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Introduction

Change is an inherent, perpetual force woven into the very fabric of our universe. Much like
how we maneuver life’s transitions with adaptability and resilience, materials similarly adjust
their structures and properties in response to external stimuli. Thus, engineering of materials
with desirable properties suitable for a particular condition is not sufficient. It is also important
to incorporate how subtle changes in temperature, pressure or material composition drive the
transformation of the underlying microstructure. These microstructural transformations hold the
potential to significantly impact the functional characteristics of a broad spectrum of industrial
components across various applications. Hence, being cognizant of how to control these changes
and their effects in reshaping the fundamental fabric of materials is essential to modern engineering
of materials. A significant aspect of this comprehension is linked to understanding and predicting the
underlying microstructural evolution. Numerical modeling serves as the guiding light, illuminating
the path toward deeper insights into complex processes governing the microstructural evolution.

Acknowledging prevailing environmental concerns and economic pressures, especially amidst
intense international competition among metallurgical industries, the digitization of material engi-
neering processes emerges as an integral element in shaping the materials of the future. Numerical
predictions assist in optimizing the process chain for fabricating metallurgical products tailored for
specific applications. Thus there is an increased demand for predicting models due to its direct eco-
nomic and societal impact on the industries. Consequently, materials of the future are envisioned
to take form digitally before materializing in reality.

Around 20 years ago, the predictive capacities of numerical models available to metallurgical in-
dustries were somewhat unreliable due to limitations in the modeling scale and hence a restricted
description of the involved physics. However, recent advancements in computational resources and
the evolution of efficient modeling approaches have sparked a significant demand for mesoscopic
numerical models. These models possess the ability to offer more realistic depictions of evolution-
ary aspects while maintaining a balance between computational expense and accuracy. Mesoscopic
models are also pivotal in enriching the material description at the macroscopic scale. This field
is the foundation of the DIGIMU consortium led by MINES Paris, Transvalor, the CEA, major
industrial companies such as Aperam, ArcelorMittal, Ascometal, Aubert & Duval, Constellium,
Framatome, Safran, Timet, and supported by the ANR through the DIGIMU and RealIMotion
ANR industrial chairs (grants ANR-16-CHIN-0001 and ANR-22-CHIN-0003, respectively). My
Ph.D. work came to life within this consortium.

The microstructural evolution in metallic alloys in the context of hot metal forming typically involves
a complex interplay of multiple phenomena occurring simultaneously. The industrial metallurgical
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products are often subjected to complex thermomechanical treatments or processing conditions
such as high plastic deformation at elevated temperatures. Under these conditions, solid-state
phase transformations within alloyed materials becomes inevitable, alongside other concurrent
phenomena. Currently, most state-of-the-art numerical predictions primarily focus on single-
phase microstructural evolution or exclusively model phase transformation, often neglecting the
consideration of other coexisting phenomena. While delving into individual phenomena provides
valuable insights, focusing solely on singular aspects might inadvertently lead to oversights and
limitations in comprehending the holistic behavior of these materials. Such a narrow focus could
lead to overlooking crucial interactions that may influence the alloy’s mechanical strength, thermal
stability, or its susceptibility. Moreover, materials engineering often demands a comprehensive
understanding of how these diverse phenomena coalesce to define the macroscopic properties of
alloys. Neglecting the concomitant nature of these transformation aspects could limit our ability
to predict and optimize material performance under diverse operating conditions. Thus, one of the
objectives of this work is to develop a numerical model with a generalized kinetic framework capable
of simultaneously and seamlessly accounting for different aspects of microstructural evolution,
including diffusive solid-state phase transformation (DSSPT), recrystallization and grain growth.

Each numerical method has its unique scope of application, with some better suited to specific sce-
narios than others. For modeling recrystallization and grain growth under high plastic deformation,
the level-set method stands out as a robust choice and has been effectively utilized. However, re-
garding diffusive phase transformation at the solid-state, the potential of level-set methods remains
largely unexplored. Therefore, the primary goal of this work is to develop a numerical formulation
based on the level-set method for modeling DSSPT.

Therefore, within this Ph.D. work, a global level-set based numerical formulation with a generalized
kinetic framework, capable of accounting diverse microstructural phenomena will be presented.
The primary emphasis with the proposed numerical model will be on diffusive solid-state phase
transformation in biphasic polycrystalline context. The application of the level-set method for mod-
eling DSSPT using this proposed framework will be explored through illustrative cases, principally
examining austenite decomposition in steels.

Chapter 1 will introduce the concept of microstructural stability and delve into the physical theory
of diffusive solid-state phase transformation in metallic alloys.

Chapter 2 will offer insights into the numerical modeling of microstructural evolution. This chapter
will comprehensively outline the proposed numerical framework, detailing both the formulation
and techniques used.

Chapter 3 will cover the initial analyses of the proposed numerical model, employing benchmarking
cases within simple domains to study austenite decomposition in steels. This chapter aims to verify
the model’s capability to replicate the expected physical aspects of this decomposition. It will also
include a sensitivity analysis of critical numerical parameters.

Chapter 4 will showcase the potential of the numerical model in simulating austenite decompo-
sition within complex biphasic polycrystalline microstructures. Additionally, it will illustrate the
versatility of the model in simulating other diffusive solid-state phenomena.

Chapter 5 will shed light on the potential outcomes and takeaways of this work, and lay the
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groundwork for future prospective endeavors.
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Chapter 1

General aspects of phase transformation
theory in metallic materials

Abstract

In the context of industrial applications, the metallic materials in use are generally subjected
to various thermomechanical loads and fluctuations depending on their processing and working
conditions. In response, the underlying microstructure of these materials could undergo differ-
ent kinds of transformation in a quest to recover the stability linked to its composition and the
considered thermomechanical conditions. Among the different types of transformation mecha-
nisms, allotropic phase transformation is frequently observed in alloyed materials. Considering
that different phases could exhibit different material properties. It may be desirable to stimulate
particular phases into the microstructure for their favorable effects on the material. On the
other hand, it could be necessary to avoid transforming into some phases that could impart
undesirable macroscopic properties into the material. It is thus of great interest to understand
phase transformation of a material under different conditions.

As a precursor, this chapter introduces the notion of microstructural stability and trans-
formation for metallic materials at the solid-state. The emphasis is then primarily shifted to
diffusive solid-state phase transformation where the important aspects of phase transformation
theory are discussed for binary alloys, ternary alloys and beyond.

Résumé

Les matériaux métalliques utilisés dans les applications industrielles sont généralement
exposés à diverses charges et fluctuations thermomécaniques en fonction de leurs conditions
de traitement et d’utilisation. En conséquence, la microstructure de ces matériaux peut subir
différents types de transformation afin de retrouver l’état de stabilité inhérent à sa composi-
tion et les conditions thermomécaniques considérées. Entre les différents types de mécanismes
de transformation, la transformation de phase allotropique est fréquemment observée dans
les alliages métalliques. En considérant que différentes phases peuvent posséder des propriétés
différentes, il peut être souhaitable de favoriser l’introduction de certaines phases dans la micro-
structure pour leur effet bénéfique sur le matériau. D’autre part, il peut être nécessaire d’éviter
la transformation vers certaines phases qui pourraient apporter des propriétés macroscopiques
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indésirables au matériau. Il est donc essentiel de bien comprendre la transformation de phase
d’un matériau sous différentes conditions.

Ce chapitre présente tout d’abord la notion de stabilité et de transformation des microstruc-
tures pour les matériaux métalliques à l’état solide. Nous allons ensuite nous concentrer sur la
transformation de phase diffusive à l’état solide, où les aspects importants concernant la théorie
de la transformation de phase sont discutés pour les alliages binaires, les alliages ternaires et
au-delà.

1.1 Introduction: stability and transformation of a microstruc-
ture in the solid-state

Figure 1.1: Examples of simple crystal lattices

A material is said to be crystalline if it has a patterned or structured and periodic arrangement
of atoms or molecules within a solid. This well defined, repetitive atomic structure within a
particular unit cell constitutes a crystal lattice. Fig.1.1 shows some examples of simple crystal
lattices. A perfect monocrystalline material is quite rare (though it is highly desirable for some
critical applications). Most metallic materials are polycrystalline with certain inherent defects,
comprising of several crystals of varying crystallographic orientation packed together to form a
3D network of internal boundaries. An arrangement of repetitive crystal lattices with the same
crystallographic orientation makes up a grain. When two grains belonging to the same phase
with the same crystal structural basis but oriented differently come in contact, the disordered or
disoriented region between these two grains form the grain boundary. However, if two adjacent
grains are made up of different phases with different crystal structural bases, and/ or potentially
different chemical compositions, then the boundary formed between them is qualified as a phase
boundary (interphase boundary). The topological distribution and arrangement of these grains,
phases, their interfacial boundaries, and other potential defects comprises the microstructure of the
material. Fig.1.2 illustrates a simple representative 2-D microstructure composed of several grains
showing the grain/ phase boundaries. Γ12 represents the grain boundary, while Γ34 is an example
of a phase boundary between grains of different phases (say 𝛼 and 𝛾). In 3-D, if we ignore the
translation vector characterizing the inter-displacement between two crystals (which is relevant at
the mesoscopic scale), 5 parameters are essential to mathematically define a grain/ phase boundary
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[1]: three Euler angles to define the crystallographic disorientation between the two grains, two
parameters to define the inclination angle of the grain boundary plane through a unit normal (𝒏).
The underlying microstructure of the material with its topological arrangement of grains and their
size distribution, composition of phases, and the presence of defects directly dictate the properties
of the material depending on the processing conditions relevant to the application.

Figure 1.2: Representative 2-D microstructure showing grain and phase
boundaries

A microstructure of a system under the influence of certain thermomechanical fluctuations could
render itself into a transitory configuration with unstable atomic arrangements. Such systems by
nature are thermodynamically driven towards more stable configurations by undergoing necessary
atomic rearrangements. In a thermodynamic sense, stability corresponds to minimum free energy
configurations of the system at the given conditions. The process of undergoing these atomic
rearrangements to lower the free energy of the system constitutes a transformation in general.
During the course of a transformation, in the quest for stability, it is possible that a system reaches
some intermediate states or configurations corresponding to the local minima of the free energy
instead of directly going to the most stable equilibrium state. Such states are classically referred
as metastable states having relatively higher free energy than the intended more stable state. The
need to negotiate through some potential metastable configurations with higher energy to attain the
more stable state act as barriers to a transformation. Thus, for some transformations to take place
completely, a certain activation energy (owing to thermal and/or mechanical influences) is required
to liberate the system out of metastability. Mathematically, for a closed system at a fixed temperature
(𝑇) and pressure (𝑝) with no gradients (𝑑𝑇 = 0, 𝑑𝑝 = 0), the stable equilibrium condition is [2]:

𝑑𝐺 = 0, (1.1)

where 𝐺 is the Gibbs free energy of the system.
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Figure 1.3: Evolution of Gibbs free energy (𝐺) at different system
configurations during a transformation [3]

Fig.1.3 illustrates the variation of the free energy of the system at a fixed temperature and pressure,
against any variable (𝜉) governing the progress of the transformation. The microstructural configu-
rations at both 𝐴 and 𝐵 respect the equilibrium condition in Eq.(1.1). However, the 𝐴 configuration
with a higher free energy represents one of the local minima and reflects metastability relative to
𝐵. For the system to naturally reach the more stable state at 𝐵, it would need to pass through
configurations with much higher free energy which is thermodynamically unfavorable. The system
would continue to occupy A for a prolonged period unless an activation energy, Δ𝐺𝐴, is provided
to overcome the transformation barrier and undergo the necessary microstructural changes to reach
the state 𝐵. Other than 𝐴 and 𝐵, all the other configurations having 𝑑𝐺 ≠ 0 represent instability
and instantly undergo transformation towards the nearest and the favorable free energy minima.
In reality, it is almost impossible to reach the true or the most stable state possible for a system
at a certain set of conditions as it could require an infinite duration of time to realize, or could
be bound by strong transformation barriers. So, within the characteristic time scales of interest,
a microstructure at equilibrium would likely occupy one of the metastable states (relative to the
global minimum) with as lower free energy as possible or permissible.

The difference in free energies between the initial state and the final transformed state (Δ𝐺)
provides a thermodynamic potential that constitutes a driving pressure (𝐷 𝑝) depending on the
degree of any internal process relevant to the transformation. It is this driving pressure that powers
the transformation and controls the associated kinetics. 𝐷 𝑝 is defined as [4]:

𝐷 𝑝 = −
(
𝜕𝐺

𝜕𝜉

)
𝑇,𝑝

, (1.2)
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where 𝜉 is a variable representing the degree of the internal process relevant to the transformation.
The system continues to remain unstable and transform as long as the driving pressure is positive
or

(
𝜕𝐺
𝜕𝜉

)
𝑇,𝑝

< 0.

Within a microstructure, all the characteristics such as the point defects, dislocations, surface
defects (in the form of grain and interphase boundaries), volume defects, and the bulk of the system
itself contribute to the free energy of the system. The notion of a microstructure tending towards a
"minimum free energy configuration" implies that the excess free energy accumulated due to these
defects is equilibrated through a minimization. The kind of transformation transpiring as a result
is generally qualified based on the principal mechanism (depending on the source of the excess
free energy) motoring the excess free energy liberation. Consequently, the resultant microstructural
changes could include changes in the material phase(s) (with or without modifying the composition),
compositional changes, modification of grain characteristics including the grain size distribution,
texture, crystallographic orientation, etc., depending on the underlying mechanisms. The sources
of instabilities responsible for excess free energy build-up (and the resultant driving pressures for
minimization) could be broadly classified to be chemical, strain, or interfacial free energies [3]:

• Chemical free energy could be characterized by an increase in free energy due to unstable
solute concentrations, instabilities of some phases over others at certain temperatures or
pressures, differences in chemical potentials of the system component(s) between two or more
coexisting phases, inhomogeneities in chemical potentials of the solute (or compositional
fluctuations) within a stable system phase. The excess free energy built up as a result is then
equilibrated by homogenizing the chemical potentials for all the system components through
thermally activated mechanisms like diffusion, and/ or by undergoing phase transformations
or decompositions. Solid-state phase transformations [5] such as homogenization of cored
solid solutions [6, 7], spinodal decomposition [8, 9], matrix phase transformations (e.g.,
austenite formation [10] and decomposition [11]), precipitation of secondary phases from
supersaturated solid solutions [12], precipitate dissolution [13], etc., are all driven by chemical
free energy as the principal component.

• Strain free energy could be principally associated with an increase in free energy of a
crystalline system due to the defects or plastic strains accumulated during plastic deformation.
A portion of the work done in a deformation process is stored in the microstructure in the
form of dislocations and interfaces, often referred to as stored energy. The presence of these
defects render the system thermodynamically unstable. As a result, under thermally favorable
conditions, transformation mechanisms such as Recovery, or Recrystallization (ReX) [14]
are activated to decrease the stored energy through minimization of the dislocation densities.
The contributions arising from elastic misfit strains [15, 16], potentially present between
different co-existing phases also fall under this category.

• Interfacial free energy accounts for the additional free energy stemming from the atoms and
their broken atomic bonds at the interfaces. In the context of a polycrystalline microstructure,
broadly two types of interfaces could exist that potentially contribute to an increase in free
energy: (i) a grain boundary, (ii) a phase boundary. Under the relevant thermal activation,
the excess free energy due to the presence of interfaces creates a driving pressure for the
minimization of the interfacial area and hence the associated interface energy to lower the
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overall system free energy. This makes way for transformations such as the classical Grain
Growth (GG) [17, 18], spheroidization [19, 20] (involving also surface diffusion mechanism),
precipitate coarsening also well known as Ostwald ripening [21] (though Ostwald ripening
is in fact more a phenomenon resulting from a competition between both the chemical and
the interfacial contributions).

While the above classification and most of the corresponding transformation mechanisms could
be globally characterized by different kinds of driving pressures involved, it is not possible for a
complete distinction between them. They could have mutual effects and contributions affecting
each other as the mechanisms involved in a microstructural evolution are often concomitant. For
example, phase transformations involving changes in the crystal lattice structure could introduce
misfit elastic strains at the interphase boundaries to accommodate the potential changes in volume
which could result in a strain energy contribution. Another example could be the alteration of the
chemical composition between two phases in the presence of curved interfaces resulting in small
chemical potential gradients.

Although the above classification takes into account the principal sources of microstructural in-
stabilities, it is non-exhaustive. Instabilities could also be brought about under the influence of
irradiation, heterogeneous temperature distribution, electrical, magnetic, and gravitational fields,
resulting in some interesting microstructural changes [22–24].

In the following, the discussions will be limited to solid-state phase transformations within the
scope of this chapter. The interested readers are directed to cited references for detailed discussions
on other kinds of transformation mechanisms.

1.2 Solid-State Phase Transformation (SSPT)
A material undergoing allotropic transmutations from one solid phase to another, under favorable
thermomechanical conditions constitute solid-state phase transformations. An allotropic phase
could be characterized by a distinct crystal structure and/ or its chemical composition (in the case
of alloys). Only certain pure metals exhibit allotropy, albeit under potentially strict or specific
thermodynamic conditions. The addition of suitable alloying elements to pure metals at the right
proportions can enhance allotropic transformations as they tend to stabilize particular phases over
the others. Considering that certain allotropic phases could be desirable for their positive impact on
material properties [25], alloying is widely practiced. Alloying elements tend to give the necessary
degree of freedom to alter the properties as per the requirements by influencing the evolution
processes and their dynamics. So, in the case of metallic alloys, depending on the temperature,
pressure, and potentially chemical composition, a particular phase may be more stable with a lower
Gibbs free energy than the unstable parent phase. As the system tends to prefer a more stable phase,
crystallographic changes occur through lattice rearrangement of the parent phase into the lattice
of the product phase. In addition, in the case of diffusive phase transformations, differences in
solubility of solutes between different phases cause redistribution of solutes, creating compositional
fluctuations.

As depicted in Fig.1.4, phase transformations could be broadly classified into two categories based
on the mechanisms involved [26]: (i) Phase transformations involving nucleation and growth
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Figure 1.4: Broad classification of phase transformation at the solid-state

mechanisms, and (ii) Spinodal decomposition which involves spontaneous evolution through phase
separation, potentially without a nucleation step [27]. Nucleation and growth based phase transfor-
mation are generally further classified as: (i) Civilian type transformations, and (ii) Military type
transformations. Civilian transformations are characterized by uncoordinated or chaotic atomic
movements across non-glissile interfaces. On the other hand, military transformations involve
cooperative or coordinated, spontaneous atomic movements across glissile interfaces. Civilian
transformations are generally diffusive, resulting in redistribution of solutes through short and long
range diffusion of solutes, e.g., precipitation of second phase, precipitate dissolution, eutectoid
reactions. However, certain reactions such as massive transformations, austenite formation in pure
iron, etc., show the characteristics of civilian type atomic transfer without the change in composi-
tion and are generally referred as diffusionless civilian transformations. Military transformations
are generally diffusionless involving only changes in the crystal lattice structure, e.g., martensitic
transformations. However, in the case of bainitic transformations, diffusion is potentially involved
despite showing a military type transformation. The diffusionless military transformation are
sometimes also referred to as displacive transformations [28].

In the scope of this work, only diffusive civilian type solid-state phase transformations will be of
interest and shall be discussed in detail.

1.2.1 Diffusive solid-state phase transformation (DSSPT)
As described earlier, diffusive transformation is associated with a gradual reorganization of the
lattice through short and long-range diffusion of the solute atoms. In metallic alloys, for DSSPT,
various phase changes are governed by the variation of Gibbs free energy of each phase with solute
composition along with the temperature and the pressure of the system. A priori, to better express
the equilibrium conditions of phase transformation in alloys, it is important to define the notion of
a chemical potential (𝜇) of a solute, say 𝑖. Chemical potential of a solute 𝑖 in a system is associated
with the change in free energy of the system for a change in the number of solute atoms in the
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system. Given 𝑇 , 𝑝, and the number of moles of solute 𝑗 (𝑛 𝑗 ) are held constant, 𝜇𝑖 is the partial
Gibbs free energy [2]:

𝜇𝑖 =

(
𝜕𝐺

𝜕𝑛𝑖

)
𝑇,𝑃,𝑛 𝑗 , 𝑗≠𝑖

(1.3)

Consider a simple binary alloy system, A-B, with phases 𝛼 and 𝛾. For this binary system, if
𝑛 = 𝑛𝐴 + 𝑛𝐵 is the total moles of solutes in the system, with 𝑥𝐴 = 𝑛𝐴/𝑛 and 𝑥𝐵 = 𝑛𝐵/𝑛 being the
molar fractions of the components 𝐴 and 𝐵 respectively, then 𝑥𝐴 + 𝑥𝐵 = 1. The molar Gibbs free
energy of the system could be expressed as, 𝐺𝑚 = 𝐺/𝑛. The definition of the chemical potential in
(1.3) could be rewritten in terms of molar Gibbs free energy as:

𝜇𝑘𝐴 =

(
𝜕 (𝑛𝐺𝑚)
𝜕𝑛𝐴

)
𝑇,𝑃,𝑛𝐵

𝜇𝑘𝐵 =

(
𝜕 (𝑛𝐺𝑚)
𝜕𝑛𝐵

)
𝑇,𝑃,𝑛𝐴

,∀𝑘 ∈ {𝛼, 𝛾}. (1.4)

Making use of the following relations [29]: 𝑥 𝑗 = 𝑛 𝑗/
∑
𝑛𝑖; 𝜕𝑥 𝑗/𝜕𝑛 𝑗 =

(
𝑛 − 𝑛 𝑗

)
/𝑛2 =

(
1 − 𝑥 𝑗

)
/𝑛;

𝑥𝑙 = 𝑛𝑙/
∑
𝑛𝑖; 𝜕𝑥𝑙/𝜕𝑛 𝑗 = −𝑛𝑙/𝑛2 = −𝑥𝑙/𝑛, we can obtain alternative definitions for the chemical

potentials of each phase in terms of the molar fractions of the components for the assumed binary
system:

𝜇𝑘𝐴 = 𝐺𝑘
𝑚 − 𝑥𝐵

𝜕𝐺𝑘
𝑚

𝜕𝑥𝐵

𝜇𝑘𝐵 = 𝐺𝑘
𝑚 + (1 − 𝑥𝐵)

𝜕𝐺𝑘
𝑚

𝜕𝑥𝐵

,∀𝑘 ∈ {𝛼, 𝛾}. (1.5)

In the following, the subscript "𝑚" for 𝐺 used to represent the molar quantity shall be dropped for
simplicity, and 𝐺 shall be implicitly qualified as molar Gibbs free energy unless stated otherwise.

From Eqs.(1.5), the total molar Gibbs free energy of each phase for the considered binary system
could be written as:

𝐺𝛼 = 𝜇𝛼𝐴𝑥
𝛼
𝐴 + 𝜇

𝛼
𝐵𝑥

𝛼
𝐵,

𝐺𝛾 = 𝜇
𝛾

𝐴
𝑥
𝛾

𝐴
+ 𝜇𝛾

𝐵
𝑥
𝛾

𝐵
.

(1.6)

In general, the total molar Gibbs free energy of a system could be expressed as:

𝐺 =
∑︁

𝜇𝑖𝑥𝑖, (1.7)

with 𝑥𝑖 being the mole fraction of a component 𝑖, such that
∑
𝑥𝑖 = 1.

On the other hand, the total Gibbs free energy of a potential mixture of two phases could be written
as:

𝐺 = 𝑓 𝛼𝐺𝛼 + 𝑓 𝛾𝐺𝛾, (1.8)

where 𝑓 𝛼 and 𝑓 𝛾 are the phase fractions such that 𝑓 𝛼 + 𝑓 𝛾 = 1. Phase fractions are a measure of
the amount of each phase coexisting in the mixture. As discussed in the previous section, DSSPT
aims to minimize this 𝐺 as much as possible.
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Figure 1.5: Variation of Gibbs free energy with composition for a mixture
of phases 𝛼 and 𝛾 at 𝑇 and 𝑝

Fig.1.5 illustrates a typical variation of the molar Gibbs free energy with the composition (mole
fraction), for each phase at a certain temperature, 𝑇 , and pressure, 𝑝. For simplicity, let 𝑥𝐵 = 𝑥,
then 𝑥𝐴 = 1 − 𝑥. If we consider a nominal alloy composition of 𝑥0, if the system was to configure
into a homogeneous phase, then between the phases 𝛼 and 𝛾, the free energy would be lowest
for the 𝛾 phase (𝐺𝛾

0 < 𝐺𝛼
0 ). However, as shown in the Fig.1.5a, the system can lower its overall

free energy to 𝐺1 (< 𝐺
𝛾

0) if the system configures into a heterogeneous mixture of the phases 𝛼
and 𝛾 at the compositions 𝑥𝛼1 and 𝑥𝛾1 respectively. From Eq.(1.8), 𝐺1 = 𝑓 𝛼𝐺𝛼

1 + 𝑓
𝛾𝐺

𝛾

1 , where the
phase fractions could be computed using the classical lever rule. If the solutes 𝐴 and 𝐵 redistribute
between the two phases until the compositions 𝑥𝛾𝑒𝑞 and 𝑥𝛼𝑒𝑞, the overall free energy of the system
could be further reduced to 𝐺𝑒𝑞 as shown in the Fig.1.5b. For this nominal alloy composition of
𝑥0, at the given 𝑇 and 𝑝, 𝐺𝑒𝑞 marks the minimum Gibbs free energy configuration possible and
the system is said to be in equilibrium between the two phases with the corresponding equilibrium
compositions for each of the phases. The equilibrium compositions, 𝑥𝛾𝑒𝑞 and 𝑥𝛼𝑒𝑞, correspond to the
intersection points associated with the common tangent line to the two curves, 𝐺𝛾 and 𝐺𝛼. If we
compute the slope of the common tangent line, we obtain:

𝑚 =
𝐺
𝛾
𝑒𝑞 − 𝐺𝛼

𝑒𝑞

𝑥
𝛾
𝑒𝑞 − 𝑥𝛼𝑒𝑞

. (1.9)

We can also express the slope as:

𝑚 =
𝜕𝐺𝛾

𝜕𝑥

����
𝑥
𝛾
𝑒𝑞

=
𝜕𝐺𝛼

𝜕𝑥

����
𝑥𝛼𝑒𝑞

. (1.10)

Using Eqs.(1.9) and (1.10), and writing back 𝑥 = 𝑥𝐵, we can deduce:

𝐺
𝛾
𝑒𝑞 −

(
𝑥𝐵
𝜕𝐺𝛾

𝜕𝑥

)����
𝑥
𝛾

𝐵,𝑒𝑞

= 𝐺𝛼
𝑒𝑞 −

(
𝑥𝐵
𝜕𝐺𝛼

𝜕𝑥

)����
𝑥𝛼
𝐵,𝑒𝑞

. (1.11)
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From the definitions of the chemical potential in Eqs.(1.5), at the equilibrium compositions,
(𝑥𝛾
𝐵,𝑒𝑞

, 𝑥𝛼
𝐵,𝑒𝑞

), we get:
𝜇
𝛾

𝐴
= 𝜇𝛼𝐴, (1.12)

and similarly:
𝜇
𝛾

𝐵
= 𝜇𝛼𝐵. (1.13)

We thus recover the diffusion equilibrium conditions with the equality of the chemical potentials.
So, for complete phase equilibrium in a heterogeneous mixture, the thermodynamic conditions
imply that the chemical potentials in both the phases must be equal for all the components in the
system.

Going back to the Fig.1.5b, the same equilibrium state could be reached for all those nominal alloy
compositions between the two equilibrium compositions, with differences only in their relative
phase fractions. For any alloy composition outside these limits, the minimum free energy lies
either on the 𝐺𝛾 or the 𝐺𝛼 curve and the system configures into a corresponding homogeneous
single phase.

For a multiphase system containing 𝑁 components with 𝑚 stable phases, the phase equilibrium
conditions can be generalized as:

𝜇
𝛼1
𝑖

= 𝜇
𝛼2
𝑖

= ... = 𝜇
𝛼𝑚
𝑖

∀𝑖 ∈ {𝐴, 𝐵, ..., 𝑁} (1.14)

Phase diagrams and tie-lines: In the previous example, phase equilibrium was illustrated at a
specific temperature and pressure. While the pressure is usually fixed, the phase equilibria can be
calculated as seen previously, at different temperatures. The loci of the equilibrium compositions
obtained for the relevant stable phases, at various temperatures, constitute a global picture illus-
trating the stability and coexistence of various possible phases (while respecting the Gibbs phase
rule). This global picture for an alloy constitutes a phase diagram that defines the potential phase
regions and phase transition boundaries at different ranges of temperatures and compositions.

Fig.1.6 illustrates a simple representative binary phase diagram showing the domains of homoge-
neous single phase regions and the stable domain for the coexistence of the phases 𝛾 and 𝛼. The
green lines within the two phase region represent the tie-lines (also known as conodes). In the
context of a binary phase diagram, for any alloy in the two phase region, tie-lines are the isothermal
lines that reflect the equilibrium compositions of the two phases as they intersect the respective
solvus lines (the red and the blue dashed lines in Fig.1.6) at the temperature of interest. Corre-
sponding to any given alloy composition 𝑥0, 𝑇𝐴3 represents the equilibrium solvus temperature or
the transition temperature below which the phase 𝛾 is no longer stable to remain as a homogeneous
phase, and so 𝛼 phase starts forming.

1.2.1.1 Phase transformation mechanisms

DSSPT belongs to the category of Nucleation and growth based transformation mechanisms, where
the phase transformation is initiated through the nucleation of the stable product phase and followed
by the growth of these new phase nuclei into grains until the relevant phase equilibrium:
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Figure 1.6: Phase diagram of a simple binary alloy showing different
phase regions with the green dashed lines representing the tie-lines in the

two phase region

1.2.1.1.1 Nucleation in phase transformation

Despite a thorough theoretical description of the nucleation event that could be found in the
literature, the exact understanding of the origin of a nucleus and the quantification of certain
nucleation process parameters remains complex, especially at the mesoscopic scale (length scales
ranging between a few 10𝑛𝑚 and the macroscopic scale). In spite of some of its shortcomings,
the classical theory of nucleation (CNT) [30–33] has been widely accepted as a valid foundation
to describe a nucleation event. The classical nucleation theory hypothesizes that under favorable
conditions, small clusters of atoms configure spontaneously into the lattice structure of the new
product phase known as a phase nucleus. This nucleus can either grow or shrink depending on
the evolution of the free-energy with the characteristic size of the nucleus. The classical theory of
nucleation is based on the assumption that the nucleus - parent phase interface is sharp and that the
thermodynamic properties of the nucleus are homogeneous.

According to the classical nucleation theory, the change in free energy (Δ𝐺) in a microstructural
system in the event of nucleation of a new phase 𝛼 in the parent phase 𝛾 can be generalized as
follows:

Δ𝐺 = −𝑉𝛼
(
Δ𝑔𝛼𝑉 − Δ𝑔

𝑚 𝑓

𝑉

)
+ 𝐴𝛾/𝛼𝜎𝛾/𝛼 − Δ𝐺𝑑 , (1.15)

where𝑉𝛼 is the volume of the nucleus, Δ𝑔𝛼
𝑉

is the Gibbs free energy difference between the unstable
parent phase and the new product stable phase that is liberated per unit volume of the new phase 𝛼,
as it appears. Δ𝑔𝛼

𝑉
is also termed as the driving pressure available for the nucleation of the phase 𝛼.

Δ𝑔
𝑚 𝑓

𝑉
is the Gibbs free energy per unit volume necessary to account for any elastic misfits between
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the two phases. The second term represents the energy necessary to create the interphase boundary
between the parent phase 𝛾 and the nucleus 𝛼. Thus, 𝐴𝛾/𝛼 is the area of the phase boundary i.e.,
the surface area of the nucleus, and 𝜎𝛾/𝛼 is the 𝛾/𝛼 phase interface energy. The last term in Δ𝐺𝑑

represents the Gibbs free energy released due to the annihilation of the defects (e.g., the existing
𝛾/𝛾 interfaces) to accommodate the nucleus.

Figure 1.7: Variation of the change in free energy due to a nucleation
event with the characteristic size of the nucleus

If we observe the above Eq.(1.15) (assuming Δ𝑔
𝑚 𝑓

𝑉
= Δ𝐺𝑑 = 0 for simplicity) as illustrated in the

Fig.1.7, Δ𝐺 remains positive for smaller nucleus sizes, as the positive surface area term dominates
over the negative volume term. A maximum in Δ𝐺 is attained as the nucleus size increases to a
point where the negative volume term starts dominating more over the positive area term. This
point of maximum in Δ𝐺 with the characteristic nucleus size represents the activation or the critical
energy (Δ𝐺∗) essential for nucleation, and the corresponding nucleus size is often referred to as
the critical size of nucleation (𝑟∗). These concepts stem from the fact that the positive terms in
Eq.1.15 act as barriers to nucleation, and the nucleus will only come into existence and continue
to grow if it attains the critical size by overcoming the nucleation barrier. Any subcritical nucleus
will shrink and eventually dissolve as Δ𝐺 would increase with size in the subcritical zone which
is not thermodynamically favorable. This is synonymous to the concept of metastability and the
activation energy illustrated earlier in the Fig.1.3, where a microstructure with grains of potentially
destabilized parent phase could remain metastable unless a sufficient activation energy is provided
to create stable nuclei of the new phase which can eventually grow and transform the microstructure
into the stable product phase. As illustrated in the Fig.1.8, the influence of the Δ𝑔

𝑚 𝑓

𝑉
term is to

increase the activation barrier or increase the critical nucleus size necessary for growth, thus making
it more demanding to create stable phase nuclei. The other way to look at it is to say that the positive
misfit term reduces the effective driving pressure available for nucleation of the new phase. On
the other hand, Δ𝐺𝑑 term plays the role of lowering the energy barrier, making it easy for the
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nucleation of stable nuclei as we shall see later in this discussion.

Figure 1.8: Influence of presence of any misfits between the two phases on
the nucleation barrier

On the basis of the spatial preferences for a nucleus to form, nucleation could be classified to be
homogeneous or heterogeneous:

Homogeneous nucleation: For homogeneous nucleation, there are no particular preferential
sites for nuclei irrespective of the presence of defects or any kind of inhomogeneities in the
microstructure. The probability of nucleating is thus the same everywhere. The change in Gibbs
free energy in the system due to a nucleus is thus:

Δ𝐺 = −𝑉𝛼
(
Δ𝑔𝛼𝑉 − Δ𝑔

𝑚 𝑓

𝑉

)
+ 𝐴𝛾/𝛼𝜎𝛾/𝛼 . (1.16)

From the above equation, since it is desirable to have a smaller nucleation barrier (Δ𝐺∗), the
shape of the nucleus should be such that the surface area to its volume ratio must be as low as
possible. Thus, for homogeneous nucleation, the ideal nucleus shape would be a sphere. Assuming
a spherical nucleus of size 𝑟 , the activation energy and the corresponding critical nucleus size could
be found as follows:

𝜕 (Δ𝐺)
𝜕𝑟

= 0. (1.17)

−
(
Δ𝑔𝛼𝑉 − Δ𝑔

𝑚 𝑓

𝑉

) 𝜕 (
4𝜋𝑟3

3

)
𝜕𝑟

+ 𝜎𝛾/𝛼
𝜕

(
4𝜋𝑟2)
𝜕𝑟

= 0.

Eventually, we obtain:

𝑟∗ =
2𝜎𝛾/𝛼(

Δ𝑔𝛼
𝑉
− Δ𝑔𝑚 𝑓

𝑉

) , (1.18)
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Δ𝐺∗ = Δ𝐺 |𝑟=𝑟∗ =
16𝜋𝜎3

𝛾/𝛼

3
(
Δ𝑔𝛼

𝑉
− Δ𝑔𝑚 𝑓

𝑉

)2 . (1.19)

It would be interesting to contrast the aforementioned activation energy with that attributed to
heterogeneous nucleation.

