulation. The numbers of grains in the pinned
configurations are reported in Appendix A.

The level set formulation used in this work [24] requires as an input
the grain boundary mobility as well as the grain boundary interfacial
energy. The interfacial energy is considered here as isotropic, and since
the present work focuses on the equilibrium configuration, which is
neither affected by the value of the interfacial energy nor by that of the
grain boundary mobility, these two parameters have been arbitrarily
set.

At the end of the simulation, the average normalised grain size of
the grains that have grown is calculated as:

�̄�𝑔 =

√

√

√

√

√

∑

𝑆𝑖>𝑆0

𝑆𝑖

𝜋𝑛𝑔
(20)

and the average normalised grain size of the grains that have shrunk is
calculated as:

̄𝑠 =

√

√

√

√

√

∑

𝑆𝑖≤𝑆0

𝑆𝑖

𝜋𝑛𝑠
(21)

4. Results and discussion

4.1. Simulation results

In Fig. 6, an example of a simulated microstructure evolution is
shown, with the initial microstructure displayed in Fig. 6(a), and the
stabilised microstructure in Fig. 6(b). In Fig. 6(b), the different colours
indicate the grains that have grown and those that have shrunk with
respect to the initial mean grain size.

4.2. Model validation

In order to validate the model described in Section 2, Fig. 7
displays the calculated values for the normalised grain size, compared
to the results derived from full-field simulations. Each data point in
the chart corresponds to one of the conditions outlined in Appendix A.
The comparison depicted in Fig. 7 demonstrates very good agreement
between the model predictions and the full-field simulation results.
This holds for the stagnated normalised sizes of growing and shrinking
grains, as well as for the averaged normalised grain size in the stabilised
microstructure. Additionally, the initial and stabilised normalised grain
size distributions are shown in Fig. 8 for two examples of simulation,

along with the calculated values of 𝑟𝑠 and 𝑟𝑔 . These distributions
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Fig. 6. Microstructure evolution for 𝑓𝑠=3% and 𝑟0=4, showing (a) initial microstructure; (b) stabilised microstructure. The white lines denote the grain boundaries, the black
circles represent the particles, and the grain colours on (b) denote the grains that have grown or shrunk.
illustrate how the presence of large and small stabilised grains result
in a broadening of the grain size distribution. Such a broadening is
consistent with the approach proposed in this work, and the predicted
sizes of stabilised grown and shrunk grains can be used as indicators
of this broadening, as shown in Fig. 8. The effect of particles on
the development of grain size heterogeneity will be discussed in more
details in Section 4.6.

It can be concluded that the simple analytical model we propose
here, which is free of any fitting parameter, can reliably predict the
results derived from computationally costly full-field simulations. Ad-
ditionally, it is noteworthy that while most models in the literature rely
on the assumption that the grain size is significantly larger than the
particle size [4,9,11,12], our model does not require such a restriction,
and remains valid even when grains and particles have similar sizes.
More detailed comparison with previous models from the literature will
be discussed in Section 4.7.

4.3. Hypotheses on grain shape

The analytical model presented here relies on several simplifying
assumptions, notably regarding the grain shape. Most importantly, the
motion of triple junctions has been ignored in the present analysis. It is
somewhat surprising that the model reproduces so well the simulation
data (Section 4.2) despite ignoring triple junctions. A possible interpre-
tation for this is shown in Fig. 9, where Fig. 9(a) shows a three-grains
configuration with a triple junction at equilibrium (120◦/120◦/120◦

angles) and Fig. 9(b) shows the consequence of ignoring this triple
junction equilibrium in the model. Let 𝑆1, 𝑆2 and 𝑆3 be the respective
surfaces of the three grains displayed in Fig. 9(a); and 𝑆𝑚

1 , 𝑆𝑚
2 and

𝑆𝑚
3 the surfaces of the grains in the second configuration ( Fig. 9(b)),

where the triple junction is ignored. It is clear from the figure that
𝑆𝑚
1 = 𝑆1 + 𝛥𝑆𝐴 + 𝛥𝑆𝐵 , 𝑆𝑚

