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A B S T R A C T   

For over three decades, the front-capturing level-set method has demonstrated its prowess for the 
simulation, at the mesoscopic scale, of numerous mechanisms in the context of microstructure 
evolution occurring during complex thermomechanical paths. This review delves into the foun-
dations of this numerical framework, charting its evolution concerning polycrystalline materials, 
examining its recent advancements, scrutinizing its current shortcomings, and exploring future 
possibilities. Special attention will be given to the context of hot metal forming processes where 
discontinuous/continuous dynamic recrystallization, post-dynamic recrystallization, grain 
growth and solid-state phase transformations are the main mechanisms of interest. In this context, 
this article also aims to reintroduce, as simply as possible, the kinetic equations related to the 
grain boundary migration.   

1. Introduction 

The in-use properties of metallic materials are strongly related to their microstructures, which are themselves inherited from the 
thermomechanical treatments. Hence, understanding, predicting and optimizing microstructure evolution remain open academic 
questions and are nowadays a key to the competitiveness of major industries, with direct environmental, economic and societal 
benefits. The prediction of the microstructures take place in the realm of Integrated Computational Materials Engineering (ICME) [1] 
and the remarkable evolution of computational resources has enabled within the academic world the extensive modeling of solid 
materials at all scales of interest sometimes with multiscale strategies. In an industrial R&D context, where computational resources 
are inevitably more limited and codes need to be robust and realistic, macroscale finite element codes with minimal information about 
the material itself remain the standard. 

Indeed, microstructure predictions on multi-pass processes are very challenging due to the strong evolution of the microstructure 
topology from the beginning to the end of the process. The competition between grain boundary migration due to the minimization of 
interface energy (grain growth - GG), recovery (RV), solid-state phase transformation (SSPT), dynamic recrystallization (DRX) through 
nucleation of new grains (discontinuous dynamic recrystallization - DDRX) or rearrangement of substructures (continuous dynamic 
recrystallization - CDRX), and post-dynamic recrystallization (PDRX), lead to complex coupled effects [2]. Minor variations of the 
process parameters (interpass and/or reheating times, temperature and strain rate values at each pass) may have huge effects on the 
way the previous cited mechanisms can take place. In this context, macroscopic and homogenized models, i.e. phenomenological 
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models such as those based on the well-known Johnson–Mehl–Avrami-Kolmogorov (JMAK) equations [3–5] are widely used in the 
industry, mainly owing to their low computational cost (i.e. with very fast computation times and minimal requirements in terms of 
memory usage). If this phenomenological framework is quite convenient, the validity range of these models, associated with a given set 
of material parameters is often limited to a given process and initial material state. To push these limits, mean field models, based on an 
implicit description of the microstructure by considering grains or precipitates as spherical entities and statistical evolution related to 
different characteristics (grain size, precipitate size, dislocation density), have been developed [6–13]. Mean-field models generally 
provide acceptable predictions in terms of recrystallization kinetics, grain size and/or precipitate distribution evolution. However, 
facing multi-pass processes, they rapidly reach their limits. 

Then, there is a tremendous demand for predictive models at the mesoscopic scale which explains the development of the hier-
archical scale-bridging strategies, where the so-called mesoscopic ”full-field” numerical methods come into play. These approaches, 
are based on a full description of the polycrystalline microstructure and high-fidelity calculations at the scale of representative volume 
elements (RVE) where local macroscopic information, such as temperature, strain, and strain rate, determined by macroscopic 
computations without coupling with the mesoscale characteristics, can serve as boundary conditions. They have demonstrated an 
exciting potential for an extensive range of microstructure evolutions like the precise modeling of recrystallization [2,14,15] in dy-
namic or post-dynamic conditions, grain growth [2], diffusive solid-state phase transformations [16], spheroidization [17], and sin-
tering [18]. 

The primary numerical frameworks involved include Monte Carlo Potts [19–26], cellular automata [27–30,25], multi-phase field 
[31–33], front-tracking/vertex [34,35], and level-set models [36–39]. These numerical methods are currently used and developed by 
many researchers [2] and regularly compared for particular metallurgical mechanisms [40,26]. 

Of course, all the mentioned models have their own strengths and weaknesses. Probabilistic voxel-based approaches such as Monte 
Carlo Potts and some Cellular Automata formulations are very popular. These models consider uniform grids composed of cells to 
model microstructure and stochastic laws to predict the motion of interfaces. These simulations are efficient to minimize computa-
tional cost and the scalability is excellent. On the other hand, deterministic approaches, based on the resolution of partial differential 
equations (PDE), are accurate in the description of the involved physical mechanisms although they are numerically more expensive. 
For instance, front-tracking or vertex approaches are based on an explicit description of interfaces in terms of vertices. Interfaces 
motion is imposed at each increment by computing the velocity of a set of points. A major difficulty of these approaches is related to the 
complexity of handling all the possible topological events, such as disappearance and appearance of new grains, which is not 
straightforward especially in 3D. Other deterministic approaches, also called front-capturing approaches, avoid these topological 
problems since they are based on an implicit description of the interfaces: the multi-phase field (MPF) and the level-set (LS) methods. 

LS simulations in context of regular grids and Fourier transform resolution, with very large number of grains, can be found for grain 
growth [41,42] and for static recrystallization [43] modeling. When global or local meshing/remeshing operations have to be 
considered (large deformation, presence of second phase particles…), LS approach in context of unstructured finite element (FE-LS) 
mesh, and reasonable number of grains can be considered [38,44–48]. One of the major advantages of this approach lies in its ability to 
simultaneously model numerous concomitant mechanisms in the context of large deformations, which explains its used to simulate 
realistic industrial thermomechanical paths [49]. 

Fig. 1. Scheme depicting one GB and its parameters. Inspired from an image available online at Flickr (https://flic.kr/p/2m5JQkz, Uploaded on 15 
June 2021) licensed under CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/). Title: 10GGBParam. Author: Brayan Murgas. 
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In the following, the state of the art concerning the use of LS method for the modeling of microstructure evolution will be sum-
marized. First, an introduction to the mathematical description of grain boundaries and relevant kinetics equations linked to their 
evolution will be recalled. Second, the LS methodology in context of polycrystal description will be introduced. Third, algorithms for 
modeling recrystallization (ReX), GG, and other diffusive phenomena will be described. Discussions concerning the anisotropy of grain 
boundary energy and how to take into account static or evolving second phase particles (SPP) will be illustrated. Finally some limits, 
current developments and perspectives of this approach will be discussed. 

2. Mathematical description of grain boundaries and kinetic equations of microstructure evolution at the mesoscopic 
scale 

Most common metallic parts have defects that change the structure of the material and their arrangement are responsible of the 
properties of the material. Defects types can be classified into point (0D), linear (1D), planar (2D) and volume (3D) defects. Vacancies, 
interstitial, substitutional atoms are point defects, dislocations are 1D defects, grain/phase interfaces, and stacking faults are 2D 
defects, and pores, cracks are 3D defects. Microstucture evolutions during thermomechanical treatments can be explained by the 
minimization of the stored energies linked to these different defects. By depicting typical grain boundary network in a polycrystal as in 
Fig. 1, two neighboring grains Giand Gj constitute a grain boundary (GB) Γij. It is characterized by its morphology and its crystallo-
graphic properties which may be summarized by a tuple B ij =

(
Mij,nij

)
with two shape parameters describing the interfaces through 

the unitary-outward normal direction nij, and three crystallographic parameters describing the orientation relationship between the 
two adjacent grains known as the misorientation tensor Mij (see Fig. 1 top right). This GB space B parameterized by the misorientation 
and the normal direction is illustrated in Fig. 1. The misorientation is frequently defined with the axis-angle parameterization, i.e. 
Mij
(
aij, θij

)
, where aij is the misorientation axis and θij the misorientation angle [50]. The effect of crystallographic symmetries on 

misorientations is to reduce the fraction of the full orientation space necessary to uniquely represent all possible misorientation re-
lationships. Disorientation tensor describes the misorientation tensor with the smallest possible rotation angle, called the disorien-
tation angle. 

As described in Fig. 1, the GB must be mathematically defined as a 2D closed surface with an interior (the grain itself) in a 3D 
domain Ω, and many driving pressures discussed thereafter are related to metric properties associated with this surface and intrinsic 
quantities that exist only on it. Therefore, it is necessary to correctly introduce the surface differential operators to describe the 
characteristics residing on it. Additionally, different ambiguous notation exist in the literature, which can be confusing. Typically, it is 
common to find in many writings the indices Γ, s, and n used, sometimes simultaneously. For the sake of consistency with the con-
ventional notation of the GB stiffness tensor [51–53], the ’n’ index notation referring to the outward unit normal (inclination) will be 
used in the following to describe all surface-related differential operators on the closed surface Γ. By defining in Ω the sign Euclidean 
distance d(x) to Γ with positive value inside the closed surface and negative outside (classical in LS framework as discussed in the next 
section), we have in all points P of Γ,nP = − ∇d(xP). In the following and for the sake of clarity, the index P will be omitted.. Once n is 
clearly introduced, different surface derivative operators and operations for a scalar function u : Γ→R and a vector function u : Γ→R3 

can be defined: 

∇nu = ∇u − (∇u ⋅ n)n = Pn∇u = (∇u)‖, (1)  

with Pn = Id − nnT = Id − n ⊗ n the orthogonal projection, 

∇nu = Pn∇u Pn, (2)  

∇n ⋅ u = ∇ ⋅ (Pnu) = ∇ ⋅ u‖, (3)  

Δnu = ∇2
nu = ∇n ⋅ ∇nu = ∇ ⋅ ∇nu, (4)  

as such a clear framework to introduce the 3D curvature tensor (also called the Weingarten map). It exists different equivalent ways to 
introduce this tensor. A 2D one, living in the Γ surface, consists to considering the map P⟶κ that assigns each point of Γ to the 
function that measures the directional curvatures [54] κ(t) of Γ at P in the unitary vector t direction; t being tangent to Γ at P (see 
bottom of Fig. 1). The function κ( ⋅ ) is a quadratic form: 

κ(t) = ( α1 α2 )

(
κ11 κ12
κ21 κ22

)

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
K|Γ

(
α1
α2

)

, (5)  

where t = α1t1 +α2t2 with (t1, t2) an orthonormal basis of the tangent space to Γ in P, κ11 = κ(t1), κ22 = κ(t2) and κ12 = κ21. If the 
vectors (t1, t2) corresponds to the eigenvectors of the diagonalizable second order tensor K|Γ of corresponding eigenvalues (κ1, κ2) as 
choosen in Fig. 1, then κ12 = κ21 = 0, κ11 = κ1 and κ22 = κ2; i.e. the corresponding directional curvatures are known as the principal 
curvatures. The invariants det

(
K|Γ
)
= κ1κ2 and Tr

(
K|Γ
)
= κ1 +κ2 = κ are well-known as the Gaussian curvature and two times the 

mean curvature. It must be highlighted that, in material science community, the mean curvature is the classical terminology often used 
to describe the trace itself. A 3D extension of κ can easily be obtained by considering the (n, t1, t2) R3-orthonormal basis and: 
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κ(t) = ( n1 α1 α2 )

⎛

⎝
0 0 0
0 κ1 0
0 0 κ2

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟
K

⎛

⎝
n1
α1
α2

⎞

⎠, (6)  

for any vector t = n1n+α1t1 +α2t2 and where K is the curvature tensor, expressed here in the (n, t1, t2) orthonormal basis. Finally, a 
classical way to evaluates the curvature tensor in the reference frame consists to use the surface gradient operator defined in Eq. (2). 
Indeed by using the already precised convention concerning the sign of d and then the sense of n, we have K = ∇nn = Pn∇n Pn. 
Interestingly, if the surface gradient operator is quasi-systematically used in the literature to introduced the curvature tensor, it is in 
fact completely superfluous here. Indeed, by considering firstly that the normal is unitary, and so n ⋅ ∂i(n) = 0 ∀i, we have ∇n Pn =

∇n. Moreover, by considering now that Γ is a smooth closed surface, i.e. that n derived from d and so ∂inj = ∂jni ∀i,j, we have Pn∇n =