Heterogeneous nucleation: Since a metallic material is generally polycrystalline, the microstruc-
ture is far from being perfect and defect free. From Eq.(1.15), it is clear that nucleating over the
defects is more favorable as Δ𝐺∗ is lowered owing to the annihilation of the defects which is ther-
modynamically favorable. The free energy released during this annihilation to replace them with
the nucleus is taken into account through the term Δ𝐺𝑑 , which is negative in Eq.(1.15). Thus, the
presence of defects such as the grain boundaries (junctions between 2 adjacent grains), grain edges
(linear junctions between three grains), grain corners (quadruple grain junctions), dislocations,
impurities, and other potential inhomogeneities act as the preferential sites for nucleation compared
to nucleating in the bulk of the parent phase. A classic example is nucleation over the 𝛾/𝛾 grain
boundaries such that, Δ𝐺𝑑 = Δ𝐴𝛾/𝛾𝜎𝛾/𝛾, where Δ𝐴𝛾/𝛾 accounts for the interfacial area destroyed
to accommodate the new phase, and 𝜎𝛾/𝛾 is the associated grain boundary energy.

The Gibbs free energy change as a nucleus appears in this case could be written as:

Δ𝐺 = −𝑉𝛼
(
Δ𝑔𝛼𝑉 − Δ𝑔

𝑚 𝑓

𝑉

)
+ 𝐴𝛾/𝛼𝜎𝛾/𝛼 − Δ𝐴𝛾/𝛾𝜎𝛾/𝛾 . (1.20)

Unlike in the case of homogeneous nucleation, a heterogeneous nucleus doesn’t necessarily have
an ideal shape. So, we shall generalize the shape and the characteristic size (𝑟) using some shape
factors (𝐾𝑉 , 𝐾𝐴, ...) to express the activation energy and the critical nucleus size:

𝑉𝛼 = 𝐾𝑉𝛼 𝑟
3; 𝐴𝛾/𝛼 = 𝐾𝐴

𝛾/𝛼𝑟
2; Δ𝐴𝛾/𝛾 = 𝐾

𝐴
𝛾/𝛾𝑟

2. (1.21)

For heterogeneous nucleation, the activation energy and the critical nucleus size is thus obtained to
be:

𝑟∗ =
2
(
𝐾𝐴
𝛾/𝛼𝜎𝛾/𝛼 − 𝐾

𝐴
𝛾/𝛾𝜎𝛾/𝛾

)
3𝐾𝑉𝛼

(
Δ𝑔𝛼

𝑉
− Δ𝑔𝑚 𝑓

𝑉

) , (1.22)

Δ𝐺∗ =
4
(
𝐾𝐴
𝛾/𝛼𝜎𝛾/𝛼 − 𝐾

𝐴
𝛾/𝛾𝜎𝛾/𝛾

)3

27
[
𝐾𝑉𝛼

(
Δ𝑔𝛼

𝑉
− Δ𝑔𝑚 𝑓

𝑉

)]2 =
Ψ(

Δ𝑔𝛼
𝑉
− Δ𝑔𝑚 𝑓

𝑉

)2 , (1.23)

where Ψ =
4
(
𝐾𝐴
𝛾/𝛼𝜎𝛾/𝛼−𝐾𝐴

𝛾/𝛾𝜎𝛾/𝛾
)3

27(𝐾𝑉
𝛼 )2

is a factor accounting for the creation and the destruction of the

interfaces and this parameter comprises all the information about the shape factors of the nucleus
and the interfacial energies.

If we assume the nucleus shape to be spherical, perfectly bisected in half by the grain boundaries

as depicted in Fig.1.9, with Δ𝐴𝛾/𝛾 = 𝜋𝑟2, it could be shown that Ψ =
𝜋(4𝜎𝛾/𝛼−𝜎𝛾/𝛾)3

12 . For the sake
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Figure 1.9: A cut out illustration of a spherical nucleus appearing at the
grain boundary of the parent phase

of comparison, if we further assume 𝜎𝛾/𝛼 = 𝑘𝜎𝛾/𝛾, where 𝑘 is some constant, we can show that

Ψ𝐻𝑒𝑡 =
𝜋(4𝑘−1)3𝜎3

𝛾/𝛾
12 , when compared to Ψ𝐻𝑜𝑚 =

16𝜋𝑘3𝜎3
𝛾/𝛾

3 as we see in Eq.(1.19). For Ψ𝐻𝑒𝑡

Ψ𝐻𝑜𝑚
< 1, we

can deduce that 𝑘 < 5/4. Therefore, if the interface energy of the phase boundary remains below
1.25 times the interface energy of the grain boundary, it implies that the activation energy required
for stable nuclei formation in heterogeneous nucleation is lower and more favorable compared to
that in homogeneous nucleation, assuming the same nucleus geometry. In the scenario where the
phase boundary energy exceeds 1.25 times the grain boundary energy, homogeneous nucleation
dominates. However, in reality, the general observation leans towards heterogeneous nucleation as
the preferred form. This suggests that the phase boundary energy is often lower or falls within the
range of the grain boundary energy.

Fig.1.10 illustrates the nucleation energy barriers for the case where 𝑘 < 5/4.

On the basis of the temporal mode of nucleation, one could classify nucleation to be: i) Site
saturated, or ii) Continuous. Site saturated nucleation refers to the case where all the potential
nucleation sites are exhausted at the same instant as the intended fraction of the new phase nuclei
appear, and the nucleation regime of the transformation ceases to exist. In the case of a continuous
nucleation, the nucleation regime takes place over a duration of a time as the nuclei appear
continuously at the potential nucleation sites. So the nucleation site saturation is gradual in this
case. With the help of the activation energy previously discussed, the classical nucleation theory
provides an expression for the continuous nucleation rate ( ¤𝐼) as a function of time (𝑡):

¤𝐼 = 𝑍𝛽𝑛𝑁𝑠 exp
(
−Δ𝐺

∗

𝑘𝐵𝑇

)
exp

(
−𝜏
𝑡

)
,

[
m−3·s−1] , (1.24)

where 𝑍 is the non-equilibrium Zeldovich factor that is a measure of the portion of the critically
sized nuclei that become stable, as a critical nucleus may not necessarily become a stable nu-
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Figure 1.10: Comparison of homogeneous and heterogeneous nucleation

cleus and grow, but may instead shrink back to subcritical size and dissolve. 𝛽𝑛 is a frequency
factor that corresponds to the rate of attachment of atoms to the nuclei, 𝑁𝑠 is the nucleation site
density corresponding to the type of site where the nucleus forms. 𝑘𝐵 is the Boltzmann constant
(1.381×10−23 J·K−1). 𝑇 is the current absolute temperature during the transformation. 𝜏 is the
incubation time that corresponds to a time period before which essentially no nucleation takes
place. In other words, 𝜏 characterizes a time lag or a transient regime that exists before steady
state nucleation ( ¤𝐼 � 𝑐𝑜𝑛𝑠𝑡.) could be observed as demonstrated in the Fig.1.11. There have been
several works [34–37] that describe or quantify some of the parameters of the Eq.(1.24). However,
the specifics of it will not be discussed in this manuscript, and the interested readers could refer the
cited references.

Driving pressure for nucleation: By considering again the Fig.1.6, if we suppose an alloy with a
composition of 𝑥0 composed of a homogeneous phase in 𝛾, and a cooling to a certain temperature𝑇 ,
below its relevant equilibrium solvus temperature (𝑇𝐴3), we could observe the 𝛾 � 𝛼 transformation
as 𝛾 would be no longer stable as a single homogeneous phase. The driving pressure available for
the nucleation (Δ𝑔𝛼

𝑉
) of this new phase 𝛼 could be deduced if we revisit the representative curves

illustrating the molar Gibbs free energy variation for the phases 𝛼 and 𝛾 at the temperature, 𝑇 , as
shown in the Fig.1.12.

We observe that for the composition 𝑥0, the molar Gibbs free energy of the system reduces from
𝐺
𝛾

0 to 𝐺𝑒𝑞 due to the precipitation of the new phase. The net difference in these two free energies,
Δ𝐺𝛾𝛼 = 𝐺𝑒𝑞 − 𝐺𝛾

0 provides a thermodynamic potential proportional to the total driving pressure
available for the transformation. However, this does not correspond to the driving pressure that
motors the nucleation process of the 𝛼 phase. Let us suppose the nucleus composition to be 𝑥𝛼𝑛 .
If we consider a localized cluster of atoms in the phase 𝛾 but with a composition of 𝑥𝛼𝑛 while still
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Figure 1.11: A representative evolution of the nucleation rate showing the
transient regime with an incubation time

comprising the crystal structure of the parent 𝛾 phase, from Eq.(1.6) the molar Gibbs free energy
of this localized region could be written as:

𝐺𝑛
1 = 𝜇

𝛾

𝐴

(
1 − 𝑥𝛼𝑛

)
+ 𝜇𝛾

𝐵
𝑥𝛼𝑛 . (1.25)

This corresponds to the point 𝑀 in the Fig.1.12. Now, if this cluster of atoms at the composition,
𝑥𝛼𝑛 , get rearranged into the crystal structure of the 𝛼 phase, the molar Gibbs free energy of this
localized region could now be written as:

𝐺𝑛
2 = 𝜇𝛼𝐴

(
1 − 𝑥𝛼𝑛

)
+ 𝜇𝛼𝐵𝑥

𝛼
𝑛 . (1.26)

This state now corresponds to the point 𝑁 in the Fig.1.12.

The decrease in free energy between the above two states (𝑀, 𝑁), associated to the nucleation event,
provides the thermodynamic potential proportional to the driving pressure for nucleation:

Δ𝐺𝑛 = 𝐺𝑛
2 − 𝐺

𝑛
1. (1.27)

This difference corresponds to the length 𝑀𝑁 in the Fig.1.12. If 𝑉𝛼𝑚 is the molar volume of the
phase 𝛼, then the driving pressure available for nucleation could be written as:

Δ𝑔𝛼𝑉 =
|Δ𝐺𝑛 |
𝑉𝛼𝑚

. (1.28)
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Figure 1.12: Illustration of the driving pressure for nucleation

Making use of the Eqs.(1.5), the Eqs.(1.25) and (1.26) could be further simplified to express in terms
of the molar Gibbs free energy and the compositions. Eventually, Δ𝑔𝛼

𝑉
could also be expressed as:

Δ𝑔𝛼𝑉 =
1
𝑉𝛼𝑚

�����𝐺𝛼 |𝑥𝛼𝑛 − 𝐺
𝛾 |𝑥0 +

(
𝑥0 − 𝑥𝛼𝑛

) 𝜕𝐺𝛾

𝜕𝑥

����
𝑥0

����� . (1.29)

In the above example, we considered the nucleus composition or the composition at the interface of
the nucleus to be 𝑥𝛼𝑛 , and it could be established that the driving pressure available for the formation
of 𝛼 nucleus depends on the choice of this composition. The driving pressure demonstrated in the
Fig.1.12 does not correspond to the maximum driving pressure available for nucleation. To obtain
the maximum or the most favorable driving pressure, the tangential line 𝑅𝑆 must be constructed to
be parallel to the line 𝑃𝑄. This would then correspond to a nucleus composition, 𝑥𝛼𝑛𝑚𝑎𝑥

, that yields
the most favorable driving pressure for nucleation (Δ𝐺𝑛

𝑚𝑎𝑥) as illustrated in the Fig.1.13.

Mathematically, for Δ𝐺𝑛
𝑚𝑎𝑥 , find 𝑥 = 𝑥𝛼𝑛𝑚𝑎𝑥

such that:

𝜕𝐺𝛼

𝜕𝑥

����
𝑥=𝑥𝛼𝑛𝑚𝑎𝑥

=
𝜕𝐺𝛾

𝜕𝑥

����
𝑥0

. (1.30)

All of the vertical lines inside the 𝐺𝛼 curve as illustrated in the Fig.1.13 represent the driving
pressures possible at various nucleus interface compositions (𝑥𝛼𝑛𝑖 ). Thermodynamically, it should
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Figure 1.13: Illustration of different possible driving pressures for
nucleation and their corresponding nuclei compositions

be possible to form the critical 𝛼 nuclei with any composition between the limits: 𝑥𝛼𝑛𝐿 and 𝑥𝛼𝑛𝑅 .
However, the vertical line 𝑀𝑁 in the Fig.1.13 yields the largest driving pressure. Assuming that the
interfacial energy (𝜎𝛾/𝛼) and the molar volume (𝑉𝛼𝑚) are not dependent on the nucleus composition,
the composition corresponding to the largest driving pressure would ideally be the most favorable
composition for a critical nucleus (𝑥𝛼𝑛𝑐𝑟 ). However, as Hillert emphasizes in [38], the critical nucleus
composition may not necessarily correspond to the most favorable one. Hillert further demonstrates
that the actual limiting cases for the composition of a critical nucleus would lie somewhere between
𝑥𝛼𝑛𝑡 and 𝑥𝛼𝑛𝑚𝑎𝑥

, highlighted by the green zone in the Fig.1.13. Interested readers are encouraged to
refer [38] to understand more on the specifics of the derivation of these limiting cases.

Remarks on the nuclei shapes, the preferential sites, and the nucleation criteria for DSSPT:
In the case of heterogeneous nucleation, since there is no ideal critical nucleus shape independent
of the interfacial energies, the understanding of nucleus geometry is not straightforward. It is
apparent from Eqs.(1.22) and (1.23) that the activation energy barrier (and hence the nucleation
rate) is highly sensitive to this geometry, and to the interfacial energies. Depending on the type
of nucleation site, several models have been proposed and analyzed in the literature. Broadly, the
most common models in the state-of-the-art are the spherical caps model, and the pillbox model.
These two approaches have been extended to different kinds of nucleation sites and certain hybrid
models have also been studied.
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The spherical caps model, initially proposed by Gibbs [39] has been analyzed in detail by Clemm
et al. [40] for grain corners, grain edges, grain faces, and compared with that of homogeneous
nucleation. Fig.1.14 illustrates the spherical cap based nucleus geometries at different sites.
Fig.1.14 (a) shows two abutting spherical caps at a grain boundary with a 2D perspective along the
plane of the boundary, (b) shows the case of a grain edge where 3 spherical caps bound the nucleus,
and (c) shows the case of a grain corner (four-order multiple junction) where the nucleus takes the
form of a spherical tetrahedron. Spherical models with their curved interfaces have been generally
used to represent a disordered type of interface (incoherent boundaries) with high interfacial energy.

Figure 1.14: Spherical caps based nuclei models at different kinds of
nucleation sites

On the other hand, faceted pillbox nucleus models have been proposed to depict coherent or semi-
coherent interfaces with low interfacial energy. Nucleation at the grain faces has been analyzed
for austenite decomposition in Fe-C alloys by Lange et al. [41] using various pillbox based model
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variants, and spherical caps model with facets. Based on their observation, it was concluded that,
for grain faces, only coherent pillbox models and their variants were successful in making certain
reasonable predictions when compared with the experimentally observed nucleation rates. Fig.1.15
gives a summary of some of the pillbox nucleus models used in [41] at a grain face. Enomoto et al.
[42] extended the idea of coherent and faceted nucleus models at the grain edges by considering an
equilateral trigonal prism as illustrated in Fig.1.16. Johnson et al. [35] imply that when the lattices
of the parent and the product phase show reasonable coherency, the critical nucleus is likely to
be faceted or pillbox based. They claimed that the most probable shape of the critical nucleus is
the shape yielding the minimum interfacial energy for a given nucleus volume. Chan et al. [43]
consider different nucleus shape forms and give a generalized list of expressions for nucleus shape
dependent parameters in the nucleation rate equation. Interested readers may refer it for detailed
expressions.

Figure 1.15: Faceted spherical caps and pill box nuclei models proposed
by Lange et al. [41] for nucleation at the grain face

In the case of phase transformation, nucleation is generally accepted to be a stochastic event
without any specific or consistent criterion governing the spatial choice of appearance of a nucleus.
However, as iterated earlier, certain set of sites could be preferred over the others. Referring to the
nucleation rate Eq.(1.24), on the basis of the nucleation site density or the number of nucleation
sites available, one could show that this number is highest for nucleation at the grain interiors,
followed by grain faces, grain edges and then the grain corners. However, on the basis of the
activation energy required for nucleation, it has been demonstrated that the most favored nucleation
sites are the grain corners, followed by the grain edges, then the grain faces, with the grain interiors
(homogeneous nucleation) being the least energetically favorable sites. Huang et al. [44] have
shown that nucleation is mostly dominated at the grain corners along with any other sites (under
the influence of other inherent defects) that are energetically similar to that of a grain corner. This
is followed by grain edges, and eventually the grain faces. It has also been indicated in [44] that

24



Figure 1.16: An equilateral trigonal prism nucleus model illustrated by
Enomoto et al. [42] for nucleation at the grain edge

only about 5 − 7% of the grain corners act as active nucleation sites. In the case of a continuous
cooling transformation, the cooling rate also plays a role. At lower cooling rates, with lower nuclei
density, most of the nuclei are likely to form at the grain corners. However, at higher cooling rates,
as the nuclei density increases, the probability of nucleating at the grain edges and the faces become
increasingly significant as the sites at the grain corners start saturating. Offerman et al. [45] have
indicated the presence of a particular temperature range for nucleation with this range being larger
for higher cooling rates.

Despite a rich literature on the phenomenon of nucleation, a complete and unified description
remains a complex issue and an open subject of research due to the experimental complexity to
promote 3D in-situ observations of nucleus appearance. This is attributed to the smaller length
scales and the shorter time scales involved during a nucleation event. The above analyses and
observations reflect the various hypotheses and dimensions one could take into account to model
the phenomenon and quantify some of the assumed parameters. Hence, in the current state of
the art, nucleation behavior is usually modeled with a reasonably simplistic approach with strong
hypotheses, especially at the mesoscopic scale.

1.2.1.1.2 Growth kinetics

Following the establishment of a stable nucleus, the transformation proceeds through growth of
the nucleus into a grain of the product phase. The migration of the phase interface with a certain
velocity (𝒗), primarily under the influence of a local chemical driving pressure (𝑃𝐶 = Δ𝐺𝛾→𝛼) at
the interface characterizes the growth stage of the phase transformation. Any migrating interface
is associated with an intrinsic drag against the motion. An intrinsic parameter is associated with
an interface that characterizes the ability of the interface to be mobile against this resistance and is
referred to as the interface mobility (𝑀). An interface with high mobility is easier to migrate while
the one with low mobility offers high intrinsic drag or resistance against any migration. 1/𝑀 is
sometimes regarded as the intrinsic drag coefficient.

So, an interface is generally associated with inherent properties such as 𝑀 and 𝜎. The interface
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mobility is generally heterogeneous and anisotropic [1, 46]. It is expected to depend on the material,
processing conditions, disorientation angle (Δ𝜃) and also on the local interface features:

𝑀 = 𝑓 (Δ𝜃, 𝒏, 𝑇, 𝑐𝑖 (𝒙)),
where 𝑐𝑖 (𝒙) represents the solute concentration of a solute 𝑖 at a spatial point 𝒙, and 𝒏 is the
outward unit normal vector to the considered interface. Some literature, such as works by Hurley
et al. [47] and Yamanaka et al. [48], tentatively propose a disorientation angle dependence of
𝑀 . However, experimental results typically provide the reduced mobility (= 𝑀𝜎) rather than
the intrinsic mobility (𝑀). Consequently, determining if 𝑀 explicitly depends on Δ𝜃 remains
challenging. Similar ambiguity exists regarding the dependence on the local normal vector (𝒏), an
area of ongoing research. In the context of metal forming, at the polycrystal scale, the temperature
dependence of mobility is generally defined through an Arrhenius law [49]:

𝑀 (𝑇) = 𝑀0𝑒𝑥𝑝(−
𝑄𝑚

𝑅𝑇
), (1.31)

where,𝑄𝑚 is the activation energy for grain boundary migration (GBM) which implies that a certain
kind of thermal activation is essential for the interface to be mobile, 𝑅 is the universal gas constant,
and 𝑀0 is a pre-exponential factor. 𝑀0 is sometimes taken as a function of temperature too. On
the other hand, Read-Schokley relationship has been classically used to describe the dependence
of 𝜎 on disorientation [50, 51] for grain boundaries between grains of same phase:

𝜎(Δ𝜃) =


𝜎𝑚 Δ𝜃

Δ𝜃𝑚

(
1 − 𝑙𝑛 Δ𝜃

Δ𝜃𝑚

)
, if Δ𝜃 ≤ Δ𝜃𝑚

𝜎𝑚, if Δ𝜃 > Δ𝜃𝑚

, (1.32)

where 𝜎𝑚 is the interfacial energy for high angle grain boundary (HAGB, Δ𝜃 ≥ Δ𝜃𝑚). Δ𝜃𝑚 is
generally taken around 10 to 15°. The dependence of 𝜎 on the inclination of the Grain Boundary
(GB) (𝒏) is not taken into account in this formalism. The above formalism has been consistently
used for boundaries between grains of same phase, however in the case of phase boundaries, the
notion of disorientation is generally more complex since different crystal lattice structures are
involved, potentially causing intricate disorderliness at the phase boundaries. Phase boundaries are
hence generally highly incoherent except between phases with simple and similar class of crystal
structures (e.g., FCC and BCC crystal lattices). However different disorientation relationship was
used in the literature for phase boundary energy in [48, 52] in contrast to the classical Read and
Shockley relationship:

𝜎𝛾/𝛼 (Δ𝜃) =


𝜎𝑚

2 +
𝜎𝑚

2
Δ𝜃
Δ𝜃𝑚

(
1 − 𝑙𝑛 Δ𝜃

Δ𝜃𝑚

)
, if Δ𝜃 ≤ Δ𝜃𝑚

𝜎𝑚, if Δ𝜃 > Δ𝜃𝑚

, (1.33)

where the definition of Δ𝜃 must be carefully checked.
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While in [53], a rather constant value was used for phase boundary energy and Eqs.(1.32) for that
of grain boundaries. So, a consistent formalism quantifying the dependence of 𝜎 on disorientation
angle for phase interfaces still remains an open subject of research.

In the context of microstructural evolution at the mesoscopic scale, the velocity field of interface
migration, 𝒗, is assumed to be a product of the interface mobility (𝑀) and the different local driving
pressures (𝑃) describing the involved phenomena at the interface [32]:

𝒗 = 𝑀𝑃𝒏. (1.34)

In the presence of curved phase interfaces, along with the chemical free energy contribution, the
capillarity effects (Gibbs-Thomson effect) coming from the excess interfacial free energy also play a
role. Though the order of magnitude of the chemical free energy contribution is significantly larger,
Gibbs-Thomson effect can potentially modify the phase equilibrium position and concentrations.
Hence it is important to take into account in the kinetics of transformation. This contribution is
described as 𝑃𝜅 = −𝜅𝜎𝛾/𝛼, where 𝜅 is the trace of the curvature tensor of the interface such that
𝜅 → 0 for minimal surfaces (sum of principal curvatures = 0), and 𝜎𝛾/𝛼 is the interfacial energy.
So, the transformation kinetics would be governed by,

𝒗 = 𝑀
(
Δ𝐺𝛾→𝛼 − 𝜅𝜎𝛾𝛼

)
𝒏. (1.35)

Fig.1.17 demonstrates the orientation of a velocity vector at a local point A on the phase interface,
responsible for its migration during the phase transformation.

Figure 1.17: Illustration of interface migration or growth kinetics for
phase transformation

The solute diffusion in each phase is governed by the Fick’s laws of diffusion. Fick’s first law yields
the following relations for fluxes in each phase (𝑱𝛼, 𝑱𝛾):

𝑱𝛼 = −𝐷𝐵
𝛼∇𝑥

𝛼; 𝑱𝛾 = −𝐷𝐵
𝛾∇𝑥

𝛾, (1.36)

where𝐷𝐵
𝛼 and𝐷𝐵

𝛾 represent the diffusivity of the solute atoms (say 𝐵) in𝛼 and 𝛾 phases respectively.
From Fick’s second law, 𝜕𝑥/𝜕𝑡 = −∇ · 𝑱 = ∇ · (𝐷∇𝑥), the diffusion equations for solute partitioning
in each phase could be obtained as:
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𝜕𝑥𝛼

𝜕𝑡
= ∇ ·

(
𝐷𝐵
𝛼∇𝑥

𝛼
)

;
𝜕𝑥𝛾

𝜕𝑡
= ∇ ·

(
𝐷𝐵
𝛾∇𝑥

𝛾
)
. (1.37)

The above equations are well bounded by providing suitable initial and boundary conditions. In
addition, Eq.(1.34) and Eqs.(1.37) are constrained by the interfacial jump condition for mass
balance:

𝒗 · 𝒏
(
𝑥
𝛾

Γ
− 𝑥𝛼Γ

)
= J𝑱K

��
Γ
· 𝒏 = 𝐷𝐵

𝛼 (∇𝑥𝛼 · 𝒏) |Γ − 𝐷𝐵
𝛾 (∇𝑥𝛾 · 𝒏) |Γ , (1.38)

where Γ represents the interphase position and 𝑥𝛼
Γ
, 𝑥𝛾

Γ
represent the interfacial concentrations of

each phase. As equilibrium is approached, equality of chemical potentials as seen in Eqs.(1.12)
and (1.13) are satisfied.

Character of transformation kinetics: It has been described in [54–57] that the excess chemical
free energy or the driving pressure available for diffusive phase transformation is dissipated in two
parts. A part of the excess free energy is dissipated by diffusion of the solutes while the rest
contributes to the migration of the phase interface as the crystal lattice transforms into that of the
product phase. So, the growth stage of a phase transformation could be characterized by two basic
mechanisms that govern the growth kinetics: (i) the diffusion of solutes across the phase interfaces
and in the bulk of the grains which bring about a change in chemical composition, and (ii) the
interface migration which causes the gradual lattice rearrangement or structural changes into the
crystal structure of the product phase. This description yields three different possible modes of
transformation kinetics:

• Interface controlled mode: In this case, the diffusion in the parent phase is assumed to be
infinitely fast such that the solute concentration is homogeneous in the parent phase. So, all
of the excess free energy is dissipated by the mechanism of lattice transformation, and is said
to be the rate controlling process for the growth stage. The velocity of interface migration is
bound solely by the lattice transformation process.

• Diffusion controlled mode: The rate controlling process is said to be diffusion controlled if
the lattice transformation is infinitely fast (the interface is infinitely mobile) compared to that
of the solute diffusion. In such a case, the solute concentrations at the phase interface would
be equal to that of the equilibrium concentrations and hence this mode is often referred as
the local equilibrium mode. The velocity of interface migration is bound solely by the solute
diffusion process.

• Mixed mode: This mode of transformation kinetics is an intermediate mode to the above
two extreme cases and is the most realistic mode describing the transformation kinetics. In
this case, neither the lattice transformation nor the solute diffusion is assumed to be infinitely
fast. So, the solute concentrations at the interface are neither at local equilibrium nor equal
to that of the bulk concentration. The velocity of interface migration is bound by both the
lattice transformation as well as the solute diffusion process.

Fig.1.18 shows a representation of possible concentration profiles around a planar phase interface
for different kinetic modes of transformation. During the transformation, the solubility differences
between the two phases cause enrichment of solutes on one side of the interphase boundary which
is reflected by the concentration peaks near the interface. If we suppose phase 𝛾 to have a higher

28



Figure 1.18: Illustration of possible solute concentration
profiles around a planar interphase boundary for different

transformation kinetic modes

solubility than the phase 𝛼, then there would be a flux of solutes across the interface towards
the phase 𝛾 from the phase 𝛼. In this figure, the solute diffusivity in the phase 𝛼 is assumed
to be relatively high and hence a homogeneous profile is attained with a concentration close to
the equilibrium concentration for this phase. For interface controlled mode, the flux of solute
atoms quickly diffuse into the bulk of the 𝛾 phase as a result of the infinitely fast diffusion and
the concentration profile attains the average bulk concentration value and is homogeneous. For the
other extreme case, the 𝛾 concentration at the interface attains the equilibrium concentration right
away as the lattice transformation is infinitely fast and a concentration gradient is created between
the interface concentration and the bulk concentration. The reaction is then controlled by the
diffusivity of the solute in the 𝛾 phase. For mixed-mode character of phase transformation, as the
lattice transformation is not fast enough, and as the solute diffusion in the 𝛾 phase starts depleting
the solute atoms near the interface in the 𝛾 phase, the interface concentration is decreased and does
not attain the equilibrium concentration right away. The local equilibrium is attained gradually.

So, the mixed mode kinetics better describe the transformation character and is closer to reality.
As observed in [58], under isothermal conditions, during the initial stages of a phase transforma-
tion, interface controlled kinetics are known to dominate, which is also a reflection of maximum
interface velocity. As the concentration profile develops due to the enrichment of solutes, mixed
mode character is observed. Towards the final stages, as the interface concentrations approach
the equilibrium concentrations, and as the interface velocity decreases, a shift towards diffusion
controlled kinetics is observed. Thus it can be concluded that the interface migration and the
solute diffusion in the parent phase are coupled processes that together control the kinetics of the
phase transformation. The transformation kinetics can be cast either in terms of the interfacial
processes and the relevant free energy dissipated, or in terms of the long-range diffusion and the
corresponding free energy dissipated. In principle, the same interface migration velocity must be
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obtained from both the approaches.

1.2.1.2 DSSPT in Ternary alloys and beyond

So far, we discussed DSSPT in the context of a binary alloy, however, most metallic materials of
industrial interest are alloys having several components. The potential effects of alloying elements
on phase transformation kinetics depend whether they are of the interstitial type (e.g., C, O, N, S,
etc.) or substitutional type (e.g., Ni, Co, Mn, Si, Nb, V, etc.). Some of these alloying elements
tend to stabilize particular phases over the others which could be of interest if certain phases
introduce some desirable properties in the material. Also, some alloying elements tend to induce
drag effects on the grain growth kinetics which could be used as a way to limit the mean grain size
if necessary. In the case of a ternary system, the phase diagram at a fixed pressure would be a 3D
plot [59] (generally plotted in the form of an equilateral triangular prism) composed by a vertical
temperature axis and horizontal compositional axes of any two alloy components as shown in the
Fig.1.19. The tie-lines as seen in the case of 2D phase diagrams of binary systems would translate
to 2D horizontal planes in the case of ternary systems. Ternary systems are generally simplified
by considering a section of a phase diagram either at a fixed temperature (isothermal plots) or at a
fixed composition of one of the elements (isopleth plots). A more general alloy system would be
associated with inconceivable hyperdimensional phase diagrams and tie-lines would be composed
by hyperplanes.

Figure 1.19: Illustration of a representative equilateral triangular prism
used for 3D ternary phase diagrams

Let us suppose an alloy system, A-B-C-...-N with 𝑁 components including the principal element,
𝐴, undergoing a 𝛾 → 𝛼 diffusive phase transformation. As discussed earlier through Eq.(1.14), the
fundamental thermodynamic condition for equilibrium would be the equality of chemical potentials
in both the phases for all the components in the alloy:

𝜇
𝛾

𝑖
= 𝜇𝛼𝑖 ∀𝑖 ∈ {𝐴, 𝐵, ..., 𝑁} (1.39)

Referencing the diffusion Eqs.(1.37), in the case of a general alloy system, the solute diffusion
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would be governed by 𝑁 − 1 diffusion equations in each phase for the 𝑁 − 1 alloying elements:

𝜕𝑥𝛼
𝑖

𝜕𝑡
= ∇ ·

(
𝐷𝑖𝛼∇𝑥

𝛼
𝑖

)
;

𝜕𝑥
𝛾

𝑖

𝜕𝑡
= ∇ ·

(
𝐷𝑖𝛾∇𝑥

𝛾

𝑖

)
∀𝑖 ∈ {𝐵, ..., 𝑁}, (1.40)

where ∀ 𝑝ℎ ∈ {𝛾, 𝛼}, 𝐷𝑖𝑝ℎ represents diffusivity of solute element 𝑖 in the phase 𝑝ℎ, 𝑥
𝑝ℎ
𝑖

is the
concentration fraction of solute 𝑖 in the phase 𝑝ℎ such that

∑
𝑖∈{𝐴,𝐵,...,𝑁} 𝑥

𝑝ℎ
𝑖

= 1.

Likewise, there would be 𝑁 − 1 interfacial conditions for solute mass balance:

𝒗 · 𝒏
(
𝑥
𝛾

𝑖

��
Γ
− 𝑥𝛼𝑖

��
Γ

)
= 𝐷𝑖𝛼

(
∇𝑥𝛼𝑖 · 𝒏

) ��
Γ
− 𝐷𝑖𝛾

(
∇𝑥

𝛾

𝑖
· 𝒏

) ��
Γ

∀𝑖 ∈ {𝐵, ..., 𝑁}. (1.41)

The above 𝑁 − 1 equations need to be simultaneously satisfied for the interface velocity, 𝒗.

Notions of different types of phase equilibria in ternary systems In most cases, the diffusivities
of certain solute elements (generally substitutional elements) could be extremely low comparatively
to the faster diffusing elements (usually interstitial). In such a scenario, all of the Eqs. in (1.41)
may not be satisfied simultaneously at a certain interface migration velocity for the true tie-line
passing through the nominal alloy compositions,

(
𝑥0
𝐴
, 𝑥0
𝐵
, ..., 𝑥0

𝑁

)
. Within the characteristic time

scale of interest in industrial applications, the diffusion effects of such slow diffusing elements
could be considered to be negligible. It could take an extremely long time (unrelated to the order
of magnitude of the physical times discussed in this Ph.D. thesis) before all the elements in the
alloy system completely diffuse to attain the true phase equilibrium with equilibrium concentrations
corresponding to the true tie-line. To overcome this situation, the concept of modified or constrained
phase equilibria has been introduced in the literature.

To better understand, let us consider a simple ternary alloy system of the form A-B-X with the
nominal compositions of,

(
𝑥0
𝐵
, 𝑥0
𝑋

)
, where 𝐵 is a fast diffusing interstitial element, while 𝑋 is a

substitutional element (that potentially has several lower orders of diffusivity). For simplicity, let
us suppose that the diffusion in the 𝛼 phase is rapid relative to that in the parent 𝛾 phase for both
the solute elements, such that,

(
∇𝑥𝛼

𝐵
· 𝒏

) ��
Γ
≈ 0;

(
∇𝑥𝛼

𝑋
· 𝒏

) ��
Γ
≈ 0. So, the concentration profiles

in the 𝛼 phase are assumed to be homogeneous. We can now define the following types of phase
equilibria:

• Full local equilibrium or Ortho-equilibrium: This is a case of phase equilibria with the
classical thermodynamic conditions where the equality of chemical potentials are satisfied
for all the 3 components in the alloy:

𝜇𝛼𝐴 = 𝜇
𝛾

𝐴

𝜇𝛼𝐵 = 𝜇
𝛾

𝐵

𝜇𝛼𝑋 = 𝜇
𝛾

𝑋

, (1.42)

and the mass balances at the phase interface are satisfied simultaneously for both the solute
elements:

𝒗 · 𝒏
(
𝑥
𝛾

𝐵

��
Γ
− 𝑥𝛼𝐵

��
Γ

)
= −𝐷𝐵

𝛾

(
∇𝑥

𝛾

𝐵
· 𝒏

) ��
Γ

𝒗 · 𝒏
(
𝑥
𝛾

𝑋

��
Γ
− 𝑥𝛼𝑋

��
Γ

)
= −𝐷𝑋

𝛾

(
∇𝑥

𝛾

𝑋
· 𝒏

) ��
Γ

. (1.43)
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The true tie-line is sought after by satisfying these conditions. This type of phase equilibria
is feasible only if the order of diffusivities of both the solute elements (𝐷𝐵

𝛾 and 𝐷𝑋
𝛾 ) in the 𝛾

phase do not differ by a large margin.

