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A B S T R A C T

The formation of microstructures in metallic alloys during hot metal forming involves simultaneous metallur-
gical complex phenomena. Traditional high-fidelity numerical frameworks used on the polycrystalline scale
tend to focus on single-phase microstructures or isolate phase transformations from grain boundary migration
mechanisms. The level-set method is highlighted as effective in proposing a global framework for modeling
multiphase polycrystalline materials and diffusive solid-state phase transformations. This framework includes
novel techniques for efficient large-scale microstructural representation, strong coupling with ThermoCalc
software for real-time thermodynamic data, application for ternary alloys and beyond by taking solute drag
aspects, and the use of advanced nucleation models. Numerous applications are then illustrated.
1. Introduction

The microstructural evolution in metallic alloys in the context of
hot metal forming typically involves a complex interplay of multiple
phenomena that occur simultaneously. Industrial metallurgical prod-
ucts are often subjected to complex thermomechanical treatments or
processing conditions such as high plastic deformation at elevated
temperatures. Under these conditions, solid-state phase transformations
within alloyed materials become inevitable, along with other concur-
rent phenomena. Currently, most state-of-the-art numerical predictions
primarily focus on single-phase microstructural evolution or exclusively
model phase transformation, often neglecting the consideration of other
coexisting phenomena. Although delving into individual phenomena
provides valuable insights, focusing solely on singular aspects might
inadvertently lead to oversights and limitations in comprehending the
holistic behavior of these materials. Such a narrow focus could lead
to overlooking crucial interactions that may influence the alloy’s me-
chanical strength, thermal stability, or its susceptibility. Neglecting the
concomitant nature of these transformation aspects could limit our
ability to predict and optimize material performance under diverse
operating conditions.

Advances in computational resources have paved the way for more
intricate models (such as atomistic [1–3] and full-field mesoscopic
models [4]) based on a complete and explicit representation of the
microstructure. These models enable to closely follow the topological
evolution of the microstructure during a transformation and have the
potential to capture complex evolution aspects, and hence their pre-
dictive capabilities are much wider. Full-field models (FFM) provide a
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good equilibrium between the high-level description of the microstruc-
ture and the computational demands. Among the various approaches
within the scope of FFM, each numerical method has its unique scope
of application, with some better suited to specific scenarios than others.
For modeling recrystallization and grain growth under high plastic
deformation, the level-set method [5–8] stands out as a robust choice
and has been effectively utilized. At the mesoscopic scale, Phase-field
methods [9–14] have been well established as the popular choice of
method to simulate diffusive solid-state phase transformation (DSSPT)
due to its thermodynamic consistency. However, the potential of level-
set methods remains largely unexplored in the realm of DSSPT. The
developments of Bzowski et al. [15] is one of the only few works based
on level-set method for DSSPT. In these works, one level-set function
per grain is considered, and to model solute diffusion, the diffusion
equation is resolved in the parent phase while that in the product phase
is considered as negligible.

The authors thus proposed a global level-set framework in [16]
aimed at thoroughly exploring the capabilities of using the level-set
method to simulate DSSPT in a finite element (FE) context. Within this
framework, the grain coloration technique, proposed in [17,18] was
used to limit the number of level-set functions required to describe a
large-scale microstructure. The diffusion aspects are modeled in both
the parent and the product phase. Illustrations for phase transformation
in simple binary alloyed microstructures were demonstrated. The ob-
jective of this work is to generalize the previously proposed numerical
framework for ternary alloys and beyond by taking solute drag as-
pects [19,20] into account. This work also aims to integrate nucleation
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Fig. 1. Biphasic microstructure indicating the underlying the level-set representation.
models into the framework, to enrich boundary conditions to broaden
the scope of application, and to develop an efficient numerical coupling
with ThermoCalc software [21] to seamlessly extract the necessary
thermodynamic data.

A brief overview of the numerical formulation proposed in [16]
is provided in the beginning of the next section, followed by the
improvements and the generalizations incorporated. More precisely,
Eqs. (1) to (10), Eq. (16), Eq. (17), Eq. (41) and (43) provide a very
concise summary of the entire formulation developed in [16] and
will suffice here for the reader to understand the framework of the
developed model. Any reader wishing to understand the derivation
of these equations in more detail is encouraged to read Ref. [16]
thoroughly. In the third section, a benchmark analysis of the numerical
model, followed by illustrations in large scale microstructures, are
presented. The model’s capabilities in simulating other diffusive solid-
state phenomena are also demonstrated. The concluding remarks and
the prospective works are then discussed in the last part.

2. Numerical formulation

The growth regime of a microstructural evolution involving diffu-
sive phase transformation is influenced by two coupled processes: (i)
solute partitioning between the phases involved in transformation, and
(ii) subsequent migration of the interface network along with other
contributions to the interface kinetics. In [16], level-set (LS) functions
are employed to represent and govern the interface migration aspects.
In the context of a polycrystalline microstructure, a set of global level
set (GLS) functions, 𝜑𝑖, are used to efficiently represent and classify
large number of grains based on the grain coloration theorem [17,18].
However, in the context of multiphase microstructure, secondary LS
functions are necessary to distinguish the regions composed of dif-
ferent phases. The 𝜑𝑖 GLS functions constitute the primary basis of
LS representation, while the level-set functions used to classify the
phases forms the secondary basis. Fig. 1(a) gives an illustration of a
biphasic microstructure with the color code indicating the family of GLS
functions used to depict different grains. Meanwhile, Fig. 1(b) indicates
the regions composed of 𝛼 and 𝛾 phases, and the secondary basis 𝜑𝛼 LS
function employed to characterize them.

The presence of different phases introduce material discontinu-
ities. Consequently, within the classical level-set framework, resolving
solute redistribution may require separate treatment in the domains
of different phases by explicitly taking into account the necessary
jump conditions at the interphase boundaries. Incorporating these jump
conditions necessitates localizing the evolving interphase boundaries
at each resolution step, a task facilitated by the secondary level-set
function (𝜑𝛼). Rather than relying on the sharp interface characteristics
(in theory) provided by the LS representation, we adopt a diffuse
2

interface hypothesis across the interphase boundaries while addressing
solute diffusion within the domain. This approach aims to smooth out
discontinuities and integrate a unified equation for modeling solute
partitioning throughout the domain. It is worth noting that the sec-
ondary basis level-set function 𝜑𝛼 is initially constructed from the input
phase characteristic function (𝜒𝛼). Then, as the evolution proceeds, 𝜑𝛼
is updated accordingly. The transition from 𝜑𝛼 to a diffuse interface
representation (𝜙) is achieved using a hyperbolic tangent relation
between them:

𝜙 = 1
2
𝑡𝑎𝑛ℎ

(

3𝜑𝛼
𝜂

)

+ 1
2
. (1)

The 𝜂 in the above relation is a diffuse interface thickness parameter.
After resolving the solute diffusion equation, the resulting solute

distribution influences the kinetics of interface migration, alongside
other inherent effects depending on the various considered phenomena.
The resulting motion of the multi-phase grain interface network are
then governed by the transport of primary basis GLS functions (𝜑𝑖),
based on their classical level-set description.

2.1. Solute redistribution

Upon establishing a diffuse interface description, ∀𝑖 ∈ {𝐶,𝑋}, a total
concentration field variable (𝑥𝑖) can be represented as a continuous
field between the concentrations in the individual phases (𝑥𝛼𝑖 , 𝑥

𝛾
𝑖 ) for

each solute 𝑖:

𝑥𝑖 = 𝜙𝑥𝛼𝑖 + (1 − 𝜙)𝑥𝛾𝑖 . (2)

Through the imposition of solute flux continuity for each phase and
assuming a constant concentration ratio between the phases at the in-
terface throughout, the following unified diffusion equation is derived,
adhering to Fick’s laws of diffusion:

𝜕𝑥𝑖
𝜕𝑡

= 𝛁 ⋅

{

𝐷∗(𝜙)

[

𝛁𝑥𝑖 −
𝑥𝑖(𝑘𝑖𝑝 − 1)

1 + 𝜙(𝑘𝑖𝑝 − 1)
𝛁𝜙

]}

. (3)

With further simplifications, the above Eq. (3) could be reformu-
lated into the following flux form:
𝜕𝑥𝑖
𝜕𝑡

= 𝛁 ⋅
[

𝐷∗(𝜙)𝛁𝑥𝑖 − 𝑥𝑖(𝜙)
]

. (4)

A Convective–Diffusive–Reactive (CDR) formulation is then obtained
by expanding the above equation:
𝜕𝑥𝑖
𝜕𝑡

+
(

 − 𝛁𝐷∗) ⋅ 𝛁𝑥𝑖 −𝐷∗𝛥𝑥𝑖 +𝑥𝑖 = 0. (5)

In the above CDR formulation:
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• 𝐷∗ is called the mixed diffusivity, expressed as:

𝐷∗(𝜙) =
𝐷𝑖
𝛾 + 𝜙(𝑘

𝑖
𝑝𝐷

𝑖
𝛼 −𝐷

𝑖
𝛾 )

1 + 𝜙(𝑘𝑖𝑝 − 1)
, (6)

where 𝐷𝑖
𝛼 and 𝐷𝑖

𝛾 represent the diffusivity of the 𝑖th solute ele-
ment in 𝛼 and 𝛾 phases, respectively. 𝑘𝑖𝑝 is the constant concen-
tration ratio respected by the redistribution of the solute atoms
between the parent and the product phase at the interphase. This
ratio is assumed to be equal to the equilibrium partitioning ratio
(𝑘𝑖𝑝𝑒𝑞 ), corresponding to the conditions at the instant 𝑡:

𝑘𝑖𝑝 (𝑡) =
𝑥𝛼𝑖
𝑥𝛾𝑖

≈ 𝑘𝑖𝑝𝑒𝑞 (𝑡) =
𝑥𝛼𝑖

|

|

|𝑒𝑞

𝑥𝛾𝑖
|

|

|𝑒𝑞

, (7)

where 𝑥𝛼𝑖
|

|

|𝑒𝑞
and 𝑥𝛾𝑖

|

|

|𝑒𝑞
are the equilibrium concentrations of 𝛼

and 𝛾 phases respectively at temperature 𝑇 corresponding to an
instant 𝑡.