∇n. Thus K and κ can be defined without surface derivative operator as: 

K = ∇n = − ∇∇d = − Hess(d), and κ = Tr(K) = ∇ ⋅ n = − Δd. (7)  

Several metallurgical phenomena have been cited. Therefore, it is important to draw up here an assessment of the kinetics equations 
existing in the state of the art, at the mesoscopic scale, and their limits and to come back to the relevant physical mechanisms. When 
ReX and related phenomena or diffusive SSPT are considered, the classical framework consists in defining the interface kinetics as the 
cross product between a mobility, μ [m4⋅s− 1⋅J− 1], generally viewed as an intrinsic scalar property of the considered interface and 
function of temperature, and the considered driving pressures, P [J⋅m− 3]: 

v = μPn. (8)  

The first driving pressure of interest, is related to the minimization of the energy correlated to surface defects in materials (as grain and 
phase interfaces). This energy field [J⋅m− 2] is classically denoted γ for GB and σ for phase boundaries (PB). Concerning GB, the 
corresponding driving pressure can be defined by several way depending on the anisotropy degree of γ. Indeed, as largely exhibited 
experimentally [2], γ can be seen as a 5-parameter functions γ(M,n). Following the chain rules perfectly depicted by Herring in [55], 
the capillarity driving pressure Pc linked to a GB interface, moving from the S0 surface to the S = S0 +dS surface with a δv resulting 
volume variation, can be described as: 

Pcδv = − δ
(∫

γd S
)

= −

∫

δγd S0 −

∫

γδ(d S), (9)  

with, 
∫

γδ(d S) ≈ γδvId : K = γδvTr(K), (10)  

and, 
∫

δγd S0 ≈ − ∇nγ ⋅ nδv+∇n∇nγ : Kδv. (11)  

By combining Eqs. (9)–(11), we obtain at the first order of the small displacement performed: 

(12)  

This equation invites various comments. Firstly, as it will be illustrated in Section 3, if the last term is equal, by construction, to 0 for a 
field existing strictly on a smooth closed Γ interface, this term can become ambiguous if front-capturing type methods are used to 
describe the interface with an extension of the γ field over a certain thickness around the Γ interface but also near multiple junctions. 
The term (n) is well known as the GB stiffness tensor [51–53]. Generally, (n) and K are not diagonalizable in the same basis of 
orthonormal eigenvectors and the calculation of the tensor double product contracted is not straightforward and must be carefully 
evaluated in the right basis by also taken into account the dependence of γ to M and crystallographic symmetries [56,57]. Finally, 
when γ is assumed not dependent of the inclination n, Eq. (12) simplifies in the well-known mesoscopic kinetic equation for curvature 
flow: 

Pc ≈ − γ(κ1 + κ2) = − γκ. (13)  

Eqs. 12 and 13 are interesting, in my opinion, to discuss the current criticism concerning the real link between GG and curvature thanks 
to reverse engineering of recent 3D in situ data or 3D full-field high-fidelity simulations [58–60]. Typically, in view of the different 
proposed equations, the sometimes used recent strong statements that ”GB kinetics during GG are not correlated to curvature” is 
inherently ambiguous. Are we speaking of the trace of the curvature tensor (Eq. (13)) or the curvature tensor itself (Eq. (12))? In the 
state of the art, it is ultimately the equation (Eq. (13)) that is questioned without taken into account the torque terms in experimental or 
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numerical analysis. Recent results proposed by Florez et al. [61] seem to reinforce this discussion. The underlying question then being, 
can one reasonably use equation Eq. (13) in place of Eq. (12) when 3D in situ data at interface scale are considered? Is the Eq. 13 
acceptable only when an averaged approach at the polycrystalline scale is considered? These questions, as such as the straightness of 
the 5-parameter manifold used to describe γ, will likely be widely addressed in the coming years via the development of new algo-
rithms for characterizing the GB stiffness tensor in 3D in situ data. 

In the context of ReX and related phenomena [2], P is classically defined as: 

P = Pe +Pc = τEρF+Pc, (14)  

where τ [J⋅m− 1] is the dislocation line energy and EρF [m− 2] is the homogenized dislocation density jump across interfaces estimated 
from the modeling of plastic deformation. At the mesoscopic scale, it is often assumed that dislocation density of each grain under 
subsequent deformation (∊) evolves according the following type equation: 

∂∊ρ = K1ρξ − K2ρ, (15)  

where K1 and K2 are two material constants which respectively describe the strain hardening and the recovery and ξ a model 
dependent parameter. The well-known Yoshie-Laasraoui-Jonas (YLJ) model [62] corresponds to ξ = 0 and Kocks-Mecking one to ξ =

1/2 [63,64]. Of course, more precise numerical framework involving crystal plasticity simulations, and many intermediate models in 
terms of complexity, can also be considered. In context of hot metal forming and large plastic deformation, crystal plasticity finite 
element method (CPFEM) is often used. In CPFEM, the stress–strain response of each finite element (FE) is defined by a single crystal 
model following an elastoviscoplastic formulation [65–67] and a Lagrangian framework is often used to update the mesh nodes po-
sitions. In this context, the local evolution of the dislocation density is defined through the hardening rule depending of the slip rates 
γ̇α, over all the slip systems α, themselves defined through the adopted flow rule. Typically, for FCC materials, the equivalent crystal 
plasticity YLJ law than Eq. 15 to described density dislocation evolution is obtained with the following equation: 

∂tρ =
1
M

(K1 − K2ρ)
∑n

α=1
|∂tγα|, (16)  

with M the Taylor factor. 
In the context of diffusive SSPT, P is generally defined through the well-known Gibbs–Thomson equation applying onto interphase 

boundaries: 

P = EGF+Pe +Pc, (17)  

where EGF [J⋅m− 3] is the phase transformation (PT) Gibbs free energy jump at the phase interface between the involved phases. Phase 
equilibrium and resulting EGF evaluation at the interface can be achieved by considering ortho-equilibrium (equilibrium for all 
components) or para-equilibrium (equilibrium only for the fast diffusional species). Para-equilibrium is often adopted in full-field 
modeling and generally Pe is not taken into account. 

In the context of spheroidization and coalescence of second phase objects or precipitates, the kinetic equations can be summarized 
as [17]: 

v = − Ω∇n ⋅ jsn, (18)  

with Ω the atomic volume and js the surface atom flux, 

js = −
δsDsγs

kT
∇nκ, (19)  

and so, 

v =
ΩδsDsγs

kT
∇2

nκ n in case of isotropic δsDsγs field, (20)  

with δsDs the surface diffusion multiplied by the interface thickness, k the Boltzmann constant and T the absolute temperature. 
Interestingly, classical misunderstanding in the literature often rises from reading an observable metallurgical phenomenon without 
considering the underlying physical mechanisms. In other words, the preceding equations quantitatively describe many observable 
phenomena whose observation may suggest that they have little in common. A few examples to illustrate this point are given here: 
Ostwald ripening phenomenon is the expression of the long time evolution of the phase equilibrium mechanism defined by Eqs. 8 and 
17; surface diffusion mechanism defined by Eq. 18 and Eq. 19 is also of prime importance to explain sintering phenomenon [68] or 
grooving of GB/PB at free surface; abnormal grain growth (AGG) or critical grain growth (CGG) phenomena can be easily understood 
as some local heterogeneities of terms defining Eq. 14; Smith-Zener pinning of GB or PB by SPP can be totally explained by the 
curvature term in Eq. 14, or Eq. 17 respectively, and so on. A recurrent limit of existing numerical frameworks often consists to 
separately consider each fundamental mechanism despite their concomitant nature and their impact on each other in real materials. Of 
course, in all the previous discussed mechanisms, the plasticity due to the hot deformation but also potentially induced by the 
transformation themselves can be finely evaluated/predicted in FE framework and taken into account in the previous migration 
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equations through the terms EρF. 
If Eqs. (8)–(11),12,(13)–(20) represent classical description of a large amount of metallurgical phenomena at the mesoscopic scale 

during metal forming (i.e. correspond to the prime importance driving pressures), they are nonetheless approximations of lower scale 
mechanisms. Thus, if these kinetic equations and the description of the corresponding physical mechanisms are indeed in constant 
evolution and improvement at the grain interface scale [58,59,61], they constitute at the polycrystalline scale and in the metal forming 
state-of-the-art a thermodynamically/kinematically justified and validated homogenized physical framework. Moreover, it can be 
easily parameterized through homogenization of dynamic molecular simulation results concerning the description of the interface 
properties. 

3. Level-set function, description of polycrystalline microstructure and meshing adaptation 

The LS method was firstly introduced by Dervieux and Thomasset [69] under the terminology of ”pseudo-density function” in 1979 
before to be extensively formalized and disseminated by the works of Osher and Sethian [70] as a numerical tool to trace the spatial 
and temporal evolution of interfaces. Interestingly, the G-equation introduced in combustion by Forman A. Williams in 1985 [71,72] 
can also be seen as related to the first developments of the level-set approach. The LS approach was enhanced later for curvature flow 
problems with multiple junctions [36,37] and applied to recrystallization and grain growth in [38,44,45]. The principle for modeling 
polycrystals is to deal with a front-capturing description of grains G through LS functions ψ in the space Ω : 

{
ψ(x, t) = ±d(x,Γ(t) ), x ∈ Ω, Γ(t) = ∂G
ψ(x, t ∈ Ω) = 0 ⇔ x ∈ Γ(t), (21)  

More precisely, and as illustrated in Fig. 2, each sub-domain G (grain) in a given domain Ω (polycrystal) is classically described 
implicitly by computing the signed distance function ψ(x, t) representing the distance to the sub-domain boundaries Γ(t) = ∂G (grain 
boundaries) with, by convention, a positive value inside of the grain and negative outside. In a P1 (linear) interpolation, the function 
ψ(x, t) is calculated at each node on the FE mesh as illustrated in Fig. 2 (right side). This choice is also in line with the equations 
described in the previous section for grain interface properties (see Eq. 7). 

Using such an implicit description simplifies the polycrystal description as it has not to be strictly correlated to a discretization of 
the grain/phase boundary interfaces. The experimental image can be seamlessly integrated into a FE mesh by calculating distance 
functions to the grayscale values at each grain interface as illustrated in Figs. 3a and 3b. Alternatively, it can be evaluated directly 
within a regular grid that corresponds to the original experimental data. Moreover, when only statistical data, such as average grain 
size or grain size distribution, is known, one can construct a digital material model based on representative microstructures [74]. 
Voronoï or Laguerre-Voronoï tessellations (LVT) are methodologies that can be utilized to generate digital polycrystals made of 
polyhedral grains, while maintaining adherence to the known data. The Voronoï Tessellation Method (VTM) generates random 
Voronoï nuclei, and defines each Voronoï cell as the space that is closer to a specific nucleus than to any other nucleus. Despite the 
accurate geometric correlation between Voronoï tessellations and many cellular structures, VTM has some limitations, one of which is 
the inability to adhere to a specific statistical volume distribution of cells. Xu and Li [75] identified discrepancies between the sta-
tistical properties of grains commonly observed in an equiaxial polycrystal and the results derived from VTM. One approach to enhance 
traditional VTM is to use the Laguerre-Voronoï Tessellation Method (LVTM), which assigns a radius or weight to each nucleus and 
reflects this distribution in the Voronoï tessellation [76]. An illustration is depicted in Figs. 3c and 3d. It’s worth noting that the main 
challenge of LVTM is similar to the challenge in creating polycrystal microstructures and powder representative volume elements 
(RVEs), which is to reflect a given statistical size of spheres with the maximum achievable density. This criterion is not only essential 
for powder RVEs but also for LVTM in order to minimize disparities between the assigned weight and the resulting final volume of the 

Fig. 2. Inspired from [73]: (left side) Scheme description of a grain defined thanks to a LS function, and (right side) LS field describing a grain in an 
unstructured FE mesh (in white) in context of a P1 interpolation. The black interface corresponds to a part of the 0-isovalue of the LS, i.e. the grain 
interface Γ. 
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Voronoï cells. Although often not clearly discussed in literature, maintaining the radius size distribution for Laguerre-Voronoï sphere 
packing is distinct from maintaining the grain size distribution for the resulting Laguerre-Voronoï cells. Different strategies have been 
developed over the past 40 years [77–80], collectively referred to as Sphere Packing Methods (SPM). These methods are typically 
categorized into two main types: sequential addition models and collective rearrangement models. Both types are employed in the 
generation of polycrystals [81–85]. 