• Constrained local equilibrium: When 𝐷𝑋
𝛾 /𝐷𝐵

𝛾 ≪ 1(≈ 10−6), it is not possible to satisfy the
mass balances simultaneously for the true tie-lines. In such a case, other suitable tie-lines are
sought after under certain imposed constraints, such that the mass balance equations could be
satisfied simultaneously while still maintaining local equilibria for all the alloy components,
which justifies the terminology "constrained local equilibrium". Depending on the nature of
constraints imposed, one could further classify into the following two types [60]:

– Local equilibrium - Partitioning (LE-P) condition: Consider a representative isother-

Figure 1.20: Representative isothermal section of a phase
diagram illustrating the Local Equilibrium - Partitioning

(LE-P) constraint. The red point corresponds to the nominal
alloy composition

mal section of the A-B-X alloy phase diagram as shown in the Fig.1.20. The nominal
alloy composition is highlighted by the red point. For this scenario, instead of the true
tie-line passing through the red point, LE-P condition consists of assuming another
tie-line (𝑎𝑏) such that, 𝑥𝛾

𝐵

��
𝑒𝑞
→ 𝑥0

𝐵
. This way, ∇𝑥𝛾

𝐵
is rendered negligible, which would

slow down the flux of 𝐵 solute atoms to a rate consistent with that of 𝑋 solute diffusion,
such that the mass balance Eqs.in (1.43) could be respected simultaneously. In addition,
significant concentration differences between 𝑥𝛾

𝑋

��
Γ

at the interface and 𝑥0
𝑋

in the bulk
could be achieved which potentially results in considerable partitioning and long range
diffusion of 𝑋 into the 𝛾 phase, which explains the terminology, "local equilibrium with
partitioning". The kinetics of transformation under this condition are considerably slow
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as they are effectively controlled by the bulk diffusion of the slow diffusing 𝑋 element
in the parent phase.

– Local equilibrium - Negligible Partitioning (LE-NP) condition: Consider another

Figure 1.21: Representative isothermal section of a phase
diagram illustrating the Local Equilibrium - Negligible

Partitioning (LE-NP) constraint. The red point corresponds to
the nominal alloy composition

representative isothermal section of the A-B-X alloy phase diagram as depicted in
the Fig.1.21. Once again, the nominal alloy composition is highlighted by the red
point. Under LE-NP constraints, a tie-line (𝑐𝑑) is assumed such that, 𝑥𝛼

𝑋

��
𝑒𝑞
≈ 𝑥0

𝑋
,

and consequently, ∇𝑥𝛾
𝑋

is significantly increased. Due to the drastic increase in ∇𝑥
𝛾

𝑋
,

it would now be possible to keep up with the diffusion rate of 𝐵 solute atoms and
thus satisfy the mass balance conditions. The name local equilibrium with negligible
partitioning stems from the fact that the partitioning of the 𝑋 atoms into the parent
phase is negligible as the 𝑋 solute concentration in the product phase is approximately
close to that of the nominal composition of 𝑋 . The transformation kinetics in this case
are much faster than that of LE-P as the bulk diffusion of the faster diffusing 𝐵 element
in the parent phase is the chief rate controlling process. However, the build up of spike
in 𝑋 solute concentration in front of the phase interface in the parent 𝛾 phase could
have an effect of slowing down the transformation kinetics.

It should be remarked that a transformation for a given alloy at a given temperature can either
of the type LE-P or LE-NP and not both.
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• Para-equilibrium (PE): This is a special case of phase equilibria where a particular tie-line

Figure 1.22: Representative isothermal section of a phase
diagram illustrating the notion of Para-equilibrium (PE). The
red point corresponds to the nominal alloy composition. The

abscissa is represented by U-fractions of element X

is sought after such the slow diffusing 𝑋 element is assumed to be completely immobile
and only the fast diffusing 𝐵 element is assumed to redistribute between the two phases, and
hence local equilibrium is satisfied only for the 𝐵 element [61]. This hypothesis is generally
suitable when the diffusion of 𝑋 element is not possible within the timespan of interest of the
experiment or the heat treatment adopted. To understand the concept of para-equilibrium,
it is important to first define the notion of u-fractions of an element. The u-fraction of an
element 𝑖 in a phase 𝑝ℎ (𝑢𝑝ℎ

𝑖
) is defined as the ratio of the molar fraction of the element 𝑖 (𝑥𝑝ℎ

𝑖
)

to the sum of molar fractions of all the elements in the alloy (except the interstitial element
B) in the concerned phase 𝑝ℎ:

𝑢
𝑝ℎ
𝑖

=
𝑥
𝑝ℎ
𝑖∑

𝑗∈{𝐴,𝑋}
𝑗≠𝐵

𝑥
𝑝ℎ
𝑗

=
𝑥
𝑝ℎ
𝑖

1 − 𝑥𝑝ℎ
𝐵

. (1.44)

It should be reminded to the reader that, 𝑥𝑝ℎ
𝐴
+ 𝑥𝑝ℎ

𝐵
+ 𝑥𝑝ℎ

𝑋
= 1.

The alloy system under PE conditions could be seen as a pseudo-binary system of the form
𝑀𝐶 − 𝐵 [62] where 𝑀𝐶 is composed of all the other elements (including the major element)
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other than the fast diffusing interstitial element 𝐵. The equality of chemical potentials for
this pseudo-binary system could then be imposed as:

𝜇𝛼𝐵 = 𝜇
𝛾

𝐵

𝜇𝛼𝑀𝐶
= 𝜇

𝛾

𝑀𝐶

, (1.45)

where 𝜇𝛼
𝑀𝐶
, 𝜇

𝛾

𝑀𝐶
are defined as,

𝜇𝛼𝑀𝐶
=

∑︁
𝑖∈{𝐴,𝑋}
𝑖≠𝐵

𝑢𝛼𝑖 𝜇
𝛼
𝑖 𝑎𝑛𝑑 𝜇

𝛾

𝑀𝐶
=

∑︁
𝑖∈{𝐴,𝑋}
𝑖≠𝐵

𝑢
𝛾

𝑖
𝜇
𝛾

𝑖
. (1.46)

The essence of PE condition is in the fact that the u-fractions of 𝐴 and 𝑋 elements are equal
in both the phases:

𝑢𝛼𝐴 = 𝑢
𝛾

𝐴
= 𝑢𝐴, 𝑎𝑛𝑑 𝑢𝛼𝑋 = 𝑢

𝛾

𝑋
= 𝑢𝑋 . (1.47)

By inducting Eqs.(1.47) and Eqs.(1.46) into the Eqs.(1.45), the thermodynamic conditions
under PE could be summarized as:

𝜇𝛼𝐵 = 𝜇
𝛾

𝐵

𝑢𝐴

(
𝜇
𝛾

𝐴
− 𝜇𝛼𝐴

)
+ 𝑢𝑋

(
𝜇
𝛾

𝑋
− 𝜇𝛼𝑋

)
= 0

. (1.48)

One could further show that:
𝑥
𝛾

𝐴

𝑥𝛼
𝐴

=
𝑥
𝛾

𝑋

𝑥𝛼
𝑋

(1.49)

Fig.1.22 illustrates an isothermal section of the phase diagram under PE conditions with
u-fractions of the slow diffusing substitutional element 𝑋 plotted along the abscissa. In
this case, the tie lines remain virtually parallel to the 𝑥𝐵 composition axis. Though the
u-fractions of 𝑋 and 𝐴 remain equal in both the phases, the usual concentration fractions of
these elements would differ slightly in the two phases. Kinetics of a transformation under
PE are generally much faster than that of LE-NP hypothesis since the reaction is principally
controlled solely by partitioning of 𝐵 element until the equality of their chemical potentials,
where PE constrained equilibrium concentrations are attained.

Solute drag effects of the substitutional elements: Due to their low influence and involvement
in solute diffusion, the contribution of the slow diffusing substitutional elements could sound
insignificant towards the transformation kinetics. However, it has been experimentally observed
[63, 64] that the addition of these substitutional elements could induce additional dissipation
effects as they interact with the migrating interface due to the solute segregation within the interface.
Potentially a solute concentration spike is developed in the vicinity of the interface. As the interface
is driven, these solute atoms can either be dragged along with or pushed ahead of this migrating
interface. In the process, a certain free energy is dissipated which could be attributed as a resistance
or a drag pressure against the interface motion. These effects have been classically qualified as
"solute drag effects", that have the global effect of slowing down the rate of interface migration
as a part of the driving pressure available for phase transformation is consumed to overcome the
resistance.
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Fig.1.23 illustrates a classification proposed by Hutchinson et al. [63] of some of the common
substitutional elements (𝑋) in the context of Fe-C-X alloys based on their interaction with Carbon
(𝐶), and their interaction with phase interface (linked to solute drag effects). This classification
serves as a foundation to qualify the importance of accounting for the solute drags effects depending
on the substitutional element in play. It has been observed that the kinetics in the case of Fe-C-Ni
alloys (for example) showed small solute drag effects which could be linked to their considerably
low interface interaction. However in the case of Fe-C-Mo alloys, the solute drag effects are more
important because of the strong interaction of Mo solutes with the interface. While in the case of Mn
element, though it is not expected to show substantial solute drag effects, it is still non-negligible.
In general, the X-interface interaction has been associated with the binding energy of the 𝑋 solute
atoms to the interface such that, a stronger binding energy implies a stronger interface interaction
and hence stronger solute drag effects. It must be highlighted that the classification in the Fig.1.23
could be subject to changes according to the heat treatment conditions adopted.

Figure 1.23: From [63]: Classification of some of the
common substitutional elements (𝑋) based on their effects on

phase transformation kinetics in steels

If a drag pressure (𝑃𝑆𝐷) is correlated to the solute drag effects, Eq.(1.35) could be modified with
this additional contribution as:

𝒗 = 𝑀
(
Δ𝐺𝛾→𝛼 − 𝜅𝜎𝛾𝛼 + 𝑃𝑆𝐷

)
𝒏. (1.50)

The magnitude of the solute drag pressure (Δ𝐺𝑆𝐷 = |𝑃𝑆𝐷 |) is generally assumed to be a function
of the interface migration velocity itself, Δ𝐺𝑆𝐷 = 𝑓 (𝒗), which has the effect of making Eq.(1.50)
non-linear. The dependence on the velocity is such that, in the vicinity of zero velocity, or at
sufficiently high interfacial velocities, the drag pressure should theoretically vanish. The latter is
due to the fact that at high velocities, there is not enough scope or time for the solute atoms to
interact with the rapidly migrating interface, thus reducing the potential to impart any retardation
effects of significance.
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Cahn [65] was one of the first to provide the foundations of solute drag theory, albeit for grain
boundary migration in a single phase alloy. Purdy and Brechet [66] later extended Cahn’s theory
for interphase boundaries. Hillert et al. [67, 68] on the other hand provided a different perspective
of solute drag effects in the form of a dissipation of Gibbs energy in their works. In the scope of
this chapter, the foundations of the solute drag theory as described by Cahn and its extension by
Purdy and Brechet will be detailed.

The 1D segregation profile of an element 𝑋 within the interface region at the quasi-steady state is
governed by,

𝐷𝑋
Γ

𝜕2𝑥𝑋

𝜕𝑧2 +
𝜕𝑥𝑋

𝜕𝑧

[
𝜕𝐷𝑋

Γ

𝜕𝑧
+
𝐷𝑋

Γ

𝑘𝐵𝑇

𝜕𝐸

𝜕𝑧
+ 𝑣𝑛

]
+ 𝑥𝑋

𝑘𝐵𝑇

[
𝜕𝐷𝑋

Γ

𝜕𝑧

𝜕𝐸

𝜕𝑧
+ 𝐷𝑋

Γ

𝜕2𝐸

𝜕𝑧2

]
= 0, (1.51)

where 𝐷𝑋
Γ

is the diffusivity of 𝑋 element within the interfacial region of segregation, 𝐸 (𝑧) is the
interaction energy profile of 𝑋 , 𝑥𝑋 is the concentration of solute 𝑋 , 𝑥0

𝑋
is the bulk composition of

the solute, and 𝑣𝑛 is the norm of the interface velocity, 𝒗.

By taking into account the contribution of all the segregating atoms on the interfacial region, Cahn
described the magnitude of the net solute drag driving pressure as:

Δ𝐺𝑆𝐷 = −𝑁𝑉
∫ ∞

−∞

(
𝑥𝑋 − 𝑥0

𝑋

) 𝜕𝐸
𝜕𝑧

𝑑𝑧, (1.52)

where 𝑁𝑉 is the number of solute atoms per unit volume.

(a) Cahn’s assumption [65] (b) Purdy and Brechet’s
assumption [66]

Figure 1.24: Interaction energy profiles, 𝐸 (𝑧), assumed across an
interface of width 2𝛿

Fig.1.24a illustrates the interaction energy or potential profile of 𝑋 with the interface as assumed
by Cahn [65] across an interface of finite width 2𝛿, while Fig.1.24b represents the one assumed
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by Purdy and Brechet [66]. Here, 2Δ𝐸 is assumed to be a measure of the chemical potential
difference of 𝑋 between the two phases, and 𝐸0 is the binding energy of 𝑋 to the interface. In the
case of Cahn’s profile, the chemical potential difference of the solute 𝑋 amounts to zero since it is
supposed for a single phase alloy, thus yielding a symmetrical wedge shaped well for the interaction
potential. In contrast, Purdy and Brechet aimed to extend the method for phase interfaces and hence
assumed an asymmetrical wedge shaped well with a difference in the 𝑋 chemical potential across
the interfaces.

If we suppose the diffusivity, 𝐷𝑋
Γ

, to be constant with space, then Eq.(1.51) could be simplified to
the following form:

𝐷𝑋
Γ

𝜕𝑥𝑋

𝜕𝑧
+
𝐷𝑋

Γ
𝑥𝑋

𝑘𝐵𝑇

𝜕𝐸

𝜕𝑧
+ 𝑣𝑛

(
𝑥𝑋 − 𝑥0

𝑋

)
= 0. (1.53)

If the above equation is resolved for the profile assumed in Fig.1.24b, we obtain the following
analytical expressions for the solute segregation profile:

𝑥𝑋 (𝑧)
𝑥0
𝑋

=



1 if 𝑧 < −𝛿

1+𝑎 exp
(
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Γ

)
1+𝑎 if − 𝛿 < 𝑧 < 0

1+𝑎+
[
𝑎(1+𝑏) exp

(
− 𝑣𝑛 (1+𝑎) 𝛿

𝐷𝑋
Γ

)
+𝑏−𝑎

]
exp

(
− 𝑣𝑛 (1+𝑏)𝑧

𝐷𝑋
Γ

)
(1+𝑎) (1+𝑏) if 0 > 𝑧 > 𝛿

1 + exp
(
− 𝑣𝑛𝑧
𝐷𝑋

Γ
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𝑎 exp

(
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𝐷𝑋
Γ

)
1+𝑎 +

(𝑏−𝑎) exp
(
− 𝑣𝑛 𝛿𝑏

𝐷𝑋
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)
(1+𝑎) (1+𝑏) −

𝑏 exp
(
𝑣𝑛 𝛿

𝐷𝑋
Γ
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1+𝑏

 if 𝑧 > 𝛿

,

(1.54)
where 𝑎 =

𝐷𝑋
Γ
(Δ𝐸−𝐸0)
𝑘𝐵𝑇𝑣𝑛𝛿

, and 𝑏 =
𝐷𝑋

Γ
(Δ𝐸+𝐸0)
𝑘𝐵𝑇𝑣𝑛𝛿

. If we impose Δ𝐸 = 0 into the Eqs.(1.54), we
can recover the expressions of segregation profiles for the Cahn’s case. Figs.1.25 illustrate the
segregation profiles across and around the interface at different ranges of interface velocity for the
two cases. For stationary interfaces (𝑣𝑛 → 0), we observe that the Cahn’s case gives a symmetric
segregation profile across the interface due to the symmetric interaction energy profile, while Purdy
and Brechet’s case yields asymmetric profile due to the inherent asymmetric interaction potential
well. From the definition of solute drag pressure in Eq.(1.52), it is evident that Δ𝐺𝑆𝐷 is non-
zero only when there exists an asymmetric segregation profile and/ or an asymmetric interaction
energy profile. Thus Cahn’s theory correctly predicts zero drag pressure for stationary interfaces,
while Purdy and Brechet’s assumptions do not vanish the drag pressure under this condition. The
asymmetry in Cahn’s segregation profile and hence the solute drag only develop as the interface
starts migrating (𝑣𝑛 > 0). At significantly high velocities, the profiles flatten out towards the bulk
concentration for both the cases and hence as 𝑣𝑛 →∞, Δ𝐺𝑆𝐷 → 0.

The solute drag pressure could be evaluated by imposing the composition profile expressions
such as Eq.(1.54) (computed for a chosen 𝐸 (𝑧) and 𝐷𝑋

Γ
(𝑧)) into the Eq.(1.52) and integrating it.
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(a) Stationary interface, 𝑣′𝑛 = 0 (b) 𝑣′𝑛 = 1.5

(c) 𝑣′𝑛 = 5 (d) Significantly high velocity, 𝑣′𝑛 = 20

Figure 1.25: Illustration of the segregation profiles at different non-dimensional velocities,
𝑣′𝑛 = 𝑣𝑛𝛿/𝐷𝑋

Γ
, for the two cases
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Considering the complexity of the integrated expression of Δ𝐺𝑆𝐷 for arbitrary 𝐸 (𝑧), and 𝐷𝑋
Γ
(𝑧),

Cahn formulated an approximate and a simple expression for the solute drag pressure that could
potentially fit for various velocity regimes:

Δ𝐺𝑆𝐷 =
𝛼𝐶𝑥

0
𝑋
𝑣𝑛

1 + 𝛽2
𝐶
𝑣2
𝑛

, (1.55)

where 𝛼𝐶 and 𝛽𝐶 are parameters defined as functions of temperature, interfacial solute diffusiv-
ity, interface width and the binding energy. Cahn proposed the following definitions for these
parameters:

𝛼𝐶 = 4𝑁𝑉 𝑘𝐵𝑇
∫ +∞

−∞

sinh2
(
𝐸 (𝑧)
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(𝑧)

𝑑𝑧 (1.56)
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For the interaction energy profile considered in the Fig.1.24a, and a constant interfacial solute
diffusivity hypothesis, the following expressions can be deduced for these parameters:
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4𝑁𝑉 𝑘2

𝐵
𝑇2𝛿
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[
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𝑘𝐵𝑇
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(1.58)

𝛽2
𝐶 =

𝛼𝐶𝑘𝐵𝑇𝛿

2𝑁𝑉𝐷𝑋
Γ
𝐸2

0
(1.59)

For the case of Purdy and Brechet, interested readers could refer the appendix-A for the complex
integrated expression of the solute drag pressure for the considered interaction energy profile
(Fig.1.24b) and constant interfacial solute diffusivity assumption. Fig.1.26 gives an illustration of
the variation of the solute drag pressure with the interface migration velocity and compares it for
the two cases for a certain set of parameters. We observe that the solute drag pressure reaches a
maximum value for a certain velocity before decreasing again for high velocity limits. We also
observe that as the binding energy of the solute to the interface is increased, the magnitude of the
solute drag effects are also increased. The difference between the two models is more evident as the
potential difference term becomes more important indicating the influence of a phase interface in
contrast to a grain interface. As previously touched upon, for the Cahn’s case, the driving pressure
rightfully vanishes for stationary and high interface velocity limits. On the other hand, though
Purdy-Brechet’s hypotheses has a physical sense and significance for phase interfaces, it fails to
capture the expected zero driving pressure for stationary interface limit. Fazeli et al. [69] proposed
a correction to force the driving pressure predicted by Purdy-Brechet model to vanish for stationary
interfaces. They suggested the following modifications for the concentration and the derivative of
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(a) Influence of the binding energy, 𝐸0

(b) Influence of the chemical potential difference, Δ𝐸

Figure 1.26: Variation of the solute drag pressure (non-dimensional) with the
interface velocity (non-dimensional) for a certain set of parameters for the two models

the interaction energy, before imposing them into the Eq.(1.52) to compute the drag pressure:

𝑥𝑋 |𝑛𝑒𝑤 = 𝑥𝑋 exp
(
Δ𝐸𝑧

𝑘𝐵𝑇𝛿

)
, (1.60)

𝜕𝐸

𝜕𝑧

����
𝑛𝑒𝑤

=
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𝜕𝑧
− Δ𝐸

𝛿
. (1.61)

The above modifications enforce symmetry for 𝑥𝑋 |𝑛𝑒𝑤 at 𝑣𝑛 = 0 within the interfacial region,
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and also ensure that the modified derivative is an odd function which helps vanish the integral in
Eq.(1.52) for a stationary interface. However, such a correction remains to be a mere mathematical
manipulation and fails to give any physical sense.

1.3 Summary
A microstructure of a material is composed by a topological distribution and arrangement of
grain(s), phase(s), the grain/ phase boundary network, and other potential defects. An unstable
microstructural configuration is thermodynamically driven towards a stable configuration through
a minimization of the excess Gibbs free energy built-up in the system. This process constitutes a
microstructural transformation, where the type of transformation is qualified based on the source
of instabilities and the underlying mechanism driving the minimization of the free energy. The
sources of excess free energy build-up could be broadly classified as chemical free energy, strain
free energy, and interfacial free energy. Phase transformation is principally driven by excess
chemical free energy as the principal source of stimulus. Allotropic phase transformation is
characterized by evolution from an unstable parent phase to a more stable product phase by
undergoing crystallographic changes, and/ or potential compositional changes. Diffusive solid-
state phase transformation (DSSPT) in particular is associated with gradual rearrangement of the
crystal lattice into that of the product phase through short and long range diffusion of the solutes
at the solid-state. From a thermodynamic point of view, complete phase equilibrium is achieved
through equality of chemical potentials in all the phases in play for all the components of the alloy.
DSSPT broadly involves two basic mechanisms: nucleation of the stable product phase, and the
growth of these product phase nuclei into grains until the phase equilibria for the heterogeneous
phase mixture is achieved.

Phase nucleation involves formation of local cluster of atoms with the crystal structure of the
product phase in place of the existing unstable parent phase. A nucleation event is synonymous
to the concept of metastability, where the system with the unstable parent phase structure remains
metastable unless a certain activation energy is provided to overcome the nucleation barrier to create
stable nuclei of the product phase. The presence of any inherent defects in the parent microstructure
act as preferential sites of nucleation (heterogeneous nucleation) as it is favorable to destroy the
defects and lower the free energy of the system. As a result, the nucleation barrier is lowered making
it easier to nucleate stable nuclei. Due to the limitations of physically observing a nucleus and
understanding its formation, a complete unified description of the nucleation event is still lacking
despite a rich literature. The existing models have plenty of leeway to make several hypotheses and
assume several complex parameters to describe the phenomena. Thus, especially at the mesoscopic
scale, nucleation event is generally described with reasonably simplistic approaches based on strong
hypotheses. During the growth stage, the stable nuclei formed from the nucleation stage continue
to grow into grains of the product phase, governed by the interface migration kinetics. In the
process, a part of the driving pressure available for phase transformation is dissipated by interfacial
processes involving lattice rearrangement and the rest by long-range solute diffusion. For a realistic
description of transformation kinetics, the character of transformation is of the mixed-mode type,
where a finite interface mobility controls the interfacial processes, and a finite diffusivity controls
the solute diffusion in the bulk, such that the local equilibrium at the interface is rather gradually
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achieved.

In the case of ternary alloys and beyond consisting of one or more slowly diffusing substitutional
elements, complete local phase equilibrium (ortho-equilibrium) may not be feasible within the
characteristic time scales of industrial interest. This stems from the fact that the rates of diffusion
of the rapidly diffusing interstitial elements may not be consistent with the rates of diffusion of
the substitutional elements, thus making it difficult to satisfy the mass balances of all the solutes
simultaneously. This is generally overcome by making constrained phase equilibria hypotheses to
describe the transformation kinetics, where instead of the true tie-line (conode) passing through the
nominal alloy composition, different tie-lines are sought after subject to certain constraints. The
potential interaction of substitutional solutes with the migrating interface could render sluggish
transformation kinetics. The solute segregation within the interface foster a drag resistance towards
the interface migration resulting in the consumption of a part of the driving pressure available for
phase transformation. These effects have been classically characterized as the solute drag effects.
The magnitude of these drag effects have been directly associated with the binding energy of the
solute to the interface.

References
[1] G. Gottstein and L.S. Shvindlerman. Grain boundary migration in metals: thermodynamics, kinetics, applica-

tions. CRC press, 2009.
[2] D.A. Porter, K.E. Easterling, and M.Y. Sherif. Phase transformations in metals and alloys. CRC press, 2021.
[3] J.W. Martin, R.D. Doherty, and B. Cantor. Stability of microstructure in metallic systems. Cambridge University

Press, 1997.
[4] K.G.F. Janssens et al. Computational materials engineering: an introduction to microstructure evolution.

Academic Press, 2010.
[5] C.M. Wayman. “Solid-state phase transformations”. In: Annual Review of Materials Science 1.1 (1971),

pp. 185–218.
[6] G.S. Cole. “Inhomogeneities and their control via solidification”. In: Metallurgical Transactions 2 (1971),

pp. 357–370.
[7] A. Roosz, Z. Gacsi, and E.G. Fuchs. “Solute redistribution during solidification and homogenization of binary

solid solution”. In: Acta Metallurgica 32.10 (1984), pp. 1745–1754.
[8] J.W. Cahn. “On spinodal decomposition”. In: Acta Metallurgica 9.9 (1961), pp. 795–801. issn: 0001-6160.

doi: https://doi.org/10.1016/0001-6160(61)90182-1.
[9] J.W. Cahn. “Phase separation by spinodal decomposition in isotropic systems”. In: The Journal of chemical

physics 42.1 (1965), pp. 93–99.
[10] N.C. Law and D.V. Edmonds. “The formation of austenite in a low-alloy steel”. In: Metallurgical and Materials

Transactions A 11 (1980), pp. 33–46.
[11] G. Krauss and S.W. Thompson. “Ferritic microstructures in continuously cooled low-and ultralow-carbon

steels”. In: ISĲ international 35.8 (1995), pp. 937–945.
[12] R. Wagner, R. Kampmann, and P.W. Voorhees. “Homogeneous second-phase precipitation”. In: Phase trans-

formations in materials (2001), pp. 309–407.
[13] H.B. Aaron and G.R. Kotler. “Second phase dissolution”. In: Metallurgical transactions 2 (1971), pp. 393–408.

43

https://doi.org/https://doi.org/10.1016/0001-6160(61)90182-1


[14] A. Rollett, G.S. Rohrer, and J. Humphreys. Recrystallization and Related Annealing Phenomena. Elsevier
Science, 2017. isbn: 9780080982694. url: https://books.google.fr/books?id=GhZETAEzYOIC.

[15] P. Fratzl, O. Penrose, and J. L. Lebowitz. “Modeling of phase separation in alloys with coherent elastic misfit”.
In: Journal of Statistical Physics 95 (1999), pp. 1429–1503.

[16] H.-J. Jou, P.H. Leo, and J.S. Lowengrub. “Microstructural evolution in inhomogeneous elastic media”. In:
Journal of Computational Physics 131.1 (1997), pp. 109–148.

[17] G.T. Higgins. “Grain-boundary migration and grain growth”. In: Metal Science 8.1 (1974), pp. 143–150.
[18] B. Ralph. “Grain growth”. In: Materials Science and Technology 6.11 (1990), pp. 1136–1144.
[19] K.M. Vedula and R.W. Heckel. “Spheroidization of binary Fe-C alloys over a range of temperatures”. In:

Metallurgical Transactions 1 (1970), pp. 9–18.
[20] Y.L. Tian and R.W. Kraft. “Mechanisms of pearlite spheroidization”. In: Metallurgical transactions A 18

(1987), pp. 1403–1414.
[21] P.W. Voorhees. “The theory of Ostwald ripening”. English (US). In: Journal of Statistical Physics 38.1-2 (Jan.

1985). Copyright: Copyright 2007 Elsevier B.V., All rights reserved., pp. 231–252. issn: 0022-4715. doi:
10.1007/BF01017860.

[22] Y.D. Zhang et al. “Microstructural features induced by a high magnetic field in a hypereutectoid steel during
austenitic decomposition”. In: Scripta Materialia 54.11 (2006), pp. 1897–1900. issn: 1359-6462. doi: https:
//doi.org/10.1016/j.scriptamat.2006.02.009.

[23] H. Wollenberger. “Phase transformations under irradiation”. In: Journal of nuclear materials 216 (1994),
pp. 63–77.

[24] J.D. Guo, X.L. Wang, and W.B. Dai. “Microstructure evolution in metals induced by high density electric
current pulses”. In: Materials science and technology 31.13 (2015), pp. 1545–1554.

[25] R.W. Cahn and P. Haasen. Physical metallurgy. Vol. 1. Elsevier, 1996.
[26] J.W. Gibbs. “On the equilibrium of heterogeneous substances”. In: Transactions of Connecticut Academy of

Arts and Sciences (1876), pp. 108–248.
[27] E.P. Favvas and A.C. Mitropoulos. “What is spinodal decomposition”. In: J. Eng. Sci. Technol. Rev 1.1 (2008),

pp. 25–27.
[28] R.D. James. “Displacive phase transformations in solids”. In: Journal of the Mechanics and Physics of Solids

34.4 (1986), pp. 359–394.
[29] M. Hillert. Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis. Cam-

bridge university press, 2007.
[30] A. Weber. “Keimbildung in übersättigten Gebilden”. In: Zeitschrift für physikalische Chemie 119.1 (1926),

pp. 277–301.
[31] R. Becker and W. Döring. “Kinetische behandlung der keimbildung in übersättigten dämpfen”. In: Annalen

der physik 416.8 (1935), pp. 719–752.
[32] J.W. Christian. The theory of transformations in metals and alloys. Newnes, 2002.
[33] V.I. Kalikmanov. “Classical nucleation theory”. In: Nucleation theory. Springer, 2012, pp. 17–41.
[34] K.C. Russell. “Grain boundary nucleation kinetics”. In: Acta Metallurgica 17.8 (1969), pp. 1123–1131.
[35] W.C. Johnson et al. “Influence of crystallography on aspects of solid-solid nucleation theory”. In: Metallurgical

Transactions A 6 (1975), pp. 911–919.
[36] E. Clouet. “Modeling of nucleation processes”. In: arXiv preprint arXiv:1001.4131 (2010).
[37] H.A. Landheer. “Nucleation of ferrite in austenite: The role of crystallography”. PhD thesis. Delf University

of Technology, 2010.

44

https://books.google.fr/books?id=GhZETAEzYOIC
https://doi.org/10.1007/BF01017860
https://doi.org/https://doi.org/10.1016/j.scriptamat.2006.02.009
https://doi.org/https://doi.org/10.1016/j.scriptamat.2006.02.009


[38] M. Hillert and M. Rettenmayr. “Deviation from local equilibrium at migrating phase interfaces”. In: Acta
materialia 51.10 (2003), pp. 2803–2809.

[39] J.W. Gibbs. The Collected Works of J. Willard Gibbs: Thermodynamics. The Collected Works of J. Willard
Gibbs. Yale University Press, 1948. url: https://books.google.fr/books?id=UzwPAQAAMAAJ.

[40] P.J. Clemm and J.C. Fisher. “The influence of grain boundaries on the nucleation of secondary phases”. In:
Acta Metallurgica 3.1 (1955), pp. 70–73.

[41] W.F. Lange, M. Enomoto, and H.I. Aaronson. “The kinetics of ferrite nucleation at austenite grain boundaries
in Fe-C alloys”. In: Metallurgical Transactions A 19 (1988), pp. 427–440.

[42] M. Enomoto, W.F. Lange, and H.I. Aaronson. “The kinetics of ferrite nucleation at austenite grain edges in
Fe-C and Fe-CX alloys”. In: Metallurgical Transactions A 17 (1986), pp. 1399–1407.

[43] K.S. Chan et al. “Generalization of the nucleus shape-dependent parameters in the nucleation rate equation”.
In: Metallurgical Transactions A 9 (1978), pp. 1016–1017.

[44] W. Huang and M. Hillert. “The role of grain corners in nucleation”. In: Metallurgical Transactions, A 27.2
(1996).

[45] S.E. Offerman et al. “Grain nucleation and growth during phase transformations”. In: Science 298.5595 (2002),
pp. 1003–1005.

[46] G.S. Rohrer. “Grain boundary energy anisotropy: a review”. In: Journal of materials science 46 (2011),
pp. 5881–5895.

[47] P.J. Hurley and F.J. Humphreys. “Modelling the recrystallization of single-phase aluminium”. In: Acta mate-
rialia 51.13 (2003), pp. 3779–3793.

[48] A. Yamanaka, T. Takaki, and Y. Tomita. “Multi-phase-field modeling of diffusive solid phase transition
in carbon steel during continuous cooling transformation”. In: Journal of Crystal Growth 310.7-9 (2008),
pp. 1337–1342.

[49] S.R. Logan. “The origin and status of the Arrhenius equation”. In: Journal of Chemical Education 59.4 (1982),
p. 279.

[50] W.T. Read and W. Shockley. “Dislocation models of crystal grain boundaries”. In: Physical review 78.3 (1950),
p. 275.

[51] W.T. Read. Dislocations in crystals. McGraw-Hill, 1953.
[52] M. Tong, D. Li, and Y. Li. “Modeling the austenite–ferrite diffusive transformation during continuous cooling

on a mesoscale using Monte Carlo method”. In: Acta materialia 52.5 (2004), pp. 1155–1162.
[53] N. Xiao et al. “Coupled simulation of the influence of austenite deformation on the subsequent isothermal

austenite–ferrite transformation”. In: Acta materialia 54.5 (2006), pp. 1265–1278.
[54] M. Hillert. “Diffusion and interface control of reactions in alloys”. In: Metallurgical Transactions A 6 (1975),

pp. 5–19.
[55] Z.-K. Liu. “Theoretic calculation of ferrite growth in supersaturated austenite in Fe C alloy”. In: Acta materialia

44.9 (1996), pp. 3855–3867.
[56] J. Svoboda et al. “Kinetics of interfaces during diffusional transformations”. In: Acta Materialia 49.7 (2001),

pp. 1249–1259.
[57] X. Liu, H. Li, and M. Zhan. “A review on the modeling and simulations of solid-state diffusional phase

transformations in metals and alloys”. In: Manufacturing Review 5 (2018), p. 10.
[58] J. Sietsma and S. van der Zwaag. “A concise model for mixed-mode phase transformations in the solid state”.

In: Acta Materialia 52.14 (2004), pp. 4143–4152.
[59] D.R.F. West. Ternary phase diagrams in materials science. Routledge, 2017.

45

https://books.google.fr/books?id=UzwPAQAAMAAJ


[60] H.K.D.H. Bhadeshia. “Diffusional formation of ferrite in iron and its alloys”. In: Progress in Materials Science
29.4 (1985), pp. 321–386.

[61] M. Hillert and J. Ågren. “On the definitions of paraequilibrium and orthoequilibrium”. In: Scripta Materialia
50.5 (2004), pp. 697–699.

[62] G. Inden. “Diffusion and Phase Transformations in Multi-Component Systems”. In: Defect and Diffusion
Forum 263 (Mar. 2007), pp. 11–20. doi: 10.4028/www.scientific.net/DDF.263.11.

[63] C.R. Hutchinson, H.S. Zurob, and Y. Brechet. “The growth of ferrite in Fe-CX alloys: The role of thermo-
dynamics, diffusion, and interfacial conditions”. In: Metallurgical and Materials Transactions A 37 (2006),
pp. 1711–1720.

[64] G. Purdy et al. “ALEMI: A ten-year history of discussions of alloying-element interactions with migrating
interfaces”. In: Metallurgical and Materials Transactions A 42 (2011), pp. 3703–3718.

[65] J.W. Cahn. “The impurity-drag effect in grain boundary motion”. In: Acta metallurgica 10.9 (1962), pp. 789–
798.

[66] G.R. Purdy and Y.J.M. Brechet. “A solute drag treatment of the effects of alloying elements on the rate of the
proeutectoid ferrite transformation in steels”. In: Acta metallurgica et materialia 43.10 (1995), pp. 3763–3774.

[67] M. Hillert and B. Sundman. “A solute-drag treatment of the transition from diffusion-controlled to diffusionless
solidification”. In: Acta Metallurgica 25.1 (1977), pp. 11–18.

[68] M. Hillert. “Solute drag in grain boundary migration and phase transformations”. In: Acta materialia 52.18
(2004), pp. 5289–5293.

[69] F. Fazeli and M. Militzer. “Application of solute drag theory to model ferrite formation in multiphase steels”.
In: Metallurgical and Materials Transactions A 36 (2005), pp. 1395–1405.