•  is a part of the advective coefficient and is expressed as:

(𝜙) =
𝐷∗(𝜙)(𝑘𝑖𝑝 − 1)

1 + 𝜙(𝑘𝑖𝑝 − 1)
𝛁𝜙. (8)

•  represents the reactive term and is defined as:

 = 𝛁 ⋅. (9)

For a test function, 𝜓 ∈ 𝐻1(𝛺), the generic P1 finite element weak
formulation of Eq. (5) could be simplified to the following form:

∫𝛺
𝜕𝑥𝑖
𝜕𝑡
𝜓 𝑑𝛺 + ∫𝛺

 ⋅ 𝛁𝑥𝑖𝜓 𝑑𝛺 + ∫𝛺
𝐷∗𝛁𝜓 ⋅ 𝛁𝑥𝑖 𝑑𝛺

+∫𝛺
𝑥𝑖𝜓 𝑑𝛺 − ∫𝜕𝛺

𝜓𝐷∗𝛁𝑥𝑖 ⋅ 𝒏𝑏 𝑑𝑆 = 0,
(10)

here 𝒏𝑏 is the outward unit normal to the domain boundary and
he last boundary integral term is subject to the imposed boundary
onditions.

In [16], homogeneous Neumann conditions on 𝑥𝑖 were employed
or solute mass conservation, i.e., 𝛁𝑥𝑖 ⋅ 𝒏𝑏|| 𝜕𝛺 = 0. At first glance,
hese assumptions may seem reasonable, focusing on pure solute dif-
usion within the computational domain without any influx or outflux
f solute atoms. However, these conditions are incomplete and are
nly valid in a specific scenario. The mathematical formulation in
q. (4) suggests that applying homogeneous Neumann-type boundary
onditions on 𝑥𝑖 conserves solely the diffusive flux (−𝐷∗𝛁𝑥𝑖), while the
dvective flux (𝑥𝑖) remains non-conserved.

If we apply the Reynolds’s transport theorem on 𝑥𝑖 for a fixed
omain boundary, for mass conservation:

𝑑
𝑑𝑡 ∫𝛺

𝑥𝑖𝑑𝛺 = ∫𝛺
𝜕𝑥𝑖
𝜕𝑡
𝑑𝛺 = 0. (11)

Plugging Eq. (4), and applying the divergence theorem, we obtain:

𝑑
𝑑𝑡 ∫𝛺

𝑥𝑖𝑑𝛺 = ∫𝛺
𝜕𝑥𝑖
𝜕𝑡
𝑑𝛺 = ∫𝜕𝛺

[

𝐷∗(𝜙)𝛁𝑥𝑖 − 𝑥𝑖(𝜙)
]

⋅ 𝒏𝑏𝑑𝑆 = 0. (12)

Thus, the above equation holds true for:
[

−𝐷∗(𝜙)𝛁𝑥𝑖 + 𝑥𝑖(𝜙)
]

⋅ 𝒏𝑏
|

|

|𝜕𝛺
= 0. (13)

The aforementioned Robin-type condition constitutes the correct and
complete boundary condition for Eq. (5).

Eq. (8) implies that  → 0 far from a phase interface where 𝛁𝜙→ 0.
In this scenario, Eq. (13) simplifies to a pure Neumann-type boundary
condition, i.e., −𝐷∗𝛁𝑥𝑖 ⋅ 𝒏𝑏||𝜕𝛺 = 0. Therefore, a pure Neumann-type
boundary condition is a particular case, applicable only when the
local boundary region does not interact with any phase interface. In
cases where phase interfaces approach certain sections of the boundary
region, the local advective flux should also be conserved through a
Robin type boundary condition as in Eq. (13).
3

Thus, for the resolution of the solute redistribution, there is a con-
tinuous local switch between homogeneous Neumann-type and Robin-
type boundary conditions. This switch is based on the interaction
of phase interfaces with the domain boundaries during the phase
transformation.

Applying the generic Robin-type boundary condition to the weak
form in Eq. (10), we eventually obtain:

∫𝛺
𝜕𝑥𝑖
𝜕𝑡
𝜓 𝑑𝛺 + ∫𝛺

 ⋅ 𝛁𝑥𝑖𝜓 𝑑𝛺 + ∫𝛺
𝐷∗𝛁𝜓 ⋅ 𝛁𝑥𝑖 𝑑𝛺

+ ∫𝛺
𝑥𝑖𝜓 𝑑𝛺 − ∫𝜕𝛺

𝑥𝑖𝜓 ⋅ 𝒏𝑏 𝑑𝑆 = 0. (14)

.2. Interface migration

For a polycrystalline microstructure with 𝑁𝑔 grains whose interface
etwork is represented by a set of 𝑁𝐿𝑆 GLS functions (𝜑𝑖), the following
onvective equations need to be resolved for modeling the interface
igration:
𝜕𝜑𝑖
𝜕𝑡 + 𝒗 ⋅ 𝛁𝜑𝑖 = 0
𝜑𝑖(𝒙, 𝑡 = 0) = 𝜑0

𝑖 (𝒙)
∀𝑖 ∈ {1, 2,… , 𝑁𝐿𝑆}. (15)

The velocity field (𝒗) in this application is based as a function of various
driving pressures affecting the microstructural evolution.

In [16], the following Convective–Diffusive level-set transport equa-
tions were formulated for grain/phase interface network migration for
each of the 𝑖𝑡ℎ GLS function (𝜑𝑖) during a 𝛾 → 𝛼 phase transformation:

𝜕𝜑𝑖
𝜕𝑡

+
[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑖 −

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑖 = 0

∀𝑖 ∈ {1, 2,… , 𝑁𝐿𝑆},

(16)

here 𝒮 = {𝛾𝛾, 𝛾𝛼, 𝛼𝛼} with 𝜒𝛾𝛾 , 𝜒𝛾𝛼 , and 𝜒𝛼𝛼 being the interface
haracteristic functions, 𝑀 is the interface mobility, and 𝜎 is the
nterfacial energy. The convective velocity components are defined as:

𝒗𝜟𝑮𝜸𝜶
= 𝜒𝛾𝛼𝑀𝛾𝛼𝛥𝐺𝛾→𝛼𝒏

𝒗[[]] =

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙[[]]𝑙

]

𝒏.
, (17)

with 𝒏 being the outward unit normal to a migrating interface.
𝛥𝐺𝛾→𝛼 corresponds to the driving pressure for phase transformation

of 𝛾 phase into 𝛼 phase, and [[]] constitutes a driving pressure linked
to the jump in stored energy () due to plastic deformation.

The formulation in Eq. (16) corresponds to a scenario where the net
driving pressure (𝑃 ) is assumed to be composed of the phase transfor-
mation contribution, the stored energy component and the capillarity
effects (−𝜅𝜎):

𝑃 = 𝛥𝐺𝛾→𝛼 + [[]] − 𝜅𝜎. (18)

In a biphasic polycrystalline context, accounting for different kinds
of interfaces, this net driving pressure is rewritten in a generalized form
as:
𝑃 = 𝜒𝛾𝛼𝛥𝐺𝛾→𝛼 +

∑

𝑙∈𝒮
𝜒𝑙

(

[[]]𝑙 − 𝜅𝜎𝑙
)

. (19)

As a reminder, the interface migration velocity (𝒗) concerning a mi-
crostructural evolution at the mesoscopic scale is assumed to be a
product of the interface mobility and the net local driving pressures
describing the various involved phenomena at the interface [22]: 𝒗 =
𝑀𝑃𝒏. The interface mobility is also expressed in a generalized form
accounting for different types of interfaces such that, 𝑀 =

∑

𝑙∈𝒮 𝜒𝑙𝑀𝑙.
In the context of Ternary alloys and beyond, comprising of slow

diffusing substitutional elements, an additional driving pressure con-
tribution due to the solute drag effects linked to these slow diffusing
elements could be taken into account. Accounting for this contribution,
Eq. (19) could be modified as:

𝑃 = 𝜒𝛾𝛼𝛥𝐺𝛾→𝛼 +
∑

𝜒𝑙
(

[[]]𝑙 − 𝜅𝜎𝑙 +
[

𝑃𝑆𝐷
]

𝑙
)

, (20)

𝑙∈𝒮
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where 𝑃𝑆𝐷 is the solute drag pressure associated to the drag effects.
Upon prescribing the above modified interface kinetics into the

transport equations (Eqs. (15)), and with further simplifications using
the metric properties of a LS function, we obtain the following form
∀𝑖 ∈ {1, 2,… , 𝑁𝐿𝑆}:

𝜕𝜑𝑖
𝜕𝑡

+
[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑖 −

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙

[

𝑃𝑆𝐷
]

𝑙 −

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑖 = 0,

(21)

here,

𝑖 = −
𝛁𝜑𝑖

‖𝛁𝜑𝑖‖
= −𝛁𝜑𝑖 ⟹ 𝜅𝑖 = 𝛁 ⋅ 𝒏𝑖 = −𝛥𝜑𝑖. (22)

The driving pressure due to solute drag contributes passively by op-
osing the actively available interface kinetics (linked to the principally
ctive driving pressures), as the solutes tend to bind to the migrating
nterface due to segregation. Thus, the magnitude of the solute drag
ressure (𝛥𝐺𝑆𝐷 = |𝑃𝑆𝐷|) is generally assumed to be a function of the
nterface migration velocity itself, 𝛥𝐺𝑆𝐷 = 𝑓 (𝒗). This has the effect
f rendering the overall interface kinetics description non-linear. The
ependence on the velocity is such that, in the vicinity of zero velocity,
r at sufficiently high interfacial velocities, the drag pressure should
heoretically vanish. The latter is due to the fact that at high velocities,
here is not enough scope or time for the solute atoms to interact
ith the rapidly migrating interface, thus reducing the potential to

mpart any retardation effects of significance. For modeling the solute
rag driving pressure (𝑃𝑆𝐷), Cahn’s solute drag model [23] provides a
implified description for the magnitude of the drag pressure (𝛥𝐺𝑆𝐷):

𝛥𝐺𝑆𝐷 (𝒗) =
𝛼𝐶𝑥0𝑋 ‖𝒗‖

1 + 𝛽2𝐶 ‖𝒗‖2
, (23)

here 𝛼𝐶 and 𝛽𝐶 are parameters defined as functions of temperature,
nterfacial solute diffusivity, interface width and the binding energy.
ahn proposed the following definitions for these parameters:

𝐶 = 4𝑁𝑉 𝑘𝐵𝑇 ∫

+∞

−∞

sinh2
(

𝐸(𝑧)
2𝑘𝐵𝑇

)

𝐷𝑋
𝛤 (𝑧)

𝑑𝑧, (24)

𝛼𝐶
𝛽2𝐶

=
𝑁𝑉
𝑘𝐵𝑇 ∫

+∞

−∞

( 𝜕𝐸
𝜕𝑧

)2
𝐷𝑋
𝛤 (𝑧) 𝑑𝑧. (25)

Even though Cahn’s model lacks physical sense across interphase
oundaries and is more apt for grain boundaries, the simplicity in its
escription is attractive for numerical implementation, especially in a
E framework, considering the non-linearity of a solute drag pressure
n the velocity field. Cahn’s simplified drag pressure is capable of
apturing the general trends expected for solute drag effects whether it
s for grain interfaces or phase interfaces as illustrated in [24]. As a first
pproximation, we shall thus consider Cahn’s simplified description in
his work to model solute drag pressure.