In addition to the morphology of the grains or and the phases composition, other attributes playing on the properties of the in-
terfaces or the driving pressures in play can be sought to be respected in an exact or statistical way. The two quantities of interest, the 
GB energy γ and GB mobility μ, must then be seen, as detailed in Section 2, as functions from the GB space B to R+. Thus, when EBSD 
maps are available, they can be used to define exactly the misorientation map; 3D data allowing to add a complete determination of the 
nij inclination parameter. When these information are missing, a classical strategy consists to use a random grain orientation leading to 
a Mackenzie-like disorientation distribution function (DDF) [88]. 

Theoretically, each grain of a single-phase or multi-phase polycrystal should be represented by its own LS function. To decrease 
computation time and memory usage, non-adjacent grains in the initial microstructure—separated by a certain number of grains δ or a 
minimum distance—can be grouped to form Global Level Set (GLS) functions using graph coloring techniques. However, this approach 
makes it impossible to distinguish between grains that share the same GLS function. Consequently, when two child grains of a GLS 

Fig. 3. From [86]: (a) EBSD image obtained from a 304L stainless steel sample, the gray scale refers to the crystallographic orientation, and (b) max 
of the distance fields of some grains after the FE immersion where the solid black lines indicates the interface of these grains. From [87], illustration 
of the LVTM method where the radius of each cell is represented: (c) in 2D where the weights are described by the corresponding circles and the 
resulting GB network is depicted in grey, and (d) in 3D where the weights are described by the corresponding spheres and the resulting GB network 
is depicted in blue. 
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grow and meet, numerical coalescence occurs—meaning the grains merge to form one grain. Various strategies can be employed to 
prevent or minimize numerical coalescence events: for instance, selecting a small initial separation δ or minimum distance to limit 
computation time while also minimizing coalescence [89], performing complete optimal coloring at each time step, or considering re- 
coloration algorithms at each time step to manage risky configurations [33,41,90]. Typically, Fig. 3b illustrates one of the GLS function 
made of non-neighboring grains of the experimental image described in Fig. 3a. It is also important to note that the grain boundary 
network can always, with or without a coloration strategy, be visualized using the field equal to the maximum of all the considered 
level-set functions, ψmax(x, t) = maxi(ψ i(x, t) ). This field is positive everywhere and tends toward 0 at the grain boundary network. This 
continuous function is not differentiable at the GB network and thus cannot be directly used to derive the properties of individual 
interfaces by calculating its successive derivatives. It should, however, be noted that this field has inspired the most extreme 

Fig. 4. (a) 3D equiaxed microstructure example where local anisotropic metric is considered for the FE mesh generation thanks to a posteriori 
approach [90]. The mesh is adapted to the grain interfaces (generated statistically with a Voronoï tessellation), (b) A 2D two-phase cases where an 
isotropic strategy is used with a mesh refinement in grain and phase interfaces but with an increased precision in the phase interface [107], and (c) 
2D Inconel 718 microstructure example where local anisotropic metric is considered for the FE mesh generation thanks to a geometric approach 
[99]. The mesh is adapted to the grain interfaces (generated statistically with a Laguerre-Voronoï approach) and to δ phase interfaces immersed 
thanks to a SEM image. The color code corresponds to the GLS functions. 
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simplification that can be found to describe polycrystalline microstructure in a LS framework: the Voronoï implicit interface method 
(VIIM). The basic concept of this approach proposed by Saye and Sethian [91] in 2011 consists of considering only a single level-set 
function to describe the entire microstructure. This method relies on the interaction between Voronoï diagrams (introduced previ-
ously) and an implicit interface method such as the LS method, hence its name. An unsigned distance function maintains a consistent 
sign (usually positive) within all sub-domains, converging to 0 at the interfaces. Therefore, while it effectively localizes the overall 
interface network, it does not aim to distinctly differentiate one grain from another during GB migration. More details will be given in 
the next section. 

In the context of polyhedral cells, FE meshing of digital microstructures is typically straightforward. It generally involves dis-
cretizing the facets of cells and then the volume within each cell [92]. For real polycrystals observed through Scanning Electron 
Microscopy (SEM) or 3D X-ray imaging techniques [93,94], approximative Voronoï/Laguerre-Voronoï meshing is not ideal. Though a 
substantial amount of research has been done on meshing methods for real 3D microstructures [95,96], applying these methods to 
complex topologies is not an easy task [74,97,98]. The main difficulty lies in dealing with multiple junctions, where balancing respect 
for experimental data and achieving a high-quality mesh can be complex. 

Once a mesh has been generated, modeling large plastic strains and subsequent microstructure evolutions within the FE framework 
is another significant challenge. Many researchers opt to avoid front-tracking algorithms, where grain boundaries are explicitly 
meshed, and instead utilize implicit interface methods such as LS and MPF. While results using explicit interface methods are either 
limited to minor deformations or rely on full reconstruction of the computational mesh at each time step [46], implicit interface 
methods allow for a wider range of metallurgical phenomena with large deformations [99,90,47,48]. 

However, this strategy typically demands fine FE meshes at grain interfaces to achieve acceptable accuracy in relation to the 
driving pressures under consideration. Though global isotropic mesh refinement or high-order interpolation of LS functions can be 
used to attain desired accuracy in the interface description, these methods substantially increase computational resources. Therefore, 
adaptive local isotropic or anisotropic remeshing is generally preferred. There are various methods for generating locally adapted 
meshes to zero-isovalue of LS, but typically, metric field and topological meshers based on local mesh topology optimizations are used 
[100–102]. 

Regarding metric calculations, the most common approach is to use a posteriori error analysis to obtain an optimal mesh for a given 
number of nodes [103–105]. This approach can be extended for situations where a significant number of LS functions must be 
considered. For instance, when describing strictly disjoint objects with LS functions, one simple solution is to adapt the mesh based on a 
posteriori error estimator to ψmax(x, t). However, this approach, used in [90,106], is not straightforward when the objects considered 
are not strictly disjoint, which is the case in polycrystalline microstructures, as the ψmax function is then not differentiable at the grain 
boundary network. 

Alternatively, automatic geometric methods can be employed for creating locally refined isotropic or anisotropic meshes tailored to 
polycrystals. This is based on the normal and/or mean curvature of the grain interfaces [81,99]. Fig. 4a shows a 3D case for 304L 
stainless steel where a posteriori metric is adopted [90]. Fig. 4b exhibits a 2D two-phase case where an isotropic strategy is applied. In 
this case, the mesh refinement occurs in both grain and phase interfaces, but precision is increased at the phase interface [107]. Fig. 4c 
presents a 2D example where an anisotropic metric is considered using a geometric approach [99] for an Inconel 718 microstructure. 
The mesh is adapted to the grain interfaces (statistically generated using a Laguerre-Voronoï approach) and to SPP interfaces, which 
were immersed after thresholding a SEM image. 

4. Classical isotropic framework for LS modeling of grain growth and recrystallization 

The term ’isotropic’ GG or ReX classically refers to the assumption that the properties of the interfaces described during these 
mechanisms are homogeneous in space. They may vary with temperature and, therefore, over time, but do not vary between the 
different grain boundaries. This assumption will be progressively relaxed in the Section 5 to discuss the incorporation of the 5-dimen-
sional space discussed in the Section 2. In the LS method, the evolution of ψ(x, t), submitted to a velocity field v(x, t) as illustrated in 
Fig. 2 (left side), can be obtained by solving the following convective PDE [69,70]: 

{
∂tψ(x, t) + v(x, t) ⋅ ∇ψ(x, t) = 0
ψ(x, t = 0) = ψ0(x) (22)  

with ψ0(x) the initial description of the LS function. 

4.1. Modeling of isotropic grain growth 

In context of deterministic full-field approaches and neglecting torque terms [108], the velocity field can be defined using Eq. 8 and 
when GG is involved, the net pressure is classically defined using Eq. 13. The isotropy hypothesis remains here, for the LS simulations, 
to consider γ as constant and μ as only dependent of the temperature through an Arrhenius law μ(T) = μ0exp( − Q/RT) with μ0 a pre- 
exponential constant parameter, R the gas constant and T the absolute temperature. κ and n can be defined naturally by taking ad-
vantages of the possibilities offered by the LS framework. Indeed, considering that GLS functions remain distance functions all along 
the simulation (i.e. that ‖ ∇ψ(x, t) ‖= 1, ∀(x, t) ∈ Ω× R+), they can be defined as detailed in Eq. 7 by: 

n = − ∇ψ , κ = − Δψ. (23) 
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Finally, by using coloring/recoloring algorithms [90] and the described metric properties of the LS functions, one can solve after 
substituting Eqs. 23 into Eq. 13 and Eq. 13 into Eq. 8, a set of NGLS convective-diffusive equations as detailed by Eq. 24, with NGLS ≪ NG 
and i ∈ {1,2,…,NGLS}. The numerical strategy consisting in limiting the number of involved LS functions is then generally crucial in 
terms of numerical cost and memory aspect. 

{
∂tψi(x, t) − μγΔψi(x, t) = 0,
ψi(x, t = 0) = ψ0

i (x)
(24)  

The field ψ0
i (x) is generally defined as the signed distance function to the union of the grains initially present in the ith GLS function, i.e. 

ψ0
i (x) = max

j | Gj∈GLSi

(
dj(x)

)
, if x ∈ ∪

j | Gj∈GLSi

Gj and the opposite otherwise.

Generally, a particular numerical treatment must be imposed to avoid kinematic incompatibilities after the resolution of Eq. 24. 
Indeed, voids can appear at multiple junctions and must be treated. A classical solution consists in correcting the GLS functions as 
follows [36]: 

ψ̃ i(x, t) =
1
2

(

ψi(x, t) − max
j∕=i

ψ j(x, t)
)

, 1⩽i⩽NGLS. (25)  

The effect of Eq. 25 is schematized in Fig. 5 for a P1 interpolation. An alternative could also consist [37] in closing void regions thanks 
to an energy minimization principle enforced by a Lagrange multiplier related to a constraint added to Eq. 22. 