2 = 𝑆2 − 𝛥𝑆𝐴, and 𝑆𝑚
3 = 𝑆2 − 𝛥𝑆𝐵 . As a result,

calling �̄� the mean surface of the grains in the first configuration, and
𝑆𝑚 that in the second, it is clear that �̄� = 𝑆𝑚. This could help explain
why ignoring the triple junction does not result in significant error
regarding limiting radius calculation. Neglecting the triple junctions
might also affect the calculation of the number of vanishing grains.
Indeed, while, in our model, the grains that intersect two particles
are expected to vanish, some of the grains intercepting two particles
6

might in reality also display an equilibrium triple junction and thus get
stabilised. This point will be discussed just below.

Another key assumption of the model, somewhat related to the fact
that triple junctions are ignored, is that the equilibrium shape of a grain
– once the stable microstructure configuration has been reached – is
considered as a regular polyhedron with one particle at each vertex,
and with side length equal to the average free path between particles.

In order to verify this hypothesis, the stable microstructure reached
at the end of the simulation was analysed in more details for six
arbitrarily chosen simulations. For each of these simulations, all grains
𝑖 present in the microstructure were listed, along with their normalised
surface 𝑠𝑖, defined as 𝑠𝑖 = 𝑆𝑖∕(𝜋𝑟2𝑝) and the number of particles meeting
their interface 𝑁𝑖. This information was then averaged on integer
values of 𝑁 , allowing to compute, for a given number of precipitates
𝑁 , the average normalised surface of the grains having 𝑁 precipitates
meeting their boundary.

The grain normalised surface, calculated using the analytical model
as a function of the number of precipitates meeting its boundary, is
shown in Fig. 10, along with the results of the full-field simulations.
As can be seen in the figure, decent agreement is obtained between
the analytical model and the full-field simulations. It can also be
observed that, as previously mentioned, some grains displaying only
two particles at the boundary might still be present in the pinned
microstructure, although our model considers that such grains should
not be stabilised. However, this has little influence on the mean grain
size calculation, as demonstrated by the good agreement between
simulations and analytical model. Additionally, it will be shown later
that the trends exhibited by the number of growing, shrinking, and
vanishing grains, can be reasonably predicted. This confirms that the
hypotheses made on the grain shape in our analytical model, which
allow considerable simplification of the problem, are reasonable.

4.4. Effect of initial grain size on subsequent growth

An important feature of the analytical model presented in this work
is that it takes into account the effect of the initial grain size on
the subsequent microstructure development. This effect is depicted in
Fig. 11 where the influence of the initial grain size on the limited grain
size is illustrated. The figure shows that, for a fixed particle surface
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Fig. 7. Limiting grain size, calculated with the model presented here, as a function of limiting grain size obtained in the full-field simulations; (a) calculated values for limiting
grain size of growing grains; (b) calculated values for limiting grain size of shrinking grains; (c) calculated values for mean limiting grain size. The simulations cover various
ranges of 𝑟0 and 𝑓𝑠 and each point in the chart is the result of a single simulation. The dashed line shows the ‘‘𝑦 = 𝑥’’ line.
fraction, the normalised grain size obtained in the stable microstructure
increases when the initial normalised grain size increases. While the
relationship between the initial normalised grain size and 𝑟𝑙𝑖𝑚 exhibits
near-linearity at high particle surface fractions (1% and 10%), non-
linear behaviour is seen at lower surface fractions (0.1%), especially
for small initial normalised grain size. More specifically, the initial
normalised grain size has less influence on the stagnated grain size if
the particle surface fraction is low and if the initial normalised grain
size is small. This aligns with some of the results of a phase-field study
by Moelans and co-authors [19], who observed that the role of the
initial grain size is increasingly important for large initial grain size
and low particle fractions.