The solute drag driving pressure component can be written as:

𝑆𝐷 (𝒗,𝒏) = −𝛥𝐺𝑆𝐷
(𝒗 ⋅ 𝒏)
‖𝒗‖

= −
𝛼𝐶𝑥0𝑋 (𝒗 ⋅ 𝒏)

1 + 𝛽2𝐶 ‖𝒗‖2
. (26)

ith the application of Cahn’s solute drag model even for phase inter-
aces, for the parameters,

(

𝛼𝐶 , 𝛽𝐶
)

|

|

|𝑙=𝛾𝛼
, instead of using the analytical

efinitions provided by Cahn in Eqs. (24) and (25), the idea is to
onsider them as a set of temperature dependent model parameters
o be fitted in accordance with relevant experimental results. This
voids the complexity of precisely quantifying some of the physical
arameters required by their analytical definitions, especially across
hase interfaces. So, by selectively controlling the two parameters
𝛼𝐶 , 𝛽𝐶 ), we could attempt to converge to expected magnitudes for the
4

rag pressure across phase interfaces. t
Since the solute drag pressure renders the velocity field non-linear.
f we consider a fully implicit time discretization scheme for the reso-
ution of Eq. (21), we will obtain a non-linear formulation. Considering
uler implicit time discretization, Eq. (21) could be discretized as:

𝜕𝜑𝑖
𝜕𝑡

≈
𝜑𝑘+1𝑖 − 𝜑𝑘𝑖

𝛥𝑡
=  (𝜑𝑘+1𝑖 ), ∀𝑖 ∈ {1, 2,… , 𝑁𝐿𝑆}, (27)

where

 (𝜑𝑘+1𝑖 ) =

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑘+1𝑖 +
∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙

[

𝑃𝑆𝐷(𝒗𝑘+1)
]

𝑙

−
[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑘+1𝑖 , (28)

s a time dependent operator, with 𝑘 being the index of time stepping.
If one considers 𝑃 𝑘+1𝑆𝐷 in the second term in Eq. (28), one obtains

rom Eq. (26),

𝑆𝐷(𝒗𝑘+1) = −
𝛼𝐶𝑥0𝑋 (𝒗 ⋅ 𝒏)𝑘+1

1 + 𝛽2𝐶 ‖

‖

𝒗𝑘+1‖
‖

2
. (29)

Since the interface migration velocity is normal to the interface, at
any position 𝒙, for the signed distance 𝑖th GLS function, such that
𝜑𝑘+1𝑖 (𝒙) ≥ 0, it is possible to express:

(𝒗 ⋅ 𝒏)𝑘+1 =
𝜑𝑘+1𝑖 − 𝜑𝑘𝑖

𝛥𝑡
≈
𝜕𝜑𝑖
𝜕𝑡
, (30)

nd,

𝒗𝑘+1‖‖
‖

=
|

|

|

𝜑𝑘+1𝑖 − 𝜑𝑘𝑖
|

|

|

𝛥𝑡
. (31)

So, 𝑃 𝑘+1𝑆𝐷 would then become:

𝑃 𝑘+1𝑆𝐷 = −
𝛼𝐶𝑥0𝑋

(

𝜑𝑘+1𝑖 −𝜑𝑘𝑖
𝛥𝑡

)

1 + 𝛽2𝐶

(

𝜑𝑘+1𝑖 −𝜑𝑘𝑖
𝛥𝑡

)2
. (32)

Clearly the term in the denominator due to ‖

‖

‖

𝒗𝑘+1‖‖
‖

manifests the opera-
or  in Eq. (28) and hence the time discretized formulation in Eq. (27)
on-linear. To avoid this non-linearity and simplify the resolution
rocedure, as seen in the works of [25], the following explicit scheme
ased assumption is made:

𝒗𝑘+1(𝒙)‖‖
‖

2
≈ ‖

‖

‖

𝒗𝑘(𝒙)‖‖
‖

2
=

(

𝜑𝑘𝑖 (𝒙) − 𝜑
𝑘−1
𝑖 (𝒙)

𝛥𝑡

)2

= ‖

‖

‖

𝒗𝑜𝑙𝑑 (𝒙)‖‖
‖

2
for 𝑖 ∣ 𝜑𝑘𝑖 (𝒙) ≥ 0, (33)

where 𝒗𝑘 or 𝒗𝑜𝑙𝑑 is the net migration velocity field prescribed to
compute the GLS solution 𝜑𝑘𝑖 at the current state. Even though this
formulation deviates slightly from the fully implicit time scheme, for
the small ranges of time steps expected to be considered in the GLS
resolution, the errors accumulated are expected to be of the small
order while considerably simplifying the resolution procedure, thanks
to the linearization. Furthermore, a similar remark could be made
regarding the computation of the normal to grain boundaries and phase
interfaces, 𝒏, which are calculated through the gradient of level-set
functions obtained at the previous time increment. Therefore, this term
is also explicitly evaluated in the proposed formulation.

Taking this into account, Eq. (32) could be rewritten as:

𝑃 𝑘+1𝑆𝐷 ≈ −

(

𝛼𝐶𝑥0𝑋
1 + 𝛽2𝐶 ‖

‖

𝒗𝑜𝑙𝑑‖
‖

2

)(

𝜑𝑘+1𝑖 − 𝜑𝑘𝑖
𝛥𝑡

)

. (34)

This would then linearize the operator  in Eq. (28) and hence the
time discretized formulation in Eq. (27). Although not exactly, but such
a strategy of splitting the operator  into implicit and explicit parts

eakly mimics the ideologies of IMplicit–EXplicit (IMEX) time integra-
ion methods [26,27]. Substituting Eq. (34) into the time discretized
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formulation and going back to the continuum description in Eq. (21),
we obtain:

𝜕𝜑𝑖
𝜕𝑡

+
[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑖 +

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙

(

𝛼𝐶𝑥0𝑋
1 + 𝛽2𝐶 ‖

‖

𝒗𝑜𝑙𝑑‖
‖

2

)

𝑙

𝜕𝜑𝑖
𝜕𝑡

=

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑖.

(35)

By imposing,

ℳ𝑆𝐷 = 1 +
∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙

(

𝛼𝐶𝑥0𝑋
1 + 𝛽2𝐶 ‖

‖

𝒗𝑜𝑙𝑑‖
‖

2

)

𝑙

, (36)

we obtain:

ℳ𝑆𝐷
𝜕𝜑𝑖
𝜕𝑡

+
[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑖 =

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑖. (37)

Eventually, we can express the above equation into the following
linearized convective–diffusive (CD) formulation ∀𝑖 ∈ {1, 2,… , 𝑁𝐿𝑆}:

𝜕𝜑𝑖
𝜕𝑡

+ 1
ℳ𝑆𝐷

[

𝒗𝜟𝑮𝜸𝜶
+ 𝒗[[]]

]

𝑖
⋅ 𝛁𝜑𝑖 −

1
ℳ𝑆𝐷

[

∑

𝑙∈𝒮
𝜒𝑙𝑀𝑙𝜎𝑙

]

𝛥𝜑𝑖 = 0. (38)

In the following, we shall refer ℳ𝑆𝐷 as the solute drag pressure
coefficient. When the solute drag effects are absent or negligible,
ℳ𝑆𝐷 → 1, while when they are non-negligible, ℳ𝑆𝐷 > 1. In contrast
to the previous formulation (Eq. (16)) without the solute drag aspects,
the new formulation only seems to involve a factor, ℳ𝑆𝐷, which has
the global effect of heterogeneously lowering the interface mobility (or
increasing the drag resistance) for migration as a function of the local
interface kinetics.

To compute the solute drag pressure coefficient in Eq. (36) ∀𝑙 ∈
{𝛾𝛾, 𝛾𝛼, 𝛼𝛼}, we need the respective laws/ expressions governing
{

𝛼𝐶 (𝑇 ), 𝛽𝐶 (𝑇 )
}

𝑙 and 𝑀𝑙(𝒙, 𝑡, 𝑇 ) provided, and 𝜒𝑙 and ‖𝒗𝑜𝑙𝑑‖ need to
be computed. The computation of 𝜒𝑙 functions can be easily obtained
through the distance functions. The expression of ‖𝒗𝑜𝑙𝑑‖, defined in
Eq. (33), can be, in practice, evaluated through:

‖

‖

‖

𝒗𝑜𝑙𝑑 (𝒙)‖‖
‖

= max
𝑖∈{1,…,𝑁𝐿𝑆}

⎛

⎜

⎜

⎝

𝑘𝑖 (𝒙)
|

|

|

𝜑𝑘𝑖 (𝒙) − 𝜑
𝑘−1
𝑖 (𝒙)||

|

𝛥𝑡

⎞

⎟

⎟

⎠

, (39)

here 𝑘𝑖 (𝒙) is used as an indicator function associated to the 𝑖th GLS
unction such that 𝜑𝑘𝑖 (𝒙) ≥ 0, i.e.,

𝑘
𝑖 (𝒙) =

{

1 if 𝜑𝑘𝑖 (𝒙) ≥ 0
0 otherwise

. (40)

At the initial state of time (𝑘 = 0), ‖𝑣𝑜𝑙𝑑‖ = 0, as 𝜑0
𝑖 = 𝜑−1

𝑖 . The
olute drag pressure coefficient needs to be computed before the next
esolution step of Eq. (38).