46

https://doi.org/10.4028/www.scientific.net/DDF.263.11


Chapter 2

Numerical modeling of microstructural
evolution: diffusive solid-state phase

transformation

Abstract

Numerical modeling and predicting the evolution aspects of a material’s microstructure
have gained growing significance, especially for vital industrial sectors. They serve as valuable
tools for metallurgists, enabling them to precisely manage process parameters and manipulate
material properties. Numerical simulation also plays a crucial role in emulating and observing
complex microstructural evolution traits that are typically challenging to capture experimentally.

In this chapter, as a precursor, several numerical approaches used in the context of mi-
crostructural evolution for various phenomena are enumerated. Special emphasis is placed
on full-field numerical methods capable of precisely modeling microstructural transformations
at the mesoscopic scale. The focus is then predominantly shifted towards full-field modeling
of diffusive solid-state phase transformation in metallic materials. A numerical formulation
based on the level-set (LS) method is elaborated in a finite element context. This numerical
framework is formulated primarily to simulate diffusive phase transformation kinetics in a
biphasic polycrystalline but also has the potential to consider other types of transformations
concurrently, thanks to a generalized interface kinetics description.

Résumé

La modélisation numérique et la prédiction de l’évolution des microstructures des matériaux
lors de leur mise en forme prennent de plus en plus d’importance, en particulier dans les
secteurs industriels critiques. Elles constituent des outils indispensables pour les métallurgistes,
leur permettant de gérer avec plus de précision les paramètres des procédés et de manipuler
les propriétés des matériaux. La simulation numérique joue également un rôle crucial dans
l’émulation et l’observation des caractéristiques complexes de l’évolution des microstructures,
qui sont généralement difficiles à saisir expérimentalement.

Dans ce chapitre, plusieurs approches numériques utilisées dans le contexte de migration
d’interfaces pour différents phénomènes sont introduites. L’accent est mis sur les méthodes

47



numériques en champ complet capables de modéliser avec précision les transformations mi-
crostructurales à l’échelle mésoscopique. Ensuite, la modélisation en champ complet de la
transformation de phase diffusive à l’état solide dans les matériaux métalliques est au centre de
la discussion. Une formulation numérique basée sur la méthode de level-set (LS) est détaillée
dans un contexte éléments finis (EF). Ce modèle numérique est formulé principalement pour
simuler la cinétique de la transformation de phase diffusive dans un polycristal biphasé, mais il
a également le potentiel de modéliser d’autres types de transformations, grâce à une description
généralisée de la cinétique de l’interface.

2.1 Introduction: state of the art of numerical models for mi-
crostructural evolution

As highlighted in the previous chapter, in-use materials can undergo several types of microstructural
transformations depending on their processing conditions. These transformations can eventually
influence various material properties, which, in turn, may affect its in-service life. Therefore, it is
paramount to control the process parameters responsible for microstructural transformations and
to predict and monitor the evolution of the material’s properties, especially for critical industrial
applications. Numerical modeling of microstructural evolution has thus gained momentum to help
with the comprehensive understanding of the underlying phenomena and assist in manipulating the
processes involved and determining the in-service material performance.

To simulate microstructural evolution, depending on the level of description desired and the scale of
modeling, one can use the analytical and empirical models, mean-field models, full-field models,
or the molecular dynamics based models (atomistic models). The analytical and the empirical
models [1–6] are generally based on significantly strong assumptions through simplification of the
physics involved. Empirical models predict homogenized behavior based on the phenomenolog-
ical laws such as the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equations [7–9]. Despite their
simplicity in implementation and minimal demand for computational resources, their predictions
are generally limited to the statistics of the involved phenomena in the range of data used for their
parameterization. So, to improve the scope of application of numerical models and to extend the
ability to capture the involved physics, mean field models (MFM) [10–18] based on physical laws
have been developed. MFM is based on an averaged and implicit description of the microstruc-
ture, where grains or precipitates are treated as spherical entities, and it encompasses statistical
transformations associated with various attributes such as grain size, precipitate size, phase frac-
tion, dislocation density, etc. MFM are known for their computational efficiency, however, their
predictive capabilities are still limited and they fall short in reproducing certain microstructural
features as they do not involve precise modeling of the topological changes during the evolution.
Advances in computational resources have paved the way for more intricate models (such as atom-
istic and full-field mesoscopic models) based on a complete and an explicit representation of the
microstructure. These models enable to closely follow the topological evolution of the microstruc-
ture during a transformation and have the potential to capture complex evolution aspects and hence
their predictive capabilities are much wider. Molecular dynamics [19–21] approaches consider the
basic building blocks of material, atoms, as the smallest entity. Such models provide a profound
description of the involved mechanisms at the atomistic scale, but also require large computational
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resources. Thus, these models are often considered to analyze or quantify certain characteristics
over a localized region of the microstructure limited to a few interfaces. By simplifying the in-
terface description and approximating the interface properties and kinetics, while still maintaining
the explicit description of the microstructure topology at the polycrystalline scale, the so-called
full-field models (FFM) [22] have emerged. These models typically consider a few thousand to
a few tens of thousands of grains in 2D or 3D. FFM provide a tool to study the unsteady state
features and their dynamics at the mesoscopic scale, while also providing a basis for calibrating
many mean field models. FFM has proven to be highly capable of simulating a wide spectrum of
microstructural transformations, including the precise modeling of phenomena such as recrystal-
lization (ReX) [23–25] under both dynamic (DRX) and post-dynamic (PDRX) conditions, Grain
growth (GG) [23], diffusive solid-state phase transformation (DSSPT) [26, 27], spheroidization
[28], sintering [29], etc.

In the context of full-field modeling of microstructural evolution, depending on the methodology
adopted to follow the topological evolution, broadly two types of numerical techniques are clas-
sically employed: the front tracking/ vertex, and the front capturing methods. Front tracking/
vertex methods [30–32] track the interface explicitly, making use of a discrete set of marker nodes
localized on the interface. These nodes are then used to approximate the interface, thanks to
interpolation. As the interface evolves, the marker nodes are advected in a Lagrangian sense. Front
tracking methods face difficulties in handling topological changes in the interface. On the other
hand, front capturing methods do not make use of any explicit elements to localize the interface.
Instead, interfaces are implicitly represented and reconstructed using suitable field variables. This
technique provides capabilities to handle topological changes in a natural way. It also gives the
freedom to use non-conforming meshes. However, the numerical cost of front-capturing methods
is generally more important, especially in a finite element (FE) context using unstructured grid.
Front capturing methods mainly comprise the following numerical methods: Phase-Field (PF) or
Multi Phase-Field (MPF) [27, 33–35], and Level-Set (LS) models [36–42].

In the context of DSSPT, phase-field methods (PFM) are popular and extensively used. The
thermodynamic consistency and the ability to model arbitrary complex morphological changes
without any presumption on their shape or mutual distribution make PFM a powerful and an
attractive tool. The early works of Wheeler et al. [43], Steinbach et al. [44, 45] on solidification
using PFM provided some of the mathematical foundations of phase-field modeling for multi-
component, multi-phase systems involving solute diffusion. Yeon et al. [46] presented one of the
first phase-field simulations of DSSPT, where austenite-ferrite transitions in the Fe-Mn-C system
were modeled under para-equilibrium [47] assumptions. Pariser et al. [48] studied the phase
transformation behavior in ULC (Ultra Low Carbon) and IF (Interstitial free) grade steels using
the well-known MICRESS software [49] based on the multi-component, multi phase-field method.
Huang et al. [50] performed 2D PF simulations for 𝛾 → 𝛼 transformation in low carbon steels by
considering an arbitrary number of grains at a large spatial scale. The P.h.D. works of Mecozzi
along with Militzer et al. [51, 52] were dedicated to the first 3D simulations of DSSPT for 𝛾 → 𝛼

transformation in a Fe-Mn-C system. In addition to austenite decomposition in steels, there have
been works dedicated to other alloyed materials also. 1D PF simulations for phase transformation
in aluminum alloys have been studied in [53]. Malik et al. [54] have used 2D PFM to simulate the
formation and growth of 𝜎−phase precipitates in a super duplex stainless steel alloy. In addition to
PFM, some works based on Monte Carlo potts (MC) [55] and Cellular Automata (CA) methods [56,
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57] could also be found for DSSPT. In most of these reported works, the grain growth aspects were
either completely neglected or only the grain growth of the product phase was accounted for while
ignoring that of the parent phase. According to the author’s knowledge, DSSPT modeling using
LS method has not been explored to its full potential in the state of the art. The developments of
Bzowski et al. [58] is one of the only few works based on level-set method for DSSPT. A multiple
level-set approach is used in [58] with the classical technique of one level-set function per grain.
To model solute diffusion, the diffusion equation has been resolved only in the parent phase while
that in the product phase has been considered to be negligible.

In the context of industrial processes where high plastic deformation can be achieved, none of
the existing approaches provide easily an appropriate framework to perform simulations of DRX
concomitant with phase transformation in multi-phase materials. On the other hand, level-set
(LS) method has been successfully used to simulate DRX [59] and GG phenomena [60–62] for
single-phase materials. So, in the current state of the art, most of the numerical predictions are
dedicated to single-phase microstructural evolution, or only based on phase transformation without
taking into account other phenomena such as ReX or GG. Such numerical approaches can then
be insufficient when complex and realistic thermomechanical treatments with large temperature
ranges are investigated. Thus, there is a need for a generalized numerical framework capable of
making predictions of DSSPT, DRX, and GG in a multi-phase polycrystalline context [63]. So, the
perspective of this work is to explore the potential of the LS method for the modeling of DSSPT. We
thus propose a finite element based generalized global level-set formalism capable of simulating
diffusive phase transformation and, potentially, ReX in the context of large plastic deformation for
two phase polycrystalline materials by considering the driving pressures acting on grain and phase
interfaces.

2.2 Fundamental concepts of Level-set (LS) method
Level-set method [38, 39, 64] is a front-capturing numerical method that is used to define domains
and implicitly describe interfaces through a continuous field variable, 𝜑. Level-set description is
popularly used to model and simulate the motion of dynamic interfaces resulting from relevant
physical phenomena. The interface position at any instant is implicitly tracked with the help of
iso-contours of the level-set function, 𝜑(𝒙, 𝑡).

Considering the interface of interest, Γ, of a closed sub-domain𝐺 in a global domainΩ as illustrated
in Fig.2.1, level-sets are classically initialized as a signed Euclidean distance function to Γ such
that the zero iso-values of this function localize the interface Γ:{

𝜑(𝒙, 𝑡) = ±𝑑 (𝒙, Γ(𝑡)), 𝒙 ∈ Ω
Γ(𝑡) = 𝜕𝐺 = {𝒙 ∈ Ω | 𝜑(𝒙, 𝑡) = 0}

∀ 𝑡, (2.1)

where 𝑑 is the Euclidean distance normal to the interface. Thus, 𝜑(𝒙, 𝑡) has opposite signs inside
and outside of the sub-domain 𝐺 with a change of signs across the interface. In other words, if we
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Figure 2.1: Level-set method used to describe a sub-domain 𝐺 in a global
domain Ω

adopt the convention of having positive values inside the sub-domain, then we have:
𝜑(𝒙, 𝑡) > 0 ∀𝒙 ∈ 𝐺\{𝜕𝐺}
𝜑(𝒙, 𝑡) < 0 ∀𝒙 ∈ Ω\{𝐺}
𝜑(𝒙, 𝑡) = 0 ∀𝒙 ∈ 𝜕𝐺 = Γ(𝑡)

(2.2)

Fig.2.2 illustrates a typical computation of a signed Euclidean distance LS function in an unstruc-
tured finite element (FE) mesh to an interface, highlighted in black (reflecting the iso-zero contour
of the LS function).

Figure 2.2: Representation of a signed distance function to an interface in
a FE mesh
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A classical signed Euclidean distance LS function has certain inherent metric properties such as:

∥∇𝜑∥ = 1

𝒏 = − ∇𝜑

∥∇𝜑∥ = −∇𝜑 =⇒ 𝜅 = ∇ · 𝒏 = −Δ𝜑 ∀𝒙 ∈ Γ,
(2.3)

where 𝒏 is the outward unit normal to the closed sub-domain 𝐺 at the interface, and 𝜅 is the trace
of the curvature tensor. It should be remarked that the negative sign in the definition of 𝒏 arises if
the LS function is defined to be positive inside the sub-domain 𝐺 as proposed previously.

Considering 𝒗 to describe the kinetics of the Γ interface, at any time, Γ(𝑡) can be obtained by
solving the following convective LS transport equation [38]:{

𝜕𝜑

𝜕𝑡
+ 𝒗 · ∇𝜑 = 0

𝜑(𝒙, 𝑡 = 0) = 𝜑0(𝒙)
in Ω. (2.4)

The kinetics prescribed through the velocity, 𝒗, is generally computed depending on the physical
phenomena involved behind the migration of the interface. Thus, LS method is generally coupled
with some external physics.

Reinitialization of level-sets: Depending on the formulation and the numerical resolution proce-
dure adopted, it is of great interest to ensure that 𝜑 stays a signed distance function (i.e., ∥∇𝜑∥ = 1).
Even though the initial LS function, 𝜑0(𝑥), could be initialized as a signed distance function, this
property may not be conserved during the resolution of the LS transport Eq.(2.4). 𝜑(𝒙, 𝒕) may
localize the zero iso-contours properly, however its gradient could take any value causing 𝜑 to be-
come irregular which could potentially generate numerical instabilities. A periodic redistancing or
a reinitialization [65] procedure is essential to restore the metric properties of 𝜑, post the resolution
of Eq.(2.4). This ensures 𝜑 regularity, thus preserving numerical stability and good conditioning of
the LS transport equation. In certain problems involving the contribution of the interface curvature
in the kinetics, a signed distance function allows for avoiding an expensive exact computation of the
curvature term by implicitly accounting for the curvature through its metric properties (Eqs.(2.3)).
In addition, by keeping 𝜑 a signed distance function, certain numerical models involving remeshing
algorithms can be properly based on the notion of Euclidean distance to the interface. It is thus
paramount to conserve the metric properties for several reasons depending on the numerical appli-
cation. Figs.2.3 represent the iso-contours of a typical LS function around an interface. The figure
on the top illustrates the irregularity of the LS function having lost its character of a signed distance
function. The figure on the bottom shows the same LS function after a reinitialization procedure
which helps restore the signed distance property and hence the regularity in its iso-contours.

One of the fundamental approaches is the Fast Marching Method proposed by Sethian [67] which
involves an efficient numerical scheme to solve the Eikonal equation of the form, ∥∇𝜑∥ = 1.
However this classical approach is generally limited to structured grids. It is complex to implement
for unstructured meshes in a finite element framework, especially at higher dimensions. An effective
strategy of conserving the metric properties of a level-set function is to extend the prescribed velocity
field. In most problems of physics, the velocity field, 𝒗, prescribed into the LS transport Eq.(2.4)
generally has sense only at the concerned interface. However, the front capturing nature of LS
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Figure 2.3: From [66]: (a) Iso contours of an irregular level-set function,
potentially post the resolution of the level-set transport equation, (b) The

same representation after reinitialization. The interface is characterized in
bold, corresponding to the iso-zero contour

transport equation in (2.4) imposes that the velocity field be defined almost near the iso-zero value,
and not just on the interface itself (for the iso-zero level-set). So, 𝒗 must be defined at least over
a narrow band around the propagating interface, Γ(𝑡). The process of extending the velocity field
around the propagating interface is referred as velocity extension or velocity smoothing [68]. The
extended velocity should match with the actual velocity prescribed on the interface. One of the
classical ways to extend the velocity is to solve the following equation:

At any instant 𝑡,

{
∇ (𝒗𝒆 · 𝒏𝒆) · ∇𝜑 = 0 in Ω\{Γ(𝑡)}
𝒗𝒆 (𝒙, 𝑡) = 𝒗(𝒙, 𝑡) on Γ(𝑡)

, (2.5)

where 𝒗𝒆 is the extended velocity and 𝒏𝒆 is the extended normal (on neighboring level-sets). It is to
be ensured that 𝜑 is a signed distance function a priori. The solution to the above equation would
yield a velocity field with constant velocities along the extended normal with velocity gradients
being orthogonal to the extended normal. The constant velocities along the extended normal aid
in migrating the neighboring level-sets by the same amount as the interface, ensuring preservation
of the metric properties of the LS function without requiring reinitialization at each time step. In
this case, periodic reinitialization would only be necessary to safeguard the metric properties from
potential errors during the evolution.

Another classical approach to reinitialize 𝜑 is to resolve the following Hamilton-Jacobi equation
[38, 69]: {

𝜕𝜑∗

𝜕𝜏 𝑓
+ sign(𝜑∗) [∥∇𝜑∗∥ − 1] = 0

𝜑∗(𝒙, 𝜏 𝑓 = 0) = 𝜑(𝒙, 𝑡)
in Ω, (2.6)
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where 𝜏 𝑓 is a fictitious time step. At a certain instant 𝑡, the LS transport equation resolution is
frozen and the above equation is resolved over a short duration of the fictitious time. The solution 𝜑∗
thus obtained is traded with 𝜑 to obtain a signed distance function over a certain thickness around
the interface and without changing the iso-zero values corresponding to the current interface
position, Γ(𝑡). The resolution of the LS equation is then resumed after reinitialization. A modified
formulation (coined as automatic reinitialization) accounting for both the LS transport Eq.(2.4) and
the Hamilton-Jacobi reinitialization Eq.(2.6) into a single resolution step through one convective
equation was also developed. One of these formulations is depicted in [40]. However, as we
shall see in the following, in the context of a polycrystalline microstructure involving multiple sub-
domains, the presence of multiple junctions would demand an additional numerical treatment to
avoid any kinematic incompatibilities. Such treatments would again require a post reinitialization
step, hence the automatic reinitialization formulation is not adopted in this context. So it would
be better off to use the classical LS transport equation for resolution, followed by the necessary
numerical treatments at the multiple junctions, and then a reinitialization procedure. More on this
shall be discussed in the following. So, among other various techniques in the state of the art, a
recent reinitialization strategy [70] that involves a fast, direct calculation of 𝜑 based on an optimized
brute force algorithm is adopted in the context of this work.

2.2.1 Application of LS description in a polycrystalline microstructure
Previously, we reviewed the fundamental ideas behind the LS description of a single sub-domain𝐺
consisting of an inside and an outside region. However, if we consider a polycrystal consisting of
several grains, with each of these grains representing a closed sub-domain, a single signed distance
LS function, 𝜑, is not enough to represent all the grains in the whole microstructure since there is
no longer a notion of inside and outside regions. The classical approach is to consider one level-set
function per grain as seen in some of the first developments of LS based numerical modeling of
microstructural evolution [40, 60, 66]. So, a microstructure with 𝑁𝐺 grains would need 𝑁𝐺 LS
functions, with a necessity to resolve each of these LS functions (𝑁𝐺 transport equations to resolve).
Fig.2.4 shows an illustration of a simple microstructure with each grain represented by its own LS
function, 𝜑𝑖. The color map in Fig.2.4 characterizes each grain having its own LS function.

Digital generation of a polycrystalline microstructure: Given certain statistical data such as
mean grain size or a grain size distribution, to construct a digital microstructure in the form
of representative volume elements (RVE), the earliest LS based developments were based on the
method of Voronoi tessellation (VTM) [71] to generate the grains. Given a set of 𝑁 randomly placed
seeds (sites) in a domain (microstructure), VTM aims to partition the domain into a set of 𝑁 convex
polyhedrons. It does so by introducing planes perpendicularly bisecting the segments connecting
two nearest neighboring points such that the interception of several perpendicular bisecting planes
out of the nearest neighboring lines form edges, vertices, faces and volumes to create a collection of
polyhedrons. In other words, each seed is associated with a polyhedron that occupies some space
in the domain such that the distance to this seed from any point inside this polyhedron is less than
or equal to the distance to any other seed in the domain. Fig.2.5 illustrates a simple representative
microstructure constructed from a certain set of seeds using the VTM. Each polyhedron represents
a grain, and the connectivities between two or more polyhedrons make up the geometrical or
topological entities of the microstructure such as grain boundaries, edges and corners. A statistical
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Figure 2.4: A representative microstructure with 14 grains with their
colors indicating the characteristic functions corresponding to their parent

level-set functions (14 𝜑𝑖)

distribution is used to describe the ensemble of polyhedrons (grains) formed as a result. Despite
being an effective method in creating grains with reasonable geometric correlation, VTM fails to
respect a given statistical grain size distribution as indicated in [72]. Another method of generation
is based on the Laguerre-Voronoi tessellation method (LVTM) which follows the same principles
as the VTM, except that the inter-distance between two seeds may not be bisected equally. This
allows a particular grain to be preferentially larger or smaller. This is established with the help of
a radius or a weight assigned to each seed in a quest to respect the statistical grain size distribution
[73]. In a FE context, the VTM and LVTM can be analytically expressed and used to compute
(initialize) the level-sets (𝜑𝑖) describing the polyhedrons or the grains. If we suppose 𝑁𝐺 grains,
with 𝑆𝑖 denoting the Voronoi sites, with the sign convention that, 𝜑𝑖 > 0 inside 𝐺𝑖 and 𝜑𝑖 < 0
outside. For the VTM, for any node 𝑛𝑝 at 𝒙 we can express in the following way [66]:

𝛼𝑖 𝑗 =
1
2 ∥ ®𝑆𝑖𝑆 𝑗 ∥ −

®𝑆𝑖𝑆 𝑗 · ®𝑆𝑖𝑛𝑝
∥ ®𝑆𝑖𝑆 𝑗 ∥

1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐺 , 𝑗 ≠ 𝑖

𝜑𝑖 (𝒙, 0) = min
𝑗∈{1,...,𝑁𝐺}

𝑗≠𝑖

𝛼𝑖 𝑗 (𝒙) 1 ≤ 𝑖 ≤ 𝑁𝐺 , (2.7)

where 𝛼𝑖 𝑗 (𝒙) measures the signed distance of node 𝑛𝑝 (𝒙) to the perpendicular bisector of the line
segment connecting the sites 𝑆𝑖 and 𝑆 𝑗 .

Similarly, in the case of LVTM, we have the following [74]:
𝛼𝑖 𝑗 =

1
2

(
∥ ®𝑆𝑖𝑆 𝑗 ∥ +

𝑟2
𝑖
−𝑟2

𝑗

∥ ®𝑆𝑖𝑆 𝑗 ∥

)
−
®𝑆𝑖𝑆 𝑗 · ®𝑆𝑖𝑛𝑝
∥ ®𝑆𝑖𝑆 𝑗 ∥

1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐺 , 𝑗 ≠ 𝑖

𝜑𝑖 (𝒙, 0) = min
𝑗∈{1,...,𝑁𝐺}

𝑗≠𝑖

𝛼𝑖 𝑗 (𝒙) 1 ≤ 𝑖 ≤ 𝑁𝐺
, (2.8)

where 𝑟𝑘 represents the weight assigned to the Voronoi site 𝑆𝑘 . These weights are usually specified
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in the form of radii associated with a site and the radii are chosen in accordance with a grain size
distribution law.

Figure 2.5: An illustration of the Voronoi tessellation method to digitally
construct a microstructure

While the methods explained in Eqs.(2.7) and Eqs.(2.8) are easy to implement, they are numerically
taxing in a FE context. A more efficient and precise generation of equiaxial polycrystals and powder
RVEs in a FE context has been proposed in [74] by considering the dual of the Voronoi tessellation
which corresponds to the Delaunay triangulation. Analogously, for the LVTM, weighted Delaunay
triangulation is considered. In Eqs.(2.7) and (2.8), the computation of 𝜑𝑖 of the grain 𝐺𝑖 involves
comparison with all the other grains in the domain. However, the property of Delaunay triangulation
limits this comparison only to a graph of the Voronoi site 𝑆𝑖, composing of a small set of its neighbors
in the Delaunay triangulation. So, the LS function of the grain 𝐺𝑖 is now computed as:

𝜑𝑖 (𝒙, 0) = min
𝑗∈ Graph(𝑆𝑖)

𝛼𝑖 𝑗 (𝒙) 1 ≤ 𝑖 ≤ 𝑁𝐺 (2.9)

Interested readers could refer the cited article for more details on the method. In the case where a
digital microstructure needs to be generated from an experimental image of a micrograph (EBSD
maps), it can be established by calculating the distance functions to the grey levels of each grain
interface as illustrated in Fig.2.6 [75], thus easily immersing the micrograph.

Grain coloration/ recoloration: When we consider a large scale simulation potentially consisting
of thousands of grains, the classical approach of characterizing each grain with its own LS function
(as seen in [40, 41, 58]) is totally inefficient considering each LS function needs to be resolved
independently. Moreover, storage memory considerations can also present complexities. Saye et
al. [76] proposed a new approach, that they called as the Voronoi implicit interface method (VIIM).
This method is based on an interaction between the Voronoi diagrams and an implicit interface
method like the LS method, and hence the name. This approach makes use of a single unsigned
distance LS function in the whole domain. An unsigned distance function holds the same sign
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Figure 2.6: From [75]: Immersion of an experimental 2D micrograph
(left) obtained by EBSD (each grain being plotted with a different gray

level) into a finite element mesh (right)

(generally positive) inside all of the sub-domains, while approaching towards 0 at the interfaces.
So, while it is able to localize the overall interface network, it cannot uniquely characterize one
grain from the other. This method relies on resolving the unsigned distance LS transport equation
for a short duration of time (Δ𝑡), and then the interface network of interest is reconstructed as
the Voronoi interface of the nearby 𝜖𝐿𝑆 level-sets. The Voronoi interface reconstruction is based
on the same principles as the VTM as seen previously, except that it is now applied for a set
of hypersurfaces (lines in 2D, surfaces in 3D). The reconstructed Voronoi interface network is
then used to compute a new unsigned LS distance function at that instant by resolving an Eikonal
equation, and then a new loop step begins. Fig.2.7 shows an illustration of the Voronoi interface
reconstruction around a triple junction (junction formed by 3 sub-domains in 2D, analogous to
quadruple junctions in 3D). While the VIIM is attractive for its high computational efficiency,
especially for cases involving large number of grains, their applications are generally restricted to
cases involving isotropic evolution. They may not converge to accurate solutions for the interface
position in the case of anisotropic evolution as pointed out in [77]. In addition, the notion of
normal and curvature computed out of an unsigned distance function is perplexing and may lack
accuracy. So VIIM currently fails to give a consistent unified framework for modeling different
kinds of kinetics.

Another popular approach developed by Scholtes et al. [42, 78] relies on drastically reducing the
total number of LS functions required to represent the total grains in the domain. So a microstructure
with 𝑁𝐺 grains would need only 𝑁𝐿𝑆 level-set functions such that 𝑁𝐿𝑆 << 𝑁𝐺 . The essence of
this method lies in the scheme of grain coloration, inspired by the principles of four color theorem
[79]. For a 2D domain with multiple connected sub-domains (grains), the four color theorem states
that no more than 4 colors are needed to color each of these sub-domains such that no two adjacent
grains have the same color. Similar principles are applied in the case of a microstructure, where
several non-neighboring grains can be grouped and represented by a set of global level-set (GLS)
functions. In other words, a set of grains fairly distant from each other are represented by a single
signed distance LS function (known as the GLS function). This is synonymous to using one color
to represent a set of regions. Theoretically, for a 2D case with 𝑁𝐺 grains, only 4 GLS functions are

57



Figure 2.7: Adopted from [76]: Illustration of the Voronoi implicit
interface method used to reconstruct a triple point from an unsigned

distance function and the Voronoi interface

sufficient to represent all of the grains. Fig.2.8 shows an illustration of the same 2D microstructure
as seen in 2.4 but represented by only 4 GLS functions, where each color corresponds to one family
of GLS function (𝜑𝑖).

Figure 2.8: Illustration of the grain coloration scheme to represent a
microstructure with 14 grains using only 4 global level-set functions

However, depending on the imposed kinetics, as the microstructure topology evolves, by only using
4 GLS functions, we run the risk of numerical coalescence of grains belonging to the same family
of GLS function. This stems from the fact that, two or more regions represented by the same
LS function naturally coalesce/ combine when they come in contact. Fig.2.9 demonstrates the
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phenomenon of numerical coalescence where two grains of the same color (same GLS function)
combine as they come in contact.

Figure 2.9: From [42]: (a) A microstructure of 25 grains represented by 4
global level-set functions colored in white, green, orange and blue, (b)

Numerical coalescence of two child grains (grains belonging to the same
family) highlighted inside the red circle

In order to minimize the risk of this undesirable effect of numerical coalescence, the grains are
colored (or associated with a GLS function) by respecting a constraint of separation between them.
This constraint is chosen in the form of minimum number of grains separating any two grains
belonging to the same family of GLS function, 𝜑𝑖. So, in practice, a few more than 4 GLS functions
are used to represent the grains in 2D depending on the degree of intergranular separation. Fig.2.10
illustrates the same microstructure as in Fig.2.9 but now with a different grain coloration using 10
GLS functions with a degree of separation of 2 grains at a minimum, which adds a level of security
against coalescence.

In addition, with time, as the grains evolve, a periodic grain recoloration procedure is employed
which automatically checks for grains of the same GLS function under the risk of numerical
coalescence (i.e., no longer respecting a certain minimum intergranular distance threshold). If
there are any risks of numerical coalescence, the grain recoloration scheme then ensures to swap
the color (GLS family) of those grains under risk to some other GLS family such that the minimum
intergranular distance is respected. In the event where there are no eligible GLS functions to be
swapped into from the existing set, a new GLS family is dynamically created for those grains under
risk. The degree of intergranular separation is a fine balance between the reduction in computational
time and the risks of numerical coalescence. Since there are no generalizations of the four color
theorem in 3D cases, there is no theoretical minimum number that could represent the grains in
a 3D microstructure. The number of GLS functions needed usually ranges around 4 − 10 in 2D
cases, while around 19 − 30 in 3D cases, depending on the intergranular separation desired. The
grain recoloration/ swapping algorithm developed by Scholtes et al. [78] also ensures that, during
a swap of a grain, the dependence of any other grain specific fields connected to their respective
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Figure 2.10: From [42]: A microstructure represented using 10 global
level-set functions (instead of the classical 4) separated by at least 2 grains.

The colors indicate the family of GLS function to which they belong

GLS function (to be swapped) is also safely transferred to the new GLS family of the swapped
grain.

So, in the current work, the above grain coloration/ recoloration scheme that dynamically manages
the representation and distribution of the grains in a microstructure has been adopted.

2.3 Level-set based numerical formulation of DSSPT
Full-field modeling of diffusive solid-state phase transformation at the mesoscopic scale is basically
composed of two governing equations: (i) a diffusion equation that governs the partitioning of solute
atoms across different phases and their diffusion in the bulk, and (ii) a migration/ transport equation
that governs the resulting evolution of the interface network. Additionally, the formulation is well
bounded with necessary initial, boundary, and interface jump conditions imposed.

As mentioned earlier, our interest is to use a global LS formalism to simulate the considered
phenomena, where the grains of a multi-phase polycrystalline microstructure are represented by
a set of level-set functions, and the LS transport equation is used to conveniently migrate the
multi-phase grain boundary network influenced by the solute diffusion phenomenon. In the context
of DSSPT, along with the GLS functions used to distinguish different grains in the polycrystal,
secondary LS functions are needed to distinguish the different phases in the polycrystal. So, for
a biphasic polycrystal composed of phases 𝛼 and 𝛾, 𝜑𝑖 act as the primary basis LS functions
representing different grains, while 𝜑𝛼 acts as a secondary basis LS function to distinguish the
domains belong to 𝛼 and 𝛾 phases.

2.3.1 Solute redistribution modeling
For the resolution of the diffusion equation, the sharp interface approach (theoretically at least)
considered in a classical LS framework would require resolving separate diffusion equations in
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domains of each phase (for each solute) while respecting the necessary jump conditions at the
phase interface as seen previously in Eqs.(1.40) and (1.41) in Chapter 1 under 1.2.1.1.2:

𝜕𝑥𝛼
𝑖

𝜕𝑡
= ∇ ·

(
𝐷𝑖𝛼∇𝑥

𝛼
𝑖

)
in Ω𝜑𝛼 (𝒙,𝑡) | 𝜑𝛼 (𝒙, 𝑡) > 0

𝜕𝑥
𝛾

𝑖

𝜕𝑡
= ∇ ·

(
𝐷𝑖𝛾∇𝑥

𝛾

𝑖

)
in Ω𝜑𝛾 (𝒙,𝑡) | 𝜑𝛾 (𝒙, 𝑡) > 0

𝒗 · 𝒏
(
𝑥
𝛾

𝑖

��
Γ
− 𝑥𝛼𝑖

��
Γ

)
= 𝐷𝑖𝛼

(
∇𝑥𝛼𝑖 · 𝒏

) ��
Γ
− 𝐷𝑖𝛾

(
∇𝑥

𝛾

𝑖
· 𝒏

) ��
Γ

on Γ

, ∀𝑖 ∈ {𝐵, ..., 𝑁}, (2.10)

where Ω𝜑𝛼 (𝒙,𝑡) represents the domain of the 𝛼-phase grains in the microstructure described by the
𝜑𝛼 (𝒙, 𝑡) LS function, while Ω𝜑𝛾 (𝒙,𝑡) represents that of the 𝛾-phase grains described by the 𝜑𝛾 (𝒙, 𝑡)
LS function. Γ represents the positions of the phase interface with 0-iso-values of the LS functions(
𝜑𝛼 (𝒙, 𝑡) = 𝜑𝛾 (𝒙, 𝑡) = 0, ∀𝒙 ∈ Γ

)
. It should be remarked that, 𝜑𝛼 (𝒙, 𝑡) = −𝜑𝛾 (𝒙, 𝑡), ∀𝒙 ∈ Ω,

with Ω representing the overall microstructural domain.

The above sharp interface approach enforces explicit consideration of interface jump conditions
under the presence of any inherent material discontinuities across the phase interfaces. Conse-
quently, this demands explicit localization of the interface at each instant to numerically treat the
necessary jump conditions. Thus, to avoid this cumbersome step, we propose to consider a diffuse
interface hypothesis across the phase interfaces during the resolution of the diffusion equation.
In other words, while we represent and migrate the multi-phase grain interface network using a
sharp interface based LS description, the resolution of the diffusion equation is based on a diffuse
interface assumption for the phase interfaces. The diffuse interface description is realized using a
hyperbolic tangent smoothing function which ensures that any material discontinuities across the
interfaces are naturally smoothed and rendered continuous. This enables us to resolve a single
global diffusion equation in the whole computational domain without the need for any explicit
treatment of the interface jump conditions.

The transition to a diffuse interface description is established, thanks to a hyperbolic tangent relation
[51, 80] of the following form between a phase-field like smooth function (𝜙) and a signed distance
LS function (𝜑𝛼) of the 𝛼 phase:

𝜙 =
1
2
𝑡𝑎𝑛ℎ

(
3𝜑𝛼
𝜂

)
+ 1

2
, (2.11)

where 𝜂 is a diffuse interface thickness parameter. This function is synonymous to a hyperbolic
tangent level-set description. In the following, we shall refer this smoothing function (𝜙) yielding
the diffuse interface as the phase-field function. Fig.2.11 illustrates the trend of this function in a
1D context. Let us consider a simple ternary alloy system, 𝑀𝑒-C-X, with an interstitial element
(𝐶), and a substitutional element (𝑋). After having established a diffuse interface description,
∀𝑖 ∈ {𝐶, 𝑋}, a total concentration field variable (𝑥𝑖) can be expressed as a continuous field between
the concentrations in the two phases:

𝑥𝑖 = 𝜙𝑥
𝛼
𝑖 + (1 − 𝜙)𝑥

𝛾

𝑖
. (2.12)

Likewise, we then assume continuity of the solute fluxes of each phase (𝑱𝑖𝛾, 𝑱𝑖𝛼) weighted by the
phase-field variable across the phase interface:

𝑱 𝒊 = 𝜙𝑱𝑖𝛼 + (1 − 𝜙)𝑱𝑖𝛾 . (2.13)
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Figure 2.11: Hyperbolic tangent relation yielding the diffuse phase
interface between phases 𝛼 and 𝛾

Fig.2.12 illustrates a profile of the smoothed total concentration field across a phase interface,
thanks to the diffuse interface description. The diffuse phase interface is assumed to be composed

Figure 2.12: Demonstration of a continuous total concentration field
established across the diffuse phase interface

of a mixture of the two phases. A constant concentration ratio is imposed between the two phases
at the interface at all instants, such that the redistribution of the solute atoms between the parent
and the product phase respects a partitioning ratio (𝑘 𝑖𝑝) equal to the equilibrium partitioning ratio
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(𝑘 𝑖𝑝𝑒𝑞 ), corresponding to the conditions at that instant 𝑡:

𝑘 𝑖𝑝 (𝑡) =
𝑥𝛼
𝑖

𝑥
𝛾

𝑖

≈ 𝑘 𝑖𝑝𝑒𝑞 (𝑡) =
𝑥𝛼
𝑖

��
𝑒𝑞

𝑥
𝛾

𝑖

��
𝑒𝑞

, (2.14)

where 𝑥𝛼
𝑖

��
𝑒𝑞

and 𝑥𝛾
𝑖

��
𝑒𝑞

are the equilibrium concentrations of 𝛼 and 𝛾 phases respectively at temper-
ature 𝑇 and instant 𝑡.