Most analytical models in the literature, such as the Smith–Zener
model and its various extensions or modifications, have relied solely
on the particle surface fraction as an input for predicting stagnated
normalised grain size [5,9,10,18,28–31]. However, our present work
reveals that this input alone seems insufficient for accurate prediction.
This observation is in line with findings in the literature, since it has
for example been reported that different initial microstructures with
identical particle surface fractions exhibit varying stagnated normalised
grain sizes [13,19,24]. Our current study demonstrates the importance
of considering the initial normalised grain size as another essential
input for predicting limiting grain size. Previous research has also used
simulation tools to point an influence of initial grain size on limiting
grain size [19,21,32,33]. Nonetheless, to the best of our knowledge, a
concise expression for calculating stagnated normalised grain size as a
7

function of initial grain size has not been proposed before. Therefore,
our work not only underscores the critical role of accounting for initial
grain size, but also introduces a straightforward method for estimating
limiting normalised grain sizes based on the initial normalised grain
size.

4.5. Effect of particles on stagnated grain sizes

The present analytical model offers a simple way to calculate the
limiting grain size 𝑅lim in pinned microstructures as a function of the
initial grain size and of the particle surface fraction. Isolines illustrating
the expected ratio between stagnated grain size and initial grain size
are depicted in Fig. 12, as a function of both the particle surface
fraction and the initial normalised grain size. In Fig. 12, the efficiency
of grain boundary pinning by second-phase particles is observed to be
most pronounced at elevated particle surface fractions and large initial
normalised grain sizes. This phenomenon is evidenced by the stagnated
grain size converging towards the initial grain size (𝑅𝑙𝑖𝑚∕𝑅0 ≃ 1), which
indicates minimal microstructural evolution.

Furthermore, maintaining a constant absolute initial grain size (𝑅0)
and particle volume fraction, the model indicates that the pinning effect
is enhanced with decreasing particle size (since 𝑟0 = 𝑅0∕𝑟𝑝)

These observations align with established literature, where the ratio
𝑓𝑠∕𝑟𝑝 commonly serves as an indicator of pinning effect strength [8].
Conversely, the isolines in Fig. 12 demonstrate that under conditions
of low initial normalised grain size and low particle surface fraction,

maximal growth is exhibited.
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Fig. 8. Histograms showing the initial and stabilised normalised grain size distributions
derived from the full field simulations, along with the predictions of the analytical
model presented here, for (a) a particle surface fraction 𝑓𝑠 of 6% and an initial
normalised grain size 𝑟0 = 2.5; and (b) a particle surface fraction 𝑓𝑠 of 10% and an
initial normalised grain size 𝑟0 = 2.5.

.6. Effect of particles on grain size heterogeneity

The model proposed here relies on the observation that particles not
nly impinge grain growth but also prevent – to some extent – shrinking
rains from vanishing. This results in a bimodal grain distribution made
f a mixture of small and large grains. Although the size distributions
round the large and small grains may overlap, as shown for example
n Fig. 8, the prediction of their respective sizes and fractions –
ossible with the present model – can be used to estimate the grain
ize heterogeneity induced by the presence of particles.

The influence of the initial normalised grain size on the expected
raction of large grains in the stabilised microstructure, along with
esults derived from full-field simulations, is shown in Fig. 13. It
an first be seen in the figure that our analytical model reasonably
eproduces the trends observed in full-field simulation.

Fig. 13 shows that, when the initial normalised grain size is low, the
raction of large grains is close to 1, meaning that there are only large
rains in the stabilised microstructure. The reason for this is that, when
he initial grain size is small, the probability that a grain surface ini-
ially intercepts three particles or more is very low. Thus, all the grains
hat contract are able to disappear, and the only remaining grains in the
icrostructure are those that have grown. Conversely, when the initial
ormalised grain size becomes high, it becomes increasingly likely that
8

the surface of a grain initially intercepts three particles. Thus, in this
situation, no grain vanishes, and, as a result, no grain can significantly
grow. In this situation, only limited grain boundary motion is possible,
and, considering that in the initial state, grains are equally likely to
grow or shrink, 𝑥𝑙𝑖𝑚𝑔 converges towards 1/2. One should keep in mind,
however, that when the initial normalised grain size is high, the notion
of ‘‘large’’ and ‘‘small’’ grains becomes less relevant, since grown and
contracted grains have similar sizes. This aspect will be detailed in the
following.