In [16], it has been highlighted that a better description for 𝒗𝜟𝑮𝜸𝜶
s essential in the context of polycrystals comprising of multi-junctions,
nd thus the following description was proposed:

𝜟𝑮𝜸𝜶
(𝒙, 𝑡) =

𝑁𝐿𝑆
∑

𝑖=1

𝑁𝐿𝑆
∑

𝑗=1
𝑗≠𝑖

𝜒𝐺𝑖𝑀𝑖𝑗 exp
(

−𝛽𝑒|𝜑𝑗 |
)

𝜒𝛾𝛼𝛥𝐺𝛾→𝛼ℱ𝑠(−𝒏𝑗 ), (41)

However, the use of all the 𝑁𝐿𝑆 level-set functions is not necessary
unlike in the case of stored energy component, since 𝛥𝐺𝛾→𝛼 is valid
nly on the phase interfaces and not on the entire grain/phase interface
etwork. So, in a biphasic context, an alternative and simple approach
ould be proposed that takes into account only the secondary basis
evel-set function representing all the 𝛼 phase grains, 𝜑𝛼 :

(𝒙, 𝑡) =𝑀 𝜒 𝛥𝐺 (𝒙, 𝑡)(−𝛁𝜑 ). (42)
5

𝜟𝑮𝜸𝜶 𝛾𝛼 𝛾𝛼 𝛾→𝛼 𝛼
.3. ThermoCalc coupling

The driving pressure related to the diffusive phase transformation
𝛥𝐺𝛾→𝛼) is prescribed through a linearization of the phase diagram
sing a thermodynamic database such as ThermoCalc [21]. The driv-
ng pressure is subsequently expressed as a function of the current
emperature, and the phase interface concentrations as follows [16]:

𝐺𝛾→𝛼(𝑇 , 𝑥𝛼𝐶 , 𝑥
𝛾
𝐶 ) = 𝛥𝑆𝛾𝛼

[

(𝑇𝑅 − 𝑇 ) + 0.5𝑚𝛼∕(𝛼+𝛾)𝐴−𝐶

(

𝑥𝛼𝐶 − 𝑥𝛼𝐶
|

|

|𝑅

)

+ 0.5𝑚𝛾∕(𝛼+𝛾)𝐴−𝐶

(

𝑥𝛾𝐶 − 𝑥𝛾𝐶
|

|

|𝑅

)]

,
(43)

here 𝐶 is any interstitial element (Carbon for instance). 𝑇𝑅 is the
eference temperature at which the phase diagram is locally linearized,
ith

(

𝑥𝛼𝐶
|

|

|𝑅
, 𝑥𝛾𝐶

|

|

|𝑅

)

being the corresponding equilibrium concentra-
ions. 𝑚𝛼∕(𝛼+𝛾)𝐴−𝐶 , and 𝑚𝛾∕(𝛼+𝛾)𝐴−𝐶 are the local slopes of the linearized solvus
oundaries, and 𝛥𝑆𝛾𝛼 is the entropy difference between the two phases
t the temperature 𝑇 .

From Eqs. (2) and (7), the above description is rewritten in the form
f the total concentration variable:

𝐺𝛾→𝛼(𝑇 , 𝑥𝐶 ) = 𝛥𝑆𝛾𝛼
[

𝑇𝑅 − 𝑇 + 0.5𝑚𝛼∕(𝛼+𝛾)𝐴−𝐶

(

𝑘𝐶𝑝 𝑥𝐶
1 + 𝜙(𝑘𝐶𝑝 − 1)

− 𝑥𝛼𝐶
|

|

|𝑅

)

+ 0.5𝑚𝛾∕(𝛼+𝛾)𝐴−𝐶

(

𝑥𝐶
1 + 𝜙(𝑘𝐶𝑝 − 1)

− 𝑥𝛾𝐶
|

|

|𝑅

)]

(44)

In the context of ternary alloys (𝐴 − 𝐶 − 𝑋), if we assume ortho-
quilibrium (complete local-equilibrium) between the phase for both
he solutes 𝐶 and 𝑋, the driving pressure could be expressed using the
ame principles of phase diagram linearization [13,24] as follows:

𝐺𝛾→𝛼(𝑇 , 𝑥𝐶 , 𝑥𝑋 ) = 𝛥𝑆𝛾𝛼
(

𝑇 𝑅 − 𝑇
)

+ 0.5𝛥𝑆𝛾𝛼
∑

𝑞∈{𝐶,𝑋}

[

𝑚𝛼∕(𝛼+𝛾)𝐴−𝑞

(

𝑘𝑞𝑝𝑥𝑞
1 + 𝜙(𝑘𝑞𝑝 − 1)

− 𝑥𝛼𝑞
|

|

|𝑅

)

+ 𝑚𝛾∕(𝛼+𝛾)𝐴−𝑞

(

𝑥𝑞
1 + 𝜙(𝑘𝑞𝑝 − 1)

− 𝑥𝛾𝑞
|

|

|𝑅

)]

.

(45)

Ortho-equilibrium hypothesis is feasible if both 𝐶 and 𝑋 are interstitial
solutes or if the rates of diffusion of 𝐶 and 𝑋 are fairly consistent.

However, if the ternary alloy is composed of a slow-diffusing sub-
stitutional element (𝑋) along with a faster diffusing interstitial element
(𝐶), ortho-equilibrium may not be feasible as it could be difficult
to simultaneously satisfy the mass balances for both 𝐶, and 𝑋. In
such a scenario, a constrained phase equilibria is assumed. Within
this research framework, the para-equilibrium (PE) hypothesis [9] is
selected as the constrained phase equilibrium model. According to PE
conditions, the slow-diffusing element 𝑋 is presumed to be completely
immobile, allowing only the fast-diffusing element 𝐶 to redistribute
between the involved phases. Thus, local equilibrium is maintained
solely for the 𝐶 element. This hypothesis is generally applicable when
the diffusion of 𝑋 element is not possible within the experimental
timeframe or the selected heat treatment. The driving pressure is then
derived by extracting the hypothetical phase diagrams obtained under
the PE conditions and subsequently linearizing them as previously:

𝛥𝐺𝑃𝐸
𝛾→𝛼(𝑇 , 𝑥𝐶 ) = 𝛥𝑆𝛾𝛼𝑃𝐸

[

𝑇 𝑅 − 𝑇 + 0.5𝑚𝛼∕(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

(

𝑘𝐶𝑝 𝑥𝐶
1 + 𝜙(𝑘𝐶𝑝 − 1)

− 𝑥𝛼𝐶 ||
𝑃𝐸
𝑅

)

+ 0.5𝑚𝛾∕(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

(

𝑥𝐶
1 + 𝜙(𝑘𝐶𝑝 − 1)

− 𝑥𝛾𝐶
|

|

|

𝑃𝐸

𝑅

)]

,

(46)
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Fig. 2. General overview of the ThermoCalc coupling with the numerical model.
where 𝑚𝛼∕(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸
and 𝑚𝛾∕(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

are the slopes of the linearized imaginary

solvus lines constructed under PE assumptions, while 𝑥𝛼𝐶
|

|

|

𝑃𝐸

𝑅
and 𝑥𝛾𝐶

|

|

|

𝑃𝐸

𝑅
are the corresponding constrained equilibrium concentrations at 𝑇𝑅.

In [16], the interaction with ThermoCalc is manual, limiting the
number of reference temperatures for data extraction. Furthermore,
the ThermoCalc console or its graphical user interface does not fa-
cilitate the seamless calculation of certain thermodynamic data under
para-equilibrium conditions. These difficulties are overcome here by
establishing a coupling between the numerical model and the TQ-
interface (SDK) of ThermoCalc to enable automatic computation of
relevant thermodynamic data over a large set of reference points under
both ortho-equilibrium as well as para-equilibrium conditions. Fig. 2
gives a general overview of the ThermoCalc coupling framework using
6

the TQ-interface. For a given alloy system, the desired thermodynamic
conditions for data extraction are passed as inputs from the numerical
model to the ThermoCalc coupling interface. The coupling model then
provides a matrix of desired thermodynamic data for a given range of
temperatures over a large set of points. The ThermoCalc data extrac-
tion is typically performed as a pre-processing step in the numerical
framework. The discrete and rich thermodynamic dataset generated
is then utilized in the computational loop with the assistance of an
interpolation model, enabling the interpolation of necessary thermo-
dynamic data for any temperature at each time step. This approach
implies local piecewise linearization of the phase diagram at the cur-
rent temperature, 𝑇𝑅 = 𝑇 . This is crucial for accurately capturing
strong topological evolution of the solvus surfaces (or lines) in a
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Fig. 3. Illustration of spherical nuclei of 𝛼 phase (blue) nucleating in a 2D parent 𝛾 phase.
phase diagram, particularly for non-isothermal or continuous cooling
transformations involving a long thermal path (||

|

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑓𝑖𝑛𝑎𝑙
|

|

|

). This
helps to enrich the driving pressure description that is based on strong
assumptions, and potentially minimize errors. Interested readers are
encouraged to refer [24] for further specifications on the coupling.

2.4. Nucleation model

Precisely modeling nucleation events at the mesoscopic scale is
complex and often more suitable for much lower scales of modeling,
such as atomistic simulations. The literature offers a wide array of
hypotheses and parameters aimed at characterizing nucleation events
in phase transformation. These parameters encompass various aspects
such as the nucleation start temperature (𝑇𝑁𝑠 ), nucleation temperature
range (𝛿𝑇𝑁 ), shield distance (𝛿𝑙𝑁 ), shield time (𝛿𝑡𝑁 ), parameters re-
lated to nucleus shape, and composition-based factors influenced by
local parent phase features, among others. Additionally, adhering to
the Continuous Nucleation Theory (CNT) introduces supplementary
parameters such as incubation time and frequency factor. However, due
to experimental constraints in observing nucleation events, quantifying
most of these parameters independently presents significant challenges.
Therefore, in this study, we will employ a simplified approach, aiming
for potential refinements in subsequent research. The nucleus shape
will be assumed to be spherical, and only a select few parameters from
the aforementioned list will be taken into account.

The most favored sites for nucleating the new phase are the grain
corners (triple junctions in 2D, quadruple junctions in 3D), followed
by grain edges and surfaces. At lower cooling rates, grain corners are
preferred. However, at higher cooling rates, the nucleation density is
expected to increase, raising the likelihood of saturating the grain cor-
ners for nucleation. This situation consequently opens up opportunities
for nucleation on grain edges and surfaces [28,29]. Fig. 3 gives a 2D
representation of nucleation of 𝛼 phase on grain corners and grain
boundaries in the parent 𝛾 phase.