A drawback of the LS formulation lies in the fact that after the resolution of Eqs. (24) and (25), the GLS are no longer distance 
functions ‖ ∇ψ̃(x, t) ‖ ∕= 1. This is particularly problematic when a specific remeshing technique depending on the distance property is 
used at the interface as described in the previous section. In addition, the diffusive formulation proposed in Eq. 24 requires a distance 
function at least in a thin layer around the interface in order to compute properly the curvature driven mechanism. Finally, the 
conditioning of the transport problem also depends on the regularity of the LS function [99]. For these reasons, the GLS functions need 

Fig. 5. Global treatment to eliminate non-physical vacuum regions on a FE discretization: two colored LS (a) with a vacuum region in between 
them, (b) result after applying Eq. (9). Three colored LS: (c) with a vacuum region (d) result after applying Eq. (25). Figure from [109]. 
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to be reinitialized (or redistancing). Restoring the metric property at the instant t is equivalent to solving the following Eikonal 
equation for each GLS function, i.e. ∀i ∈ {1,2,…,NGLS}: 

{ ‖ ∇ψi(x, t) ‖= 1, ∀x ∈ Ω

ψi(x, t) = ψ̃ i(x, t) = 0, ∀x ∈ Γ̃i(t) ⇔ ψi(x, t) = Redist(ψ̃ i(x, t) ), (26)  

Different approaches exist to solve this equation including the well-known Fast Marching Method introduced by Sethian [110–112] 
which propagates a front from the interface and ensures directly a L2 gradient norm equals to unity. Though this approach has been 
extended to unstructured meshes [113], its implementation becomes complicated when it comes to consider anisotropic triangulations 
[114] and parallel efficiency is poor. Extension velocity approaches proposed by Adalsteinsson and Sethian [115] has also been 
developed with the idea of maintaining the desired velocity on the interface represented by the 0-isovalue of a distance function, while 
extending it in a way that naturally respects the conservation of metric properties of the distance function when solving the transport 
equation. The fast sweeping method was also considered to solve this equation by Zhao and coworkers [116,117]. In [118], a 
Hamilton–Jacobi (H–J) formulation equivalent to Eq. 26 was proposed in order to correct iteratively the LS values around the interface 
by solving a PDE. This method is massively used in the FE-LS modeling of ReX and GG [119,89,45,39]. It requires the definition of a 
purely numerical parameter known as a fictitious time step for reinitialization and the ratio between the desired reinitialized thickness 
and this parameter gives the number of required increments. Coupled convection-reinitialization (CR) methods emerged wherein the 
LS function is automatically reinitialized during the resolution of the transport equation [120,38,99]. Their main advantage lies in the 
fact that only one solver is needed for the simulation instead of two for the classical H–J technique. The signed distance function can 
also be replaced by any smooth function which satisfies the metric property, at least in a thin layer around the interface. Finally, a 
natural way to reinitialize GLS functions consists in using a brute force algorithm to perform a complete reconstruction of the distance 
function. This technique works in two steps: discretize the interface (0-isovalue of the LS function) into a collection of simple elements 
and, for every integration point, compute the distance to all elements of the collection and store the smallest value which becomes the 
updated value of the distance function. Though it guarantees optimal accuracy, this Direct Reinitialization (DR) technique is generally 
reported as being greedy in terms of computational requirements [118,121,122]. It is nevertheless worth mentioning that these works 
generally address only regular grids or hierarchical meshes [123]. Few years ago, a direct fast and accurate approach usable in un-
structured FE mesh has been proposed [124]. This method takes advantage of a space-partitioning technique using k − d tree and an 
efficient bounding box strategy enabling to maximize the numerical efficiency for parallel computations. Discussions concerning the 
residual errors inherent to this approach are also proposed in [109]. 

Interestingly, a similar flow rules than the previously described one can be followed when dealing with the modeling of pure grain 
growth in regular grids where signed distance functions to interfaces are convolved with Gaussian kernels to generate a variety of 
geometric motions, including multi-phase motion by mean curvature [41,43,125]. First developments concerning this approach was 
proposed by Esedoglu, Elsey and coworkers [41,125]. To be more precise, let dk

i (x) be the signed distance function at times kdt of the 
ith grain, where dt is the chosen time step. The solution of the curvature flow equation (Eq. 24 with a dimensionless reduced mobility 
equal to one) for the following time step with dk

i an initial condition for grain Gi can be obtained as a solution of the heat equation: 

d
∼k+1

i (x) =
(
G☆dk

i

)
(x), with G(x) =

1
(4πdt)dim/2e− ‖x‖2/4dt, and dim the space dimension, (27)  

̃̃d
k+1

i (x) =
1
2

(

d̃
k+1
i (x) − max

j∕=i
d̃

k+1
j (x)

)

, 1⩽i⩽NG (28)  

dk+1
i (x) = Redist

(
̃̃d

k+1

i (x)
)

, 1⩽i⩽NG. (29)  

The direct resolution of Eq. 27 obviously allows for unbeatable computation times compared to the FE or finite difference resolution of 
the isotropic grain growth problem in 2D or 3D. Therefore, much more massive calculations can be proposed [43]. In this case, memory 
management can become a problem, which explains also the possible use of coloration/recoloration in order to minimize the number 
of LS function [41]. In this case, Eqs. (27)–(29) are then applied for i ranging from 1 to NGLS. The parallelization of existing formu-
lations has also been considered [126,42,127]. Another expression of G can also be used to improved the approximation of κ or to 
introduce new terms to the kinetic equation [125]. By the nature of these approaches, based on convolution products on regular grids 
for solving the heat equation, they have been little extended to the modeling of other mechanisms or enriched in recent years. Any 
exceptions are cited subsequently. 

An alternative of the previous strategies lays in the VIIM method [91,128,129]. this approach is also a PDE-based method but that 
employs a single function defined on a fixed Eulerian background mesh (regular grids in all the existing literature dedicated to this 
method). This method tracks evolving interface problems across multiple regions in both two and three dimensions, regardless of the 
complexity presented by multiply-connected junctions. This method operates by solving the transport equation (Eq. 22) over the 
chosen time step but for an unsigned distance LS function describing the GB network (and which can be initialized, as discussed in the 
previous section, as ψmax(x, t)). After which, the interface network of interest is reconstructed as the Voronoï interface of the nearby 
∊-isovalue of the LS function. The principles behind the Voronoï interface reconstruction are the same as those of the previously 
mentioned Voronoï Tessellation Method, but now applied to a set of hypersurfaces (lines in 2D, surfaces in 3D). The reconstructed 
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Voronoï interface network is then utilized to calculate a new unsigned LS distance function at that moment by solving an Eikonal 
equation and the velocity field v(x, t) is updated before initiating a new loop step. Fig. 6 illustrates the Voronoï interface reconstruction 
around a triple junction (a junction formed by three sub-domains in 2D, analogous to quadruple junctions in 3D). 

Two main key points are often highlighted in the state-of-the-art concerning this approach. The first advantage concerns its 
computational efficiency as only one LS has to considered during all the simulation comparatively to the other LS approaches where 
few GLS or a large number of LS have to be considered. The second one reported in the literature concerns the fact that the method 
naturally avoids the management of phenomena such as overlap or decohesion of GB. A slightly different perspective on this second 
element might be to say that the VIIM approach handles this issue without it being visible thanks to the Voronoï interface recon-
struction. To the author knowledge, concerning polycrystalline microstructures of metallic materials, this approach was not yet 
extended to other mechanisms that isotropic or heterogeneous grain growth or considered for real polycrystals. 

4.2. Modeling of isotropic recrystallization 

When plastic stored energy as to be considered, the kinetic equation described in Eq. 14 applies and the system defined by Eq. 24 
can be rewritten in Eq:30: 

{
∂tψi(x, t) − μγΔψi(x, t) + vEρF

i ⋅ ∇ψi(v, t) = 0

vEρF

i = μτEρFini, ψi(x, t = 0) = ψ0
i (x)

(30)  

By extrapolating the shape of the velocity term, vEρF

i of Eq. 30, for the interface between grain Gi and Gj, the corresponding velocity vEρF

ij 

can be written as: 

vEρF

ij = μτEρFijnij. (31)  

Classically in LS or MPF approaches, a constant stored energy is considered in each grain [38,99,44,47,46,41,48]. Then, for each 
interface between grain Gi and Gj, it is assumed that: 

EEFij = τEρFij = ej − ei, (32)  

where ei and ej are the mean stored energies in the grains Gi and Gj, respectively. These averages can directly come from either constant 
approximative values where only a gradient of the stored dislocations between the nuclei and the non-recrystallized grains is 
considered as in [38,45,41], or simplified mechanical formulations as in [48]. They can also be evaluated thanks to an existing 
dislocation field in the FE mesh of the calculation domain Ω as in [99,44,46,47,130,131] or come from a dislocation density field 
measured from experimental data, immersed in the FE mesh and averaged per grain as in [132,26,133]. More local approximations of 
the energetic field can also be considered [134,135]. 

Special attention has to be paid to the velocity field vEρF

i in the vicinity of multiple junctions as emphasized in [38]. In fact, rather 

than dealing with vEρF

i per grain as described in Eq. 30 and considering the contributions of each neighbor as in Eq. 31, a global common 
velocity can be built in the calculation domain and used for each convection–diffusion system. Generally, the following formulation is 
adopted: 

vEρF(x, t) =
∑NGLS

i=1

∑NGLS

j=1
j∕=i

χGi
(x, t)μijexp

(
− β
⃒
⃒ψj(x, t)

⃒
⃒
)
EEFij

(
− nj

)
, (33)  

Fig. 6. Reconstruction in 2D of a triple point from an unsigned distance function and the Voronoï interface reconstruction. Figure from [91].  
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where χGi 
is the characteristic function of the grain Gi, μij is the interface mobility between the neighboring grains i and j (equal to μ in 

isotropic context), the exponential term is a continuous decreasing function varying from 1 to 0 on either side of the interface and has 
the function of smoothing the velocity field across the interface, β is a positive parameter that controls the degree of smoothness. 3D 
results obtained this way are summarized in Fig. 7 for a complex thermomechanical path applied onto 304L stainless steel [48]. In this 
figure, the red circle describes the corresponding position in the thermomechanical path (t(s) in abscissa and T(◦C) in ordinate, zigzag 
lines symbolize deformation steps, straight lines symbolize annealing steps) and the microstructure predicted at the same time with the 
grain boundary network colored by the stored energy. Fig. 7(a) corresponds to the initial state, Fig. 7(b) corresponds to the beginning 
of DDRX with appearance of few nuclei at the existing grain interfaces, the deformation is applied along the z-direction with a strain 

Fig. 7. Complex thermomechanical path for a 304L stainless steel. LS modeling from [48]. A video of this simulation is available online.  
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rate ∊̇ = 0.01s− 1, Fig. 7(c) corresponds to the end of the first deformation; Fig. 7d) and Fig. 7(e) describe the post-deformation evo-
lution during an increase of temperature, MDRX, SRX and GG mechanisms occur; Fig. 7f) and Fig. 7(g) describe a second deformation 
along the x-direction (∊̇ = 0.1s− 1) with a second DDRX evolution, and finally Fig. 7(h) describes the final state obtained after 
quenching. The microstructure is initially generated by a Laguerre-Voronoï strategy as detailed in [81]. The system of Eqs. 30 is solved 
by considering Eqs. 25, 32, 33, an optimized graph recoloration technique [90], a direct reinitialization technique [124] and the 
simplified mechanical framework detailed in [48] where Eq. 15 is considered (with ξ = 0) and associated with a critical stored energy 
law, a nucleation rate law and a critical nucleus radius law to defined the apparition of recrystallized grains. 

Concerning the method based on Gaussian kernels (Eqs. (27)–(29)), it can not be used in context of DRX where domain deformation 
has to be considered but was extended to take into account a constant stored energy per grain in PDRX evolution context [41]. 

It must be highlighted that this numerical framework is well adapted for configurations where the anisotropy of GB properties is not 
of prime importance i.e. where isotropic grain growth and DDRX can be representative of the considered material. This is often the case 
for low stacking fault energy materials. When texture aspects and subgrain definition, organization and evolution can be of prime 
importance for microstructure evolution prediction like for high stacking fault energy materials, the discussed framework can become 
insufficient. In this context, anisotropy of GB interface energy and mobility must be introduced into the LS formalism. This aspect is 
discussed in the following section. 

5. Anisotropy of grain boundary properties and continuous dynamic recrystallization modeling 

5.1. LS formulations in context of anisotropic grain boundary properties 

The study of GB energy and mobility has garnered significant attention since its initial observation of anisotropy by Smith [136] 
and Kohara [137]. Existing research has explored two primary modeling approaches: the isotropic approach, where constant values are 
employed for the GB energy γ and temperature-dependent mobility μ(T), as introduced in earlier sections [138–140,45,141], and the 
heterogeneous approach, which proposes energy and mobility values for each grain boundary [142–144,108,145–148,42,149,150]. 
Heterogeneous models aim to replicate complex microstructures, such as twin boundaries, by accounting for individual grain ori-
entations and the disorientation angle between grains [151,149]. However, the effect of disorientation axis and GB inclination is often 
overlooked. To address this limitation, anisotropic models have been developed, encompassing the dependence of GB properties on 
disorientation tensor and inclination [152,153,39,154]. It is essential to clarify the distinction between 3-parameter (heterogeneous) 
and 5-parameter (anisotropic) full-field formulations, as the literature often ambiguously categorizes heterogeneous GB properties as 
anisotropic. Additionally, confusion arises between the concepts of respecting an anisotropic GB dynamics and/or respecting Herring’s 
equation at equilibrium [55], with or without considering the torque terms. 