In order to predict microstructure heterogeneity, it is useful to
compare the respective sizes of large and small grains within stabilised
microstructures. The isolines in Fig. 14, depict the calculated ratio
𝑅𝑔∕𝑅𝑠 between the sizes of large and small grains. The figure reveals
that lower particle surface fractions and smaller initial normalised grain
sizes induce higher size differences between so-called large and small
grains.

To predict the apparition of grain size heterogeneity resulting from
particle pinning, the calculated values of the grain sizes and fractions of
large and small grains should be considered concomitantly. Indeed, the
analysis above shows that the values of 𝑟0 and 𝑓𝑠 leading to the highest
size difference between small and large grains are also regimes in which
the fraction of small grains in the stabilised microstructure is very
low. A criterion to distinguish regimes where grain size heterogeneities
might develop is proposed in Fig. 15. In that figure, a microstructure
is considered as heterogeneous if 𝑅𝑔/𝑅𝑠 > 2, and if the fraction of
small grains is larger than 1%. The figure shows that two different
regimes might lead to homogeneous microstructure. If the particle
surface fraction and initial normalised grain size are high, limited
evolution in the grain size is observed (as previously discussed), and the
grain size distribution remains fairly homogeneous. Conversely, when
the particle surface fraction and initial normalised grain size are low,
it is unlikely that contracting grains get pinned by particles, which
results in a homogeneous microstructure made of large grown grains.
In-between these two regimes, Fig. 15 shows that some heterogeneity
might develop in the grain size distribution, with large stabilised grains
up to 10 times larger than small stabilised grains.

The development of grain size heterogeneity due to the presence
of particles may have important practical consequences. It is indeed
well-known that grain size plays a crucial role in in-service properties
of metallic materials. Polycrystals with uniform grain size are often
desirable [34], and in non-uniform microstructures, the performances
of the material are usually limited by its weakest points. While large
grains reduce strength as well as fracture toughness [34,35], small
grains may be detrimental to ductility and creep resistance [36]. Thus,
grain size is targeted according to the desired application, and mixtures
of small and large grains are usually to be avoided. Although com-
parison between 3D real situations and 2D models should be treated
cautiously, the present findings could indicate that particles, in some
specific regimes of initial grain size and particle volume fraction (
Fig. 15), may produce microstructures with non-uniform grain size, and
thus might be responsible for degraded mechanical properties.

The present work points out that, in addition to limiting the growth
of large grains, particles can also prevent small grains from disappear-
ing, thus resulting in bimodal grain size distributions. The presence
of such small grains in pinned microstructures has also been stressed
by Srolovitz [17], who performed full-field Monte Carlo simulations of
grain growth in the presence of particles. Nonetheless, to the best of
our knowledge, no analytical model from the literature considered this
effect before. The capability to predict the respective fractions and sizes
of small and large grains due to particle pinning may help to predict
and thus control microstructure development.

4.7. Comparison with existing models

As already stated in the introduction of this work, the investigation

of particle pinning has been the focus of considerable literature. While



Acta Materialia 277 (2024) 120174M. Bignon and M. Bernacki

t
m
T

e
t
p
a
i

Fig. 9. (a) Configuration of a grain with particles and a triple junction (b) configuration of a grain ignoring triple junctions. The plain lines indicate the grain boundaries.
Fig. 10. Average normalised grain surface as a function of the number of particles meeting the grain boundary. The plain lines indicate the results obtained with the model (each
line corresponds to a set of 𝑟0 and 𝑓𝑠) and the markers indicate the values, obtained for individual grains in the full field simulations, grouped by values of 𝑁 and then averaged.
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Fig. 11. Calculated mean normalised size in the equilibrium configuration with respect
o the initial normalised size. The plain lines indicate the results obtained with the
odel while the individual points show some of the results of the full-field simulations.
he dashed line shows the ‘‘𝑦 = 𝑥’’ line.