The nucleation start temperature (𝑇𝑁𝑠 ) is one of the parameters used
to qualify the onset of nucleation of the new phase. As the temperature
decreases below the transformation temperature (𝑇𝐴3), the potential
driving pressure for initiating the stable phase’s nucleation typically
increases. Considering capillary effects, the likelihood of a critical nu-
cleus forming near the 𝑇𝐴3 temperature is relatively low. Conversely, as
the temperature decreases further and more driving pressure becomes
available, the likelihood of nucleation increases. Therefore, it is logical
to assume that 𝑇𝑁𝑠 is generally set slightly below the transformation
temperature. This difference, known as the nucleation undercooling
7

(𝛥𝑇𝑁 = 𝑇𝐴3 − 𝑇𝑁𝑠 ), is often determined practically by observing the
temperature at which a certain initial percentage of the product phase
fraction is experimentally detected, as mentioned in literature such
as [29].

Nucleation can occur in a site-saturated or continuous manner.
In site-saturated nucleation, all nuclei form simultaneously below the
nucleation start temperature, while continuous nucleation involves
nuclei forming over a certain period. In the context of continuous
cooling transformation, the latter mode of nucleation translates to
nucleation occurring over a particular temperature span, referred as
nucleation temperature range (𝛿𝑇𝑁 ). In a study by Offerman et al. [28]
investigating nucleation, the existence of a distinct temperature range
is suggested, implying a preference for continuous mode of nucleation
over site-saturated scenarios. They also noted a correlation between the
cooling rate and this temperature range. Specifically, they observed
that 𝛿𝑇𝑁 becomes more pronounced with higher cooling rates while
being relatively smaller at lower cooling rates. 𝛿𝑇𝑁 is generally as-
sumed to be a modeling parameter [29] adjusted to align with relevant
experimental results.

From a numerical modeling perspective, a site characteristic func-
tion (𝜒𝑠𝑛) is adopted to indicate the sites (and their computational mesh
nodes) available for nucleation:

𝜒𝑠𝑛(𝒙, 𝑡) =

{

1 if 𝒙 ∈ Choice of nucleation site
0 otherwise,

∀𝑡 ∣ 𝑇𝑁𝑠
− 𝛿𝑇𝑁 < 𝑇 (𝑡) ≤ 𝑇𝑁𝑠

.

(47)

If the chosen nucleation site is on the grain boundaries, then 𝜒𝑠𝑛(𝒙, 𝑡) =
𝜒𝛾𝛾 qualifies all the eligible nodes on the 𝛾-phase grain boundaries as
illustrated in green in Fig. 4.

Alternatively, when opting for grain corners as the choice of nucle-
ation site, the nodes are qualified as follows:
Require: 𝜖𝑀𝐽 , 𝜑𝑖

count ← 0
𝑖 ← 0
for 𝒙 in 𝛺 do

while 𝑖 < 𝑁𝐿𝑆 do
if |𝜑𝑖(𝒙)| ≤ 𝜖𝑀𝐽 then

count ← count + 1
end if

end while
if count ≥ 𝑑 + 1 then ⊳ 𝑑 is the spatial dimension

𝜒𝑠𝑛(𝒙) ← 1

else
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Fig. 4. Characterization of computational nodes for grain boundary nucleation in a 2D
context.

𝜒𝑠𝑛(𝒙) ← 0
end if

end for

Here, 𝜖𝑀𝐽 characterizes a small distance threshold around the multiple
junction. In 3D, if a node has at least 4 GLS functions that meet the
condition, it qualifies as a multi-junction node available for nucleation.
In 2D, the equivalent criterion is fulfilled with 3 GLS functions. A
similar criterion can be applied to qualify grain edge nodes in 3D,
where the condition is met by 3 GLS functions. Fig. 5 gives a 2D
representation of the small localized region in green around the triple
junction satisfying the above condition and hence the nodes within this
zone are provisionally qualified as eligible sites.

The site characteristic function is however utilized in conjunction
with a shield distance parameter, 𝛿𝑙𝑁 . As discussed in [29], shield dis-
tance is an inter-nucleation distance parameter, shielding pre-existing
nuclei from the formation of additional ones in their proximity. From a
physical perspective, this parameter reflects that upon nucleus forma-
tion, the surrounding local region becomes less conducive to further
nucleation due to subsequent changes in local characteristics, such as
solute concentration. This parameter primarily serves as a modeling
parameter due to the challenges in consistently quantifying it, stem-
ming from the lack of substantial physical underpinning. In the current
model, at any instant 𝑡, 𝛿𝑙𝑁 is taken as, 𝛿𝑙𝑁 (𝑡) = 𝑘𝑠ℎ𝑟∗𝑛𝑢𝑚(𝑡), where 𝑘𝑠ℎ
is a shield distance factor, and 𝑟∗𝑛𝑢𝑚 is the numerically imposed critical
radius of the nucleus.

In many scenarios, the critical radii of nuclei are significantly
smaller compared to the size of the considered domain. Consequently,
accurately capturing these small nuclei poses substantial computational
demands, leading to them being rarely precisely prescribed at their
theoretical critical radii. To address this, a minimum radius is set based
on the underlying mesh resolution, while a maximum size is imposed to
prevent uncharacteristically large nuclei. Thus, the numerical radius of
a nucleus (𝑟∗𝑛𝑢𝑚) in this model is determined by the following expression:

𝑟∗𝑛𝑢𝑚 = min
(

max
(

𝑟∗𝑡ℎ, 𝑘1ℎ𝑚𝑖𝑛
)

, 𝑘2ℎ𝑚𝑖𝑛
)

, (48)

where 𝑟∗𝑡ℎ is the theoretically estimated critical radius, ℎ𝑚𝑖𝑛 is the
minimum size of the underlying mesh resolution, 𝑘1 is a constant
governing the minimum number of mesh elements to be included
along the radius, and 𝑘2(> 𝑘1) represents another constant limiting the
maximum size permissible for a nucleus. The theoretical critical radius
technically depends on the site of nucleation, however in this context,
8

it is roughly estimated as follows:

𝑟∗𝑡ℎ =
(𝑑 − 1)𝜎𝛾𝛼
𝛥𝑔𝛼𝑉

, (49)

where 𝑑 denotes the spatial dimension (equal to 2 in the test cases pre-
sented in this article), and 𝛥𝑔𝛼𝑉 (𝑇 ) is the driving pressure for nucleation
at the current temperature. This driving pressure can be extracted dur-
ing the pre-processing stage, thanks to the ThermoCalc coupling, and
subsequently interpolated at any temperature as previously discussed.

Therefore, the shield distance parameter, combined with the site
characteristic function, further filters out nodes that are ineligible for
nucleation (i.e., 𝜑𝛼(𝒙) ≥ −𝛿𝑙𝑁 ). The shielded zone and the nodes within
it are highlighted in red in Fig. 5. So, eventually one of the nodes within
the green zone is shielded and hence marked in red as ineligible for
nucleation.

A question might arise regarding the fact that only the nodes of the
finite element mesh are tested as potential nucleation sites, and thus the
eventual impact of the mesh density on the results. However, it should
not be forgotten that the mesh is adapted to grain boundaries and phase
interfaces. Thus, these areas are always amply rich in terms of mesh
nodes and thus of possible nucleation sites. Our model has never been
limited by an insufficient number of possible nucleation positions.

The functioning of the nucleation model adopted within this frame-
work is summarized in Fig. 6. Currently, the model adopts a constant
nucleation rate for the continuous nucleation scenario. The implemen-
tation of Continuous Nucleation Theory (CNT) has not been incorpo-
rated into this work. The nucleation rate ( ̇𝑛𝑁 ) is estimated using the
cooling rate �̇� , the imposed nucleation density (𝜌𝑁 ) and the nucleation
temperature range as follows:

̇𝑛𝑁 =
𝜌𝑁𝑉0�̇�
𝛿𝑇𝑁

, (50)

where 𝑉0 represents the total volume of the domain (or area 𝐴0 in 2D).
The nucleation density could be approximated using the expected final
fraction of the product phase (e.g., 𝑓 𝛼𝑓 ) and its anticipated average grain
size (𝑟𝑓𝛼 ) as outlined in [29]:

𝜌𝑁 =
3𝑓 𝛼𝑓

4𝜋(𝑟𝑓𝛼 )3
. (51)

In 2D, the above relation is modified to 𝜌𝑁 =
𝑓𝛼𝑓

𝜋(𝑟𝑓𝛼 )2
.

Upon the creation of a nucleus, its introduction triggers a local
change in the phase status, subsequently altering the local diffusivity
field. This alteration allows the solute redistribution equation to nat-
urally adjust the local composition. Thus, the local composition is not
manually altered upon nucleus introduction to avoid tampering with
the solute mass conservation. At the moment of creation, the newly
formed nucleus is dynamically integrated into one of the existing GLS
functions, 𝜑𝑖, or a new function is created if needed. As the local phase
features are updated, the associated dependent fields, including the
secondary basis function 𝜑𝛼 , and the diffuse interface function (𝜙), etc.,
are correspondingly modified.

2.5. Overview of the numerical framework

Fig. 7 presents a general outline of the numerical framework high-
lighting the key stages and tasks involved. The numerical simulations
are carried out in a FE context using unstructured triangular meshes
with a P1 interpolation, and employing an implicit backward Euler
time scheme for the time discretization. Each system associated with
Eq. (10) and the weak formulation of Eqs. (38) is assembled using
typical P1 finite elements with a Streamline Upwind Petrov–Galerkin
(SUPG) stabilization for the convective terms [30]. The adaptive mesh-
ing/ remeshing strategy proposed in [16] is adopted along the grain
and interphase boundaries. The boundary conditions applied to the
GLS functions (𝜑 ) are classical null Neumann boundary conditions,
𝑖
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Fig. 5. Characterization of nucleation sites for grain corner nucleation: eligible nodes (green), shielded ineligible nodes (red).

Fig. 6. General workflow of the nucleation model.
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Fig. 7. General overview of the numerical framework.
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Table 1
ThermoCalc data extracted at 𝑇 𝑅 = 1073 K from [34] for Fe - 0.1 wt%C - 0.5 wt%Mn.