By imposing the above hypothesis into the Eq.(2.12), the individual phase concentrations could be
expressed as:

𝑥𝛼𝑖 =
𝑘 𝑖𝑝𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)

𝑥
𝛾

𝑖
=

𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)

. (2.15)

Following Fick’s laws of diffusion, the diffusion equation for carbon partitioning can be expressed
as:

𝜕𝑥𝑖

𝜕𝑡
= −∇ · 𝑱𝑖 = −∇ ·

[
𝜙𝑱𝑖𝛼 + (1 − 𝜙)𝑱𝑖𝛾

]
,

with,
𝑱𝑖𝛼 = −𝐷𝑖𝛼∇𝑥𝛼𝑖 ; 𝑱𝑖𝛾 = −𝐷𝑖𝛾∇𝑥

𝛾

𝑖
.

We then obtain,
𝜕𝑥𝑖

𝜕𝑡
= ∇ ·

[
𝜙𝐷𝑖𝛼∇𝑥

𝛼
𝑖 + (1 − 𝜙)𝐷𝑖𝛾∇𝑥

𝛾

𝑖

]
, (2.16)

where 𝐷𝑖𝛼 and 𝐷𝑖𝛾 represent the diffusivity of the 𝑖th solute element in 𝛼 and 𝛾 phases respectively.

Invoking Eqs.(2.15) into Eq.(2.16), a modified solute diffusion equation similar to that of the
phase-field model [45, 51] is obtained:

𝜕𝑥𝑖

𝜕𝑡
= ∇ ·

{
𝐷∗(𝜙)

[
∇𝑥𝑖 −

𝑥𝑖 (𝑘 𝑖𝑝 − 1)
1 + 𝜙(𝑘 𝑖𝑝 − 1)

∇𝜙

]}
, (2.17)

where 𝐷∗(𝜙) is called "mixed diffusivity" and is defined as,

𝐷∗(𝜙) =
𝐷𝑖𝛾 + 𝜙(𝑘 𝑖𝑝𝐷𝑖𝛼 − 𝐷𝑖𝛾)

1 + 𝜙(𝑘 𝑖𝑝 − 1)
. (2.18)

With further simplifications, the above Eq.(2.17) can be transformed into a Convective-Diffusive-
Reactive (CDR) form as follows:

𝜕𝑥𝑖

𝜕𝑡
= ∇ · [𝐷∗(𝜙)∇𝑥𝑖 − 𝑥𝑖A(𝜙)] (2.19)

𝜕𝑥𝑖

𝜕𝑡
+ (A − ∇𝐷∗) · ∇𝑥𝑖 − 𝐷∗Δ𝑥𝑖 + R𝑥𝑖 = 0, (2.20)
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where,

A(𝜙) =
𝐷∗(𝜙) (𝑘 𝑖𝑝 − 1)
1 + 𝜙(𝑘 𝑖𝑝 − 1)

∇𝜙, and R = ∇ · A. (2.21)

It should be highlighted that this equation physically still represents pure diffusion. The convective
and the reactive parts purely have a numerical sense. The strong formulation in Eq.(2.20) comprises
of a gradient of the mixed diffusivity term (∇𝐷∗) that generally involves abrupt or strong evolution
across a phase interface. If we consider the weak formulation of the Eq.(2.20), it could be shown
that this gradient vanishes.

Let 𝜓 ∈ 𝐻1(Ω) be a test function, the FE weak formulation of Eq.(2.20) can be written as follows:∫
Ω

𝜕𝑥𝑖

𝜕𝑡
𝜓 𝑑Ω +

∫
Ω

(A − ∇𝐷∗) · ∇𝑥𝑖𝜓 𝑑Ω −
∫
Ω

𝐷∗Δ𝑥𝑖𝜓 𝑑Ω +
∫
Ω

R𝑥𝑖𝜓 𝑑Ω = 0. (2.22)

Applying the divergence theorem to the third term upon expansion in the above equation, we have:∫
Ω

𝐷∗Δ𝑥𝑖𝜓 𝑑Ω =

∫
𝜕Ω

𝜓𝐷∗∇𝑥𝑖 · 𝒏𝑏 𝑑𝑆 −
∫
Ω

∇(𝐷∗𝜓) · ∇𝑥𝑖 𝑑Ω,

where 𝒏𝑏 in this context is the outward unit normal to the domain boundary. Substituting the above
term in Eq.(2.22), and after simplification, we get:∫

Ω

𝜕𝑥𝑖

𝜕𝑡
𝜓 𝑑Ω+

∫
Ω

A ·∇𝑥𝑖𝜓 𝑑Ω+
∫
Ω

𝐷∗∇𝜓 ·∇𝑥𝑖 𝑑Ω+
∫
Ω

R𝑥𝑖𝜓 𝑑Ω−
∫
𝜕Ω

𝜓𝐷∗∇𝑥𝑖 ·𝒏𝑏 𝑑𝑆 = 0. (2.23)

We thus observe that the weak formulation is void of the ∇𝐷∗ term which is of great interest in
terms of numerical stability, considering the challenges posed by the presence of such terms to
the numerical resolution procedure. The last boundary integral term in Eq.(2.23) is subject to the
imposed boundary conditions.

Boundary conditions: Given the model focuses on pure solute diffusion within the computa-
tional domain without any influx or outflux of solute atoms, solute mass should remain conserved
throughout. From a physical perspective, at first thought, one might consider employing pure
Neumann-type boundary conditions on the concentration variable. However, from a mathematical
perspective in Eq.2.19, employing only Neumann-type boundary conditions on 𝑥𝑖 conserves solely
the diffusive flux (−𝐷∗∇𝑥𝑖), while the advective flux (𝑥𝑖A) remains non-conserved. If we consider
the Reynolds’s transport theorem on 𝑥𝑖 for a fixed domain boundary, for mass conservation:

𝑑

𝑑𝑡

∫
Ω

𝑥𝑖𝑑Ω =

∫
Ω

𝜕𝑥𝑖

𝜕𝑡
𝑑Ω = 0. (2.24)

Plugging Eq.(2.19), and applying the divergence theorem, we obtain:

𝑑

𝑑𝑡

∫
Ω

𝑥𝑖𝑑Ω =

∫
Ω

𝜕𝑥𝑖

𝜕𝑡
𝑑Ω =

∫
𝜕Ω

[𝐷∗(𝜙)∇𝑥𝑖 − 𝑥𝑖A(𝜙)] · 𝒏𝑏𝑑𝑆 = 0. (2.25)
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Thus, the above equation holds true for:

[−𝐷∗(𝜙)∇𝑥𝑖 + 𝑥𝑖A(𝜙)] · 𝒏𝑏 |𝜕Ω = 0. (2.26)

The aforementioned Robin-type condition constitutes the correct and complete boundary condition
for Eq.2.19.

Equation (2.21) implies that A → 0 far from a phase interface where ∇𝜙 → 0. In this sce-
nario, Eq.(2.26) simplifies to a pure Neumann-type boundary condition, i.e., −𝐷∗∇𝑥𝑖 · 𝒏𝑏 |𝜕Ω = 0.
Therefore, a pure Neumann-type boundary condition is a particular case, applicable only when the
local boundary region does not interact with any phase interface. In cases where phase interfaces
approach certain sections of the boundary region, locally imposing Robin-type conditions becomes
necessary.

Thus, for the resolution of the solute redistribution, there’s a continuous local switch between the
two boundary condition types based on the interaction of the phase interfaces with the domain
boundaries during the phase transformation. The following chapter will offer a more specific and
concrete example on this.

Applying the generic Robin-type boundary condition to the weak form in Eq.(2.23), we eventually
obtain:∫

Ω

𝜕𝑥𝑖

𝜕𝑡
𝜓 𝑑Ω+

∫
Ω

A ·∇𝑥𝑖𝜓 𝑑Ω+
∫
Ω

𝐷∗∇𝜓 ·∇𝑥𝑖 𝑑Ω+
∫
Ω

R𝑥𝑖𝜓 𝑑Ω−
∫
𝜕Ω

𝑥𝑖𝜓A ·𝒏𝑏 𝑑𝑆 = 0. (2.27)

Analytical expressions for A(𝜙) and R(𝜙): Numerically computing A and R for Eq.(2.27)
within the context of P1 finite elements requires multiple transformations (extrapolations) from
a P0 field to a P1 field due to the presence of derivatives. This process might be error-prone,
especially given the abrupt evolution of these fields across and around the diffuse phase interface.
In an attempt to avoid the multiple extrapolations, analytical expressions can be deduced to compute
these fields.

So, given 𝜑𝛼, preserving its metric property (∥𝜑𝛼∥=1), having computed 𝜙 from Eq.(2.11), and
having numerically computed ∇𝜑𝛼 and Δ𝜑𝛼, the remaining dependent fields could be computed
analytically using the following expressions:

A(𝜙) =
𝐷∗(𝜙) (𝑘 𝑖𝑝 − 1)
1 + 𝜙(𝑘 𝑖𝑝 − 1)

∇𝜙 =
3𝐷∗(𝜙) (𝑘 𝑖𝑝 − 1)

2𝜂
[
1 + 𝜙(𝑘 𝑖𝑝 − 1)

] 𝑠𝑒𝑐ℎ2
(
3𝜑𝛼
𝜂

)
∇𝜑𝛼, (2.28)

and

R(𝜙) =

(
𝑘 𝑖𝑝 − 1

)
[
1 + 𝜙(𝑘 𝑖𝑝 − 1)

]3

{
𝐷∗Δ𝜙

[
1 + 𝜙(𝑘 𝑖𝑝 − 1)

]2 +

∥∇𝜙∥2
[
𝑘 𝑖𝑝

(
𝐷𝑖𝛼 − 𝐷𝑖𝛾

)
−

(
𝑘 𝑖𝑝 − 1

) (
𝐷𝑖𝛾 + 𝜙

(
𝑘 𝑖𝑝𝐷

𝑖
𝛼 − 𝐷𝑖𝛾

))]}
,

(2.29)

with 𝐷∗(𝜙) computed using Eq.(2.18), and the rest are computed using the following expressions:
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∇𝜙 =
3

2𝜂
𝑠𝑒𝑐ℎ2

(
3𝜑𝛼
𝜂

)
∇𝜑𝛼

∥∇𝜙∥ = 3
2𝜂
𝑠𝑒𝑐ℎ2

(
3𝜑𝛼
𝜂

)
Δ𝜙 =

3
2𝜂
𝑠𝑒𝑐ℎ2

(
3𝜑𝛼
𝜂

)
Δ𝜑𝛼 −

9
𝜂2 𝑠𝑒𝑐ℎ

2
(
3𝜑𝛼
𝜂

)
𝑡𝑎𝑛ℎ

(
3𝜑𝛼
𝜂

) . (2.30)

Therefore, this approach involves extrapolation on a field that evolves gradually (𝜑𝛼), eliminating
the need for further extrapolations and allowing the use of analytical expressions. This usage
of analytical expressions is also computationally less intensive compared to the repeated use of
numerical methods to compute the gradient and divergence operators.

2.3.2 Interface migration modeling
As described in 2.2, the external physics (e.g., diffusion of solutes) is coupled with the level-
set method. Post the resolution of the solute diffusion equation, the resulting solute distribution
affects the interface migration kinetics, along with other inherent effects depending on the various
considered phenomena. To govern the resultant motion of the multi-phase grain interface network,
we revert back to the classical LS description for the interfaces from our previous hypothetical
diffuse interface description. Thus, for a polycrystalline microstructure with 𝑁𝐺 grains whose
interface network is represented by a set of 𝑁𝐿𝑆 GLS functions, the following convective equations
(as seen in Eq.(2.4)) need to be resolved for modeling the evolution:{

𝜕𝜑𝑖
𝜕𝑡
+ 𝒗 · ∇𝜑𝑖 = 0

𝜑𝑖 (𝒙, 𝑡 = 0) = 𝜑0
𝑖
(𝒙)

∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆}. (2.31)

So each GLS function is resolved independently with its own convective equation by prescribing
suitable kinetics through the velocity field, 𝒗. The velocity field in this application is based as a
function of various driving pressures affecting the microstructural evolution.

Typically, in the context of hot metal forming, the principal driving pressures leading to phase and
grain evolution are: (i) 𝑃𝐶 = Δ𝐺𝛾→𝛼, which is the driving pressure for phase transformation of 𝛾
phase into 𝛼 phase, and is the principal component responsible for diffusive phase transformation,
generally taken as a function of the temperature and the solute distribution due to diffusion, (ii)
𝑃𝑆 = JEK, which is the jump in stored energy (E) due to plastic deformation, responsible for
recrystallization phenomenon, (iii) 𝑃𝜅 = −𝜅𝜎, where 𝜅 is the trace of the curvature tensor of the
interface and 𝜎 is the interfacial energy, and this driving pressure corresponds to the capillarity
effects due to the presence of grain and phase interfaces (well known as the Gibbs-Thomson effect),
(iv) 𝑃𝑆𝐷 = −Δ𝐺𝑆𝐷

(𝒗·𝒏)
∥𝒗∥ , which corresponds to an additional dissipation in the presence of any

substitutional solute element with non-negligible solute drag effects in the material. So, in the
context of hot metal forming, the net driving pressure acting on the relevant interface could be
assembled as the sum of various contributions:

𝑃 = Δ𝐺𝛾→𝛼 + JEK − 𝜅𝜎 + 𝑃𝑆𝐷 . (2.32)
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Figure 2.13: A two-phase polycrystal with grains of phases 𝛼 and 𝛾
illustrating the net pressure at different types of interfaces

In the context of a biphasic polycrystalline microstructure with phases 𝛾 and 𝛼, three types of
interfaces could then be encountered: 𝛾/𝛼 phase interface, 𝛼/𝛼 grain interface, and the 𝛾/𝛾
grain interface. Depending on the type of interface in consideration, certain driving pressures
may be absent or may have different sense or definition. For instance, the Δ𝐺𝛾→𝛼 pressure
holds significance only across the phase interfaces. Also, the sense and magnitude of interface
mobility, and interface energy could be different depending on the type of interface. Figs.2.13
demonstrate simple illustrations of different possible driving pressures relevant across different
types of interfaces in a typical two phase polycrystal. We can observe that the 𝑃𝐶 driving pressure
acts only across the 𝛼/𝛾 phase interface and is oriented towards the 𝛾 phase grain for a 𝛾 → 𝛼

transformation. If we consider the capillarity driving pressure, 𝑃𝜅 = −𝜅𝜎, the driving pressure is
oriented towards the center of local curvature of the interface. So, from the perspective of a grain
(say grain 1) in 2D, 𝜅1(𝒙, 𝑡) > 0 if the local characteristic of the interface is convex, 𝜅1(𝒙, 𝑡) < 0
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if the interface is locally concave, and 𝜅1(𝒙, 𝑡) = 0 if the interface is locally minimal (e.g., planar
interfaces). It should be remarked that, in 3D, at any point (𝒙), a surface is said to be minimal
if the principal curvatures are equal and opposite at that point. The driving pressure due to the
stored energy, 𝑃𝑆, is oriented towards the grain with locally higher stored energy relative to its
neighboring grain. In this illustration, the solute drag driving pressure (𝑃𝑆𝐷) has not been explicitly
shown, but it should be understood that the influence of this driving pressure is passively present
(passive effect), acting against the direction of net motion of the interface due to the net active
driving pressures.

Thus, Eq.(2.32) needs to be tailored to accommodate various driving pressure contributions relevant
to specific interfaces. So, the net driving pressure acting on the interface could be rewritten in the
following form through interface characteristic functions:

𝑃 = 𝜒𝛾𝛼Δ𝐺𝛾→𝛼 +
∑︁
𝑙∈𝒮

𝜒𝑙
(
JEK𝑙 − 𝜅𝜎𝑙 + [𝑃𝑆𝐷] 𝑙

)
. (2.33)

where 𝒮 = {𝛾𝛾, 𝛾𝛼, 𝛼𝛼} with 𝜒𝛾𝛾, 𝜒𝛾𝛼, and 𝜒𝛼𝛼 being the interface characteristic functions of
the grain boundaries between two 𝛾 grains (Γ𝛾𝛾), phase boundaries between 𝛾 and 𝛼 grains (Γ𝛾𝛼),
and grain boundaries between two 𝛼 grains (Γ𝛼𝛼), respectively. These characteristic functions are
defined in the following way:

𝜒𝛾𝛾 (𝒙) =
{

1 if 𝒙 ∈ Γ𝛾𝛾
0 otherwise

, (2.34)

𝜒𝛾𝛼 (𝒙) =
{

1 if 𝒙 ∈ Γ𝛾𝛼
0 otherwise

, (2.35)

𝜒𝛼𝛼 (𝒙) =
{

1 if 𝒙 ∈ Γ𝛼𝛼
0 otherwise

, (2.36)

such that 𝜒𝛾𝛾 + 𝜒𝛾𝛼 + 𝜒𝛼𝛼 = 1, ∀ 𝒙 ∈ Γ, where Γ is the ensemble of grain/phase interface network
(Γ = Γ𝛾𝛾 ∪ Γ𝛾𝛼 ∪ Γ𝛼𝛼) in the microstructure.

The interface mobility could also be reformulated as:

𝑀 =
∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙 . (2.37)

Hence, taking into account interface specific properties and driving pressures from the phase
interfaces as well as the grain interfaces of both the parent and the product phase, we can formulate
a generalized kinetic framework based on the Eq.(1.34):

𝒗 = 𝑀𝑃𝒏 =
©«
∑︁
𝑞∈𝒮

𝜒𝑞𝑀𝑞
ª®¬
[
𝜒𝛾𝛼Δ𝐺𝛾→𝛼 +

∑︁
𝑙∈𝒮

𝜒𝑙
(
JEK𝑙 − 𝜅𝜎𝑙 + [𝑃𝑆𝐷] 𝑙

) ]
𝒏. (2.38)

Considering the following properties of interface characteristic functions,

𝜒𝑙𝜒𝑞 =

{
𝜒𝑙 if 𝑙 = 𝑞
0 if 𝑙 ≠ 𝑞

∀𝑙, 𝑞 ∈ {𝛾𝛾, 𝛾𝛼, 𝛼𝛼}, (2.39)
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we can obtain:

𝒗 =

[
𝜒𝛾𝛼𝑀𝛾𝛼Δ𝐺𝛾→𝛼 +

∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙

(
JEK𝑙 − 𝜅𝜎𝑙 + [𝑃𝑆𝐷] 𝑙

) ]
𝒏. (2.40)

If we prescribe the above interface migration velocity field into the LS transport Eqs.(2.31), then
for the ith GLS function, we obtain the following equation:

𝜕𝜑𝑖

𝜕𝑡
+

[
𝜒𝛾𝛼𝑀𝛾𝛼Δ𝐺𝛾→𝛼 +

∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙JEK𝑙

]
𝒏𝑖 · ∇𝜑𝑖 +

[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙 [𝑃𝑆𝐷] 𝑙

]
𝒏𝑖 · ∇𝜑𝑖

−
[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
𝜅𝑖𝒏𝑖 · ∇𝜑𝑖 = 0, ∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆}

. (2.41)

By verifying the metric property of a signed distance function, ∥∇𝜑𝑖∥ = 1 all along the simulation,
and imposing the geometric properties (Eqs.(2.3)) of the ith GLS function, we can write:

𝜕𝜑𝑖

𝜕𝑡
+

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑖 −

∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙 [𝑃𝑆𝐷] 𝑙 =
[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
Δ𝜑𝑖, ∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆},

(2.42)
where,

𝒏𝑖 = −
∇𝜑𝑖

∥∇𝜑𝑖∥
= −∇𝜑𝑖 =⇒ 𝜅𝑖 = ∇ · 𝒏𝑖 = −Δ𝜑𝑖, (2.43)

with,
𝒗𝚫𝑮𝜸𝜶 = 𝜒𝛾𝛼𝑀𝛾𝛼Δ𝐺𝛾→𝛼𝒏,

𝒗JEK =

[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙JEK𝑙

]
𝒏.

(2.44)

For modeling the solute drag driving pressure (𝑃𝑆𝐷), as discussed in Chapter-1 in 1.2.1.2, Cahn’s
solute drag model [81] provides a simplified description in Eq.(1.55) for the magnitude of the drag
pressure (Δ𝐺𝑆𝐷), especially considering the non-linearity of a solute drag pressure on the velocity
field. Even though Cahn’s model lacks physical sense across interphase boundaries and is more apt
for grain boundaries, the simplicity in its description is attractive for numerical implementation,
especially in a FE framework. So, considering the complexity of the integral expressions obtained
for Purdy-Brechet model [82] (and even for its modified version), along with other issues discussed
in 1.2.1.2, we shall consider Cahn’s simplified description in this work to model solute drag pressure.
Thus, in this context, the magnitude of the solute drag pressure can be expressed as:

Δ𝐺𝑆𝐷 (𝒗) =
𝛼𝐶𝑥

0
𝑋
∥𝒗∥

1 + 𝛽2
𝐶
∥𝒗∥2

. (2.45)

Its driving pressure can then be written as:

𝑃𝑆𝐷 (𝒗, 𝒏) = −Δ𝐺𝑆𝐷

(𝒗 · 𝒏)
∥𝒗∥ = −

𝛼𝐶𝑥
0
𝑋
(𝒗 · 𝒏)

1 + 𝛽2
𝐶
∥𝒗∥2

. (2.46)
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With the application of Cahn’s solute drag model even for phase interfaces, for the parame-
ters, (𝛼𝐶 , 𝛽𝐶) |𝑙=𝛾𝛼, instead of using the analytical definitions provided by Cahn in Eq.(1.56) and
Eq.(1.57), the idea is to consider them as a set of temperature dependent model parameters to be
fitted in accordance with relevant experimental results. This avoids the complexity of precisely
quantifying some of the physical parameters required by their analytical definitions, especially
across phase interfaces. In addition, as exhibited by the Figs.1.26 in section 1.2.1.2, Cahn’s simpli-
fied drag pressure is capable of capturing the general trends expected for solute drag effects whether
it is for grain interfaces or phase interfaces. So, by selectively controlling the two parameters (𝛼𝐶 ,
𝛽𝐶), we could attempt to converge to expected magnitudes for the drag pressure across phase
interfaces.

As discussed before, the solute drag pressure renders the velocity field non-linear. if we consider a
fully implicit time discretization scheme for the resolution of Eq.(2.42), we will obtain a non-linear
formulation. Considering Euler implicit time discretization, Eq.(2.42) could be discretized as:

𝜕𝜑𝑖

𝜕𝑡
≈
𝜑𝑘+1
𝑖
− 𝜑𝑘

𝑖

Δ𝑡
= F (𝜑𝑘+1𝑖 ), ∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆}, (2.47)

where

F (𝜑𝑘+1𝑖 ) =
[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
Δ𝜑𝑘+1𝑖 +

∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙

[
𝑃𝑆𝐷 (𝒗𝑘+1)

]
𝑙
−

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑘+1𝑖 , (2.48)

is a time dependent operator, with 𝑘 being the index of time stepping.

If we consider 𝑃𝑘+1
𝑆𝐷

in the second term in Eq.(2.48), we have from Eq.(2.46),

𝑃𝑆𝐷 (𝒗𝑘+1) = −
𝛼𝐶𝑥

0
𝑋
(𝒗 · 𝒏)𝑘+1

1 + 𝛽2
𝐶

𝒗𝑘+12 . (2.49)

Since the interface migration velocity is normal to the interface, at any position 𝒙, for the signed
distance ith GLS function, such that 𝜑𝑘+1

𝑖
(𝒙) ≥ 0, it is possible to express:

(𝒗 · 𝒏)𝑘+1 =
𝜑𝑘+1
𝑖
− 𝜑𝑘

𝑖

Δ𝑡
≈ 𝜕𝜑𝑖
𝜕𝑡
, (2.50)

and, 𝒗𝑘+1 = ��𝜑𝑘+1
𝑖
− 𝜑𝑘

𝑖

��
Δ𝑡

. (2.51)

So, 𝑃𝑘+1
𝑆𝐷

would then become:

𝑃𝑘+1𝑆𝐷 = −
𝛼𝐶𝑥

0
𝑋

(
𝜑𝑘+1
𝑖
−𝜑𝑘

𝑖

Δ𝑡

)
1 + 𝛽2

𝐶

(
𝜑𝑘+1
𝑖
−𝜑𝑘

𝑖

Δ𝑡

)2 . (2.52)

Clearly the term in the denominator due to
𝒗𝑘+1 manifests the operator F in Eq.(2.48) and hence

the time discretized formulation in Eq.(2.47) non-linear. To avoid this non-linearity and simplify the
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resolution procedure, as seen in the works of [83], the following explicit scheme based assumption
is made:

𝒗𝑘+1(𝒙)2 ≈
𝒗𝑘 (𝒙)2

=

(
𝜑𝑘
𝑖
(𝒙) − 𝜑𝑘−1

𝑖
(𝒙)

Δ𝑡

)2

=
𝒗𝑜𝑙𝑑 (𝒙)2 for 𝑖 | 𝜑𝑘𝑖 (𝒙) ≥ 0, (2.53)

where 𝒗𝑘 or 𝒗𝑜𝑙𝑑 is the net migration velocity field prescribed to compute the GLS solution 𝜑𝑘
𝑖

at the current state. Even though this formulation deviates slightly from the fully implicit time
scheme, for the small ranges of time steps expected to be considered in the FE resolution, the errors
accumulated are expected to be of the small order while considerably simplifying the resolution
procedure, thanks to the linearization. Taking this into account, Eq.(2.52) could be rewritten as:

𝑃𝑘+1𝑆𝐷 ≈ −
(

𝛼𝐶𝑥
0
𝑋

1 + 𝛽2
𝐶

𝒗𝑜𝑙𝑑2

) (
𝜑𝑘+1
𝑖
− 𝜑𝑘

𝑖

Δ𝑡

)
. (2.54)

This would then linearize the operator F in Eq.(2.48) and hence the time discretized formulation
in Eq.(2.47). Although not exactly, but such a strategy of splitting the operator F into implicit
and explicit parts weakly mimics the ideologies of IMplicit-EXplicit (IMEX) time integration
methods [84, 85]. Substituting Eq.(2.54) into the time discretized formulation and going back to
the continuum description in Eq.(2.42), we obtain:

𝜕𝜑𝑖

𝜕𝑡
+

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑖 +

∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙

(
𝛼𝐶𝑥

0
𝑋

1 + 𝛽2
𝐶

𝒗𝑜𝑙𝑑2

)
𝑙

𝜕𝜑𝑖

𝜕𝑡
=

[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
Δ𝜑𝑖 . (2.55)

By imposing,

ℳ𝑆𝐷 = 1 +
∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙

(
𝛼𝐶𝑥

0
𝑋

1 + 𝛽2
𝐶

𝒗𝑜𝑙𝑑2

)
𝑙

, (2.56)

we obtain:

ℳ𝑆𝐷

𝜕𝜑𝑖

𝜕𝑡
+

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑖 =

[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
Δ𝜑𝑖 . (2.57)

Eventually, we can express the above equation into the following linearized convective-diffusive
(CD) formulation:

𝜕𝜑𝑖

𝜕𝑡
+ 1
ℳ𝑆𝐷

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑖 =

1
ℳ𝑆𝐷

[∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙𝜎𝑙

]
Δ𝜑𝑖, ∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆}, (2.58)

with𝒮 = {𝛾𝛾, 𝛾𝛼, 𝛼𝛼}. In the following, we shall referℳ𝑆𝐷 as the solute drag pressure coefficient.
When the solute drag effects are absent or negligible, ℳ𝑆𝐷 → 1, while when they are non-
negligible, ℳ𝑆𝐷 > 1, which has the effect of lowering the interface mobility (or increasing the drag
resistance) for migration.
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2.3.2.1 Better description for 𝒗𝚫𝑮𝜸𝜶 and 𝒗JEK: Polycrystal context

Since 𝒗𝚫𝑮𝜸𝜶 , and generally 𝒗JEK has only significance on the interfaces, the velocity field described
in Eqs.(2.44) should be extended at least to nearby nodes in the vicinity of the interface to avoid
discontinuous velocity fields. In addition, in the case of a polycrystal, they could also cause
kinematic incompatibilities at the multiple junctions. So, Bernacki et al. [66] suggested that it
is more efficient to work with a common velocity field for all the 𝑁𝐿𝑆 global level-set functions
and the velocity field needs to be as regular as possible around the multiple junctions. In the
context of a multi level-set method, Bernacki et al. [66] proposed an expression for smoothing
the 𝒗JEK component in their work dedicated to the simulation of recrystallization in single-phase
polycrystals:

𝒗JEK(𝒙, 𝑡) =
𝑁𝐿𝑆∑︁
𝑖=1

𝑁𝐿𝑆∑︁
𝑗=1
𝑗≠𝑖

𝜒𝐺𝑖
(𝒙, 𝑡)𝑀𝑖 𝑗 exp

(
−𝛽𝑒 |𝜑 𝑗 |

)
JEK𝑖 𝑗 (𝒙, 𝑡) (−𝒏 𝑗 ), (2.59)

where 𝜒𝐺𝑖
is the characteristic function of the grain 𝐺𝑖, 𝑀𝑖 𝑗 is the interface mobility between

the neighboring grains 𝑖 and 𝑗 , the exponential term plays the role of the decreasing function,
𝑓 = exp

(
−𝛽𝑒 |𝜑 𝑗 |

)
that varies from 1 to 0 on either side of the interface and has the function

of smoothing the velocity field across the interface, 𝛽𝑒 is a positive parameter that controls the
degree of smoothness and is inversely proportional to the length of smoothing (𝑙𝑒), JEK𝑖 𝑗 (𝒙, 𝑡) =
E 𝑗 (𝒙, 𝑡) − E𝑖 (𝒙, 𝑡) is the jump in stored energy of two neighboring grains 𝑖 and 𝑗 where E 𝑗 (𝒙, 𝑡)
and E𝑖 (𝒙, 𝑡) can be the average stored energies of the grains 𝑗 and 𝑖 respectively depending only
on time [66], or can be based rather on local approximations [86], and 𝒏 𝑗 is the outward unit
normal to the neighboring grain 𝑗 . The above proposition would only make sense if the stored
energies associated to a grain are extended outwards into the neighboring grain normally from the
interface for a certain distance (chosen in line with the degree of smoothing desired). Scholtes et al.
[78] improved the direct reinitialization strategy developed by Shakoor et al. [70] such that, along
with the reinitialization procedure, simultaneously certain fields could also be extended normally
from the interface. This also allowed for an efficient simultaneous computation of gradients of
the level-set functions. In [87], this strategy was used successfully to normally extend the stored
energies to a few nodes away from the interface to facilitate the computation of their jump and thus
yield smooth velocity fields using Eq.(2.59). Figs.2.14 illustrate the idea of extension of a stored
energy field initially defined as an average energy (constant) in the grain and extended normally
from the interface on either sides. The stored energy can also be defined as an average on the
interface but the idea remains the same. Recently [88], this strategy was also extended to avoid any
average in the bulk of the grain. It should be highlighted that if the mobility is heterogeneous and/
or anisotropic along the interface, it should also be extended along with the stored energy field.

Adapting Eq.(2.59) to a biphasic polycrystalline, in general, we can write:

𝒗JEK(𝒙, 𝑡) =
𝑁𝐿𝑆∑︁
𝑖=1

𝑁𝐿𝑆∑︁
𝑗=1
𝑗≠𝑖

𝜒𝐺𝑖
(𝒙, 𝑡) 𝑓

(
𝜑 𝑗 , 𝛽𝑒

) 
∑︁

𝑙∈{𝛾𝛾,𝛾𝛼,𝛼𝛼}
𝜒𝑙𝑀𝑙JEK𝑙

 𝑖 𝑗 (−𝒏 𝑗 ). (2.60)

Now, for 𝒗𝚫𝑮𝜸𝜶 component, we could take inspiration from the above equations and propose an
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(a) Stored energy fields before
extension

(b) Stored energy fields after extension

Figure 2.14: illustration of outward normal extension of stored energies (E) into the
neighboring nodes for a case

analogous formulation, albeit with a couple of additional functions:

𝒗𝚫𝑮𝜸𝜶 (𝒙, 𝑡) =
𝑁𝐿𝑆∑︁
𝑖=1

𝑁𝐿𝑆∑︁
𝑗=1
𝑗≠𝑖

𝜒𝐺𝑖
𝑀𝑖 𝑗 𝑓

(
𝜑 𝑗 , 𝛽𝑒

)
𝜒𝛾𝛼Δ𝐺𝛾→𝛼ℱ𝑠 (−𝒏 𝑗 ), (2.61)

where 𝜒𝛾𝛼, as seen earlier, helps to filter this component of velocity field only on the phase
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interfaces. In Eq.(2.59), the jump in stored energies JEK𝑖 𝑗 ensures that the velocity vectors are
oriented in a consistent direction on the nodes close to both the sides of the interface, thanks
to a flip in sign (JEK𝑖 𝑗 = −JEK 𝑗𝑖) as shown in Fig.2.15a. However in Eq.(2.61), since Δ𝐺𝛾→𝛼
already gives a measure of the Gibbs free energy difference on the phase interface (common to
the neighboring grains) there is no natural flip in sign. Hence ℱ𝑠 is used as a sense function that
ensures that the velocity vectors of this component on the nodes close to either side of the phase
interface are oriented consistently as observed in Fig.2.15b. ℱ𝑠 in the context of a transformation,
𝛾 → 𝛼, is defined as follows:

ℱ𝑠 (𝒙, 𝑡) = 𝜒𝛼 (𝒙, 𝑡) − 𝜒𝛾 (𝒙, 𝑡) = 2𝜒𝛼 (𝒙, 𝑡) − 1, (2.62)

where 𝜒𝛼 (𝒙, 𝑡) and 𝜒𝛾 (𝒙, 𝑡) are the characteristic functions of 𝛼 and 𝛾 phase respectively, such that
𝜒𝛼 (𝒙, 𝑡) + 𝜒𝛾 (𝒙, 𝑡) = 1.

As we shall see in section 2.3.4, Δ𝐺𝛾→𝛼 description gives a continuous heterogeneous field taking
values away from the interface as well. So it is possible to directly apply Eq.(2.61) without
any extension procedure, and a smooth but non-symmetric velocity field (in the plane orthogonal
to the interface) could be obtained as exhibited by Fig.2.16. The curve in blue in Fig.2.16 is the
heterogeneous velocity field obtained without multiplying with the smoothing function ( 𝑓

(
𝜑 𝑗 , 𝛽𝑒

)
).

It is possible to get away with this description, especially since the velocity field values only at
the iso-zeros on the phase interfaces are important. However, a non-symmetric velocity field may
potentially cause bunching and stretching of the neighboring level-sets rendering 𝜑𝑖 very steep or
flat. Since Δ𝐺𝛾→𝛼 has significance only on the phase interfaces, for a nice level-set representation,
it is recommended to perform a normal outwards extension of Δ𝐺𝛾→𝛼 by taking its values only
on the phase interfaces. Fig.2.17 gives a representation of the velocity field computed using the
extended Δ𝐺𝛾→𝛼 based off its value at the interface, as observed in a plane orthogonal to the
interface at a certain point. This extension is carried out, thanks to the strategy developed by
Scholtes et al. [78].