arlier approaches have demonstrated success in capturing general
rends in limiting grain size, no analytical model to date allows to
redict accurately particle pinning. A common feature among most an-
lytical models from the literature is the assumption that the boundary
s able to break away from precipitates when 𝑃 > 𝑃 , with 𝑃 ∝ 𝛾∕𝑅 .
9

𝛾 𝑧 𝛾 𝑔
Fig. 12. Isolines for the estimated limiting grain size divided by the initial grain size
as a function of particle surface fraction and initial normalised grain size. The number
along the lines indicate the iso-values for 𝑅lim∕𝑅0.

The motivation behind this work stems from the observation that, in
he absence of a free energy difference between adjacent grains, grain
oundaries should not spontaneously break free from precipitates, as
etailed in Section 2. The calculation of the driving pressure for grain
oundary motion using an expression of the form 𝑃𝛾 ∝ 𝛾∕𝑅𝑔 might

actually be questionable as soon as the boundary is separated in several
segments by particles. In a two-dimensional microstructure, two seg-
ments of the same grain boundary separated by particles are no longer
related to each other, and are thus unlikely to move in a coordinated
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Fig. 13. Calculated fraction of large grains in the pinned microstructure. Both results derived from the analytical model and from full-field simulations are displayed.
Fig. 14. Isolines for the calculated size ratio between large and small grains in the
stabilised microstructures, with respect to initial normalised grain size and particle
surface fraction. The number along the lines indicate the iso-values for 𝑅𝑔∕𝑅𝑠.

Fig. 15. Regimes in the (𝑟0, 𝑓𝑠) space where the grain size is expected to be
heterogeneous or homogeneous. The coloured areas corresponds to values where
𝑅𝑔/𝑅𝑠 > 2, and where the fraction of small grains in the microstructure is higher
than 1%. The colour gradient corresponds to varying values of 𝑅𝑔/𝑅𝑠.
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way. The fact that grain boundaries cannot by-pass particles without
external driving pressure (such as deformation energy) is implicit in
the treatment of Ashby and Lewis [25], and has been pointed out by
Kim and Kishi [26]. Gladman calculated the energy barrier for parti-
cle unpinning and concluded that particle by-passing was unlikely to
occur by thermal activation [37]. Nonetheless, most existing analytical
models assume that capillarity driven grain boundary motion induces
particle bypassing.

A comparison between the results obtained with the present analyt-
ical model and those obtained with existing models from the literature1

is shown in Fig. 16, along with results from full-field simulations
conducted in this study. Results from the phase field simulations by
Moelans et al. [19] are also displayed for comparison.

Comparison of our model with existing literature models is illus-
trated in Fig. 16, for two arbitrarily chosen initial normalised grain
sizes. Our model yields distinct results compared to those from the
literature, demonstrating better agreement with results derived from
full-field simulations conducted in this study. Notably, none of the
analysed models from the literature can explain the results derived from
the full-field simulations of the present work. Furthermore, Fig. 16
highlights the consistency of our analytical model not only with the
simulations conducted in this study but also with simulations reported
in the literature. Particularly, in the stagnated microstructure, the mean
normalised grain size obtained by Moelans and co-authors [19] using
phase-field simulations is very-well predicted by our analytical model,
as depicted in Fig. 16.

All models from the literature analysed in this work predict a linear
or almost-linear dependency between the logarithm of 𝑅lim∕𝑟𝑝 and that
of 𝑓𝑠, in line with the well-accepted relation 𝑅lim∕𝑟𝑝 = 𝛽∕𝑓𝑚

𝑠 , with 𝛽
and 𝑚 being constants. The analytical model presented here, on the
other hand, does not exhibit such linearity. Given that our analytical
model better reproduces the results of full-field simulations compared
to existing models from the literature, this suggests that the relation
𝑅lim∕𝑟𝑝 = 𝛽∕𝑓𝑚

𝑠 might not be the most appropriate to describe particle
pinning in two-dimensional polycrystals.