𝑇 𝑅 (K) 𝑥𝛼𝐶
|

|

|𝑅
(wt%) 𝑥𝛾𝐶

|

|

|𝑅
(wt%) 𝛥𝑆𝛾𝛼

(J⋅K−1μm−3)
𝑚𝛼∕(𝛼+𝛾)𝐹𝑒−𝐶
(K⋅wt%−1)

𝑚𝛾∕(𝛼+𝛾)𝐹𝑒−𝐶
(K⋅wt%−1)

1073 0.009 0.279 3.46 × 10−13 −10250 −186.2
Fig. 8. Solute concentration profile assumed in the semi-analytical model by Bos
et al. [33].

while the total solute concentration field is imposed with Robin-type
conditions. It should be highlighted that, post the resolution of the LS
transport equations, a particular numerical treatment [31] is performed
on the 𝜑𝑖 functions to avoid any kinematic incompatibilities at the
multiple junctions:

�̂�𝑖 =
1
2

(

𝜑𝑖 − max
𝑗≠𝑖

𝜑𝑗

)

∀𝑖 ∈ {1,… , 𝑁𝐿𝑆}. (52)

It is then followed by a reinitialization procedure of the GLS func-
tions using a recent efficient strategy [32] to restore the metric prop-
erties of a signed distance function.

3. Results and discussion

3.1. Benchmarking

To validate this numerical framework, the semi-analytical mixed-
mode sharp interface model proposed by Bos et al. [33] for diffusive
phase transformation is used. Furthermore, the results are compared
with those obtained from a similar analysis conducted by Mecozzi
et al. [34] using their phase-field numerical-model (PF-NM) framework.

In the context of 𝛾 → 𝛼 phase transformation, the semi-analytical
formulation assumes an analytical function of position in a semi-infinite
domain to model the solute concentration profile in front of the 𝛼∕𝛾
interface. The assumed concentration profile is then constrained by flux
and mass balance relations. The diffusion in the product 𝛼 phase is as-
sumed to be instantaneous, and hence the concentration profile within
this phase is set to be homogeneous at its equilibrium concentration.
Fig. 8 depicts the representation of the concentration profile in a 1D
domain within the sharp interface based semi-analytical model (SAM).
A single 𝛼 phase nucleus is assumed to form in the infinite 𝛾 phase
matrix.

The driving pressure for phase transformation is assumed to be
proportional to the deviation of 𝛾 phase interface concentration (𝑥𝛾𝛤 )
from its equilibrium concentration (𝑥𝛾𝑒𝑞):

𝛥𝐺 = 𝛶
(

𝑥𝛾 − 𝑥𝛾
)

, (53)
11

𝛾→𝛼 𝑒𝑞 𝛤
where 𝛶 is a temperature dependent proportionality factor derived
from thermodynamic databases. Interested readers are referred to [24,
33] for further details on the formulation and the resolution procedure.

Simulation conditions
An isothermal austenite decomposition (𝛾 → 𝛼) in a steel alloy (Fe

- 0.1 wt%C - 0.5 wt%Mn) at 1000 K is considered for benchmarking.
This scenario mirrors the case studied by Mecozzi et al. [34] in their
comparison of a phase-field numerical model with the aforementioned
semi-analytical method. The phase transformation is assumed to occur
under the para-equilibrium (PE) hypothesis. Notably, this study does
not consider the solute drag effects potentially induced by the Mn
element, and the capillarity effects at the phase interface are ne-
glected for this analysis. For this particular case study, following [34],
we impose an additional hypothesis of equal undercoolings in both
the phases when deriving the driving pressure via phase diagram
linearization. This added assumption enables the use of a coherent
thermodynamic description between the sharp interface model and the
numerical model. So, the driving pressure description in Eq. (43) for
the numerical model could be simplified to the following form:

𝛥𝐺𝛾→𝛼 = 𝛥𝑆𝛾𝛼𝑚𝛾∕(𝛼+𝛾)𝐹𝑒−𝐶

(

𝑥𝛾𝐶 − 𝑥𝛾𝐶
|

|

|𝑒𝑞

)

, (54)

where 𝑥𝛾𝐶 is the interface concentration in the 𝛾 phase. By comparing
the above equation with the driving pressure formulation of the semi-
analytical sharp interface model as described in Eq. (53), we can
deduce that, 𝛶 = −𝑚𝛾∕(𝛼+𝛾)𝐹𝑒−𝐶 𝛥𝑆𝛾𝛼 . The above derivation under the equal
undercooling assumption is thoroughly outlined in [24,34].

The required mobility, carbon diffusivity, and thermodynamic data
have been adopted from [34] to maintain consistency with the compari-
son. Therefore, the temperature dependency of phase interface mobility
and carbon diffusivity in the austenite phase has been considered based
on an Arrhenius-type law as follows:

𝑀𝛾𝛼 = 3.5 × 1017 exp
(

−𝑄𝑚
𝑅𝑇

)

𝑖𝑛 μm4/J/s

𝐷𝐶
𝛾 = 1.5 × 107 exp

(

−𝑄𝐶𝛾
𝑅𝑇

)

𝑖𝑛 μm2/s
, (55)

where 𝑄𝑚 = 140 kJ⋅mol−1, and 𝑄𝐶𝛾 = 142.1 kJ⋅mol−1.
The thermodynamic data extracted according to [34], with a ref-

erence temperature of 𝑇𝑅 = 1073 K, have been tabulated in Table 1.
These data have been derived by linearizing the pseudo-binary Fe-C
phase diagrams under the para-equilibrium hypothesis.

In this comparison, two scenarios are examined: (i) A pseudo-
1D domain measuring 100 μm in length (with a relatively small and
insignificant breadth of 0.15 μm), and (ii) A square 2D domain of size
100 × 100 μm2. Initially, the domain is entirely austenitic. Upon instan-
taneous cooling below the 𝑇𝐴3 temperature to 1000 K, a ferrite nucleus
is allowed to grow at the center of the domain for a duration of 200 s.
In the LS numerical-model (LS-NM), the initial ferrite nucleus radius
(𝑟𝑖𝛼) is set to 0.25 μm due to numerical restrictions associated with the
FE mesh size (whereas it starts from 0 μm in the SAM). For the LS-NM,
the initial ferrite nucleus composition is established at 0.001832 wt%C,
which is the critical nucleus composition at 𝑇 = 1000 K under the para-
equilibrium (PE) constraints, extracted from ThermoCalc. However, in
the SAM, the nucleus composition is directly set to the equilibrium
composition for the ferrite phase (0.016013 wt%C) under PE, assum-
ing instantaneous diffusion in this phase. Throughout the numerical
simulation, a uniform time step of 𝛥𝑡 = 0.01 s is utilized. An adaptive
meshing/remeshing strategy is employed with a diffuse interface thick-
ness of 𝜂 = 0.3 μm for the 1D case and 𝜂 = 1 μm for the 2D case. The
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Fig. 9. Phase distribution obtained by the level-set based numerical model — 1D case.

Fig. 10. Phase distribution obtained by the level-set based numerical model — 2D case.

Fig. 11. Evolution of the carbon concentration profiles in the austenite phase — 1D case.
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Fig. 12. Evolution of the carbon concentration profiles in the austenite phase — 2D case, along A-A line (described in Fig. 10).
Fig. 13. Comparison of the evolution of phase interface predicted by different models.
mesh resolution within the diffuse interface (ℎ𝑚𝑖𝑛) is specified as 5 nm
for the 1D case and 70 nm for the 2D case.

Results
Figs. 9 and Figs. 10 illustrate the phase distribution at the initial

state and at the end of 𝑡 = 200 s, obtained by the LS-NM for the 1D and
the 2D cases, respectively.

Fig. 11 depicts a comparison between the LS-NM and the SAM
concerning the evolution of carbon concentration profiles ahead of the
𝛼∕𝛾 phase interface within the austenite side at different time intervals
for the 1D scenario. The solid lines denote the numerical solution,
whereas the open circular markers denote the semi-analytical solution.
Similarly, Fig. 12 presents this comparison for the 2D case along the
line A-A (highlighted in Fig. 10).

The curves in Figs. 11 and 12 demonstrate good agreement at
different instants between the LS-NM and the SAM in predicting the
solute concentration profiles in the austenite phase for both the 1D
and the 2D cases. In the 2D case, a slight deviation between the
two models at 𝑡 = 200 s is noticeable. This discrepancy likely stems
from the effects of boundary conditions in the numerical model as
the phase interface approaches the boundaries of the 2D domain. In
13
contrast, in the 1D case, the phase interface predicted by the numer-
ical model at 𝑡 = 200 s is further away from the boundaries, thus
unaffected by boundary conditions. It is important to note that while
the semi-analytical model operates within a semi-infinite domain, the
numerical model operates within a bounded domain with imposed
boundary conditions. Analyzing these concentration profiles reveals
the mixed-mode nature of the transformation kinetics. It is clear that
the interfacial concentration does not immediately attain the local
equilibrium concentration, leading to finite interface migration. At
the same time, diffusion in the bulk of the austenite phase does not
occur instantaneously, resulting in a gradient between the interfacial
concentration and the bulk concentration.

In Figs. 13, the evolution of the radius of the ferrite phase nucleus
between the SAM, LS-NM, and the PF-NM is compared. On the other
hand, the evolution of the average interfacial carbon concentration
in the austenite phase across these different models is compared in
Figs. 14. The PF-NM results used in these plots were sourced from [34],
where an identical analysis was performed. These curves clearly show
that the predictions from the LS-NM closely match those of the sharp
interface SAM, in contrast to the PF-NM, which predicts slower trans-
formation kinetics. Although the PF-NM predicts relatively lower in-
terfacial carbon concentrations, which theoretically should translate to
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Fig. 14. Comparison of the evolution of interfacial carbon concentration in the austenite side as predicted by different models.
Fig. 15. Illustration of the initial austenitic microstructure with 1592 grains (the grain
interfaces are highlighted in black).

Fig. 16. Grain size distribution of the initial large-scale microstructure.
14
Fig. 17. Thermal path imposed during the transformation: the broken axis
representation indicates that the same temperature is maintained during that period.

Fig. 18. Time evolution of the ferrite fraction during the transformation.
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Fig. 19. Snapshots of austenite decomposition into ferrite in a large-scale microstructure, at different instants till the end of cooling.
more driving pressure during the transformation, this does not lead
to faster interface kinetics. In the phase-field method, the migration
of interface kinetics is formulated using an effective or numerical
interface mobility, which depends on the diffuse interface thickness
parameter and the physical interface mobility. As highlighted in [34],
during the phase-field simulation, the effective interface thickness is not
constant and is lower than the initially imposed value. In contrast to the
phase-field method, the level-set numerical method relies solely on the
physical interface mobility to dictate interface migration kinetics. Since
the migration of level-sets is theoretically synonymous to that of the
sharp interface method, only the velocity field over the iso-zero contour
of the level-set (𝜑𝛼 = 0) is of prime importance. This differs from PF-
NM, where kinetics are considered across the entire diffuse interface.
This sharp interface characteristic of LS-NM in interface migration
could perhaps reflect the closer resemblance observed in its predictions
compared to the fully diffuse approach of PF-NM.