The scarcity of GB property data has led to the prevalence of studies utilizing heterogeneous GB properties. Early measurements of 
GB properties, primarily GB reduced mobility, were conducted on bicrystals [155–160], resulting in the well-known Sigmoidal model 
[2]. However, advancements in experimental and computational technologies have enabled 3D techniques using X-ray [161–164] or 
molecular dynamics [165–167] to study GB and recrystallization. At the mesoscopic scale, limited studies have been conducted in 2D 
using anisotropic GB properties derived from mathematical models [152,153] or by fitting data from molecular dynamics [39]. 
Nevertheless, these 2D models overlook a portion of the 3D space, as the GB inclination is measured in the sample plane, and GB 
properties are simplified. 

Addressing the study of GB in 3D frequently involves employing heterogeneous GB properties based on mathematical descriptors 
[168,147,169,170] or databases of GB energy values [171,172]. Two key questions frequently arise in the current state of the art: Can 
GB properties be accurately described in 2D using classical Read-Shockley [173] and Sigmoidal [2] models? Is the effect of anisotropy 
stronger in 3D? Answering the latter requires conducting 3D simulations instead of 2D to achieve a more comprehensive description of 
GB properties in the 5D GB space. 

In the current state of the art, four main formulations using a FE-LS approach are notable. The first is the isotropic formulation 
mentioned earlier, which has been successfully applied to model various annealing phenomena, including GG, ReX, and GG in the 
presence of SPP [38,99,45,90,48]. While this approach demonstrates good agreement with experimental data in predicting mean grain 
size and grain size distribution, it may struggle to replicate complex grain morphologies, special grain boundaries, and textures. The 
second formulation extends the isotropic approach by incorporating heterogeneous GB energy and mobility values through axis-angle 
parameterization, and even inclination for the energy [174,40]. 

∂tψ − μ(M,T)γ(M,n)Δψ = 0. (34)  

With this formulation, predominant in the LS literature, it is expected to obtain more physical grain shapes. Indeed, some GBs can 
evolve faster thanks to higher grain boundary mobility values, and triple junctions may have different stable dihedral angles thanks to 
different GB energy values enabling to respect Herring’s equation. This strategy classically used in full-field formulations (not only in 
LS ones) can lead to confusion when it is named as “heterogeneous”. Indeed, stricto sensu, the heterogeneity shape of μ and γ lead to 
additional terms in the driving pressure of the kinetic equation (Eq. 14) as illustrated through Eq. 12 but also in the weak formulation 
derived to solve the GB motion which are not taken into account in a such strategy. In the following, the term “heterogeneous” will be 
used to distinguish this formulation from the purely isotropic model. Such strategies were also proposed to deal with heterogeneous 
description of γ in method based on Gaussian kernels (Eqs. 27,28,29), one can cite [126,42,175,176]; and also for the VIIM method 
[128,129] where it was also illustrated in [129] that in the pre-existing heterogeneous VIIM framework, the solution obtained does not 
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converge to the desired limit (no respect of the equilibrium angles). A such discussion is proposed in [108] where an additional term 
capturing the local heterogeneity of the multiple junctions is added to the velocity equation such that: 

v = μ(θ, T)(∇γ(θ) ⋅ ∇ψ − γ(θ)Δψ )∇ψ. (35)  

Inserting this term into the transport equation (Eq. 22) leads to the, hereafter called, “Heterogeneous with Gradient” formulation 
[108]: 

∂tψ + μ(θ,T)∇γ(θ) ⋅ ∇ψ − μ(θ,T)γ(θ)Δψ = 0. (36)  

Fig. 8. Characteristics of the initial microstructures (5000 grains) for the anisotropic simulations with from top to bottom and left to right: 
coloration field of the grain, initial grain radius distribution, initial considered disorientation distributions, initial considered grain boundary energy 
distributions, orientation magnitude field for the random configuration and disorientation angle field at grain interfaces for the random configu-
ration. From [177]. 
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The introduction of the term ∇γ(θ) ⋅ n only acts at multiple junctions because these are the only places where this term does not vanish. 
This formulation is equivalent to the Isotropic one if no heterogeneity is added. The formulation proposed in [39] is very similar. This 
third formulation was proposed for triple junctions in [108] and extended to model GG using heterogeneous GB energy in [149] and 
both heterogeneous GB energy and mobility in [177]. 

The last one is an anisotropic formulation which was initially developed using thermodynamics and differential geometry in [153] 
and was improved in [177] in order to consider heterogeneous GB mobility. Both the GB normal and misorientation are taken into 
account and an intrinsic torque term is present: 

Fig. 9. Time evolution for the different formulations for the Random configuration in the left side: (a) the total GB energy, (c) the number of grains, 
and (e) the mean radius weighted in number. Same information for the Uniform configuration are described in the right side. From [177]. 
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(37)  

Remarkably, the term Pc is here totally equivalent to the one introduced in Eq. 12. As detailed in Eq. 12, the term ∇nγ(M,n) ⋅ ∇ψ in Eq. 
37 should be null in the grain interfaces. However, the front-capturing nature of the LS approach which consists to solve Eq. 30 at the 
GB network and in its vicinity, requires to consider this term which could be non-null around the interfaces near multiple junctions. 

In the current state of the art, one can assert that the utilization of these various formulations leads to the observation that pre-
dicting grain growth at the polycrystal scale can be ambiguous, contingent upon the targeted attributes and available data. If we bring 
the discussion of the computational formalism back to its implications for real materials, one can affirm that when untextured 
polycrystalline materials are involved, the Isotropic formulation can effectively reproduce the evolution of mean grain size and grain 
size distribution. However, in scenarios with strong texture configurations, the Anisotropic formulation demonstrates superior per-
formance in predicting grain morphology, DDF (disorientation distribution function), and the evolution of interfacial energy, while 
still maintaining reasonable computational efficiency compared to the isotropic approach. Furthermore, it has been demonstrated that 
3D simulations should be considered. This is not only crucial for improving the representativeness of the analyzed polycrystals but also 
to accurately describe the γ dependence on inclination. The existing 2D models and data currently limit the practical use of inclination. 

In addition to this, the integration of torque effects and the GB stiffness tensor in simulations and analysis is an essential aspect that 
needs to be addressed. It is worth noting that this conclusion is consistent across the majority of existing works in the state of the art 
involving anisotropic 2D grain growth simulations and 3D simulations, where the inclination dependence, torque terms, or both are 
not accounted for. To the author’s knowledge, only one paper dedicated to the extension of the classical isotropic kernel using Gaussian 
kernels has been focused on incorporating the γ dependence on inclination, and it was validated in configurations without multiple 
junctions [178]. This need also implies the necessity of more database dedicated to the extrapolation of the energy of an arbitrary 
boundary in the different crystallographic systems in link with the five macroscopic degrees of freedom for GB and which can be 
obtained through embedded-atom method interatomic potentials [179,180]. This discussion is also crucial in the accurate consid-
eration of the behavior of coherent twins, their evolution, their real impacts on the kinetics of non-special grain boundaries, as well as 
their criteria for appearance during heat treatments. This remains an open subject in terms of physical understanding, polycrystal-scale 
simulation, and the generation of representative 3D data [181]. 

To illustrate this discussion, Fig. 8 illustrates the characteristics of a 2D initial example discussed by Murgas et al. [177]: it consists 
of a square domain with length L = 1.6mm and 5000 grains generated using a Laguerre-Voronoï tessellation [81]. 

A misorientation dependent GB energy defined with a Read-Shockley (RS) function [173] is considered: 

γ(θ) =

⎧
⎪⎨

⎪⎩

γmax
θ

θmax

(

1 − ln
(

θ
θmax

))

, θ < θmax

γmax, θ⩾θmax

(38)  

where γmax is the maximal GB energy. θmax = 15◦ is the disorientation angle defining the transition from a low angle grain boundary 
(LAGB) to a high angle grain boundary (HAGB). μ = 1.379J⋅mm− 2, and γmax = 6 × 10− 7J⋅mm− 2, which are typical for a stainless steel 
[89], are considered. Two ways are used to exacerbate the GB heterogeneities. In a first one (called Random), the Euler angles defining 
the crystallographic orientations are generated randomly, leading to a Mackenzie-like disorientation distribution function [182]. In a 
second one (called Uniform), one Euler angle is generated randomly with a uniform distribution function and the two others are 
constants. As a result, the final disorientation distribution is more uniform. Both considered orientation distribution and resulting grain 
boundary energy distribution (GBED) are described in Fig. 8 (middle) and the resulting orientation field using the vector magnitude 

OG =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

φ2
1 + ϕ2 + φ2

2

√

where (φ1,ϕ,φ2) are the three Euler angles is described in Fig. 8 (bottom) for the Random configuration. 
The time evolution are summarized in Fig. 9. First, it is noticeable that all the formulations have a similar evolution concerning the 

total grain boundary energy EΓ, the number of grains NG and the mean grain size weighted in number RNb[%] when the Random 
configuration is considered whereas more stronger GB heterogeneities has a significant impact on the different attributes of the 
microstructure when the different formulations are adopted. This aspect corroborates the fact to avoid an isotropic formulation when a 
textured configuration exists in the material. 

Another interesting aspect to deal with GB heterogeneities is be able to consider materials where the substructure (LAGBs) are of 
prime importance in ReX mechanisms as illustrated in the following subsection. 

5.2. Continuous dynamic recrystallization modeling 

As already highlighted, the LS-FE approach was largely considered in context of DDRX for low stacking fault energy materials by 
associated Eq. 15 to a critical stored energy law, a nucleation rate law and a critical nucleus radius law. For high stacking fault energy 
materials, the progressive formation and evolution of subgrains must be taken into account. Dislocations could rearrange themselves to 
form new LAGB or accumulate into preexisting LAGB. This last phenomenon is responsible for a progressive increase of LAGB 
misorientation [2,183]. During recrystallization, recrystallized grains form slowly and continuously during deformation. Indeed, in 
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this CDRX context, grain formation is induced by the progressive reorganization of dislocations into cells or subgrains and the gradual 
increase of misorientation angle between those subgrain. Recently, a first LS-FE framework was proposed by Grand et al. 
[184,133,185,135] in order to deal with this mechanism. In these works, laws introduced by the Gourdet-Montheillet model were 
implemented [186], and while keeping the global dislocation density evolution law defined by Eq. 15, several mechanisms of evolution 
of dislocations are taken into account:  

• rearrangement into LAGB that bound new subgrains. Subgrain formation is described through following equation [186]: 

dS+ =
αbK2ρdε

ηθ0
, (39)  

where dS+ is the surface of LAGB created. α = 1 − exp
(

D
D0

)m 
is a coefficient describing the fraction of dislocations recovered to form 

new subgrains. D is the grain diameter, D0 is a grain reference diameter and m is a fixed coefficient. η is the number of sets of 
dislocations and θ0 the disorientation of newly formed subgrains.  

• Stacking into preexisting LAGB which is modeled according to the following equation [186]: 

dθ =
b
2η (1 − α)DK2ρdε. (40)    

• Absorption during HAGB migration. This is naturally captured by affecting to the areas swept by moving boundaries a low 
dislocation density as described earlier. 

At each time step, dislocation density of each grain is updated using equation Eq. 15 which impacts the computation of the velocity 
term related to stored energy differences. Then, the length of subgrain interfaces formed into each grain is computed using Eq. 39. 
Subgrains can be added grain by grain based on the value of this grain property or globally, after having summed the length of subgrain 
interfaces for all grains. Subgrain orientation is initialized by applying a small disorientation to the parent grain orientation. The 
disorientation angle is selected to respect a distribution measured experimentally whereas the disorientation axis satisfies a uniform 
distribution. The disorientation axis attributed to a subgrain at its formation is kept constant. Then, during time increments, the 
disorientation angle increase described by Eq. 40 is realized by rotating of dθ around this axis. 