In Eq.(2.61), the use of all the 𝑁𝐿𝑆 level-set functions is not necessary unlike in the case of
stored energy component, since Δ𝐺𝛾→𝛼 is valid only on the phase interfaces and not on the entire
grain/phase interface network. So, an alternative and simple approach could be proposed that takes
into account only the secondary level-set function representing all the 𝛼 phase grains, 𝜑𝛼:

𝒗𝚫𝑮𝜸𝜶 (𝒙, 𝑡) = 𝑀𝛾𝛼𝜒𝛾𝛼 𝑓 (𝜑𝛼, 𝛽𝑒) Δ𝐺𝛾→𝛼 (𝒙, 𝑡) (−∇𝜑𝛼), (2.63)

where 𝑓 (𝜑𝛼, 𝛽𝑒) is a smoothing function. We can observe that the consistent orientation of the
velocity field is naturally handled by the vector −∇𝜑𝛼 = 𝒏𝛼 which is an outward unit normal
of 𝛼 grains. It should be emphasized again that Δ𝐺𝛾→𝛼 could be extended, along with 𝑀𝛾𝛼 (in
case it is not a constant). In the presence of solute drag effects, since the solute drag pressure
coefficient (ℳ𝑆𝐷) effectively lowers the mobility, it can be embedded directly into the above
velocity description by considering the phase interface mobility as, 𝑀′𝛾𝛼 = 𝑀𝛾𝛼/ℳ𝑆𝐷 . The
inherent heterogeneity of ℳ𝑆𝐷 also leads to heterogeneous effective interface mobility in this
scenario.
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(a) 𝒗JEK component

(b) 𝒗𝚫𝑮𝜸𝜶 component

Figure 2.15: Consistent orientation of velocity vectors on nodes A and B,
close to either side of the migrating interface

2.3.3 Additional numerical considerations in the context of polycrystals
The computation of certain fields complementing the previous formulation by acting as key ingre-
dients are described here. In addition, particular numerical treatments aimed to support certain
aspects of the simulation shall be discussed in brief.

75



Figure 2.16: Illustration of an example of velocity smoothing without
extending the heterogeneous Δ𝐺𝛾→𝛼 field, yielding smooth but

non-symmetric velocity profile (in red) in a plane orthogonal to the
interface at a certain point

.

Computation of 𝜑𝛼 (𝒙, 𝑡) and the diffuse phase interface function, 𝜙(𝒙, 𝑡): The characteristic
function of the 𝛼 phase, 𝜒𝛼, is defined such that:

𝜒𝛼 (𝒙, 𝑡) =
{

1 ∀ 𝒙 ∈ Ω𝛼 (𝑡)
0 otherwise

, (2.64)

where Ω𝛼 (𝑡) denotes the part of the domain occupied by all those grains of the type 𝛼 phase, such
that Ω𝛼 (𝑡) ∪Ω𝛾 (𝑡) = Ω. This characteristic function (also referred as Phase-ID field) is initialized
depending on the grain/phase distribution of the initial microstructure input to the model. For,
𝑡 > 0, it is updated at each time step after the resolution of Eq.(2.58) using a tracking model
developed by Scholtes et al. [78] in order to follow the updated configuration of the grain/phase
morphology.

Once the Phase-ID field (𝜒𝛼) is computed, 𝜑𝛼 (which is a signed distance LS function that represents
all the zones of the 𝛼 phase in the overall domain) is obtained through the reinitialization of the
ℱ𝑠 (𝒙, 𝑡)𝜑𝑚𝑎𝑥 (𝒙, 𝑡) = [2𝜒𝛼 (𝒙, 𝑡) − 1] 𝜑𝑚𝑎𝑥 (𝒙, 𝑡) function through an imposed 2𝜖 thickness around
its 0 iso-value. So the 𝛼-phase domain LS function is computed as:

𝜑𝛼 (𝒙, 𝑡) = Reinitialization
(
[2𝜒𝛼 (𝒙, 𝑡) − 1] 𝜑𝑚𝑎𝑥 (𝒙, 𝑡)

)
, (2.65)
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Figure 2.17: Illustration of an example of velocity smoothing through an
extension of the Δ𝐺𝛾→𝛼 value at the interface, yielding smooth and

symmetric velocity profile (in red) in a plane orthogonal to the interface at
a certain point

.

with,
𝜑𝑚𝑎𝑥 (𝒙, 𝑡) = max

𝑖∈{1,...,𝑁𝐿𝑆}
𝜑𝑖 (𝒙, 𝑡). (2.66)

The idea behind this expression is in two folds. Firstly from Eq.(2.62),ℱ𝑠 (𝒙, 𝑡) takes 1 insideΩ𝛼 (𝑡),
and −1 inside Ω𝛾 (𝑡). Secondly, the maximum LS function in Eq.(2.66) is an unsigned distance
function that is positive inside every grain, while approaching 0 at the interface (as explained in the
case of VIIM). So, when these two functions are multiplied, the resulting function takes positive
values inside the grains belonging to Ω𝛼 (𝑡), and negative values inside that of Ω𝛾 (𝑡), which is
the essence of a signed distance function describing Ω𝛼 (𝑡) sub-domain. Considering that this LS
function is crucial in the computation of the diffuse phase interface (𝜙) using the Eq.(2.11), the
reinitialization step ensures that this LS function precisely localizes the 0 iso-values corresponding
to the phase interfaces. It also ensures that the LS function is regular, at least around a distance,
2𝜖 > 𝜂, from the interface, so that 𝜙(𝒙, 𝑡) is properly defined. A similar result can be obtained
by a direct reinitialization of the discontinuous ℱ𝑠 (𝒙, 𝑡) function since there is an inherent change
of sign across the phase interfaces, but the interest to multiply it by the 𝜑𝑚𝑎𝑥 (𝒙, 𝑡) function is to
increase the 0 iso-contour precision before the reinitialization.

So, once 𝜑𝛼 is computed, the hyper tangent relation in Eq.(2.11) is then applied to compute the
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phase-field function that gives the diffuse interface description across the updated phase interfaces
for the next computation loop to resolve the solute redistribution equation Eq.(2.20). Figs.2.18
illustrate the representation of various functions involved at each step in the computation of 𝜙.

(a) 𝛼-phase characteristic field with the
interfaces highlighted in black for

visualization

(b) 𝛼-phase signed distance level-set
function

(c) Phase-field function

Figure 2.18: Illustrations for computing phase-field function in a two-phase
polycrystal

Computation of the interface characteristic functions: Having computed the, 𝜑𝛼 and the 𝜑𝑚𝑎𝑥
functions, they are used to compute at each instant the various interface characteristic functions
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defined in Eqs.(2.34), (2.35), and (2.36). They are computed in the following way:

𝜒𝛾𝛼 (𝒙, 𝑡) =
{

1 if |𝜑𝛼 (𝒙, 𝑡) | < 𝛿𝑐 𝑓
0 otherwise

𝜒𝛼𝛼 (𝒙, 𝑡) =
{[

1 − 𝜒𝛾𝛼 (𝒙, 𝑡)
]
𝜒𝛼 (𝒙, 𝑡) if 𝜑𝑚𝑎𝑥 (𝒙, 𝑡) < 𝛿𝑐 𝑓

0 otherwise

𝜒𝛾𝛾 (𝒙, 𝑡) =
{

1 − 𝜒𝛾𝛼 (𝒙, 𝑡) − 𝜒𝛼𝛼 (𝒙, 𝑡) if 𝜑𝑚𝑎𝑥 (𝒙, 𝑡) < 𝛿𝑐 𝑓
0 otherwise

, (2.67)

where 𝛿𝑐 𝑓 is a small positive distance threshold chosen based on the mesh resolution at the interface
such that 𝛿𝑐 𝑓 is always smaller than 𝜖 . Figs.2.19 shows an illustration of these functions. These
interface characteristic functions of the updated grain/phase interface network are then used in the
following resolution loop primarily to describe the interface specific kinetics.

Computation of the solute drag pressure coefficient,ℳ𝑆𝐷: To compute the solute drag pressure
coefficient in Eq.(2.56):

ℳ𝑆𝐷 = 1 +
∑︁
𝑙∈𝒮

𝜒𝑙𝑀𝑙

(
𝛼𝐶𝑥

0
𝑋

1 + 𝛽2
𝐶

𝒗𝑜𝑙𝑑2

)
𝑙

∀𝑙 ∈ {𝛾𝛾, 𝛾𝛼, 𝛼𝛼},

we need the respective laws/ expressions governing {𝛼𝐶 (𝑇), 𝛽𝐶 (𝑇)}𝑙 and 𝑀𝑙 (𝒙, 𝑡, 𝑇) provided, and
𝜒𝑙 and ∥𝒗𝑜𝑙𝑑 ∥ need to be computed. We discussed already the computation of 𝜒𝑙 previously. In
order to compute ∥𝒗𝑜𝑙𝑑 ∥, let us consider its discrete definition:𝒗𝑜𝑙𝑑 (𝒙) = ��𝜑𝑘

𝑖
(𝒙) − 𝜑𝑘−1

𝑖
(𝒙)

��
Δ𝑡

for 𝑖 | 𝜑𝑘𝑖 (𝒙) ≥ 0, (2.68)

where 𝜑𝑘
𝑖

and 𝜑𝑘−1
𝑖

are the GLS solutions available at the current and the previous states of time
respectively. In practice, the above definition is reformulated as:

𝒗𝑜𝑙𝑑 (𝒙) = max
𝑖∈{1,...,𝑁𝐿𝑆}

(
I𝑘𝑖 (𝒙)

��𝜑𝑘
𝑖
(𝒙) − 𝜑𝑘−1

𝑖
(𝒙)

��
Δ𝑡

)
, (2.69)

whereI𝑘
𝑖
(𝒙) is used as an indicator function associated to the 𝑖th GLS function such that 𝜑𝑘

𝑖
(𝒙) ≥ 0,

i.e.,

I𝑘𝑖 (𝒙) =
{

1 if 𝜑𝑘
𝑖
(𝒙) ≥ 0

0 otherwise
. (2.70)

At the initial state of time (𝑘 = 0), ∥𝑣𝑜𝑙𝑑 ∥ = 0, as 𝜑0
𝑖
= 𝜑−1

𝑖
The solute drag pressure coefficient

needs to be computed before the next resolution step of Eq.(2.58).
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(a) 𝛼/𝛾 phase interfaces

(b) 𝛼/𝛼 grain interfaces (c) 𝛾/𝛾 grain interfaces

Figure 2.19: Illustrations of various interface characteristic functions in a
two-phase polycrystal. Respective interfaces are highlighted in white

Multiple junctions numerical treatment: Following the LS transport resolution, due to the
presence of multiple junctions, in order to remove any kinematic incompatibilities at the multiple
junctions such as vacuum or overlapping regions as depicted in Figs.2.20, a particular numerical
treatment according to [37] is performed to modify the LS functions:

𝜑𝑖 =
1
2

(
𝜑𝑖 −max

𝑗≠𝑖
𝜑 𝑗

)
∀𝑖 ∈ {1, ..., 𝑁𝐿𝑆}. (2.71)
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(a) Overlapping region
at the triple junction

(b) Vacuum region
created at the triple

junction

Figure 2.20: Kinematic incompatibilities encountered at the multiple
junctions (triple junction in this case)

Following this multiple junctions treatment, 𝜑𝑖 (𝒙, 𝑡) are then reinitialized in the 2𝜖-narrow band
around their 0 iso-values at each time step. The term 𝜖 is taken to be equal to at least 2 times the
𝜂 value to ensure that 𝜑𝑖, 𝜑𝑚𝑎𝑥 , and hence 𝜑𝛼 are all regular and well defined far enough from
the corresponding interfaces such that 𝜙 is properly computed for the considered diffuse interface
thickness (𝜂 parameter) value.

Smoothing of heterogeneous fields: In Eq.(2.58), the term 1
ℳ𝑆𝐷
[∑𝑙∈𝒮 𝜒𝑙𝑀𝑙𝜎𝑙] = (𝑀𝜎)𝐻𝑒𝑡

represents a field characterized by heterogeneity and discontinuity. To address this, a smoothing
technique, involving the resolution of the Laplace’s equation with specific boundary conditions,
is applied to both the heterogeneous effective mobility and interface energy fields throughout the
computational domain to yield a smooth and a unified field. The effective mobility here refers to
the interface mobility lowered by the solute drag pressure coefficient ( 𝑀 (𝒙,𝑡)

ℳ𝑆𝐷 (𝒙,𝑡) ).

So, for a smooth effective interface mobility field, 𝑀𝑆𝑚 (𝒙, 𝑡), we solve:

𝑘𝑠Δ𝑀𝑆𝑚 = 0 in Ω

𝑀𝑆𝑚 = 𝑀𝛾𝛼/ℳ𝑆𝐷 on Γ𝛾𝛼

𝑀𝑆𝑚 = 𝑀𝛾𝛾/ℳ𝑆𝐷 on Γ𝛾𝛾

𝑀𝑆𝑚 = 𝑀𝛼𝛼/ℳ𝑆𝐷 on Γ𝛼𝛼

[∇𝑀𝑆𝑚 · 𝒏𝑏] |𝜕𝐺 = 0

, (2.72)

where 𝒏𝑏 is the normal to the domain boundary, while Γ𝛾𝛼, Γ𝛾𝛾, and Γ𝛼𝛼 represent the ensemble
of interfaces on which the necessary Dirichlet boundary conditions are imposed. These conditions
reflect the specified interface mobility values corresponding to each interface type. The degree
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of smoothing is controlled by the numerical diffusion coefficient (𝑘𝑠) prescribed in the weak
formulation of the above equation.

Similarly, for a smooth interface energy field, 𝜎𝑆𝑚 (𝒙, 𝑡), we solve:

𝑘𝑠Δ𝜎𝑆𝑚 = 0 in Ω

𝜎𝑆𝑚 = 𝜎𝛾𝛼 on Γ𝛾𝛼

𝜎𝑆𝑚 = 𝜎𝛾𝛾 on Γ𝛾𝛾

𝜎𝑆𝑚 = 𝜎𝛼𝛼 on Γ𝛼𝛼

[∇𝜎𝑆𝑚 · 𝒏𝑏] |𝜕𝐺 = 0

. (2.73)

Figure 2.21: Illustration of smoothing of the heterogeneous interface
mobility and interface energy fields: Heterogeneous 𝑀𝜎 product (left),

Smoothed 𝑀𝜎 product (right)

The term [∑𝑙∈𝒮 𝜒𝑙𝑀𝑙𝜎𝑙] /ℳ𝑆𝐷 is then replaced by the product of the above two smoothed fields,
so that the Eq.2.58 becomes:

𝜕𝜑𝑖

𝜕𝑡
+ 1
ℳ𝑆𝐷

[
𝒗𝚫𝑮𝜸𝜶 + 𝒗JEK

]
𝑖
· ∇𝜑𝑖 = 𝑀𝑆𝑚𝜎𝑆𝑚Δ𝜑𝑖, ∀𝑖 ∈ {1, 2, ..., 𝑁𝐿𝑆}. (2.74)

Fig.2.21 provides an illustration comparing the heterogeneous product, (𝑀𝜎)𝐻𝑒𝑡 , on the left, with
the smoothed product,𝑀𝑆𝑚𝜎𝑆𝑚, on the right, employing the described technique. This visualization
demonstrates the role of the Laplace’s equation in diffusing the discontinuous fields. The smoothing
process is executed before the resolution for interface migration at every time step.

Adaptive remeshing for biphasic polycrystals - Metric intersection: In order to capture the
strong evolution close to the interfaces with acceptable precision, the front-capturing methods such
as level-set demands meshes with finer resolution close to the interface. So, in this numerical
framework, a local adaptive isotropic/ anisotropic meshing strategy is adopted with remeshing
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Figure 2.22: Illustration of the dual metric based meshing strategy
adopted for two phase polycrystals

capabilities. The local adaptive mesh is generated using a metric based mesher [66, 74] adapted
to polycrystals. Such a mesh generation strategy is a geometrical approach based on the normal
and/or mean curvature of the grain interface network. In the case of a biphasic polycrystalline
microstructure, the precision needed at the phase interfaces is much more important as it involves
stronger evolution due to the phase transformation driving pressure when compared to evolution
of grain interfaces with relatively weaker driving pressures. Instead of using a single metric tensor
to adapt the mesh for the whole grain/phase interface network, two different mesh metric tensors
are considered: one metric for the phases interfaces to yield a finer mesh across 𝛾/𝛼, and another
metric for the grain interfaces to yield a relatively coarser mesh across the 𝛼/𝛼 and 𝛾/𝛾 interfaces
compared to the phase interfaces, while globally maintaining a very coarse mesh in the bulk. The
local adaptive mesh is generated through an intersection of these two different mesh metric tensors
based on the works in [89] and using the metric based mesher/ remesher [66]. As the interfaces
evolve, a periodic remeshing operation is performed to re-adapt the mesh in line with the current
interface network configuration and follow it. Fig.2.22 illustrates a snapshot of a FE mesh in a
two phase polycrystal with a coarse mesh in the bulk, a very fine mesh at the phase interfaces, and
an adaptive mesh with an intermediate size is generated at the grain interfaces. Such a strategy is
important for saving computational time.

2.3.4 Description of the driving pressure, Δ𝐺𝛾→𝛼: ThermoCalc coupling
One of the last few key ingredients missing to completely prescribe the above kinetics is the change
in Gibbs free energy between the two phases.
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Figure 2.23: Illustration of the driving pressure derived through parallel
tangent construction

In most cases, [90–92], the solute concentrations at the phase interfaces are assumed to be at local
thermodynamic equilibrium (which is the essence of diffusion controlled kinetics) while globally
the system state being far from the equilibrium state. For full-field based models however, to
derive the driving pressure at the phase interfaces, small deviations from equilibrium (as explained
by Hillert in [93]) can be considered. A popular approach to describe these deviations for solid-
state phase transformation or solidification is to consider local quasi-equilibrium hypothesis for
locally coexisting phases, as seen in the works of [94–99]. This allows to characterize finite
interface kinetics. Fig.2.23 demonstrates the Gibbs free energy variations with composition at
a temperature, 𝑇 , of a solute for the growth of an already formed product phase 𝛼 in a parent
phase 𝛾. The driving pressure is derived through a parallel tangent construction which implies
that the diffusional exchange of solutes between the two phases is rapid compared to the phase
transformation process. So, in Fig.2.23, the magnitude of the driving pressure (Δ𝐺𝛾→𝛼) is thus the
difference in free energies between the points M and N. Δ𝐺𝛾→𝛼 can be thus expressed as:

Δ𝐺𝛾→𝛼 = 𝜇
𝛾

𝐶
𝑥𝛼𝐶 + 𝜇

𝛾

𝐴

[
1 − 𝑥𝛼𝐶

]
−

(
𝜇𝛼𝐶𝑥

𝛼
𝐶 + 𝜇

𝛼
𝐴

[
1 − 𝑥𝛼𝐶

] )
, (2.75)

where 𝐶 is the solute element, and 𝐴 is the major element in the alloy. The above equation could
be reformulated as:

Δ𝐺𝛾→𝛼 = 𝜇
𝛾

𝐴
− 𝜇𝛼𝐴 − 𝑥

𝛼
𝐶

( [
𝜇
𝛾

𝐴
− 𝜇𝛼𝐴

]
−

[
𝜇
𝛾

𝐶
− 𝜇𝛼𝐶

] )
. (2.76)
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Using the definitions of the chemical potential defined in Chapter 11.2.1 in Eqs.(1.5), Eq.(2.76)
could be rewritten as:

Δ𝐺𝛾→𝛼 = 𝐺𝛾 |𝑥𝛾
𝐶
− 𝐺𝛼 |𝑥𝛼

𝐶
− 𝑥𝛾

𝐶

𝜕𝐺𝛾

𝜕𝑥𝐶

����
𝑥
𝛾

𝐶

+ 𝑥𝛼𝐶
𝜕𝐺𝛼

𝜕𝑥𝐶

����
𝑥𝛼
𝐶

− 𝑥𝛼𝐶
( [
𝜇
𝛾

𝐴
− 𝜇𝛼𝐴

]
−

[
𝜇
𝛾

𝐶
− 𝜇𝛼𝐶

] )
. (2.77)

The parallel tangent construction in quasi-equilibrium hypothesis imposes the following constraint
at a fixed temperature, 𝑇 :

𝜕𝐺𝛾

𝜕𝑥𝐶

����
𝑥
𝛾

𝐶

=
𝜕𝐺𝛼

𝜕𝑥𝐶

����
𝑥𝛼
𝐶

. (2.78)

In addition, it is easy to infer from the Fig.2.23 (as well as mathematically) that, for parallel tangents,[
𝜇
𝛾

𝐴
− 𝜇𝛼

𝐴

]
−

[
𝜇
𝛾

𝐶
− 𝜇𝛼

𝐶

]
= 0. We thus obtain:

Δ𝐺𝛾→𝛼 = 𝐺𝛾 |𝑥𝛾
𝐶
− 𝐺𝛼 |𝑥𝛼

𝐶
− 𝜕𝐺

𝛾

𝜕𝑥𝐶

����
𝑥
𝛾

𝐶

(
𝑥
𝛾

𝐶
− 𝑥𝛼𝐶

)
. (2.79)

In general, for an alloy system with 𝑁𝐶 components, the driving pressure could be written as:

Δ𝐺𝛾→𝛼 = 𝐺𝛾 |𝓧𝜸 − 𝐺𝛼 |𝓧𝜶 −
𝑁𝐶−1∑︁
𝑖

𝜕𝐺𝛾

𝜕𝑥𝑖

����
𝑥
𝛾

𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
, (2.80)

where𝓧𝜶,𝓧𝜸 are the vectors of concentrations of all the 𝑁𝐶 −1 solute elements in the two phases.
So, for a certain fixed pressure (𝑝), Δ𝐺𝛾→𝛼 is typically dependent on the local composition of the
solutes, and the temperature.

In some of the earliest works [94, 97, 100], the description for Δ𝐺𝛾→𝛾 has been established directly
through thermodynamic evaluations of [101, 102] based on Calphad data or ThermoCalc software
[103]. For certain sharp interface descriptive models on binary systems, the diffusion in the bulk
of the product phase is assumed to be instantaneous and so Δ𝐺𝛾→𝛼 is simply assumed to be
proportional to the deviation in concentration at the interface in the parent phase (𝑥𝛾

𝐶
) from its

equilibrium concentration (𝑥𝛾
𝐶

��
𝑒𝑞

) [26, 104]:

Δ𝐺𝛾→𝛼 = Υ

(
𝑥
𝛾

𝐶

��
𝑒𝑞
− 𝑥𝛾

𝐶

)
, (2.81)

where Υ is a proportionality factor that could be temperature dependent and is derived from
thermodynamic databases.

In the current work, Δ𝐺𝛾→𝛼 is reformulated based on a local linearization of the phase diagram as
seen in [45, 51, 105]. Fig.2.24 illustrates the underlying idea where the two solvus lines of the phase
diagram (say A-i) are linearized at some reference temperature, 𝑇𝑅, where A is the major element
and i is the solute element of the alloy. Let 𝑥𝛼

𝑖
and 𝑥𝛾

𝑖
be the non-equilibrium interface compositions

of the solute 𝑖 at the current temperature𝑇 . As represented in the Fig.2.24, let𝑇 𝑒𝑞 be the equilibrium
temperature corresponding to the current interface concentrations such that Δ𝑇 = 𝑇 𝑒𝑞 − 𝑇 is the
undercooling. The undercooling measures the deviation from the local equilibrium temperature.
So at the equilibrium temperature, 𝑇 𝑒𝑞, the driving pressure in Eq.(2.79) could be written as:

Δ𝐺
𝑒𝑞
𝛾→𝛼 = 𝐺

𝛾
𝑒𝑞

��
𝑥
𝛾

𝑖

− 𝐺𝛼
𝑒𝑞

��
𝑥𝛼
𝑖

−
𝜕𝐺

𝛾
𝑒𝑞

𝜕𝑥𝑖

�����
𝑥
𝛾

𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
= 0. (2.82)
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Figure 2.24: Local linearization of the A-i binary phase diagram at 𝑇𝑅

Using the definitions of Gibbs free energy, 𝐺 = 𝐻 − 𝑇𝑆, where 𝐻 is the enthalpy and 𝑆 is the
entropy, Eq.(2.82) could be written as:

Δ𝐻
𝛾𝛼
𝑒𝑞 − Δ𝑆𝛾𝛼𝑒𝑞𝑇 𝑒𝑞 −

𝜕𝐺
𝛾
𝑒𝑞

𝜕𝑥𝑖

�����
𝑥
𝛾

𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
= 0, (2.83)

where Δ𝐻
𝛾𝛼
𝑒𝑞 = 𝐻

𝛾
𝑒𝑞

��
𝑥
𝛾

𝑖

− 𝐻𝛼
𝑒𝑞

��
𝑥𝛼
𝑖

, is the difference in enthalpy between the two phases at 𝑇 𝑒𝑞, and

likewise Δ𝑆𝛾𝛼𝑒𝑞 = 𝑆
𝛾
𝑒𝑞

��
𝑥
𝛾

𝑖

− 𝑆𝛼𝑒𝑞
��
𝑥𝛼
𝑖

is the difference in entropy. We can thus write,

Δ𝐻
𝛾𝛼
𝑒𝑞 = Δ𝑆

𝛾𝛼
𝑒𝑞𝑇

𝑒𝑞 +
𝜕𝐺

𝛾
𝑒𝑞

𝜕𝑥𝑖

�����
𝑥
𝛾

𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
. (2.84)

At the current non-equilibrium state, the driving pressure can be also be written in terms of the
enthalpy and entropy differences as:

Δ𝐺𝛾→𝛼 = Δ𝐻𝛾𝛼 − Δ𝑆𝛾𝛼𝑇 − 𝜕𝐺
𝛾

𝜕𝑥𝑖

����
𝑥
𝛾

𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
. (2.85)

For small undercoolings, i.e., when the current temperature is close to the equilibrium temperature,
the variation of enthalpy and entropy with temperature could be assumed to be negligible [48, 106,
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107]. Thus, we can express that:

Δ𝐻𝛾𝛼 ≈ Δ𝐻
𝛾𝛼
𝑒𝑞 ; Δ𝑆𝛾𝛼 ≈ Δ𝑆

𝛾𝛼
𝑒𝑞 . (2.86)

So with the above approximations, using Eq.2.84, the driving pressure in Eq.(2.85) could be
rewritten as:

Δ𝐺𝛾→𝛼 = Δ𝑆𝛾𝛼Δ𝑇 +

𝜕𝐺

𝛾
𝑒𝑞

𝜕𝑥𝑖

�����
𝑥
𝛾

𝑖

− 𝜕𝐺
𝛾

𝜕𝑥𝑖

����
𝑥
𝛾

𝑖


(
𝑥
𝛾

𝑖
− 𝑥𝛼𝑖

)
. (2.87)

The difference in derivatives in the second term represents the variation in the slopes of the tangent
line to the 𝐺𝛾 curve at a fixed concentration of 𝑥𝛾

𝑖
for a variation (undercooling) of Δ𝑇 . When Δ𝑇

is small, this variation of the slopes in Eq.(2.87) could be neglected and hence the driving pressure
could be approximated as:

Δ𝐺𝛾→𝛼 ≈ Δ𝑆𝛾𝛼Δ𝑇. (2.88)

This approximation of the driving pressure has been considered in [45, 48, 51, 52, 104] where
they simply assume that the driving pressure is proportional to the small undercooling Δ𝑇 . As
highlighted previously, the phase diagram is linearized at some reference temperature 𝑇𝑅, and Δ𝑇

is extrapolated using this linearization as a function of temperature and local concentrations. So,
following Fig.2.24, for each linearized solvus line, we can express,

𝑇
𝑒𝑞
𝛼 = 𝑇𝑅 + 𝑚𝛼/(𝛼+𝛾)

𝐴−𝑖

(
𝑥𝛼𝑖 − 𝑥𝛼𝑖

��
𝑅

)
𝑇
𝑒𝑞
𝛾 = 𝑇𝑅 + 𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑅

) , (2.89)

where𝑚𝛼/(𝛼+𝛾)
𝐴−𝑖 and𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖 are the slopes of the boundary lines of the 𝛼 and 𝛾 phases respectively,
linearized at 𝑇𝑅, and 𝑥𝛼

𝑖

��
𝑅

and 𝑥𝛾
𝑖

��
𝑅

are the corresponding equilibrium concentrations of solute 𝑖 at
𝑇𝑅. These are deduced by thermodynamic evaluations using ThermoCalc software [103].

The equilibrium temperature, 𝑇 𝑒𝑞, can be expressed as the average of 𝑇 𝑒𝑞𝛼 and 𝑇 𝑒𝑞𝛾 :

𝑇 𝑒𝑞 =
𝑇
𝑒𝑞
𝛼 + 𝑇 𝑒𝑞𝛾

2
. (2.90)

So, making use of the two Eqs.in (2.89), the undercooling can be expressed as:

Δ𝑇 = 𝑇 𝑒𝑞 − 𝑇 = 𝑇𝑅 + 0.5𝑚𝛼/(𝛼+𝛾)
𝐴−𝑖

(
𝑥𝛼𝑖 − 𝑥𝛼𝑖

��
𝑅

)
+ 0.5𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑅

)
− 𝑇. (2.91)

The driving pressure in Eq.(2.88) can thus be formulated as a function of the local concentrations
and temperature as follows:

Δ𝐺𝛾→𝛼 (𝑇, 𝑥𝛼𝑖 , 𝑥
𝛾

𝑖
) = Δ𝑆𝛾𝛼

[
(𝑇𝑅 − 𝑇) + 0.5𝑚𝛼/(𝛼+𝛾)

𝐴−𝑖

(
𝑥𝛼𝑖 − 𝑥𝛼𝑖

��
𝑅

)
+ 0.5𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑅

)]
.

(2.92)

With the help of Eqs.(2.12) and (2.14), the above description could be further expressed as a
function of the total concentration variable, 𝑥𝑖 (𝒙, 𝑡), for each configuration of the phase-field
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function, 𝜙(𝒙, 𝑡):

Δ𝐺𝛾→𝛼 (𝑇, 𝑥𝑖) = Δ𝑆𝛾𝛼

[
𝑇𝑅 − 𝑇 + 0.5𝑚𝛼/(𝛼+𝛾)

𝐴−𝑖

(
𝑘 𝑖𝑝𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)
− 𝑥𝛼𝑖

��
𝑅

)
+ 0.5𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)
− 𝑥𝛾

𝑖

��
𝑅

)] (2.93)

Based on the same linearization, the equilibrium concentrations of solute 𝑖 of each phase at
temperature 𝑇 can be estimated as follows:

𝑥
𝑗

𝑖

���
𝑒𝑞

= 𝑥
𝑗

𝑖

���
𝑅
+ 𝑇 − 𝑇𝑅

𝑚
𝑗/(𝛼+𝛾)
𝐴−𝑖

, ∀ 𝑗 ∈ {𝛼, 𝛾}. (2.94)

Using Eqs.(2.94), the equilibrium partitioning ratio (𝑘 𝑖𝑝) can be expressed at each temperature 𝑇
as:

𝑘 𝑖𝑝 (𝑇) =
𝑥𝛼
𝑖

��
𝑅
+ 𝑇−𝑇𝑅

𝑚
𝛼/(𝛼+𝛾)
𝐴−𝑖

𝑥
𝛾

𝑖

��
𝑅
+ 𝑇−𝑇𝑅

𝑚
𝛾/(𝛼+𝛾)
𝐴−𝑖

. (2.95)

In the description of the driving pressure in Eq.(2.93), the entropy difference (Δ𝑆𝛾𝛼) at the current
temperature𝑇 could be extrapolated using a linearization based on the thermodynamic data extracted
at the 𝑇𝑅 temperature and the entropy difference at the 𝑇 𝐴3 temperature (Δ𝑆𝛾𝛼

𝐴3) of the 𝛾 → 𝛼 phase
transformation. As a reminder, the𝑇𝐴3 temperature (corresponding to the nominal composition, 𝑥0

𝑖
)

is the temperature at which the 𝛾 phase starts to transform into the 𝛼 phase. A linear extrapolation
of Δ𝑆𝛾𝛼 may be of the form:

Δ𝑆𝛾𝛼 (𝑇) = Δ𝑆
𝛾𝛼

𝑅
+
Δ𝑆

𝛾𝛼

𝐴3 − Δ𝑆
𝛾𝛼

𝑅

𝑇𝐴3 − 𝑇𝑅
(
𝑇 − 𝑇𝑅

)
, (2.96)

where Δ𝑆𝛾𝛼
𝑅

is the entropy difference between the two phases at the reference temperature, 𝑇𝑅. The
above extrapolation could be avoided if 𝑇𝑅 is chosen to be equal to the current temperature, 𝑇 .

In the works of Tiaden et al. [45], Mecozzi et al. [51] or Militzer et al. [52], a single reference
temperature was used to linearize the solvus lines in the phase diagram. It is evident from the
Fig.2.24 that, to better capture the topology of the solvus lines and for better description of the
driving pressure, the phase boundary lines need to be piecewise linearized using multiple reference
temperatures (𝑇𝑅1 , 𝑇𝑅2 , ..., 𝑇𝑅𝑛

) along the thermal path of the transformation. This is especially
important when the solvus lines curve extensively such that the assumption of linear variation of
equilibrium concentrations with the temperature becomes weak. This also allows for an interpolated
expression for Δ𝑆𝛾𝛼 between any two reference temperatures (𝑇𝑅𝑙 , 𝑇𝑅𝑢) such that 𝑇𝑅𝑙 ≤ 𝑇 ≤ 𝑇𝑅𝑢 :

Δ𝑆𝛾𝛼 (𝑇) = Δ𝑆
𝛾𝛼

𝑅𝑢
+
Δ𝑆

𝛾𝛼

𝑅𝑢
− Δ𝑆𝛾𝛼

𝑅𝑙

𝑇𝑅𝑢 − 𝑇𝑅𝑙
(
𝑇 − 𝑇𝑅𝑢

)
, (2.97)

88



Ternary system: If we consider a ternary system, A-C-X, with nominal compositions of (𝑥0
𝐶
, 𝑥0
𝑋
),

the driving pressure under ortho-equilibrium (full local equilibrium) conditions can be again derived
by locally linearizing the ternary phase diagram at 𝑇𝑅. If

(
𝑥
𝑗

𝑖

���
𝑅
, ∀ 𝑗 ∈ {𝛼, 𝛾} and ∀𝑖 ∈ {𝐶, 𝑋}

)
are the equilibrium concentrations extracted at 𝑇𝑅, we first extract the isopleth plots (a section of
a ternary phase diagram extracted by fixing the composition of one component) or pseudo-binary
plots and then linearize the respective solvus lines as seen previously. As an example, we set
𝑥𝑋 = 𝑥𝛼

𝑋

��
𝑅
, and extract the pseudo-binary A-C plot to linearize the 𝛼/(𝛼+𝛾) solvus line. Similarly,

the 𝛼/(𝛼 + 𝛾) solvus line of the A-X isopleth plot is linearized by setting 𝑥𝐶 = 𝑥𝛼
𝐶

��
𝑅
. Likewise for

the 𝛾/(𝛼+𝛾) phase boundary lines by setting 𝑥𝑋 = 𝑥
𝛾

𝑋

��
𝑅

and 𝑥𝐶 = 𝑥
𝛾

𝐶

��
𝑅
. We thus extract the slopes

of these linearized diagrams: 𝑚𝛼/(𝛼+𝛾)
𝐴−𝐶 , 𝑚

𝛼/(𝛼+𝛾)
𝐴−𝑋 , 𝑚

𝛾/(𝛼+𝛾)
𝐴−𝐶 , 𝑚

𝛾/(𝛼+𝛾)
𝐴−𝑋 . The equilibrium temperature

corresponding to the current interface concentrations could then be expressed as:

𝑇 𝑒𝑞 = 𝑇𝑅 + 0.5
∑︁

𝑖∈{𝐶,𝑋}

∑︁
𝑗∈{𝛼,𝛾}

𝑚
𝑗/(𝛼+𝛾)
𝐴−𝑖

(
𝑥
𝑗

𝑖
− 𝑥 𝑗

𝑖

���
𝑅

)
(2.98)

The driving pressure under ortho-equilibrium conditions for a ternary system could thus be ex-
pressed in the following way in the form of total concentration variables as in Eq.(2.93):

Δ𝐺𝛾→𝛼 (𝑇, 𝑥𝐶 , 𝑥𝑋) = Δ𝑆𝛾𝛼
(
𝑇𝑅 − 𝑇

)
+ 0.5Δ𝑆𝛾𝛼

∑︁
𝑖∈{𝐶,𝑋}

[
𝑚
𝛼/(𝛼+𝛾)
𝐴−𝑖

(
𝑘 𝑖𝑝𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)
− 𝑥𝛼𝑖

��
𝑅

)
+ 𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥𝑖

1 + 𝜙(𝑘 𝑖𝑝 − 1)
− 𝑥𝛾

𝑖

��
𝑅

)]
.