For the comparative cases presented here, it should be highlighted
that the discretization between the two numerical approaches is not
similar. The phase-field approach adopts a regular grid with a size
of 0.1 μm. This translates to about 1 million degrees of freedom for
the 2D case. In our level-set approach, in the 2D case, we employ an
adaptive mesh with a finer mesh resolution of about 0.07 μm, adapted
near the interfaces, while the far-field mesh size is set to 1 μm. So the
15
maximum degrees of freedom encountered is only about 215 000 (5
times lower than that of the phase-field approach). During the initial
stages of the simulation, the degrees of freedom are much lower due
to the smaller precipitate size. Therefore, clearly the level-set approach
has a much coarser discretization compared to the other approach in
this context. Mecozzi et al. [34] though demonstrate in the context
of PF-NM that enhancing mesh resolution and ensuring an adequate
number of discretization points within the diffuse interface indeed leads
to better convergence in their model’s predictions.

3.2. 2D biphasic polycrystal cases

Binary alloy: A step towards a realistic large scale case
We now examine austenite decomposition in a binary steel alloy

(Fe - 0.02 wt%C) within a large-scale microstructure, emulating the
complexity often encountered in industrial settings. At atmospheric
pressure, the austenitization temperature for this alloy is approximately
𝑇𝐴3 = 1175 K. We consider an initial polycrystalline microstructure in
a square domain of size 1 mm, situated slightly above the 𝑇𝐴3 temper-
ature with 𝑇 𝑖 = 1176 K. At this stage, the microstructure is composed
entirely of austenite grains. Fig. 15 illustrates the morphology of the
initial microstructure, featuring 1592 austenite grains. The initial grain
morphology has been obtained by respecting the grain size distribution
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Fig. 20. Snapshots of carbon evolution between the phases at different instants in a large-scale microstructure till the conclusion of cooling.
(evaluated for each grain as the radius of a circle of equivalent area)
depicted in Fig. 16 with an average grain radius of about 14 μm.

The microstructure is cooled at a constant rate of �̇� = −10 K⋅s−1

to 𝑇 𝑓 = 976 K. Following the cooling phase, the microstructure is
maintained at this temperature for an additional 80 seconds to ensure
complete transformation. It is then rapidly reheated to 1100 K at a rate
of 20 K s-1 to enhance grain boundary mobility and thus promote grain
growth effects. After the reheating, the microstructure is held at 1100 K
for the remaining duration of the simulation until 𝑡 = 1000 s. The
thermal path corresponding to this scenario is illustrated in Fig. 17.

The interface mobility and carbon diffusivity data are adopted
from [13,35,36] with Arrhenius type law for temperature dependence:

𝑀 = 6 × 1017 exp
(−140000

𝑅𝑇

)

, in μm4/J/s

𝐷𝐶
𝛼 = 2.2 × 108 exp

(−122500
𝑅𝑇

)

, in μm2/s

𝐷𝐶
𝛾 = 1.5 × 107 exp

(−142100
𝑅𝑇

)

, in μm2/s

. (56)

The value for the interface energy is taken following [12,37], i.e., 𝜎𝛾𝛼 =
1.0×10−6 J⋅mm−2. In this study, mobility and interfacial energy are
assumed to be homogeneous, isotropic, and identical across phase and
grain interfaces of both phases. It is however crucial to emphasize that
the generalized kinetic description employed in this numerical model
enables the seamless integration of any heterogeneity or anisotropy
aspects if required.

Taking into account the available driving pressures for ferrite nucle-
ation at different temperatures below the austenitization temperature,
and factoring in the capillarity effects, the nucleation start temperature
is estimated to be 𝑇 = 1166 K. This temperature is chosen to increase
16

𝑁𝑠
Table 2
Other numerical parameters assumed for the nucleation model.
𝑘𝑠ℎ 𝑘1 𝑘2
2.0 3.0 7.0

the probability of ferrite nuclei entering the growth regime of the trans-
formation. This delay in nucleation could also loosely represent the
notion of an incubation time. In this scenario, nucleation is configured
to occur solely at the triple junctions (grain corners), continuously,
until these sites are saturated, and spanning over a temperature range
of 𝛿𝑇𝑁 = 40 K. Under these conditions, a total of 2207 ferrite nuclei
are generated. The theoretical critical radius of the nucleus (𝑟∗𝑡ℎ) is
computed as detailed earlier using the Eq. (49) with the help of
the necessary thermodynamic data interpolated as a function of the
temperature.

The resolution time step is fixed at 𝛥𝑡 = 0.02 s. An adaptive mesh
with periodic remeshing is utilized. The local mesh size within the
diffuse phase interface is set as ℎ𝑚𝑖𝑛 = 0.5 μm, and the diffuse phase
interface thickness is set as 𝜂 = 8 μm (≈ 20ℎ𝑚𝑖𝑛). The other numerically
related nucleation model parameters are summarized in Table 2.

In Fig. 18, the time evolution of the ferrite (𝛼) fraction is illustrated.
It is evident that the ferrite fraction converges to unity, consistent
with the ThermoCalc prediction indicating complete transformation to
a ferritic microstructure below 990 K.

Figs. 19 present the snapshots of the transforming microstructure
at different intervals during the cooling stage. The associated carbon
redistribution maps are illustrated in Figs. 20. The continuous mode of



Computational Materials Science 243 (2024) 113142N. Chandrappa and M. Bernacki
Fig. 21. Configuration obtained post complete transformation to ferrite at the end of 𝑡 = 100 s: Phase distribution (left), Carbon concentration field (right).
Fig. 22. Snapshots of grain growth effects observed in ferrite grains at different instants after reheating.
nucleation results in a dispersion in the eventual ferrite grain size dis-
tribution. Early-formed nuclei gain an initial advantage in growth over
subsequently appearing ones. Moreover, the first few nuclei experience
minimal hard impingement until new neighboring nuclei gradually
emerge. The presence of local nuclei clusters also contribute to the
dispersion in ferrite grain size due to the enhanced hard impingement
17
among the ferrite grains. Nucleation limited to grain corners and the
relatively high nucleation density due to rapid cooling tend to yield
globally finer equiaxed ferrite grains as evident from the Figs. 19.
The carbon enrichment in the austenite phase is noticeable as the
transformation proceeds. The tiny dark spots observed in Fig. 20(d) is
characterized by the formation of minuscule trapped austenite islands
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Fig. 23. Ferrite grain size distribution during the grain growth (GG) stage.
Fig. 24. Comparison of the microstructure morphologies before and after the complete thermal treatment: represented by grain coloration.
Fig. 25. Grain coloration adopted for the initial austenitic grain morphology.

or pockets. Due to the high cooling rate, there is a rapid evolution
resulting in a significant influx of carbon atoms into those austenite
grains, which are thoroughly surrounded by a large number of fer-
rite grains. This substantial carbon enrichment consequently reduces
18
the driving pressure for phase transformation in these areas, as lo-
cal equilibrium is rapidly achieved. This results in trapped austenite,
characterized by visible solute gradients. Given sufficient time, these
solute gradients may diffuse into the bulk of the grains, enabling the
additional growth of ferrite grains that extend into these confined
austenite islands.

Figs. 21 represent the state of the ferritic microstructure obtained
after the transformation stage (at 𝑡 = 100 s). The triple junctions formed
by the ferrite grains in Fig. 21 are clearly far from the expected equilib-
rium configuration (120° for isotropic interfacial properties). Given the
right activation, the system could further reduce the excess free energy,
primarily existing as surface energy, through the grain growth (GG)
phenomena. However, at temperatures as low as 976 K, the interface
mobility remains low, and the effects of GG are negligible within the
timescales of interest. Therefore, to initiate the necessary activation,
the microstructure is reheated to a higher temperature (1100 K) and
maintained there to enhance the GG effects. It should be remarked that
the GG stage of the simulation is resolved at a higher time step (0.5 s
in this case).

The influence of GG phenomenon on the resulting ferrite grain
structure is portrayed in Figs. 22. The growth of larger grains at the
expense of smaller ones, aimed at minimizing the interfacial area, is
clearly evident. Notably, the triple junctions approach the equilibrium
angles (120°) characteristic of isotropic GG. The differences in the
ferrite grain size distributions obtained before the onset of GG regime,
and after GG effects at 𝑡 = 1000 s are showcased in Figs. 23. As the
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Fig. 26. Evolution of Cahn’s solute drag parameters with temperature for the chosen case.
Fig. 27. Evolution of ferrite fraction with time for the difference cases.

GG effects become prominent, the grain size distribution becomes more
dispersed, with the average grain size gradually increasing. The initial
and the final microstructures resulting from this thermal treatment are
depicted in Figs. 24 using grain coloration. This scenario produces a
finer microstructure after both the transformation and the subsequent
grain growth. The current model does not account for the reverse
phase transformation during the reheating stage. However, since the
driving pressure description remains consistent, adapting the existing
framework to control the direction of the phase transformation should
be relatively straightforward. This could be a potential avenue for
future research, involving additional complexities such as nucleation
for the reverse transformation.

Ternary alloy: Influence of solute drags effects
We shall now examine diffusive phase transformation in a ternary

alloy (Fe-0.1 wt%C-0.5 wt%Mn) in the presence of a substitutional Mn
element. The influence of Mn on the transformation kinetics are incor-
porated through solute drag aspects under para-equilibrium hypothesis.
For this case, a simple microstructure illustrated in Fig. 25 is considered
with 317 austenite grains. For this alloy, the calculated austenitization
temperature under the PE hypothesis is approximately 1118 K. The
initial temperature is set to this 𝑇 𝑃𝐸𝐴3 temperature. The microstructure
is cooled to a final temperature of 𝑇 𝑓 = 910 K at a cooling rate of −10
K s-1. At the end of cooling, the microstructure is maintained at the
final temperature for an additional 30 s to provide ample time for phase
transformation and the associated solute redistribution. The interfacial
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energy, mobility, diffusivity data, and most numerical parameters are
fixed the same as in the previous case. The time step is chosen as
𝛥𝑡 = 0.02 s for this case. The ferrite nucleation has been limited to
grain corners. For simplicity, the number of ferrite nuclei stochastically
introduced have been restricted to 300 for this case. The nucleation
start temperature is set to 𝑇𝑁𝑠 = 1112 K, and the range is assumed as
𝛿𝑇𝑁 = 30 K. The numerical parameters of the nucleation model are
similar to those listed in Table 2.