An illustration of this framework in context of CDRX modeling for Zircaloy-4 (Zy-4) was proposed by Grand et al. and is depicted in 
Fig. 10 after the deformation (the time scale corresponds to the time after the end of the deformation). The initial microstructure 

Fig. 10. Illustration of CDRX modeling for Zy-4 thanks to a LS-FE approach from [184]. The time scale corresponds to the time after the end of the 
deformation. A complete video is available online. 
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includes approximately 300 grains. The initial number of grains is taken low since it will increase substantially during deformation. 
Material parameters have been estimated based on the experimental results obtained conducting a thermomechanical testing 
campaign associated with extensive EBSD characterization. Thermomechanical conditions corresponding to these simulations are the 
following: T = 650◦C; ε̇ = 1.0s− 1; ε = 1.35. The number of subgrains that are formed at each deformation increment is computed 
individually per grain/subgrain. GB energy is described by the RS equation Eq. 38 and GB mobility is assumed isotropic. 

6. Static/evolutive second phase particles 

Smith-Zener pinning phenomenon, where precipitates act as obstacles to the displacement of the grain boundaries and may hinder 
recrystallization and grain growth, was first discussed by Smith [136] and then detailed by Zener one year after [187]. Under certain 
conditions, SPP can strongly pin the microstructure, leading eventually to a limiting mean grain size (MGS). Since these first de-
velopments to equate this phenomenon, many variants have been developed in order to dispel some of the initial hypotheses (see [188] 
for a review). This phenomenon is widely used by metallurgists to control the grain size during the forming process of many alloys, 
including superalloys. Predictive tools are then needed to model accurately this phenomenon and thus optimize the final grain size and 
in-use properties of the materials. Classical laws predicting the limiting MGS [188], noted R∞ have the following form: 

R∞ = K
r

f m, (41)  

where K and m are fitted parameters which can be assumed constant [188] or dependent of the material and/or the characteristics of 
the SPP population [188,119]. Since thirty years, numerous full-field modeling of the Smith-Zener phenomenon have been proposed, 
including Monte Carlo/Cellular Automata frameworks [189–194], front tracking or vertex [195,196], MPF [197–200] and LS 
[201,119,132,202,26,203,204]. 

In the LS framework, the concept of incorporating inert SPP within an FE framework was initially proposed for conducting 2D GG 
simulations [201] and 2D PDRX simulations [119] for the Inconel 718 alloy. SPPs are integrated into the FE mesh using statistical 
descriptions or experimental data, and the local curvature of the grain boundaries in contact with SPPs is constrained. This approach 
allows for the consideration of SPPs without assuming their size or morphology, and it accommodates isotropic and anisotropic 
particle/grain interface energies, whether they are incoherent or coherent interfaces. The effect of particle dragging is naturally 
captured by modifying the local curvature when the grain boundary encounters the particles, eliminating the need for explicit as-
sumptions about the dragging pressure exerted by the particles. 

Moreover, the Smith-Zener pinning effect induced by the presence of particles is naturally accounted for by imposing relevant 
boundary conditions at the interfaces between GBs and SPPs. Specifically, the influence of SPPs on microstructure evolution is 
considered by applying a Neumann-type limit condition on the GLS at the surface of the precipitates following the Young-Herring 
surface tension equilibrium: 

∇ψ ⋅ n = sin

(

α
)

=
γ2

p − γ1
p

γ
, (42)  

where, as illustrated in Fig. 11, n is here the external unitary normal vector to the precipitate, α is the angle established by the balance 
of surface tensions at contact positions between the SPP and the grain boundary. So, when the particle is assumed incoherent with the 
matrix, γ1

p ≃ γ2
p , which leads to α ≃ 0, a null Neumann boundary condition is applied at the precipitate/grain boundary interface 

through the respect of Eq. (42). 
This approach was used to support the idea that the phenomenon reported as abnormal grain growth in Inconel 718 could be 

explained by the growth of lower energy grains in a pinned microstructure and as such be a particular case of PDRX. Thanks to these 

Fig. 11. 2D illustration of the interaction between a particle and a GB (dashed lines between Grain 1 and Grain 2). n corresponds to the normal to 
the particle interface, ∇ψ to the normal to the GB and α to the angle established by the balance of surface tensions. From [203,205]. 
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simulations, the sensitivity of this phenomenon to the initial stored energy distribution could be studied [132]. Optimization of pa-
rameters K and m of Eq. 41 thanks to a full-field simulations campaign and first 3D LS simulations were proposed in [202,47], 
respectively. Comparisons with Monte Carlo simulations and experimental data have been made for ODS steels [26]. Fig. 12 illustrates 
a 3D GG LS simulations for Inconel 718 realized by Scholtes et al. [202] with an idealized spherical population of SPP (f = 3%), until 
reaching a final stable microstructure. 

However, this initial LS approach for describing SPPs exhibits several limitations: 

Fig. 12. 3D GG LS simulations for Inconel 718 with an idealized spherical population of SPP (f = 3%). SPP are described in green, the grain 
boundary network is described with a color code corresponding to the grain size until a stable configuration. From top to bottom and left to right: 
time evolution during the thermal treatment from the initial configuration to the stable grain boundary network. A video is available online. The last 
image corresponds to a zoom of a SPP (in red) interacting with one GB (in green) just before unpinning. A complete video is available online. 
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• Simulating material deformations is not straightforward when attempting to consider SPP behavior, as SPPs are not volumetrically 
described in the considered FE mesh,  

• the aforementioned issue may become critical in the context of DDRX. It is widely recognized that the interfaces of SPPs serve as 
conducive sites for new grain formation. Therefore, a detailed representation of the mechanical fields at the SPP interfaces is 
essential,  

• the simulation time can be significantly extended due to remeshing operations around particles and grain boundaries, mainly in 3D,  
• the evolution of SPPs due to diffusive mechanisms—such as precipitation/dissolution, Ostwald Ripening, agglomeration, and 

spheroidization—cannot be accounted for, as SPPs are considered static in the current LS formulations. 

For these reasons, a new LS approach to model ReX and GG mechanisms in presence of meshed SPPs and able to reproduce evolving 
particles was proposed by Alvarado et al. [203,204]. In this LS formulation, the description of SPPs is made by a new LS function, ψSPP, 
over the domain calculation without considering holes in the FE mesh. The GLS fields describing the grains are initially modified with 
simple topological operations (following by a reinitialization step) to introduce the presence of the SPPs, without modifying the 
particle interface: 

∀i ∈ [[1,NGLS]] ψ̂ i(x, t = 0) = min(ψi(x, t = 0), − ψSPP(x, t = 0) ). (43)  

This operation is followed by a reinitialization procedure, ψ i(x, t = 0) = Redist(ψ̂ i(x, t = 0) )∀i ∈ {1,2,…,NGLS}, as the resulting GLS 
functions are not (when the intersection is not empty) a distance function, even if GLS and ψSPP are. Of course, the function 
ψSPP(x, t = 0) can be easily estimated as the distance function to the union of simple objects (as circles for spherical particles) but also 
obtained through the FE-immersion of an experimental map [119,47]. 

As already discussed (see Eq. (25)), the appearance of voids or overlaps especially at the multiple junctions after solving the 
convective-diffusive equations was first treated in [36] and implement in several cases, in 2D and 3D, using the LS method 

Fig. 13. Schematic and initial microstructure for a heterogeneous SPPs dispersion in a LS framework (SPPs are in black). From [203].  
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[47,45,134]. In order to respect the Young-Herring equilibrium without hollowing out the SPPs, this classical treatment is extended by 
taken into account ψSPP in the procedure: 

ψ̂ i(x, t) =
1
2

(

ψi(x, t) − max
(

max
j∕=i

(
ψj(x, t)

)
,ψSPP(x, t)

))

, ∀i ∈
{

1, 2,…,NGLS

}

, ∀x ∈ Ω. (44)  

ψi(x, t) = Redist(ψ̂ i(x, t) ) ∀i ∈ {1, 2,…,NGLS} (45)  

In the zones without SPPs, this methodology is equivalent to the classical numerical treatment (Eq. (25)) whereas when SPPs are 
present, it enables, by successive iterations, to impose the Young-Herring equilibrium for incoherent SPPs. 

In real thermomechanical processes, which typically encompass significant temperature changes, it becomes crucial to model the 
evolution of SPPs. This modeling is key to quantitatively and qualitatively predicting the evolution of the microstructure, particularly 
with respect to grain size distribution. Hence, the ability to model the transformation of particles during GG is indispensable for 
managing actual industrial processes and forecasting microstructural evolution accurately. 

In this LS framework, once the initial mesh is generated, the polycrystal can be created statistically or experimentally from an EBDS 
map. Subsequently, the grains fields ψ i are adjusted to incorporate the new particles field ψSPP. The convective equation, Eq. (22), is 
then applied to ψSPP. This involves computing a velocity, vspp, using prescribed data related to the time-dependent evolution of the 
particle’s radius. Following this, a smoothed velocity field v is computed using Laplace’s equation (see Eq. 46) with Dirichlet boundary 
conditions, vspp, set at the particle interfaces, and null-Neumann boundary conditions applied to the boundaries of the domain. Finally v 
is used to compute the velocity field v oriented towards the center of each precipitate to be applied to ψSPP : 

⎧
⎨

⎩

Δv = 0
v = vspp at Γspp
∇v ⋅ n = 0 at ∂Ω⧹Γspp

(46)  

and 

v = vnSPP = − v∇ψSPP, (47)  

with n the normal to the boundaries of the domain, nSPP the unitary inside normal vector to the SPP, vspp the velocity to impose to the 
SPPs and v the resulting velocity field which is really imposed, through a convection equation to ψSPP. 

This methodology is illustrated in Figs. 13 and 14 where a simulation domain of 200x200 μm with an initial number of grains 
around 50000 is considered in context of AD730TM nickel base superalloy. The mean grain radius (in number) R is equal to 5μm and a 
spherical particles population, with an initial surface fraction fspp = 6% divided in large SPPs with f1

spp = 4% of radius r1
spp = 2 μm and 

small SPPs with f2
spp = 2% of radius r2

spp = 1 μm distributed in two bands in the domain, is considered (as illustrated in Fig. 13.a). 
Material properties and particle velocity vspp for the chosen annealing temperature profile were obtained through experimental 

investigations [204]. The small particles are dissolved before the large particles, thus the bands regions present a classical GG 
mechanism sooner than the entire domain. 

Fig. 14. Microstructure evolution at different times for a heterogeneous SPPs distribution (SPPs are in black). From [203]. A complete video is 
available online. 
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Fig. 14 from [203] illustrates the evolution of the microstructure at different stages of the simulation (2580s, 4950s, 6880s and 
10800s) showing the particle and GG evolution during annealing. 

For the initial isothermal treatment where the particles do not evolve, the grain size are smaller in the zones composed of small 
SPPs. This can be easily explained by a bigger resulting pinning pressure in this zone than in the zone with large SPPs (see Fig. 14.a). 
When the temperature increases, the particles begin to dissolve and the grains evolve, especially at the regions composed of small 
particles where the small grains of this regions begin to grow (see Fig. 14.b). Once the small SPPs are completely dissolved, the grains 
can grow freely and as represented in Fig. 14.c (white ellipses) some grains can grow more than others, thus a heterogeneous grain 
evolution begins to take place, where some grains are likely to grow more and more leading potentially to abnormal grain growth. 

The thermal treatment ends with a maintain of temperature at 1120◦C which is superior to the solvus temperature, so no particles 
remain and all the domain converge towards a classical GG mechanism as illustrated in Fig. 14.d. 

Fig. 15. Complex thermomechanical path for a Zirconium alloy. Time evolution of the microstructure thank to a LS modeling strategy, from [208].  
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This recent LS formalism opens also the possibility to simulate material deformations more naturally by taken into account the 
mechanical behavior of SPPs. Validation and comparisons of this proposed LS-FE numerical framework comparatively to previous 
formulations [119,47] and experimental data were proposed in [203,204], respectively. 