1 Three of the four evaluated models from the literature were originally
developed in three-dimensions and were thus converted in two-dimensions to
allow comparison with our present model.
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Fig. 16. Comparison between the limited grain sizes calculated with the analytical model of the present work and the results obtained with models from literature. The results
rom full-field simulations of this study are also displayed.
. Conclusions

In this study, we developed a parameter-free analytical model to
redict stagnated grain size in two-dimensional microstructures an-
hored by second-phase particles, but also the resulting grain size
eterogeneity. The model capitalises on the observation that, in the
bsence of free energy variation between adjacent grains, a grain
oundary segment confined by two particles assumes a straight-line
onfiguration and cannot bypass the particles. By assuming grains form
egular polygons, the restricted grain size can be readily calculated by
numerating the number of particles intercepted by the grains during
heir growth or contraction.

Validation of the analytical model was achieved through level-set
ull-field simulations, which corroborated findings from existing liter-
ture. Notably, the model demonstrates strong agreement for particle
urface fractions ranging from 1% to 40% and across a wide range of
nitial grain sizes, even when the initial grain size is comparable to the
article size.

The simple analytical model presented here allows to rationalise
ome features of particle pinning, such as the influence of initial grain
ize, or the development of heterogeneous grain size distribution, that
ad, to the best or our knowledge, only been investigated through
omputationally heavy full-field simulations so far. The key conclusions
erived from this study are as follows:

• The initial normalised grain size significantly influences the pre-
diction of stagnated grain size, and the model introduced herein
offers insights into its influence.

• Particles not only inhibit grain growth but also impede grain
contraction, possibly leading to a heterogeneous distribution of
grain sizes within microstructures, characterised by a mixture of
small and large grains. While, when particle surface fraction and
initial normalised grain size are either very low or very large, the
grain distribution is homogeneous, a regime of intermediate val-
ues of 𝑓𝑠 and 𝑟0 has been identified where grain size heterogeneity
becomes significant.

• Although particle pinning becomes increasingly effective for
smaller particles and higher particle surface fractions, the rela-
tionship 𝑅lim∕𝑟𝑝 = 𝛽∕𝑓𝑚

𝑠 fails to adequately describe stagnated
11

grain size in two-dimensional microstructures.
Future research will focus on adapting the model to three-
dimensional microstructures and conducting comparisons with experi-
mental data to further validate its applicability.
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Appendix A. Simulations

See Table A.1.

Appendix B. Calculation of the probability for a contracting grain
to vanish

As detailed in the main text, the probability for a contracting grain
to vanish is:

𝑝𝑣 = lim
𝑛0→∞

2
∑

𝑘=0

(

𝑁𝑝

𝑘

)

(

(1 + 𝑟0)2

𝑛0𝑟20

)𝑘

⋅

(

1 −
(1 + 𝑟0)2

𝑛0𝑟20

)𝑁𝑝−𝑘

(B.1)

with 𝑁𝑝 = 𝑛0𝑓𝑠𝑟20, according to Equation (12). This can be explicitly
calculated using the following considerations:

1. Let 𝑘 be an integer. The first term in the sum yields:
(

𝑁𝑝

𝑘

)

=
(

𝑛0𝑓𝑠𝑟20
𝑘

)

(B.2)

and
(

𝑛0𝑓𝑠𝑟20
)

∼
(𝑛0𝑓𝑠𝑟20)

𝑘

(B.3)

𝑘 𝑛0→∞ 𝑘!



Acta Materialia 277 (2024) 120174M. Bignon and M. Bernacki
Table A.1
Simulation settings, along with simulation outputs, and results obtained from the analytical model of this work. 𝜎 refers to the standard deviation
of the initial distribution.