To model solute drag aspects, the simplified description provided
by Cahn’s model [23] is adopted as detailed in the second section. In
practical scenarios, the objective is to utilize the two parameters (𝛼, 𝛽)
introduced by Cahn’s solute drag pressure as fitting model parameters
to agree with the experimental results, rather than employing the an-
alytical expressions provided by Cahn in Eqs. (24) and (25). However,
for demonstration purposes in this context, we utilize the analytical
expressions based on literature [38] to establish some parameters in
Eqs. (24) and (25), aiming for as realistic a representation as possible.
Figs. 26 provide a visualization of the Cahn’s parameters computed in
this simulation, depicting their variation with temperature. The graph
illustrating the variation of 𝛽2𝐶 in Fig. 26(b) indicates a rise in solute
drag pressure at elevated temperatures, gradually weakening as the
temperature decreases.

Fig. 27 showcases the evolution of the ferrite phase fraction over
time for two scenarios: one without any solute drag effects, and the
other incorporating solute drag effects. It could be inferred that, en-
hanced drag effects at higher temperatures limit the phase fraction
initially. However, with sufficient time, both the scenarios eventually
converge to a similar ferrite fraction value as depicted in Fig. 27, since
at lower temperatures the solute drag effects are significantly reduced.

Figs. 28, and 29 compare the phase distribution and the solute
distribution during the transformation between the scenarios with and
without the solute drag effects. Both the scenarios globally result in
equiaxed grains. However, in the instance incorporating solute drag
effects, the growth of ferrite nuclei in the beginning at higher tem-
peratures is sluggish due to strong drag effects. Generally, this could
limit the potential dispersion in grain size distribution caused by con-
tinuous nucleation, resulting in a relatively uniform distribution of
grains. However, as evident in Figs. 31, in this case, the difference
are minimal, possibly due to a smaller temperature range of nucleation
for the considered cooling rate. The comparison between the final mi-
crostructure morphologies illustrated in Figs. 30 demonstrates similar
grain characteristics, including a comparable mean ferrite grain size.
The noticeable distinctions primarily lie in the transformation kinetics
between the two scenarios for the assumed solute drag parameters in

this illustration.
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Fig. 28. Snapshots of phase evolution with and without the consideration of solute drag effects.
3.3. Simulation of other solid-state diffusive phenomena: Particle coarsen-
ing

After a first-order diffusive phase transformation where second-
phase particles (SPPs) separate within a matrix phase, local equilibrium
might be achieved between the matrix and the SPPs. However, this state
may not represent the system’s minimum free energy configuration,
particularly when the matrix phase consists of a dispersed or multi-
modal distribution of SPPs. The excess free energy contributed by the
interfacial energy of the of SPPs renders the system thermodynamically
unfavorable. Consequently, the system attempts to liberate this excess
free energy by dissolving smaller particles in favor of larger ones
through diffusional mass transport. The curvature of SPPs alter the local
equilibrium concentrations with the matrix phase due to the Gibbs–
Thomson effect. The multi-modal distribution of SPPs thus creates a
gradient in concentration which drives the diffusional mass transport
between a region of higher concentration and lower concentration. This
phenomenon is commonly referred to as particle coarsening or Ostwald
ripening (OR) [39,40]. In the absence of elastic misfits between the
two phases, the kinetics of particle coarsening are governed by the
capillarity induced driving pressure and the driving pressure due to
the phase transformation. It should thus be possible to simulate this
phenomenon using the existing numerical framework.

To simulate this phenomenon, we have chosen to use a hypothetical
scenario: representing the SPPs as the ferrite phase (𝛼) and the ma-
trix as the austenite phase (𝛾). It is crucial to highlight that despite
this hypothetical setup not mirroring the conventional appearance of
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Ostwald ripening, the inherent kinetics and dynamics remain identical.
The primary objective is to showcase the numerical model’s capabil-
ity in simulating various diffusive solid-state phenomena, including
particle coarsening, utilizing the same kinetic framework. Therefore,
our simulation involves an austenite phase matrix within a 1 mm-
sized domain, wherein the second phase consists of ferrite, forming a
bimodal distribution of particles, as illustrated in Fig. 32. The initial
configuration is represented in Fig. 33 through the grain coloration
employed for this case.

The initial condition is slightly offset (𝑇 𝑖 = 1162 K) from the isother-
mal simulation temperature of 𝑇 = 1160 K for the Fe-0.02 wt%C alloy.
This proximity ensures that the system is nearly at local equilibrium
for phase transformation and can swiftly transition to the particle
coarsening regime. The resolution time step is fixed at 𝛥𝑡 = 0.5 s.
The mobility and carbon diffusivity data are consistent with previous
cases. However, considering the long time scale of this phenomenon,
for illustrative purposes, the interfacial energy is set to a higher value
(𝜎𝛾𝛼 = 2×10−6 J⋅mm−2) to accentuate the coarsening process. The
other numerical parameters remain the same as the previous cases. The
simulation is run for a duration of 10 000 s.

Figs. 34 present a series of snapshots illustrating the particle evo-
lution at different instants. The system is anticipated to reach local
equilibrium after the initial phase transformation at approximately 50 s.
Thus, the particle coarsening regime is assumed to commence from
𝑡 = 50 s. The expected coarsening of larger particles is visibly apparent,
as the smaller particles dissolve over time. It is important to note that
physical coalescence aspects are not accounted for in this simulation.
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Fig. 29. Snapshots of carbon distribution with and without the consideration of solute drag effects.

Fig. 30. Final phase distribution obtained with and without solute drag effects.
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Fig. 31. Final grain size distributions obtained for the two cases.
Fig. 32. Initial size distribution of second-phase particles (SPPs).

Fig. 33. Initial grain coloration of the matrix-SPPs setup.

Whenever two particles approach close proximity, the local diffusional
flux and the interaction with capillarity pressure seem to flatten their
interfaces.

Fig. 35 demonstrates the particle size distribution obtained at the
end of the simulation. It seems evident that, in comparison to Fig. 32,
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there has been an increase in the frequency of larger particles over time
as a result of coarsening.

In Fig. 36, the kinetics of the particle size evolution are compared
with the modern Ostwald ripening theories [41]. These theories are
based on a generic expression:

�̄�3
𝛼 − �̄�

3
𝛼(0) = 𝑘𝑡, (57)

where �̄�𝛼 is the mean particle size, �̄�3
𝛼(0) is the initial mean particle

size, and 𝑘 is a parameter characterized based on the concerned theory.
It appears that the simulated mean particle size can be fit into the
aforementioned expression, resembling the quantitative description
provided by the OR theories. Therefore, the hypothetical scenario we
have adopted demonstrates kinetic characteristics akin to those of a
typical Ostwald ripening phenomenon. This serves as evidence of the
numerical model’s seamless potential to simulate a range of diffusive
solid-state phenomena.

4. Conclusions and perspectives

A generalization of the global level-set numerical framework used to
primarily simulate diffusive solid-state phase transformation in metal-
lic polycrystalline materials is presented. The generalized framework
incorporates solute drag aspects into the transformation kinetics in
the presence of any substitutional solutes. A coupling with a thermo-
dynamic database was established to provide seamless extraction of
necessary thermodynamic data for the transformation. The level-set
numerical model was benchmarked against a state-of-the-art sharp in-
terface semi-analytical model, alongside comparisons with predictions
from a corresponding phase-field numerical model. The potential of the
proposed numerical framework to replicate the phase transformation
behavior in complex large-scale microstructures with thousands of
grains, relevant to industrial settings was showcased. An illustrative
case considering solute drag aspects in a ternary alloy was presented,
outlining the model’s ability to reproduce sluggish transformation ki-
netics. The adjustable solute drag parameters offer additional flexibility
to control the transformation kinetics, to be in better agreement with
the experimental transformation curves. The numerical model’s versa-
tility to simulate other diffusive solid-state phenomena such as particle
coarsening, without any modifications to the existing formulation was
demonstrated. The generalized nature of the kinetic framework along-
side the adaptive meshing capabilities offer diverse scope to seamlessly
integrate other complex evolution aspects into the model, including
simulations in 3D.

The positive outcomes of this work are expected to guide future re-
search, potentially expanding the range of modeling approaches avail-
able alongside the established phase-field method in the realm of
diffusive solid-state phase transformation. To avoid overloading the
work presented in this article, aspects related to numerical performance
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Fig. 34. Snapshots of coarsening and dissolution of second phase particles (SPPs).
(CPU time, computation cost for representative volume elements, accu-
racy related to mesh optimization and to the adopted FE resolution,
adaptive time step, and impact of these parameters on mass con-
servation) have not been detailed here. Indeed, this aspect will be
the focus of another study currently underway, where these elements
will be discussed in relation to the state-of-the-art multi-phase field
approaches. A comprehensive experimental analysis to validate the
proposed numerical model is also planned. Such an analysis would
enable improvements to the current nucleation model, potentially re-
fining it based on experimental observations. In the proposed numerical
framework, solute diffusion is assumed homogeneous within the bulk
of a grain and across the grains of the same phase. Consequently,
exploring the impact of short-circuit diffusion effects during phase
transformation emerges as a potential avenue for future work. Inte-
grating the effects of elastic/plastic accommodation due to volume
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misfits at the interphase boundaries into the current kinetic frame-
work could further enhance our understanding of interface kinetics,
providing a more comprehensive description of the physics involved.
The global objective of this work was to establish a kinetic framework
capable of encompassing various evolution aspects simultaneously,
notably in a high plastic deformation context. The existing numerical
tools and concepts devised for recrystallization could be integrated
into the current framework, enabling the simulation of dynamic re-
crystallization in a multiphase context and potentially considering,
at the mesoscopic scale, the modeling of realistic industrial thermo-
mechanical paths for multiphase materials. Another perspective of
these developments concerns the potential improvement/optimization
of state-of-the-art equations used in macroscale code to describe type II
residual-stresses due to phase transformations mainly during quenching
and surface hardening treatments.
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Fig. 35. Final size distribution of second-phase particles (SPPs).

Fig. 36. Comparison with modern Ostwald ripening theories.
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