Clearly, the various components presented earlier now allow to approach increasingly realistic complex thermomechanical paths 
for real materials. If Fig. 7 was a first example in context of 3D DDRX mechanism, the following illustration (Fig. 15), derived from the 
DIGIMU software package solution [206] based on the LS method [207,208,49,209], describes a deformation step of a zirconium alloy 
where CDRX mechanism occurs. Furthermore, the thermal path followed leads to the precipitation of a SPP population (black circles), 
affecting the migration of GB through Smith-Zener pinning. This population eventually dissolves when the temperature rises during 
the post-dynamic regime. This evolution, while reasonable in terms of the number of grains and SPP, remains extremely complex in 
terms of the considered mechanisms and incorporates all of the previously discussed numerical algorithms: Lagrangian deformation, 
continuous evolution of LAGB to HAGB with the consideration of GB property heterogeneities, along with the explicit modeling of the 
interaction between evolving GB and evolving particles, and post-dynamic evolutions. 

A natural perspective of this illustration like another ones considered in this section will be to consider a more physics-based 
modeling for SPP precipitation, evolution and/or dissolution, likely utilizing the tools described in the following section. 

7. Modeling of diffusive solid-state phase transformation 

Until recently, the LS approach in the context of polycrystalline microstructure was primarily used for modeling ReX and related 
phenomena in single-phase materials. However, SSPT entails crystallographic changes in the parent phase, which occur through 
rearrangement of the lattice structure to form a different, more stable product phase, all while remaining in the same solid state. SSPT 
can either be displacive or diffusive. Displacive transformation [210] is characterized by spontaneous, coherent, and coordinated 
atomic movement over relatively short distances. On the other hand, diffusive transformation [211] involves a more gradual reor-
ganization of the lattice through short and long-range atomic diffusion. 

Two fundamental mechanisms drive diffusive SSPT: (i) the diffusion of solutes across phase interfaces and within the grain bulk, 
resulting in changes in chemical composition, and (ii) interface migration leading to lattice rearrangement or structural changes. Phase 
transformation plays a critical role in generating a range of materials with diverse microstructural characteristics during thermo-
mechanical treatments. 

In the context of diffusive SSPT, PFM have gained popularity and extensive usage due to their thermodynamic consistency and their 
ability to model complex morphological changes. The pioneering work of Wheeler et al. [212] and Steinbach et al. [31,213] on so-
lidification using PFM laid some of the mathematical groundwork for phase-field modeling in multi-component, multi-phase systems 
involving solute diffusion. Despite this, the majority of existing numerical frameworks are primarily devoted to model ReX and GG in 
single-phase materials or to modeling phase transformations without considering ReX and associated phenomena. In light of this, a 
novel LS approach has recently been proposed to consider both aspects simultaneously [107]. 

Modeling diffusive SSPT at the mesoscopic scale typically necessitates two governing equations: a diffusion equation that regulates 
the distribution of solute atoms across different phases, and another equation that manages the migration of the resulting interface 
network. Traditionally, the diffusion equation can be resolved within a LS framework. However, the presence of material disconti-
nuities at the phase interfaces requires explicit consideration of interface jump conditions when solving the diffusion equation in the LS 
framework. This requires the explicit localization of the interface at every moment to numerically manage the necessary jump 
conditions. 

To circumvent this complex step, Chandrappa et al. [214,107] proposed considering a diffuse interface hypothesis across the phase 
interfaces during the resolution of the diffusion equation. In simpler terms, while the multi-phase grain interface network is migrated 
using an LS description, a global diffusion equation is considered based on a diffusive interface assumption for the phase interfaces. 
This approach allows for the resolution of a single diffusion equation throughout the entire computational domain, eliminating the 
need for any interface jump conditions. 

The transition between a distance function to a diffuse interface description can be established, thanks to a hyperbolic tangent 
relation: 

ϕ(x, t) = 1
2

tanh
(

3ψ(x, t)
η

)

+
1
2
, (48)  

where η is a diffuse interface thickness parameter. In the following, we shall refer this function (ϕ) yielding the diffuse interface as the 
phase-field function. In the following, the particular case of austenite decomposition to ferrite by carbon diffusion is illustrated even if 
the framework can be generalized. the total carbon concentration field (C) can be expressed as a continuous variable as the solute flux: 

C = ϕCα +
(
1 − ϕ

)
Cγ , J = ϕJα +

(
1 − ϕ

)
Jγ. (49)  

The diffuse phase interface is assumed to be composed of a mixture of the two phases. A constant concentration ratio between the 
phases is enforced. This stipulation ensures that the redistribution of solute atoms at the interface aligns with a partitioning ratio 
(denoted as k) equal to that at the equilibrium:: 

k =
Cα

Cγ
=

Ceq
α

Ceq
γ
, (50) 
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where Ceq
α and Ceq

γ are the equilibrium concentrations of α and γ phases respectively at temperature T. 
Following Fick’s laws of diffusion, the diffusion equation for carbon partitioning can be expressed as: 

∂tC = − ∇ ⋅ J = − ∇ ⋅
[
ϕJα +

(
1 − ϕ

)
Jγ
]
,

with, 

Jα = − DC
α∇Cα; Jγ = − DC

γ ∇Cγ .

We then obtain, 

∂tC = ∇ ⋅
[
ϕDC

α∇Cα +
(

1 − ϕ
)

DC
γ ∇Cγ

]
, (51)  

where DC
α and DC

γ represent the diffusivity of the carbon element in ferrite and austenite phases respectively. 
Invoking eqs.(49) and (50) in eq.(51), a modified carbon diffusion equation [213] is obtained: 

∂tC = ∇ ⋅
(

D*
(

ϕ
)[

∇C −
C(k − 1)

1 + ϕ(k − 1)
∇ϕ
])

, (52)  

where D*(ϕ) is called ”mixed diffusivity” and is defined as, 

D*

(

ϕ

)

=
DC

γ + ϕ
(

kDC
α − DC

γ

)

1 + ϕ(k − 1)
.

With further simplifications, the above Eq.(52) can be transformed into a Convective-Diffusive-Reactive (CDR) form as follows: 

∂tC = ∇ ⋅ [D*(ϕ)∇C − CA(ϕ)]

∂tC+(A − ∇D*) ⋅ ∇C − D*ΔC +RC = 0, (53)  

where, 

A
(

ϕ
)

=
D*(ϕ)(k − 1)
1 + ϕ(k − 1)

∇ϕ, and R = ∇ ⋅ A.

Interestingly, when applying the weak form of the prior equation in a FE resolution, the gradient of the mixed diffusivity term (∇D*) 
vanishes. This aspect carries significant value with regard to numerical stability, especially considering the abrupt changes of this term 
across a phase interface. 

Concerning interface migration, following Eq. 17, P can be defined as, 

P = ΔG+ EEF − κσ. (54)  

The ΔG component acts only across the phase interfaces while vanishing across the grain interfaces of similar phases. Also, the sense 
and value of interface mobility, and interface energy could be different depending on the type of interface (i.e., α/γ phase interface, α/α 
grain interface, and the γ/γ grain interface). Eq. 30 can be then generalized in the following form: 

∂tψi + [vΔG + vEρF]i ⋅ ∇ψi −

[
∑

l∈S

χlμlσl

]

Δψi = 0 ∀i ∈

{

1, 2,…,NGLS

}

, (55)  

where S = {αγ,αα, γγ}, vΔG = χαγμαγΔGαγn, and vEρF =
[∑

l∈S χlμlEEFl
]
n. 

As previously introduced, these equations must be followed by a multiple-junction treatment (Eq. 25 and a reinitialization step (Eq. 
26). Moreover, as for vEρF (see Eq. 33), vΔG component can be built as a unique function in the FE mesh: 

vΔG

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x, t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
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i=1
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j=1
j∕=i

χGi
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⎜
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⎜
⎜
⎜
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⎟
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⎟
⎠
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(
− β
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⃒ψj
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⃒
)
χαγ
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⎜
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⎟
⎟
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⎟
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⎜
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⎜
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⎟
⎟
⎟
⎟
⎠

, (56)  

where χαγ, as seen earlier, helps to filter this component of velocity field only on the phase interfaces and 

F s
(
x, t
)
= χα

(
x, t
)
− χγ

(
x, t
)
= 2χα

(
x, t
)
− 1, (57)  
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with χα(x, t) and χγ(x, t) the characteristic functions of α and γ phase, respectively. 
The last ingredient missing to completely prescribe the above kinetics is the change in Gibbs free energy between the two phases. 

ΔGαγ is typically dependent on the local composition of the solutes, temperature, and the pressure. In many works, the description for 
ΔGαγ has been established by thermodynamic evaluations based on Calphad data [215] or ThermoCalc software [216]. For certain 
sharp interface descriptive models, the diffusion in the product phase is assumed to be instantaneous and so ΔGαγ is simply assumed to 
be proportional to the deviation in concentration at the interface in the parent phase (Cγ,eq) from the equilibrium concentration in this 
phase (Cγ,γα) [217,218]. In Chandrappa et al. [214,107] as in the works of Mecozzi [219], ΔGαγ is described based on a local line-
arization of the phase diagram and is basically assumed to be proportional to a small undercooling (ΔT = Teq − T). More details can be 
found in [107,214,73]. Fig. 16 (from [107]) illustrates the described numerical framework in a 2D case which corresponds to α phase 
nucleation and growth in a γ phase polycrystal. 

8. Conclusion, limits, and perspectives 

As highlighted, the level-set approach has spread extensively in computational metallurgy at the polycrystalline scale and is now 
used to model numerous mechanisms. The known advantages of this approach, explaining its relevance, primarily lie in its ’front- 
capturing’ nature, where complex topological events (like the emergence and disappearance of grains) can be addressed in a 
completely natural way. Since the description of interfaces is not tied to a set of nodes and edges of the considered mesh or regular grid, 
the kinetics of the interfaces can thus be decoupled from that of the medium used for domain discretization. This strong point is, of 
course, common to multi-phase field type approaches. Moreover, if one take advantage of the allusion to multi phase-field approaches 
here to delve deeper. One can affirm that the level-set approach eliminates one of the inherent difficulties of phase field methods in 
defining, controlling, and optimizing the thickness to be considered in phase field approaches for a similar computational cost. The 
kinetic approach inherent to the LS method also negates the need to debate the comparative calibration of potential different Ginz-
burg–Landau functionals for the same mechanism. 

Of course, if the level-set approach only had advantages, it would have spread much more in computational metallurgy compared 
to Monte Carlo, Cellular Automata or multi-phase field approaches, which are much more widely used in the community. This can 
easily be explained by the fact that each strong positive statement made in the previous paragraph can be offset by a negative 
argument. Let’s try the exercise: While the front-capturing type description is often a sign of simplicity in topological events, it can also 
become a drawback when it comes to properly handling multiple junctions or when knowing their precise position and the neighboring 
discretization of the interfaces converging there can be indispensable for a rigorous consideration of the anisotropy of interface 
properties, as discussed in Section 5. This explains why this problem still remains stiff in all level-set formulations or multi-phase field 
approaches compared to vertex type approaches, for example. In regard to the link to the FE mesh, it is also useful to remember that 
while a discretization of the interface is not necessary, the precision of the interface description and its attributes remain however tied 
to the fineness of the mesh around the interfaces and/or the order of interpolation used. Therefore, it cannot be asserted, as is 
sometimes written, that the level-set description allows one to be completely independent from any work on the embedding FE mesh. 
Finally concerning the comparison with multi-phase field approach, it is probably useful to recall that the level-set framework can be 
seen somewhere as a particular extreme configuration of multi-phase field approach when a top hat potential is used as nicely depicted 
in the work of Steinbach [220]. The level-set approach brings precision in the description of the interface where the multi-phase field 
approach brings regularization of singularities at the interfaces. 

Finally, in the author opinion, by taking into account the balance of the two previous paragraphs, the main interest of the level-set 
approach remains probably more in its versatility to take into account numerous mechanisms in a global numerical framework even in 
context of large deformation of the calculation domain. This likely explains its significance in modeling complex thermomechanical 
paths [48], and thus its unique potential for predicting microstructures in the context of hot metal forming processes 
[207,208,49,209]. On this matter, it seems evident to assert that level-set approaches are far from having demonstrated their full 
potential in the mechanisms that can be modeled. As presented in the previous section, solid-state transformations could become a new 
playground for these methods while taking into account the driving pressures also acting on grain boundaries. Other diffusion 
mechanisms are also within reach, such as surface diffusion [17]. The consideration of solute drag aspects at grain boundaries is also an 
area where the level-set approach could be improved to offer innovative solutions [221,222]. Finally, level-set approaches are also a 
powerful tool for accounting for all the mechanisms mentioned for processes related to powder metallurgy [223–225] where particles 
and their polycrystalline structures can be taken into account. 