(2.99)

If rather para-equilibrium (PE) conditions (as discussed in 1.2.1.2) are assumed such that the solute
element 𝑋 does not partition between the 𝛾 and the 𝛼 phases, the driving pressure is derived by
extracting a para-equilibrium quasi-binary phase diagram ([𝐴 − 𝐶]𝑃𝐸 ) and locally linearizing it.
The solute element 𝑋 does not explicitly contribute to the driving pressure for the transformation
(Δ𝐺𝛾→𝛼). The thermodynamic data are extracted from ThermoCalc by imposing para-equilibrium
constraints. The driving pressure is expressed as:

Δ𝐺𝑃𝐸
𝛾→𝛼 (𝑇, 𝑥𝐶) = Δ𝑆

𝛾𝛼

𝑃𝐸

[
𝑇𝑅 − 𝑇 + 0.5𝑚𝛼/(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

(
𝑘𝐶𝑝 𝑥𝐶

1 + 𝜙(𝑘𝐶𝑝 − 1)
− 𝑥𝛼𝐶

��𝑃𝐸
𝑅

)
+ 0.5𝑚𝛾/(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

(
𝑥𝐶

1 + 𝜙(𝑘𝐶𝑝 − 1)
− 𝑥𝛾

𝐶

��𝑃𝐸
𝑅

)]
,

(2.100)

where 𝑚𝛼/(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸
and 𝑚𝛾/(𝛼+𝛾)[𝐴−𝐶]𝑃𝐸

are the slopes of the linearized imaginary solvus lines constructed

under PE assumptions, while 𝑥𝛼
𝐶

��𝑃𝐸
𝑅

and 𝑥
𝛾

𝐶

��𝑃𝐸
𝑅

are the corresponding constrained equilibrium
concentrations at 𝑇𝑅.

2.3.4.1 ThermoCalc coupling

For the early part of this thesis, the coupling with ThermoCalc to extract the thermodynamic
data was manual. This limited the number of reference temperatures at which the data could be
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extracted (generally 1 to 3 reference points). In addition, the ThermoCalc console or its graphical
user interface does not allow for seamless calculation of certain thermodynamic data under para-
equilibrium conditions. Thus, for the later part of this thesis, the above difficulties motivated to
establish or develop a successful liason between the numerical model and the TQ-interface (SDK)
of ThermoCalc to enable automatic and fluid computation of relevant thermodynamic data over a
large set of reference points under both ortho-equilibrium (OE) as well as para-equilibrium (PE)
conditions.

Fig.2.25 gives a general overview of the ThermoCalc coupling framework using the TQ-interface.
For a given alloy system and a corresponding thermodynamic database name (supported by Ther-
moCalc), the desired thermodynamic conditions at which the thermodynamic data are sought after
are passed as inputs from the numerical model to the ThermoCalc coupling interface. The first step
consists of initializing the computation workspace of ThermoCalc, involving allocation of mem-
ory for computations, definition of the given alloy system, loading its thermodynamic database,
definition of phases in play (setting the status of relevant phases as "entered" to take part in the
computation), and setting up the numerical handles to support the calculation. The next process is
to set up the thermodynamic conditions of the system such as the temperature, pressure, nominal
solute concentrations, and the number of moles in the system. A primary full local equilibrium cal-
culation is performed based on the minimization of Gibbs free energy. Following this preliminary
equilibrium computation, the necessary thermodynamic data are extracted/ calculated depending
on the type of equilibrium conditions imposed. The process of thermodynamic data extraction
using the TQ-interface in the coupling model has been elaborated in the appendix-B, and interested
readers are encouraged to refer it for more details. The coupling model is capable of providing a
matrix of desired thermodynamic data for a given range of temperatures over a large set of points.
The ThermoCalc data extraction is usually performed as a pre-processing step in the numerical
framework. The discrete and rich thermodynamic data-set generated is then exploited in the com-
putational loop with the help of an interpolation model which helps to interpolate the necessary
thermodynamic data for any temperature 𝑇 at each time step. So, it basically implies that the phase
diagram is locally linearized at the current temperature, 𝑇𝑅 = 𝑇 . This is of great importance as
a local piecewise linearization helps to accurately capture any strong topological evolution of the
solvus surfaces (or lines) in a phase diagram, especially for non-isothermal or continuous cooling
transformation involving a long thermal path (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇 𝑓 𝑖𝑛𝑎𝑙). This helps to enrich the driving
pressure (Δ𝐺𝛾→𝛼) description that is based on strong assumptions and potentially minimize errors.

2.3.5 Nucleation model
As discussed in Chapter-1 (1.2.1.1.1), the literature encompasses various hypotheses and a range
of parameters aimed at characterizing nucleation events in phase transformation. These parameters
include the nucleation start temperature (𝑇𝑁𝑠

), nucleation temperature range (𝛿𝑇𝑁 ), shield distance
(𝛿𝑙𝑁 ), shield time (𝛿𝑡𝑁 ), parameters related to the nucleus shape, along with factors such as
composition based on local parent phase features, etc., among numerous others. Additionally,
adhering to the CNT introduces supplementary parameters such as incubation time, frequency
factor, etc. However, due to experimental constraints in observing nucleation events, quantifying
most of these parameters independently presents significant challenges. Precise modeling of a
nucleation event at the mesoscopic scale is complex, often more suitable for much lower scales
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Figure 2.25: General overview of the ThermoCalc coupling with the
numerical model

of modeling, such as atomistic simulations. Hence, in this study, a simplified approach will be
employed, aiming for potential refinements in subsequent research. The nucleus shape will be
assumed to be spherical, and only a select few parameters from the aforementioned list will be
taken into account.

In many cases, the critical radii of nuclei are significantly smaller compared to the size of the
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considered domain. Consequently, due to the substantial computational demands required for
accurately capturing these small nuclei, they are rarely precisely prescribed at their critical radii.
A minimum radius is set as a requirement based on the underlying mesh resolution. Additionally,
to prevent uncharacteristically large nuclei, a maximum size is imposed. So, the numerical radius
of a nucleus (𝑟∗𝑛𝑢𝑚) in this model is based on the following law:

𝑟∗𝑛𝑢𝑚 = min
(
max

(
𝑟∗𝑡ℎ, 𝑘1ℎ𝑚𝑖𝑛

)
, 𝑘2ℎ𝑚𝑖𝑛

)
, (2.101)

where 𝑟∗
𝑡ℎ

is the theoretically estimated critical radius, ℎ𝑚𝑖𝑛 is the minimum size of the underlying
mesh resolution, 𝑘1 is a constant governing the minimum number of mesh elements to be included
along the radius, and 𝑘2(> 𝑘1) represents another constant limiting the maximum size permissible
for a nucleus. The theoretical critical radius technically depends on the site of nucleation, however
in this context, it is roughly estimated as follows:

𝑟∗𝑡ℎ =
(𝑑𝑖 − 1)𝜎𝛾𝛼

Δ𝑔𝛼
𝑉

, (2.102)

where 𝑑𝑖 denotes the dimensionality, andΔ𝑔𝛼
𝑉
(𝑇) is the driving pressure for nucleation at the current

temperature. This driving pressure can be extracted during the pre-processing stage, thanks to the
ThermoCalc coupling, and subsequently interpolated at any temperature as previously discussed.

The nucleation start temperature is a challenging variable to quantify as its precise value cannot
be predicted through experimental observations. Typically, as the temperature decreases below
the 𝑇𝐴3 transformation temperature, the available driving pressure for the nucleation of the stable
phase increases. Considering capillarity aspects, the likelihood of a critical nucleus forming near
the 𝑇𝐴3 temperature is relatively low. Conversely, as the temperature decreases further, with more
driving pressure available, the probability increases. Hence, it’s reasonable to hypothesize that 𝑇𝑁𝑠

is generally offset by some margin from the transformation temperature. This difference between
the transformation temperature and the nucleation start temperature is generally referred to as the
nucleation undercooling (Δ𝑇𝑁 = 𝑇𝐴3 − 𝑇𝑁𝑠

). In practical terms, 𝑇𝑁𝑠
is often chosen based on the

temperature at which a certain initial percentage of the product phase fraction is experimentally
observed, as noted in works like [108].

The nucleation temperature range is a crucial parameter defining the span within which nucleation
is expected to occur. In a study by Offerman et al. [109] investigating nucleation, they highlighted
a correlation between the cooling rate and this temperature range. Specifically, they observed
that 𝛿𝑇𝑁 becomes more noticeable with higher cooling rates while being comparatively smaller at
lower cooling rates. Moreover, their findings suggest the existence of a distinct temperature range
even at extremely low cooling rates, implying a preference for continuous mode of nucleation over
site-saturated scenarios (where 𝛿𝑇𝑁 = 0). 𝛿𝑇𝑁 is generally assumed to be a modeling parameter
[108] to fit with the relevant experimental results.

The shield distance, as discussed in [108], serves as an inter-nucleation distance parameter shielding
the pre-existing nucleus from the formation of additional nuclei in its proximity. One of the physical
perspectives behind this parameter is that upon nucleus formation, the surrounding local region
becomes less conducive to further nucleation due to subsequent changes in local characteristics,
such as solute distribution. Nevertheless, it remains a challenging parameter to consistently quantify
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due to the lack of substantial physical underpinning, thus primarily serving as a modeling parameter.
In the current model, at any instant 𝑡, 𝛿𝑙𝑁 is taken as, 𝛿𝑙𝑁 (𝑡) = 𝑘𝑠ℎ𝑟

∗
𝑛𝑢𝑚 (𝑡), where 𝑘𝑠ℎ is a shield

distance factor. In [108], an additional parameter known as the shield time is utilized which shields
the local region around a nucleus, characterized by 𝛿𝑙𝑁 , for a certain duration of time before any
more nucleation could take place. This parameter is not considered in our model in this work.

The nucleation density (𝜌𝑁 ), which signifies the number of nuclei per unit volume of the domain,
may be estimated using the expected final fraction of the product phase (e.g., 𝑓 𝛼

𝑓
) and its anticipated

average grain size (𝑟 𝑓𝛼) as outlined in [108]:

𝜌𝑁 =
3 𝑓 𝛼

𝑓

4𝜋(𝑟 𝑓𝛼)3
. (2.103)

In 2D, the above relation gets modified to 𝜌𝑁 =
𝑓 𝛼
𝑓

𝜋(𝑟 𝑓𝛼)2
. At present, the current model employs a

constant nucleation rate for the continuous nucleation scenario. The implementation of CNT has
not been included in this work. Considering 𝜌𝑁 , the approximate number of nuclei can be estimated
as 𝑛𝑁 ≈ 𝜌𝑁𝑉0, where 𝑉0 represents the total volume of the domain (or area 𝐴0 in 2D). Utilizing 𝑛𝑁
and 𝛿𝑇𝑁 , the nucleation rate can be estimated using the cooling rate ( ¤𝑇) as follows:

¤𝑛𝑁 =
𝑛𝑁 ¤𝑇
𝛿𝑇𝑁

. (2.104)

Hence, ¤𝑛𝑁 provides an estimation of the number of nuclei to be introduced per second. It’s viable
to distribute the number of nuclei to be introduced every second across multiple nucleation checks,
enhancing continuity, based on the chosen time step (Δ𝑡).

In terms of spatial preference, the most favored sites for nucleating the new phase are the grain
corners (triple junctions in 2D, quadruple junctions in 3D), succeeded by grain edges and surfaces.
At lower cooling rates, the preference is for grain corners. However, at higher cooling rates, the
nucleation density notably rises, increasing the likelihood of saturating the grain corners. This
situation consequently opens opportunities for nucleation on grain edges and surfaces [108, 109].
From a modeling perspective, to indicate the sites (and their computational nodes) available for
nucleation, a site characteristic function (𝜒𝑠𝑛) is used:

𝜒𝑠𝑛 (𝒙, 𝑡) =
{

1 if 𝒙 ∈ Choice of nucleation site
0 otherwise

, ∀𝑡 | 𝑇𝑁𝑠
− 𝛿𝑇𝑁 < 𝑇 (𝑡) ≤ 𝑇𝑁𝑠

. (2.105)

If the chosen nucleation site is the grain boundaries, then 𝜒𝑠𝑛 (𝒙, 𝑡) = 𝜒𝛾𝛾 qualifies all eligible nodes
on the 𝛾-phase grain boundaries. Alternatively, when opting for the nucleation site as the grain
corners, the nodes are qualified as follows:
Require: 𝜖𝑀𝐽 , 𝜑𝑖

count ← 0
𝑖 ← 0
for 𝒙 in Ω do

while 𝑖 < 𝑁𝐿𝑆 do
if |𝜑𝑖 (𝒙) | ≤ 𝜖𝑀𝐽 then
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count ← count + 1
end if

end while
if count ≥ 𝑑𝑖 + 1 then ⊲ 𝑑𝑖 is the dimensionality

𝜒𝑠𝑛 (𝒙) ← 1
else

𝜒𝑠𝑛 (𝒙) ← 0
end if

end for

Here, 𝜖𝑀𝐽 represents a small distance threshold around the multiple junction. In 3D, if a node has
at least 4 GLS functions that meet the condition, it qualifies as a multi-junction node available for
nucleation. In 2D, the equivalent criterion is fulfilled with 3 GLS functions. A similar criterion
can be applied to qualify grain edge nodes in 3D, where the condition is met by 3 GLS functions.
Fig.2.26 gives a 2D representation of the small localized region in green around the triple junction
satisfying the above condition and hence the nodes within this zone are provisionally qualified as
eligible sites. The site characteristic function is however utilized in conjunction with the shield
distance, 𝛿𝑙𝑁 , to further filter out nodes that are ineligible (i.e., 𝜑𝛼 (𝒙) ≥ −𝛿𝑙𝑁 ) for nucleation. The
shielded zone and the nodes within it are highlighted in red. So, eventually one of the nodes within
the green zone is shielded and hence marked as ineligible for nucleation in red.

Figure 2.26: Illustration of nucleation site eligibility characterization for
grain corners: eligible nodes (green), shielded ineligible nodes (red)

Once a nucleus is created, its introduction triggers the local change of status of the phase through
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the 𝜒𝛼 function, subsequently altering the local diffusivity field. Following this change, the solute
redistribution equation is permitted to naturally modify the local composition. Thus, the local
composition isn’t manually altered upon nucleus introduction to avoid tampering with the solute
mass conservation. At the time of creation, the newly formed nucleus is dynamically integrated into
one of the existing GLS functions, 𝜑𝑖, while respecting the necessary conditions laid out to avoid
numerical coalescence outlined in 2.2.1. In the scenario where none of the current GLS functions
are eligible to accommodate the nucleus, a new GLS function is created. As 𝜒𝛼 and 𝜑𝑖 undergo
updates, the associated dependent fields, including 𝜑𝛼, 𝜙, etc., are correspondingly modified.

All of the concepts outlined above are consolidated and depicted in the Fig.2.27.

Figure 2.27: General workflow of the nucleation model
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2.4 Summary
A finite element (FE) based full-field numerical model is presented, primarily used to simulate
diffusive solid-state phase transformation (DSSPT) at the mesoscopic scale in a two phase metallic
material. The full-field approach enables tracking the topological evolution of the grain/phase
interface network in the microstructure during the transformation process. Among the various
full-field approaches available to follow the topological evolution, level-set (LS) method has been
adopted in this numerical framework. LS method belongs to the category of front-capturing
methods, where the migrating interfaces are implicitly represented with the help of a continuous
field variable. In the current work, this continuous field variable (known as the level-set function)
is defined as a signed Euclidean distance from the interface of interest, such that the function
is positive inside the grain and negative outside the grain while taking 0 at the interface. The
LS description is coupled with the physics of diffusive phase transformation, which prescribes the
interface kinetics to an LS transport equation that governs the resulting interface network migration.
In a polycrystalline context with multiple grains in the microstructure, instead of employing the
numerically expensive classical approach of using one LS function per grain, a grain coloration
scheme is used. This scheme helps represent a set of grains that are fairly distant from each other
under the same LS function. Such an LS function representing a family of grains is referred to as
a global level-set (GLS) function. In the event of two or more grains of the same GLS function
coming close to each other, to avoid numerical coalescence, provisions for grain recoloration are
provided. The grain recoloration model aims to swap the GLS functions of those grains that have
the potential for numerical coalescence.

LS based DSSPT modeling involves two critical stages: solute redistribution governed by a diffusion
equation, and resulting grain/phase interface network migration governed by an LS transport
equation. To be able to resolve a single diffusion equation in the whole computational domain
without explicit consideration of the phase interface jump conditions, we adopt a diffuse interface
hypothesis by using a tangent hyperbolic LS function. However, for the resolution of the LS
transport equation, we revert to a classical LS function description. A generalized description
for interface kinetics is presented for a biphasic polycrystalline context, capable of simultaneously
taking into account various phenomena along with phase transformation. The contribution of
solute drag effects to the interface kinetics due to the presence of any substitutional elements in the
alloy is taken into account using the Cahn’s simplified description of the solute drag pressure. The
non-linearity in the description of kinetics introduced by solute drag effects are linearized through
a reasonable approximation. To improve computational efficiency, a particular adaptive meshing
and remeshing strategy has been employed. This technique ensures that the mesh refinement
is more detailed near the phase interfaces, while it remains somewhat coarser near the grain
interfaces involving the same phases. The driving pressure for diffusive phase transformation is
assumed to be proportional to a small local undercooling, which is a measure of deviation from
the local equilibrium temperature for the phase interface concentrations at the current temperature.
The undercooling is formulated by locally linearizing the phase diagram using a thermodynamic
database such as the ThermoCalc software. To enrich this driving pressure description, a coupling
between ThermoCalc and the numerical model has been established using the TQ-interface (SDK)
of ThermoCalc. Such a coupling helps to extract a large thermodynamic data-set that could be
used for piecewise linearization of the phase diagram. Nucleation modeling adopts a simplistic
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approach with spherical-shaped nuclei, acknowledging the challenges in precisely describing the
nucleation events at the mesoscopic scale.

The numerical simulations are carried out with unstructured triangular meshes with a P1 inter-
polation, and using an implicit backward Euler time scheme for the time discretization. Each
system linked to Eq.(2.23) and the weak formulation of Eqs.(2.58) is assembled using typical P1
finite elements with a Streamline Upwind Petrov-Galerkin (SUPG) stabilization for the convective
terms [110]. The boundary conditions applied to the GLS functions are classical null Neumann
BCs, while the solute concentration field is generally imposed with Robin-type conditions. Fig.2.28
presents a general outline of the numerical framework highlighting the key stages and tasks involved.
As a part of pre-processing tasks, given the thermodynamic conditions involved during the phase
transformation, a thermodynamic data-set is generated using the ThermoCalc coupling interface.
The geometry, the initial grain morphology and the corresponding adaptive mesh is generated.
The grain coloration scheme described in section 2.2.1 is used to represent the microstructure and
initialize the GLS functions. The various characteristic functions and other relevant fields for the
initial grain/phase morphology are computed. The nucleation model is invoked to check for nu-
cleation at the initial conditions depending on the type of nucleation and its characteristics chosen.
In the event of nucleation, the relevant fields/ functions are updated, the FE mesh is adapted again
to any nuclei generated. The total concentration variable of the solute for the initial equilibrium
is computed in the domain using Eq.(2.12). The computational loop begins by computing any
temperature dependent diffusion and interface parameters. The first critical stage involves the
FE resolution of the convective-diffusive-reactive equation in (2.20) for solute redistribution. An
interpolation model is used to interpolate the necessary thermodynamic data at the current temper-
ature (using the data-set built during the pre-processing step) to facilitate the computation of the
phase transformation kinetics resulting from solute partitioning. Along with the driving pressure
due to the diffusive phase transformation, the other forms of driving pressures (depending on the
various phenomena considered) responsible for the microstructural evolution are constructed. The
interface migration kinetics constructed are then prescribed into the LS transport equation. The
convective-diffusive equation in (2.58) is then resolved to obtain the resultant grain/phase interface
network migration. This step constitutes another critical stage in this numerical framework. Post
this resolution, a numerical treatment is performed on the LS functions using the Eqs.(2.71) to avoid
any kinematic incompatibilities as discussed in 2.3.3. It is then followed by a reinitialization (2.2)
procedure of the LS functions to restore the property of a signed distance function. The interface
characteristic functions, the phase characteristic functions, and other relevant fields are updated for
the modified grain morphology. Necessary grain statistics such as the mean grain size, grain size
distribution of each phase, phase fractions and other output data relevant for post-processing are
computed at that instant. The grain recoloration model is invoked to swap the GLS functions of
those grains under the risk of numerical coalescence (2.2.1). The computational loop at any instant
ends with a provision for adaptive remeshing if necessary. The following computational loop begins
by checking for nucleation again depending on the thermodynamic conditions at that instant and
also depending on the chosen nucleation model. If any new nuclei are generated, the relevant fields
are updated, and the rest of the process in a computational loop repeats. The computation proceeds
until the imposed end time is reached. First illustrations of this global FE resolution scheme are
proposed in the next chapter.
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Figure 2.28: General overview of the numerical framework
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Chapter 3

Illustration of diffusive solid-state phase
transformation: Benchmarking cases

Abstract

Emphasizing the model’s preliminary evaluation, this chapter focuses on benchmarking
cases to illustrate diffusive solid-state phase transformation. Comparative assessments against
established software and analytical models serve to validate the numerical framework’s pre-
dictive capabilities, particularly concerning austenite decomposition in steels. An assessment
of parameter sensitivity explores the model’s convergence behavior with critical model param-
eters. Ultimately, this study aims to evaluate the model’s proficiency in replicating predicted
physical dynamics, thereby providing insights into its potential for handling realistic industrial
microstructures.

Résumé

En mettant l’accent sur l’évaluation préliminaire du modèle, ce chapitre se concentre sur
des cas de référence pour illustrer la transformation de phase diffusive à l’état solide. Grâce
à des évaluations comparatives avec des logiciels et des modèles analytiques existants, les
capacités prédictives de ce modèle numérique sont validées, notamment pour la décomposition
de l’austénite dans les aciers. Une analyse de sensibilité des paramètres examine le caractère
de convergence du modèle tout en exhibant les eléments critiques à quantifier soigneusement.
Cette étude vise enfin à établir la capacité du modèle à reproduire les caractéristiques physiques
attendues, offrant ainsi des perspectives sur son potentiel pour traiter des microstructures
industrielles réalistes.

3.1 Introduction
The preceding chapter extensively delved into the level-sets based numerical formulation, primar-
ily aimed at simulating diffusive solid-state phase transformation (DSSPT). While the overarching
objective of the numerical model remains the simulation of realistic industrial microstructures,
it’s paramount to begin by evaluating the model’s performance using simpler academic cases.

105



Therefore, in the spirit of assessing the early potential of the numerical framework, this chapter
emphasizes illustrating DSSPT through benchmarking cases. As comparative baselines, Thermo-
Calc software [1] and state-of-the-art semi-analytical models capable of giving good quantitative
predictions will be utilized to compare against the numerical results. Through this comparison, the
objective is to evaluate the numerical model’s proficiency in replicating expected physical behavior,
specifically in simulating prevalent phase transformation processes.

As with any numerical framework, comprehending the influence of selected model parameters
is crucial. Therefore, a sensitivity analysis will be conducted to assess the impact of key model
parameters—such as mesh resolution, time step, diffuse interface thickness, etc., on numerical
predictions. This evaluation seeks to understand their correlation with other model parameters and
their consequential impact on the overall simulation outcomes.

The illustrations within this chapter primarily focus on austenite decomposition (𝛾 → 𝛼) in
steels. Austenite decomposition involves a diffusive solid-state phase transformation from the
parent austenite phase (𝛾) to the more stable ferrite phase (𝛼) below the austenitization tempera-
ture. Throughout this phase transformation, the interface mobility is modeled with a temperature-
dependent Arrhenius-type law [2] as already depicted in Eq.(1.31). The solute diffusivities in the
two phases are also given a temperature dependence using a similar Arrhenius type law:

𝐷𝑖𝛼 = 𝐷𝑖𝛼

��
0 exp

(
−
𝑄𝑖𝛾

𝑅𝑇

)
𝐷𝑖𝛾 = 𝐷𝑖𝛾

��
0 exp

(
−
𝑄𝑖𝛾

𝑅𝑇

) , (3.1)

where 𝑖 is the solute, 𝑄𝑖𝛼, and 𝑄𝑖𝛾 are the activation energies for solute diffusion in the 𝛼 and the 𝛾
phases, respectively. Unless explicitly specified, within the defined scope, this work assumes the
interface mobility and interfacial energy to be homogeneous in the computational domain.

3.2 DSSPT in simple domains

3.2.1 Pseudo-1D case

Figure 3.1: Pseudo-1D case (𝑤 << 𝑙) with a planar interface between a
ferrite (red) and an austenite (blue) phase

For our initial case, we examine phase transformation in a slender 2D domain (Pseudo-1D since
𝑤 << 𝑙) featuring a planar interface between a single austenite grain and a ferrite grain as shown in
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Fig.3.1. This initial configuration is adopted as our solvers were developed in 2D and 3D, and not
in 1D. A simple metallic alloy Fe - 0.02 wt%C is assumed for austenite decomposition. The initial
condition is assumed to be at a temperature, 𝑇 𝑖 = 1173 K, under fixed atmospheric pressure, and
with corresponding initial concentrations of 𝑥𝛼

𝐶,𝑖
= 0.0014022 wt%C and 𝑥𝛾

𝐶,𝑖
= 0.024575 wt%C

(extracted from ThermoCalc [1]). The 𝛼/𝛾 phase interface is initially imposed to be at Γ𝑖 =

1.1838 µm from the left boundary, corresponding to the initial ferrite fraction of 0.197297 at
1173 K. A reference temperature of 𝑇𝑅 = 1140 K is taken and the necessary thermodynamic data
(summarized in table 3.1) are extracted using ThermoCalc. The final state is imposed to be at a
temperature, 𝑇 𝑓 = 1140 K, and the corresponding equilibrium thermodynamic data is the same
as the one summarized in table 3.1. The final steady state interface position is expected to be at,
Γ𝑒𝑞 = 5.11296 µm, computed based on the expected equilibrium ferrite fraction ( 𝑓 𝛼𝑒𝑞 = 0.85216)
by ensuring complete solute mass conservation for the considered domain. Capillarity effects are
irrelevant for the planar interface due to null curvature. The thickness of the diffuse phase interface
for this case is taken as 𝜂 = 0.5 µm. An adaptive finite element (FE) mesh with triangular elements
as depicted in Figs.3.2 is adopted. The mesh size within the supposed diffuse interface, ℎ𝑚𝑖𝑛, is set
to 0.4 nm, while the far-field mesh size, ℎ𝑚𝑎𝑥 , is set to 2 nm. Only a small snippet of the mesh is
illustrated in figs3.2 as the domain is elongated and significantly longer than its width. A smooth
linear transition in mesh resolution is ensured between ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 over a certain chosen distance
parameter. The time step, Δ𝑡 is fixed to 1 ms.

(a) Around the phase interface

(b) Far-field, in the 𝛼-phase

Figure 3.2: Mesh resolution depicting the discretization near the interface
compared to the far-field mesh for the pseudo-1D case

The activation energy for grain/ phase boundary migration (𝑄𝑚) is taken as 140 kJ·mol−1 [3], and
the mobility pre-exponential factor (𝑀0) is taken as 2×1017 µm4·J−1·s−1 for low cooling rates or as
6×1017 µm4·J−1·s−1 for high cooling rates [4]. Carbon diffusivities in the two phases are assumed
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𝑇𝑅

(K)
𝑥𝛼
𝐶

��
𝑅

(wt%)
𝑥
𝛾

𝐶

��
𝑅

(wt%)
Δ𝑆

(J·K−1·µm−3)
𝑚
𝛼/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
𝑚
𝛾/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
𝑓 𝛼𝑒𝑞

1140 0.0051473 0.10593 3.28138 × 10−13 −9127.94266 −360.7063 0.8522

Table 3.1: ThermoCalc data extracted at 1140 K for Fe - 0.02 wt%C

as:

𝐷𝐶𝛼 = 2.2 × 108 exp

(
−𝑄𝐶𝛾
𝑅𝑇

)
in µm2·s−1

𝐷𝐶𝛾 = 1.5 × 107 exp

(
−𝑄𝐶𝛾
𝑅𝑇

)
in µm2·s−1

, (3.2)

where 𝑄𝐶𝛼 = 122.5 kJ·mol−1, and 𝑄𝐶𝛾 = 142.1 kJ·mol−1. The carbon diffusivity pre-factors and the
activation energies for the two phases have been taken from [4, 5].

Three different scenarios of cooling are considered from 𝑇 𝑖 = 1173 K to 𝑇 𝑓 = 1140 K : (i)
instantaneous cooling, thus giving isothermal phase transformation, at 1140 K, (ii) rapid cooling
at the rate of 10 K·s−1 until 1140 K and thereafter the temperature is maintained, and (iii) slow
cooling at the rate of 0.5 K·s−1 until 1140 K and thereafter the temperature is maintained.

The snapshots of the phase evolution during austenite decomposition at various instants are dis-
played in Figs.3.3 for the instantaneous cooling scenario. The progression reveals the gradual
consumption of the austenite phase (𝛾) in blue by the ferrite phase (𝛼) depicted in red. As the sys-
tem is abruptly pushed out of its initial equilibrium due to instantaneous cooling, the transformation
kinetics immediately accelerate to their maximum and gradually decelerate as the system converges
toward its new equilibrium. Upon reaching the steady state, the transformation halts, and the phase
interface stabilizes at a position aligning with the equilibrium conditions. Fig.3.4 illustrates the
associated evolution of carbon concentration along the length of the domain at different times for
the instantaneous cooling case. The solute distribution illustrated in Fig.3.4 represent the total
concentration of carbon (𝑥𝐶 = 𝜙𝑥𝛼

𝐶
+ (1 − 𝜙)𝑥𝛾

𝐶
), not to be confused with the individual phase

concentrations. They corresponding to the individual phase concentrations only in the bulk of the
phase, away from the assumed diffuse phase interface. As the interface begins to migrate, peaks
in the profiles near the interface on the austenite side develop due to carbon build up resulting
from the ferrite phase’s rejection of carbon into the austenite phase. This indicates the expected
solute enrichment in austenite during the transformation as carbon is generally more soluble in
austenite than ferrite. In the ferrite phase, due to higher carbon diffusivity, the bulk diffusion
is faster and hence the concentration gradients are less pronounced as the concentration quickly
attains plain profiles. The concentration on the austenite side continues to increase until reaching a
steady state between the two phases, aligning with their corresponding equilibrium concentrations.
As the steady state is reached, plain carbon profiles are obtained in both the phases. At steady
state, the simulated equilibrium concentrations are found to be: 𝑥𝛼𝑒𝑞, 𝑛𝑢𝑚 = 0.0051456 wt%C and
𝑥
𝛾
𝑒𝑞, 𝑛𝑢𝑚 = 0.10587 wt%𝐶. These values clearly align well with the ThermoCalc predictions (see

Tab.3.1).
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(a) 𝑡 = 0 s, initial state

(b) 𝑡 = 0.5 s

(c) 𝑡 = 2 s

(d) 𝑡 = 10 s, steady state

Figure 3.3: Phase evolution in a pseudo-1D domain during austenite
decomposition for the instantaneous cooling case (red: ferrite, blue:

austenite)

Figure 3.4: Evolution of carbon concentration profiles at different instants
till the steady state (instantaneous cooling case)
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On the other hand, Fig.3.5 and Fig.3.6 demonstrate the evolution of the carbon profiles for the
rapid cooling and slow cooling cases, respectively. In the rapid cooling case, although the peaks
in the profiles remain visible, they are not as pronounced as they were in the case of instantaneous
cooling. In the scenario of slow cooling, the profiles appear consistently plain over time, gradually
approaching the equilibrium value as the concentration levels increase. This stems from the fact
that, at any instant, smaller amounts of carbon accumulate in the austenite side due to slower
kinetics. The slower pace allows sufficient time for diffusion to evenly redistribute the small influx
of carbon into the bulk at any instant.

Figure 3.5: Evolution of carbon concentration profiles at different instants
till the steady state (rapid cooling case)

Fig.3.7 illustrates the evolution of the phase interface for all three cooling scenarios as they converge
toward a steady state position. Clearly, the case with slow cooling is sluggish to start as the system
steadily departs from the initial equilibrium state, and is the slowest to reach the new equilibrium
state corresponding to the final conditions. Conversely, the case with instantaneous cooling takes off
immediately and swiftly reaches the steady state. The zoomed-in section of the curves emphasizes
the stark differences in interface kinetics between slow cooling and the other two cases. The
instantaneous and rapid cooling scenarios reach their steady state positions within approximately
10 − 15s, while the slow cooling case requires around 100 s. All three cases yield similar steady
states with differences only in their kinetics. The steady state positions predicted for the three cases
are: (i) Γ𝑛𝑢𝑚𝑒𝑞 = 5.1167 µm for the instantaneous cooling case, (ii) Γ𝑛𝑢𝑚𝑒𝑞 = 5.1227 µm for the rapid
cooling case, and (iii) Γ𝑛𝑢𝑚𝑒𝑞 = 5.0826 µm for the slow cooling case. These numerically predicted
positions are in good agreement with the expected interface position of 5.11296 µm. Any small
differences in the predicted values from the expected value is a consequence of the error in ensuring
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Figure 3.6: Evolution of carbon concentration profiles at different instants
till the steady state (slow cooling case)

complete solute mass conservation in the computational domain during the simulation. Fig.3.8
quantifies the quality of mass conservation established during the course of the simulation. The
maximum variation is limited to 0.39288%, 1.6284%, and 3.6532% for the instantaneous, rapid,
and slow cooling cases, respectively. This variation generally stems from the mesh quality, the
choice of the time step, diffuse interface thickness (𝜂) etc. A positive error percent is a reflection
of numerical addition of the solute, while a negative percent reflects numerical loss of solute mass.

3.2.2 2D matrix-precipitate case
We now consider a 2D square matrix representing the parent phase, which includes a circular
precipitate acting as the product phase. In the previous pseudo-1D illustration, the driving pressure
due to the capillarity effects of the phase interface were irrelevant. However, in higher dimensions,
the curvature of the interfaces becomes a factor, introducing additional contributions to the trans-
formation kinetics. To highlight the subtle yet important effects of capillarity, we investigate an
isothermal phase transformation in a 2D matrix-precipitate test case, comparing scenarios with and
without consideration of capillarity aspects. A square domain with a side of 10µm is considered.
The same steel alloy, Fe - 0.02 wt%C, is assumed with the same initial conditions at 𝑇 𝑖 = 1173 K
for austenite decomposition. However, the final conditions are set to 𝑇 𝑓 = 1160 K to ensure that
the final ferrite fraction is sufficiently small, allowing the ferrite precipitate to remain circular at
the steady state. The precipitate is initially imposed at a radius of 𝑟𝑖𝛼 = 2.50604 µm corresponding
to the initial ferrite fraction. The domain is discretized with an adaptive mesh, with privileges
for remeshing around the precipitate interface. The interface thickness is kept as 𝜂 = 0.5 µm with
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Figure 3.7: Comparison of the kinetics of interface evolution for different
scenarios of cooling
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Figure 3.8: Variation of solute mass in the domain during the simulation

ℎ𝑚𝑖𝑛 = 0.01 µm and ℎ𝑚𝑎𝑥 = 0.1 µm. The time step is fixed at Δ𝑡 = 0.001 s.