Inputs Full-field Analytical model

𝑓𝑠 𝑟0 𝜎∕𝑅0 �̄�𝑔 �̄�𝑠 �̄�𝑙𝑖𝑚 𝑛𝑝 𝑟𝑔 𝑟𝑠 𝑟𝑙𝑖𝑚
1% 2.50 0.15 11.0 1.86 10.6 252 11.2 1.66 11.13
1% 39.3 0.19 46.3 32.3 39.3 319 48.0 32.6 39.3
3% 2.45 0.15 7.37 1.67 6.85 148 7.33 1.63 7.17
3% 2.50 0.3 8.63 1.93 8.15 105 7.37 1.65 7.20
3% 4.70 0.3 8.56 3.21 6.48 953 9.55 3.17 8.67
3% 4.91 0.3 9.54 3.46 7.59 273 9.75 3.32 8.77
3% 10.5 0.3 14.7 6.84 10.5 563 15.4 7.71 11.47
3% 19.6 0.3 24.6 14.8 19.6 366 24.6 15.9 19.6
6% 2.43 0.15 5.03 1.54 4.25 378 5.85 1.62 5.45
10% 2.36 0.15 4.33 1.64 3.49 531 5.00 1.58 4.33
15% 2.31 0.15 3.63 1.73 2.79 802 4.48 1.57 3.58
20% 0.97 0.4 2.66 0.85 2.58 943 2.86 0.65 2.48
20% 2.25 0.15 3.43 1.52 2.64 834 4.13 1.54 3.11
20% 3.16 0.13 4.59 2.58 4.54 1739 5.05 2.23 3.60
20% 8.78 0.15 9.79 7.83 8.78 451 10.71 7.26 8.9
30% 1.78 0.19 3.16 1.13 2.45 969 3.32 1.21 2.39
40% 0.80 0.38 1.60 0.62 2.13 709 1.26 0.54 1.58
2. As a result,

lim
𝑛0→∞

(

𝑁𝑝

𝑘

)

(

(1 + 𝑟0)2

𝑛0𝑟20

)𝑘

=
𝑓𝑘
𝑠
𝑘!

⋅ (1 + 𝑟0)2𝑘 (B.4)

3. Let the last term in the sum be 𝑝1 =
(

1 − (1+𝑟0)2

𝑛0𝑟20

)𝑁𝑝−𝑘
. The

logarithm of 𝑝1 yields:

ln(𝑝1) = (𝑁𝑝 − 𝑘) ⋅ ln

(

1 −
(1 + 𝑟0)2

𝑛0𝑟20

)

= (𝑛0𝑓𝑠𝑟20 − 𝑘) ⋅ ln

(

1 −
(1 + 𝑟0)2

𝑛0𝑟20

)

(B.5)

and

ln(𝑝1) ∼
𝑛0→∞

(𝑛0𝑓𝑠𝑟20) ⋅

(

−
(1 + 𝑟0)2

𝑛0𝑟20

)

= −𝑓𝑠 ⋅ (1 + 𝑟0)2 (B.6)

As a result,

lim
𝑛0→∞

𝑝1 = exp
(

−𝑓𝑠 ⋅ (1 + 𝑟0)2
)

(B.7)

4. Eventually, 𝑝𝑣 can be explicitly calculated as:

𝑝𝑣 =
2
∑

𝑘=0

𝑓𝑘
𝑠
𝑘!

⋅ (1 + 𝑟0)2𝑘 exp
(

−𝑓𝑠 ⋅ (1 + 𝑟0)2
)

(B.8)

which can also be written as:

𝑝𝑣 = exp
(

−𝑓𝑠 ⋅ (1 + 𝑟0)2
)

(

1 + 𝑓𝑠 ⋅ (1 + 𝑟0)2 +
𝑓 2
𝑠
2

⋅ (1 + 𝑟0)4
)

(B.9)
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