However, its main weakness, like other full-field approaches, lies in its high computational cost, mainly in 3D. In fact, if the goal 
here is to provide orders of magnitude for the computation times related to level-set simulations on FE meshes with remeshing al-
gorithms on the latest generation CPUs, the following values can be suggested: In 2D, for a typical microstructure made of 1000 to 
10,000 grains and no SPP, simulating a representative thermomechanical treatment can be achieved in a few hours on 8 CPUs. This 
computation time may extend to the range of a day to a few days when complex second-phase particle populations are present. In 3D, 
on 32 CPUs, these computation times can be extrapolated to days for simulations without second-phase particles and weeks for 
simulations with SPP. Such kind of discussions are provided in [86,109]. While these calculations are of interest in the modeling and 
understanding of mechanisms, their connection with component scale calculations remains very tenuous today due to the cost of these 
calculations and the necessity to have access to very large computing cluster if large calculation domains need to be investigated. The 
most advanced tools involve approaches where RVE simulations are conducted at a limited number of integration points within 
component-scale simulations. Thus, in R&D, low dimension/number of RVE and indirect coupling with component scale simulations 
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correspond to the more advanced tools. In this context, an evident perspective lies in the notable emergence of machine learning- 
trained surrogate models. These models, which are based entirely on artificial intelligence, serve as reduced order models derived 
from full-field simulations databases. Their primary advantage lies in their ability to offer predictive models at a significantly reduced 
computational cost [226–229]. Despite the evident appeal of these initial efforts, they are hindered by a few strong key limitations. 
Firstly, the representativeness of the training bases may be limited due to the inherent inaccuracies of the promoted full-field models. 
Secondly, the comparatively simplistic mechanisms primarily investigated thus far, such as grain growth and spinodal decomposition, 
do not adequately reflect the complexities found in actual metal forming conditions. Lastly, the considered microstructures lack the 
required intricacy, and hence may not provide an accurate representation of real materials. In context of hot metal forming, such 
nascent approaches are then currently unable to provide physically representative simulations at the mesoscopic scale. This consti-
tutes, however, a very promising field in the coming years either for developing reduced order models, or even more intriguingly, to 
accelerate high-fidelity level-set simulations through mixed formulations (high-order time step resolution interposed with low-order 
ones) [228]. 

As highlighted, the representativity of Eq. 8 at the mesoscopic scale coupled to the usual 5D-space and models to described the grain 
boundary energy and mobility is more and more discussed and recent studies have resulted in contradictory conclusions on the subject. 
Indeed, the recent improvements of 3D grain growth and recrystallization experiments now make it possible to discuss in a much more 
precise way the veracity of this picture. Non-destructive in situ experiments allow to avoid bias inherent to 2D observations and open 
the path to precise reverse engineering of the ‖ v ‖ /κ ratio. In this context, numerical reverse engineering by using anisotropic level-set 
formulations taken into-account the torque terms, will be of great interest to participate to this discussion. 
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[48] Maire L, Scholtes B, Moussa C, Bozzolo N, Muñoz DP, Settefrati A, Bernacki M. Modeling of dynamic and post-dynamic recrystallization by coupling a full field 

approach to phenomenological laws. Mater Des 2017;133:498–519. 

M. Bernacki                                                                                                                                                                                                             

http://refhub.elsevier.com/S0079-6425(23)00156-1/h0005
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0005
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0005
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0010
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0015
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0020
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0025
https://doi.org/10.1016/0001-6160(65)90200-2
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0035
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0035
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0040
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0040
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0045
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0050
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0050
https://doi.org/10.1016/j.actamat.2007.12.050
https://doi.org/10.1016/j.actamat.2007.12.050
https://doi.org/10.1016/j.actamat.2020.04.029
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0065
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0070
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0070
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0075
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0080
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0085
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0085
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0090
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0090
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0095
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0105
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0105
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0110
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0110
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0115
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0115
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0120
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0125
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0125
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0130
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0130
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0135
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0140
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0140
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0145
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0145
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0150
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0150
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0155
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0160
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0160
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0165
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0170
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0170
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0175
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0175
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0180
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0185
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0190
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0190
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0195
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0200
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0200
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0205
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0210
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0210
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0215
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0220
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0220
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0225
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0225
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0230
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0230
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0235
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0235
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0240
http://refhub.elsevier.com/S0079-6425(23)00156-1/h0240


Progress in Materials Science 142 (2024) 101224

29

[49] P. De Micheli, K. Alvarado, V. Grand, M. Bernacki, Full field grain size prediction considering precipitates evolution and continuous dynamic recrystallization 
with DIGIMU solution, in: Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity, 
Springer Nature Switzerland, 2024, pp. 563–574. 

[50] Morawiec A. Orientations and rotations. Springer; 2003. 
[51] Gurtin ME. Multiphase thermomechanics with interfacial structure 1. heat conduction and the capillary balance law. Arch Ration Mech Anal 1988;104(3): 

195–221. 
[52] Gurtin ME. Toward a nonequilibrium thermodynamics of two-phase materials. Arch Ration Mech Anal 1988;100:275–312. 
[53] Gurtin ME, Struthers A. Multiphase thermomechanics with interfacial structure: 3. evolving phase boundaries in the presence of bulk deformation. Arch Ration 

Mech Anal 1990;112:97–160. 
[54] do Carmo MP. Differential geometry of curves and surfaces, Englewood Cliffs, New Jersey; 1976. 
[55] Herring C. Surface tension as a motivation for sintering, Fundamental contributions to the continuum theory of evolving phase interfaces in solids: a collection 

of reprints of 14 seminal papers; 1999. p. 33–69. 
[56] Abdeljawad F, Foiles SM, Moore AP, Hinkle AR, Barr CM, Heckman NM, Hattar K, Boyce BL. The role of the interface stiffness tensor on grain boundary 

dynamics. Acta Mater 2018;158:440–53. 
[57] Du D, Zhang H, Srolovitz DJ. Properties and determination of the interface stiffness. Acta Mater 2007;55(2):467–71. 
[58] K. Chen, J. Han, X. Pan, D.J. Srolovitz, The grain boundary mobility tensor, Proceedings of the National Academy of Sciences 117 (9) (2020) 4533–4538. doi: 

10.1073/pnas.1920504117. 
[59] Bhattacharya A, Shen Y-F, Hefferan CM, Li SF, Lind J, Suter RM, Krill CE, Rohrer GS. Grain boundary velocity and curvature are not correlated in ni 

polycrystals. Science 2021;374(6564):189–93. https://doi.org/10.1126/science.abj3210. 
[60] Xu Z, Hefferan CM, Li SF, Lind J, Suter RM, Abdeljawad F, Rohrer GS. Energy dissipation by grain boundary replacement during grain growth. Scripta Mater. 

2023;230:115405. https://doi.org/10.1016/j.scriptamat.2023.115405. 
[61] Florez S, Alvarado K, Murgas B, Bozzolo N, Chatain D, Krill CE, Wang M, Rohrer GS, Bernacki M. Statistical behaviour of interfaces subjected to curvature flow 

and torque effects applied to microstructural evolutions. Acta Mater 2022;222:117459. 
[62] Laasraoui A, Jonas J. Prediction of steel flow stresses at high temperatures and strain rates. Metall. Trans. A 1991;22(7):1545–58. https://doi.org/10.1007/ 

BF02667368. 
[63] Kocks UF. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976;98(1):76–85. https://doi.org/10.1115/1.3443340. 
[64] Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29(11):1865–75. https://doi.org/10.1016/0001-6160(81)90112-7. 
[65] Cuitino AM, Ortiz M. Computational modelling of single crystals. Modell. Simul. Mater. Sci. Eng. 1993;1(3):225. 
[66] Marin E, Dawson P. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput. Methods Appl. Mech. Eng. 1998;165(1):1–21. 

https://doi.org/10.1016/S0045-7825(98)00034-6. 
[67] Asaro R, Needleman A. Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metall 1985;33(6):923–53. 
[68] Wakai F, Brakke K. Mechanics of sintering for coupled grain boundary and surface diffusion. Acta Mater 2011;59(14):5379–87. 
[69] A. Dervieux, F. Thomasset, A finite element method for the simulation of a rayleigh-taylor instability, in: Approximation Methods for Navier-Stokes Problems: 

Proceedings of the Symposium Held by the International Union of Theoretical and Applied Mechanics (IUTAM) at the University of Paderborn, Germany, 
September 9–15, 1979, Springer, 2006, pp. 145–158. 

[70] Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988;79(1): 
12–49. 

[71] F.A. Williams, 3. Turbulent Combustion, pp. 97–131. doi:10.1137/1.9781611971064.ch3. 
[72] Kerstein AR, Ashurst WT, Williams FA. Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 1988;37:2728–31. 

https://doi.org/10.1103/PhysRevA.37.2728. 
[73] N. Chandrappa, A level-set formulation to simulate diffusive solid-state phase transformation in polycrystalline metallic materials, Ph.D. thesis, MINES Paris 

PSL (2024). 
[74] Rollett AD, Saylor D, Fridy J, El-Dasher BS, Brahme A, Lee S, Cornwell C, Noack R. Modeling polycrystalline microstructures in 3d. AIP Conf. Proc. 2004;712 

(1):71–7. 
[75] Xu T, Li M. Topological and statistical properties of a constrained voronoi tessellation. Phil. Mag. 2009;89(4):349–74. 
[76] Imai H, Iri M, Murota K. Voronoi diagram in the laguerre geometry and its applications. SIAM J. Comput. 1985;14(1):93–105. 
[77] Jodrey WS, Tory EM. Computer simulation of close random packing of equal spheres. Phys. Rev. A 1985;32:2347–51. 
[78] He D, Ekere NN, Cai L. Computer simulation of random packing of unequal particles. Phys. Rev. E 1999;60:7098–104. 
[79] Benabbou A, Borouchaki H, Laug P, Lu J. Geometrical modeling of granular structures in two and three dimensions. application to nanostructures. Int. J. 

Numer. Meth. Eng. 2009;80(4):425–54. 
[80] Bagi K. A quasi-static numerical model for micro-level analysis of granular assemblies. Mech. Mater. 1993;16(1):101–10. 
[81] Hitti K, Laure P, Coupez T, Silva L, Bernacki M. Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context. 

Comput. Mater. Sci. 2012;61:224–38. 
[82] Ilin, Dmitrii N., Bernacki, Marc, A new algorithm for dense ellipse packing and polygonal structures generation in context of fem or dem, MATEC Web Conf. 80 

(2016) 02004. doi:10.1051/matecconf/20168002004. 
[83] Ilin Dmitrii N, Bernacki Marc. Advancing layer algorithm of dense ellipse packing for generating statistically equivalent polygonal structures. Granular Matter 

2016;18(3). 
[84] Quey R, Renversade L. Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data. 

Comput. Methods Appl. Mech. Eng. 2018;330:308–33. 
[85] Depriester D, Kubler R. Radical voronoï tessellation from random pack of polydisperse spheres: Prediction of the cells’ size distribution. Comput. Aided Des. 

2019;107:37–49. 
[86] Scholtes B. Development of an efficient level set framework for the full field modeling recrystallization in 3D. MINES Paris PSL; 2016. Ph.D. thesis. 
[87] K. Hitti, Direct numerical simulation of complex representative volume elements (RVEs): Generation, resolution and homogenization, Ph.D. thesis, MINES 

Paris PSL (2011). 
[88] Mackenzie JK. Second paper on statistics associated with the random disorientation of cubes. Biometrika 1958;45(1–2):229–40. https://doi.org/10.1093/ 

biomet/45.1-2.229. 
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