𝑇𝑅

(K)
𝑥𝛼
𝐶

��
𝑅

(wt%)
𝑥
𝛾

𝐶

��
𝑅

(wt%)
Δ𝑆

(J·K−1·µm−3)
𝑚
𝛼/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
𝑚
𝛾/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
𝑓 𝛼𝑒𝑞

1160 0.002908 0.05429 2.84812 × 10−13 −8746.564 −416.959 0.667

Table 3.2: ThermoCalc data extracted at 1160 K for Fe - 0.02 wt%C

Tab.3.2 summarizes the ThermoCalc data extracted at the final temperature, which is also the
reference temperature considered for the phase diagram linearization. The expected equilibrium
ferrite fraction estimated by ThermoCalc corresponds to an equivalent precipitate radius at the
steady state position of approximately 4.6075 µm. It’s crucial to note that ThermoCalc predictions
are computed under the assumption of a planar interface, disregarding the influence of capillarity
aspects. The mobility and the diffusivity data remain the same as assumed for the previous
illustration. Mobility and interfacial energy are assumed to be homogeneous along the phase
interface. The value for the interface energy is adopted from [6, 7], where𝜎𝛾𝛼 = 1.0×10−6 J·mm−2.

Fig.3.9 depicts snapshots of the simulation at three different instants. The left-side images showcase
the evolution of the ferrite precipitate (red) within the austenite matrix (blue), while the right-side
images give an account of the corresponding solute redistribution in the domain. The left-side
images also emphasize the position of the phase interface contours, highlighted in white. The final
set of images at 𝑡 = 10 s represents the system’s steady state.

The same test case is re-simulated but without the capillarity effects. In Fig.3.10, the white and black
circles represent the iso-zero contours of the phase interface mapped at the steady state for the cases
with and without capillarity effects, facilitating a comparison of their respective steady state posi-
tions. This comparison distinctly highlights minor differences in the steady state positions between
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Figure 3.9: Snapshots of the transformation in the matrix-precipitate case
by accounting for the capillarity effects: phase evolution on the left,

carbon distribution map on the right
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the two cases. Accounting for capillarity effects predicts a final precipitate radius of approximately
4.5676 µm, while the other case predicts around 4.6376 µm. We can observe the impact of the
capillarity induced driving pressure which in this case slightly lowers the transformation kinetics
and reduces the steady state position achieved. The presence of interfaces increases the system’s
overall Gibbs free energy, consequently introducing an additional driving pressure to minimize the
interfacial area of the growing precipitate under the influence of the principal driving pressure due
to phase transformation. The magnitude of this capillarity induced pressure is several orders lower
compared to the phase transformation driving pressure, leading to its oversight in certain numerical
models. While the differences in final positions may seem inconsequential, their notable impact on
transformation kinetics is evident in Fig.3.11, which compares the evolution of precipitate radius
during the transformation. At the onset of the transformation, the capillarity pressure exerts a
substantial impact, resulting in slower transformation kinetics. However, as the ferrite precipi-
tate matures, the influence of capillarity effects diminishes. The magnitude of capillarity-induced
driving pressure (|𝜎𝜅 |), is higher when the precipitate is smaller due to increased curvature, inten-
sifying the associated driving pressure. As the particle grows, both curvature and the associated
driving pressure decrease. So, for a larger or well established ferrite grains or particles, curvature
effects are generally negligible during a phase transformation within the characteristic time scale
of interest. However, in the case of small ferrite grains or when the ferrite phase is in its nucleus
form, curvature effects play a significant role in governing the growth or dissolution of the nuclei.

Figure 3.10: Comparison of the steady state positions of the phase
interface contours

Incorporating capillarity effects not only influences kinetics but also shifts the equilibrium position
of the thermodynamic system. For instance, the numerical predictions for equilibrium carbon
concentrations in the two phases are as follows: (i) With capillarity effects - 𝑥𝛼𝑒𝑞,𝑟 = 0.002717 wt%C
and 𝑥𝛾𝑒𝑞,𝑟 = 0.05069 wt%𝐶; (ii) Without capillarity effects - 𝑥𝛼𝑒𝑞,∞ = 0.00295 wt%C and 𝑥𝛾𝑒𝑞,∞ =
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Figure 3.11: Comparison of the ferrite precipitate evolution during the
transformation. The dotted black line references the ThermoCalc

prediction at equilibrium

0.0551 wt%𝐶. It’s evident that the equilibrium concentrations are slightly skewed towards the lower
end of the scale due to the influence of capillarity pressure. To elucidate this, Fig.3.12 showcases
the variation of representative Gibbs free energy curves concerning carbon composition at a specific
temperature, expected during austenite decomposition. The solid red curve represents the Gibbs
free energy of the ferrite phase with zero curvature or infinite radius, while the dashed red curve
portrays the same in the presence of a curved interface. The additional contribution arising from
capillarity effects elevates the 𝛼-phase Gibbs free energy curve. Consequently, the common tangent
line used for determining equilibrium positions undergoes a shift, resulting in lower equilibrium
concentrations in this scenario. Depending on the stability of the phases involved, equilibrium
concentrations might also shift to the right in other contexts. The extent of this shift depends on
the strength of the capillarity effects, namely the interface curvature and the interfacial energy.

3.3 Comparison with state-of-the-art semi-analytical sharp in-
terface model: Benchmarking

To benchmark this numerical framework, we consider the semi-analytical mixed-mode sharp inter-
face model formulated by Bos et al. [8].

Sharp interface model: For a 𝛾 → 𝛼 phase transformation, the semi-analytical sharp interface
model in [8] is based on the following assumptions:

• The solute concentration profile in front of the 𝛼/𝛾 interface in the 𝛾 phase (𝑥𝛾) in a semi-

116



Figure 3.12: Influence of the capillarity induced pressure on the
equilibrium position

infinite domain is assumed to be a function of position 𝑧 as follows:

𝑥𝛾 (𝑧) = 𝑥0 +
(
𝑥
𝛾

Γ
− 𝑥0

)
exp

(
− 𝑧
𝑧0

)
, (3.3)

where 𝑥0 is the nominal alloy composition, 𝑥𝛾
Γ
= 𝑥𝛾 |Γ is the composition in the 𝛾 phase at

the interface Γ(𝑡), 𝑧 is the position in front of the interface (with 𝑧 = 0 at the interface), and
𝑧0 is coined as the width of the profile as depicted in Fig.3.13.

• Diffusion in the 𝛼 phase is assumed to be instantaneous and so the concentration in this phase
is imposed to be homogeneous at its equilibrium concentration, 𝑥𝛼𝑒𝑞.

• The driving pressure for phase transformation is assumed to be proportional to the deviation
of 𝑥𝛾

Γ
from its equilibrium concentration as in Eq.(2.81):

Δ𝐺𝛾→𝛼 = Υ
(
𝑥
𝛾
𝑒𝑞 − 𝑥𝛾Γ

)
, (3.4)

where Υ is a temperature dependent proportionality factor derived from thermodynamic
databases. The interface migration velocity is based as,

𝑣 = 𝑀𝛾𝛼Δ𝐺𝛾→𝛼, (3.5)

with 𝑀𝛾𝛼 being the phase interface mobility.

• A single 𝛼-grain of volume 𝑉𝛼 and surface area 𝐴𝛼 at any instant, 𝑡, is considered in an
infinite 𝛾 phase matrix.
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Figure 3.13: Concentration profile described in the semi-analytical model
by Bos et al. [8]

Considering mass balance at any instant, 𝑡, we obtain:

𝑉𝛼
(
𝑥0 − 𝑥𝛼𝑒𝑞

)
=

∫ ∞

0
𝐴(𝑧) [𝑥𝛾 − 𝑥0] 𝑑𝑧, (3.6)

where 𝐴(𝑧) is the surface area of the grain at the position 𝑧. The width of the profile, 𝑧0, is derived
using the above mass balance relation as:

𝑧0 =
𝑉𝛼

Ω𝐴𝛼

(
𝑥0 − 𝑥𝛼𝑒𝑞
𝑥
𝛾

Γ
− 𝑥0

)
. (3.7)

As summarized in Bos et al. [8], Ω can be analytically computed to be:

• Ω = 1 for systems with a constant surface area such as 1D cases,

• Ω = 1 + 𝑧0
𝑟𝛼

for growing 𝛼 disks in 2D, and

• Ω = 1 + 2 𝑧0
𝑟𝛼
+ 2

(
𝑧0
𝑟𝛼

)2
for growing spheres in 3D,

with 𝑟𝛼 being the characteristic size of the 𝛼-grain at time, 𝑡.

Flux balance at the phase interface under the considered assumptions yields:

𝑣

(
𝑥
𝛾

Γ
− 𝑥𝛼𝑒𝑞

)
= −𝐷𝑖𝛾

𝜕𝑥𝛾

𝜕𝑧
, (3.8)

with 𝑖 being the solute element.

Combining equations (3.3) to (3.5), (3.7), and (3.8), we can deduce the solute concentration in the
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𝛾 phase at the interface as:

𝑥
𝛾

Γ
=

Z𝑥0 + Δ𝑥0𝑥
𝛼+𝛾
𝑒𝑞 +

√︂(
Z𝑥0 + Δ𝑥0𝑥

𝛼+𝛾
𝑒𝑞

)2 − (Z + 2Δ𝑥0)
(
Z𝑥2

0 + 2Δ𝑥0𝑥
𝛼
𝑒𝑞𝑥

𝛾
𝑒𝑞

)
Z + 2Δ𝑥0

, (3.9)

where Δ𝑥0 = 𝑥0 − 𝑥𝛼𝑒𝑞, and 𝑥𝛼+𝛾𝑒𝑞 = 𝑥𝛼𝑒𝑞 + 𝑥
𝛾
𝑒𝑞. TheZ parameter is defined as:

Z = 2Ω
𝐷𝑖𝛾

𝑀𝛾𝛼Υ

𝐴𝛼

𝑉𝛼
. (3.10)

The dependence ofZ on Ω which eventually depends on 𝑥𝛾
Γ
, renders the Eq.(3.9) non-linear. Thus,

an iterative procedure is needed to compute the interface concentration.

The 𝛼-grain size, 𝑟𝛼 (𝑡), is then evolved according to the following relation:

𝑑𝑟𝛼

𝑑𝑡
= 𝑣 (3.11)

The resolution procedure at each time step could be summarized as follows:

• The non-linear equation in Eq.(3.9) is resolved using an iterative procedure. At the initial
time step, when 𝑟𝛼 = 0, Ω is assumed as 1, but thereafter, Ω is computed according to the
dimensionality of the grain as discussed previously.

• Having computed the interface concentration, the interface migration velocity, 𝑣, is computed
using the Eq.(3.5).

• The interface is then migrated through an explicit Euler time scheme applied to Eq.(3.11) as:
𝑟 𝑘+1𝛼 = 𝑟 𝑘𝛼 + 𝑣Δ𝑡, where Δ𝑡 is the time step and 𝑘 is the index for time stepping.

Simulation conditions: To benchmark the level-set based numerical model with this sharp inter-
face semi-analytical model (SAM), an isothermal austenite decomposition (𝛾 → 𝛼) in a steel alloy
(Fe - 0.1 wt%C - 0.5 wt%Mn) at 1000 K is considered. This is the same case studied by Mecozzi et
al. [9] in their comparison of a phase-field numerical model with the above semi-analytical method.
The phase transformation is assumed to take place under para-equilibrium (PE) hypothesis. The
solute drag aspects potentially induced by the Mn element are not taken into account for this study,
and the capillarity effects of the phase interface have been neglected.

For the description of the driving pressure, as discussed in 2.3.4 in Eq.(2.88), the driving pressure
is assumed to be proportional to the local undercooling: Δ𝐺𝛾→𝛼 = Δ𝑆𝛾𝛼Δ𝑇 , through a local
linearization of the phase diagram at a certain reference temperature. As demonstrated in the
previous chapter in 2.3.4, based on this linearization, the local undercoolings of each solvus line
(Δ𝑇𝛼,Δ𝑇𝛾) of the phase diagram can be expressed as:

Δ𝑇𝛼 = 𝑇
𝑒𝑞
𝛼 − 𝑇 = 𝑇𝑅 − 𝑇 + 𝑚𝛼/(𝛼+𝛾)

𝐴−𝑖

(
𝑥𝛼𝑖 − 𝑥𝛼𝑖

��
𝑅

)
= 𝑚

𝛼/(𝛼+𝛾)
𝐴−𝑖

(
𝑥𝛼𝑖 − 𝑥𝛼𝑖

��
𝑒𝑞

)
Δ𝑇𝛾 = 𝑇

𝑒𝑞
𝛾 − 𝑇 = 𝑇𝑅 − 𝑇 + 𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑅

)
= 𝑚

𝛾/(𝛼+𝛾)
𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑒𝑞

) . (3.12)
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As a reminder, 𝑥𝛼
𝑖

��
𝑒𝑞

and 𝑥
𝛾

𝑖

��
𝑒𝑞

, in the above equations are the equilibrium concentrations at the
current temperature, 𝑇 , derived according to the linearized solvus lines.

For this particular case study, following [9], we impose an additional hypothesis of equal under-
coolings in both the phases (as illustrated in fig.3.14):

Δ𝑇 = Δ𝑇𝛼 = Δ𝑇𝛾 = 𝑚
𝛾/(𝛼+𝛾)
𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑒𝑞

)
. (3.13)

This additional hypothesis makes it possible to use a consistent thermodynamic description between

Figure 3.14: Local linearization of the phase diagram under equal
undercooling in both the phases (Δ𝑇𝛼 = Δ𝑇𝛾)

the sharp interface model and the numerical model.

So, the driving pressure for the numerical model is described as:

Δ𝐺𝛾→𝛼 = Δ𝑆𝛾𝛼𝑚
𝛾/(𝛼+𝛾)
𝐴−𝑖

(
𝑥
𝛾

𝑖
− 𝑥𝛾

𝑖

��
𝑒𝑞

)
. (3.14)

Comparing the above equation with the driving pressure description of the semi analytical sharp
interface model in eq.(3.4), it can be deduced that, Υ = −𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖 Δ𝑆𝛾𝛼.

The necessary mobility, carbon diffusivity, and the thermodynamic data have been taken from [9]
to be consistent with the comparison. The temperature dependence of phase interface mobility,
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and the carbon diffusivity in the austenite phase is thus defined as:

𝑀𝛾𝛼 = 3.5 × 1017 exp
(
−𝑄𝑚
𝑅𝑇

)
𝑖𝑛 µm4·J−1·s−1

𝐷𝐶𝛾 = 1.5 × 107 exp

(
−𝑄𝐶𝛾
𝑅𝑇

)
𝑖𝑛 µm2·s−1

, (3.15)

where 𝑄𝑚 = 140 kJ·mol−1, and 𝑄𝐶𝛾 = 142.1 kJ·mol−1.

The thermodynamic data extracted following [9], at a reference temperature of 𝑇𝑅 = 1073 K, has
been tabulated in the table 3.3. These data have been deduced by linearizing the pseudo-binary
Fe-C phase diagrams under the para-equilibrium hypothesis.

𝑇𝑅 (K) 𝑥𝛼
𝐶

��
𝑅

(wt%) 𝑥
𝛾

𝐶

��
𝑅

(wt%) Δ𝑆𝛾𝛼

(J·K−1·µm−3)
𝑚
𝛼/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
𝑚
𝛾/(𝛼+𝛾)
𝐹𝑒−𝐶

(K·wt%−1)
1073 0.009 0.279 3.46 × 10−13 −10250 −186.2

Table 3.3: ThermoCalc data extracted at 𝑇𝑅 = 1073 K from [9] for
Fe - 0.1 wt%C - 0.5 wt%Mn

Two cases are considered in this comparison: (i) A pseudo-1D domain of length 100 µm (with
a relatively minute and insignificant breadth of 0.15 µm), and (ii) A square 2D domain of size
100 × 100 µm2. The domain is supposed to be initially fully austenitic. As the temperature is
instantaneously cooled below the 𝑇 𝐴3 temperature to 1000 K, a ferrite nucleus is allowed to grow at
the center of the domain for a time period of 200 s. In the level-set based numerical model (LS-NM),
the initial ferrite nucleus radius (𝑟𝑖𝛼) has been set to 0.25 µm due to numerical limitations linked to
the FE mesh size (while it grows from 0 µm in the semi-analytical model). In the LS-NM, the initial
ferrite nucleus composition is set to 0.001832 wt%C, which is the critical nucleus composition at
𝑇 = 1000 K under the para-equilibrium (PE) constraints, extracted from ThermoCalc. However,
in the SAM, the nucleus composition is straight away set to the equilibrium composition for the
ferrite phase (0.016013 wt%C) under PE since it is assumed to diffuse instantaneously in this
phase. During the numerical simulation, a uniform time step of Δ𝑡 = 0.01 s is considered. An
adaptive meshing/ remeshing strategy is employed with the thickness for the diffuse interface being
𝜂 = 0.3 µm for the 1D case, and 𝜂 = 1 µm for the 2D case. The mesh resolution within the diffuse
interface (ℎ𝑚𝑖𝑛) is set to 5 nm, and 70 nm for the 1D, and the 2D cases, respectively.

At each time step, the evolution of the ferrite phase radius (𝑟𝛼) in the case of the numerical model
is tracked from the ferrite fraction as follows:

• 1D domain: 𝑟𝛼 (𝑡) = 𝑑 𝑓 𝛼 (𝑡)
2 ,

• 2D domain: 𝑟𝛼 (𝑡) = 𝑑
√︃

𝑓 𝛼 (𝑡)
𝜋

,

where 𝑑 is the size of the domain (100 µm), and 𝑓 𝛼 is the ferrite fraction.
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Results and discussion: Figs.3.15 illustrate the phase distribution at the initial state and at
the end of 𝑡 = 200 s, obtained by the LS-NM for the 1D domain case. Figs.3.16 demonstrate the
corresponding solute concentration profiles along the length of the 1D domain. Likewise, Figs.3.17
depict these characteristics for the 2D case.

(a) 𝑡 = 0 s

(b) 𝑡 = 200 s

Figure 3.15: Phase distribution obtained by the level-set based numerical
model (LS-NM) - 1D case

(a) 𝑡 = 0 s

(b) 𝑡 = 200 s

Figure 3.16: Total carbon concentration profiles predicted by the level-set
based numerical model (LS-NM) - 1D case

The ferrite phase is depicted by red color, while the parent austenite phase is in blue. As the ferrite
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phase grows into the austenite phase, as discussed previously, the carbon solubility difference
between the two phases results in a solute build up near the phase interface in the austenite side.
Consequently, this creates a concentration gradient relative to the far field concentration. In the
numerical model, the Fick’s laws of diffusion govern the phenomenon of bulk diffusion in the
austenite phase due to the resultant flux of carbon atoms. However, in the case of the sharp
interface semi-analytical model, these concentration gradients are modeled with the help of an
analytical function (exponential in this case), constrained by flux and mass balance relations.

(a) 𝑡 = 0 s

(b) 𝑡 = 200 s

Figure 3.17: Phase (left) and carbon (right) fields predicted by the
level-set based numerical model (LS-NM) - 2D case

Fig.3.18 compares the level-set based numerical (LS-NM) and the semi-analytical model (SAM)
solutions for the evolution of the carbon concentration profiles in front of the 𝛼/𝛾 phase interface
in the austenite side at various instants for the 1D case. The solid lines highlight the numerical
solution, while the open circular markers represent the semi-analytical solution. Fig.3.19 illustrates
the same for the 2D case. The numerical solution of the austenite phase concentration has been
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extracted at any instant through an explicit computation using the Eq.(2.15):

𝑥
𝛾

𝐶
=

𝑥𝐶

1 + 𝜙(𝑘𝐶𝑝 − 1)
. (3.16)

This computation is performed over a discrete set of nodes in front of the phase interface such
that 𝜑𝛼 ≤ 0 or 0 ≤ 𝜙 ≤ 0.5 (corresponding to the austenite phase). For the 2D case, this profile
is extracted along the length of the x-axis (passing through the center of the domain) from the
phase interface to the domain boundary, represented by A-A in the Figs.3.17. In this context, 𝑘𝐶𝑝
is the equilibrium partitioning ratio of carbon between the phases 𝛼 and 𝛾 at 𝑇 = 1000 K and
is computed as the ratio of equilibrium carbon concentration in ferrite to that of austenite at this
temperature. The curves in Fig.3.18 and Fig.3.19 demonstrate good agreement at different instants
between the LS-NM and the SAM in their ability to predict the solute concentration profiles in
the parent phase for both the 1D and the 2D case. For the 2D case, one could observe small
discrepancy between the predictions of the two models at 𝑡 = 200 s. This could be attributed to
the effects of boundary conditions of the 2D domain in the numerical model as the phase interface
approaches the boundaries. In contrast, in the 1D case, as the numerically predicted position of the
phase interface at 𝑡 = 200 s is farther from the boundaries, it is devoid of any relevant effects from
the boundary conditions. It should be reminded that the semi-analytical model operates within
a semi-infinite domain, while the numerical model is used on a bounded domain with imposed
boundary conditions. Examining these concentration profiles highlights the mixed-mode nature
of the transformation kinetics. It’s evident that the interfacial concentration doesn’t immediately
reach the local equilibrium concentration, resulting in finite interface migration. Simultaneously,
diffusion in the bulk of the austenite phase isn’t instantaneous, leading to a disparity between the
interfacial concentration and the bulk concentration.

In Figs.3.20, the evolution of the phase interface position in terms of the radius of the ferrite phase
nucleus is compared between the SAM, LS-NM, and a phase-field based numerical model (PF-
NM). On the other hand, in Figs.3.21, the comparison focuses on the evolution of the interfacial
carbon concentration in the austenite side across these different models. The PF-NM results
used in these plots were sourced from [9], where a similar analysis was performed. The LS-NM
predictions of the interfacial concentrations have been computed by averaging 𝑥𝛾

𝐶
over the interface

(corresponding to 𝜑𝛼 = 0 or the center of the diffuse interface with 𝜙 = 0.5) at each instant. It is
apparent from these curves that the LS-NM based predictions closely resemble those of the sharp
interface SAM compared to the PF-NM, which predicts slower transformation kinetics. However,
from Figs.3.21, the PF-NM seems to predict relatively lower interfacial carbon concentrations
which in turn should provide more driving pressure during the transformation. This is supported
by the curves in Figs.3.22, demonstrating the available driving pressure (multiplied by the physical
interface mobility, 𝑀𝛾𝛼) during the evolution. Yet, the higher driving pressure in PF-NM does not
ultimately translate to faster interface kinetics. It’s important to note that the migration of interface
kinetics in a PF-NM is formulated in the form of an effective or numerical interface mobility,
directly dependent on the numerical diffuse interface thickness parameter and the physical interface
mobility. As detailed in [9], during the phase-field simulation, the effective interface thickness is
not constant and is lower than the initially imposed value. This variation could cause the actual
phase-field profile to deviate from the ideal steady-state interface contour, resulting in the effective
interface mobility being lower than the imposed physical mobility, and hence yielding slower
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Figure 3.18: Evolution of the carbon concentration profiles in the
austenite phase - 1D case

Figure 3.19: Evolution of the carbon concentration profiles in the
austenite phase - 2D case, along A-A
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transformation kinetics. Unlike the phase-field method, the LS-NM exclusively prescribes the
interface migration kinetics using the physical interface mobility. Since the migration of level-sets
is theoretically synonymous to that of the sharp interface method, only the velocity field over the
iso-zero contour of the level-set (𝜑𝛼 = 0) is of prime importance. This stands in contrast to PF-NM
where the kinetics have sense over the entire diffuse interface. So, the sharp interface nature of LS-
NM in interface migration could perhaps reflect the closer resemblance observed in the predictions
compared to the fully diffuse approach of PF-NM.

(a) 1D case (b) 2D case

Figure 3.20: Comparison of the evolution of phase interface predicted by
different models

(a) 1D case (b) 2D case

Figure 3.21: Comparison of the evolution of interfacial carbon
concentration in the austenite side as predicted by different models

However, it’s pivotal to emphasize that the LS-NM described in this work also incorporates a
diffuse interface hypothesis, albeit solely during the resolution of the diffusion equation. This could
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(a) 1D case (b) 2D case

Figure 3.22: Evolution of the measure of the driving pressure available for
phase transformation (multiplied by the physical interface mobility, 𝑀𝛾𝛼)

⇒ 𝑀𝛾𝛼Δ𝐺𝛾→𝛼

potentially exhibit a partial similarity to the behavior of the phase-field method, though within a
restricted scope. The makeshift diffuse interface description, established through a phase-field like
profile, computed using the hyperbolic tangent relation in Eq.(2.11): 𝜙 = 0.5 tanh

(
3𝜑𝛼

𝜂

)
+ 0.5,

represents one of the steady-state solutions of a phase-field variable subject to a certain constraints
and boundary conditions outlined in [4]. This solution portrays a diffuse interface of constant
thickness, moving at a constant velocity along a specific normal (parameterized by a signed distance
function such as 𝜑𝛼). So, the level-set based numerical framework detailed in this work enforces a
stationary phase-field profile at each instance during the resolution of the diffusion equation. While
the diffuse interface thickness parameter in LS-NM doesn’t explicitly influence interface kinetics
as in PF-NM, it could impact the resolution of the solute concentration, solute mass conservation
in the domain, and thus the driving pressure available. Hence, this might implicitly influence the
kinetics of the transformation process. It is thus crucial to have an account of the effects of its
choice in conjunction with the mesh resolution. Mecozzi et al. [9] indeed demonstrate in the
context of PF-NM that enhancing mesh resolution and ensuring sufficient discretization points
within the diffuse interface exhibits better convergence in their model’s predictions.

3.4 Sensitivity analysis - mesh resolution, time step, diffuse in-
terface thickness

To investigate the sensitivity of mesh size (Δ𝑥), time step (Δ𝑡), and the diffuse interface thickness (𝜂)
in the DSSPT LS-NM, we revisit the same test case previously examined, using the semi-analytical
model results as our reference point.
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3.4.1 Convergence with mesh resolution
The initial investigation focuses on convergence behavior concerning mesh resolution. To explore
coarser mesh sizes, the initial ferrite nucleus radius is rather set to 𝑟𝑖𝛼 = 2.5 µm in this study. The
diffuse interface thickness remains constant at 𝜂 = 1 µm, and the time step is fixed at Δ𝑡 = 0.01 s. In
order to mitigate intensive computational demands, unstructured FE isotropic meshes of appropriate
size are selectively utilized, focusing primarily within a thick zone surrounding the interface, thus
avoiding the necessity for fine resolution across the entire domain. The thick zone with fine mesh
also helps in avoiding frequent remeshing. Thus, periodic remeshing is executed intermittently
solely to sustain this zone around the interface throughout the evolution. Figs.3.23 provide an
overview of the above idea for a particular case, depicting the meshes at both the initial and final
configurations. Additionally, the analysis is constrained to 𝑡 = 100 s, ensuring the final phase
interface position remains distant from the boundaries. This approach helps in effectively isolating
and mitigating potential interference from boundary conditions, subject to the selected parameters,
throughout the analysis. As a comparative baseline, the identical test case is simulated using the
previously described semi-analytical method, maintaining the initial ferrite radius at 2.5 µm. A
local view of the meshes around the diffuse phase interface considered for this analysis is portrayed
in Figs.3.24.

(a) Initial
configuration

(b) Final
configuration

Figure 3.23: Illustration of the meshing strategy considered for the
analysis: the interface position is highlighted through its iso-zero contour

in black

The post-analysis results are depicted in Fig.3.25, Fig.3.26, and Fig.3.27 highlighting the evolution
of the phase interface, interfacial concentration and the error in mass conservation, respectively.
The convergence in interface kinetics and 𝛾-phase concentrations obtained at the interface with
varying mesh resolution is notably apparent. In the case where Δ𝑥 = 0.5 µm results in only about 2
mesh elements within the diffuse interface, the solute mass is visibly not conserved, as observed in
Fig.3.27, attributed to poor resolution across the phase interface. Consequently, the phase interface
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(a)
Δ𝑥 ≈ 0.5 µm

(b)
Δ𝑥 ≈ 0.25 µm

(c)
Δ𝑥 ≈ 0.2 µm

(d)
Δ𝑥 ≈ 0.14 µm

(e)
Δ𝑥 ≈ 0.07 µm

Figure 3.24: Local view of the different meshes considered across the
diffuse phase interface
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Figure 3.25: Convergence in interface kinetics as influenced by mesh
resolution

remains stationary, indicated by the red curve in Fig.3.25. Decreasing the mesh size increases the
number of discretization elements (𝜂/Δ𝑥) within the diffuse interface. This enhances the accurate
depiction of the notoriously sharp gradients present across the phase interface during the resolution
of the diffusion equation. A finer mesh around the phase interface also enhances the description
of the prescribed velocity field for interface migration, providing more precise positions of the
iso-zero level-set contours. The mass conservation also improves with better mesh resolution
as emphasized in Fig.3.27. In Fig.3.26, it’s notable that the SAM marginally overestimates the
interface concentration at the initial time step. The formulation of this sharp interface model
theoretically assumes a zero initial ferrite nucleus, where the interface concentration then gradually
deviates from the nominal composition of 0.1 wt%C as the nucleus grows. Enforcing a non-zero
ferrite nucleus while maintaining the nominal composition at the interface creates this small jump
in the sharp interface model’s first prediction.

3.4.2 Influence of diffuse interface thickness
As emphasized in one of the earlier sections, though the diffuse interface thickness (𝜂) in this LS-
NM shares a semblance with that in a PF-NM, its implications and role in the interface migration
scheme of the model may not align in the same manner. Unlike in PF-NM, 𝜂 doesn’t directly take
part in the interface migration process, and its impact on interface kinetics is not as explicit as in
the case of a PF-NM. Its selection rather influences the resolution of solute redistribution across
the phase interface and the resultant quality of mass conservation. Ultimately, this can potentially
influence the kinetics prescribed for migration. Theoretical considerations advocate for 𝜂 to align
with the physical thickness of a phase boundary, which typically spans a few inter-atomic distances.
However, computational constraints hinder the use of extremely small values due to the impractical
mesh resolution required at the mesoscopic scale. Hence, the numerical choice of 𝜂 is primarily
constrained by the practicality of the underlying mesh resolution.
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Figure 3.26: Convergence in 𝛾 phase concentration at the interface with
mesh resolution

Figure 3.27: Evolution of mass conservation error with mesh size

To explore the impact of 𝜂, we consider the same setup as the previous analysis but with a fixed
mesh size of Δ𝑥 = 0.07 µm. The initial ferrite radius remains at 𝑟𝑖𝛼 = 2.5 µm to allow the analysis
of larger 𝜂 values. The interface thickness is varied as a function of the number of discretization
elements approximately within the diffuse interface. Fig.3.28, Fig.3.29 and Fig.3.30 compare the
results obtained for different 𝜂 values with those obtained from the SAM. It could be inferred that,
a certain minimum number of mesh elements is essential within the diffuse interface zone. For a
specific mesh resolution, smaller 𝜂 values result in steeper gradients across the diffuse interface,
making them more susceptible to discretization and interpolation errors. Increasing 𝜂 tends to
smoothen gradients across the interface, aiding in a more accurate representation or capture of
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Figure 3.28: Influence of diffuse interface thickness on interface kinetics

the behavior within the diffuse region. In Fig.3.30, it’s evident in the case with 4 mesh elements
(𝜂 = 0.28 µm) that mass conservation is compromised, contributing to an underestimation of the
interface concentration depicted in Fig.3.29. A lower interface concentration results in increased
driving pressure and consequently faster kinetics, explaining the overestimated interface position
in Fig.3.28. Conversely, for other cases with increased 𝜂 values comprising of sufficient mesh
elements, the predicted interface kinetics exhibit fairly consistent behavior, displaying minimal
variation for this chosen mesh size.

Figure 3.29: Variation in interfacial concentration observed across
different selections of the parameter 𝜂

Larger 𝜂 values may allow for the utilization of a coarser mesh resolution. Hence, there might
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Figure 3.30: Impact of diffuse interface thickness on solute mass
conservation

be a temptation to decrease computational costs by opting for a larger mesh resolution. However,
increasing 𝜂 may lead to a less meaningful representation of physical fields like concentration,
introducing more nonphysical aspects into the model. Moreover, a coarser mesh might compromise
the precision of level-set representation and interface migration. Figs.3.31, and Fig.3.32 showcase
a similar analysis conducted using a coarser mesh (and hence larger 𝜂 values). Despite maintaining
good mass conservation, the variability in interface kinetics becomes more pronounced with 𝜂, and
these predictions seem to slightly deviate from the expected reference curves obtained from the
SAM.

Although mesh resolution stands as a primary criterion for choosing the diffuse interface thickness,
other contributing factors could also influence this selection. Considering the characteristic size of
a grain representing a phase is also important to avoid setting unrealistically large 𝜂 values relative
to the grain size. Mecozzi et al. in [4] also propose an upper limit for 𝜂 in their PF-NM, set to
the characteristic diffusion length in austenite phase (𝐿𝛾 =

𝐷𝐶
𝛾

∥𝒗∥𝑚𝑎𝑥
), to prevent potential numerical

instability problems. However, based on the author’s knowledge, the utilization of 𝜂 values larger
than the diffusion length in the current LS-NM did not seem to cause any stability issues.

On the other hand, the choice of 𝜂 also impacts the behavior of grains or particles nearer to domain
boundaries, affecting their interaction with the boundary conditions. As discussed in the previous
chapter, the local nature of boundary conditions shifts from pure Neumann type to Robin type
when a portion of the phase interface nears or contacts the boundaries. This condition may revert
to pure Neumann type as the interface moves away from that local region of the boundary. Fig.3.33
illustrates a magnified portion of a particular case showcasing the solute contours (thick lines) in
a scenario where the phase interface evolves in proximity to a boundary region. On the left, the
depiction shows the initial stage when the diffuse phase interface has yet to contact the boundaries.
At this point, the solute contours run orthogonal to the boundaries, complying with pure Neumann
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(a) 1D case (b) 2D case

Figure 3.31: Influence of larger 𝜂 on interface kinetics and interface
concentrations using a coarser mesh

Figure 3.32: Impact of diffuse interface thickness on solute mass
conservation for the coarser mesh scenario
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type boundary conditions. On the right, in a subsequent moment, a segment of the diffuse phase
interface is in contact with the boundaries. In this scenario, the solute contours surrounding the
boundary-adjacent region no longer maintain orthogonality, trying to transition to the Robin type
boundary conditions within that localized area. During this transition between boundary condition
types, sharp solute gradients or their flux within the interfacial zone might introduce errors in
solute mass conservation, depending on mesh resolution and time step. A thicker interface has
an extended interaction with the boundaries. An uncharacteristically larger 𝜂 could also alter the
dynamics between nearby grains or particles of the same phase. Hence, selecting the diffuse
interface thickness demands caution, striking a balance between employing a reasonably coarse
mesh with enough elements within the diffuse interface and avoiding unrealistically large 𝜂 values.
As a general guideline, about 7 − 20 mesh elements within the diffuse interface often represents a
reasonable compromise. However, specific simulation cases or situations might necessitate finer
discretization within the interface to achieve greater accuracy in solute mass conservation.

(a) Pure Neumann boundary
conditions

(b) Local switch to Robin
type

Figure 3.33: Illustration of solute contours as the phase interface interacts
with the boundary region: solute contours respecting null Neumann
boundary conditions (left), solute contours respecting Robin type

boundary conditions locally (right)

3.4.3 Time step analysis
We now examine the convergence behavior of the LS-NM with time steps using the same test case.
We maintain a fixed mesh resolution of Δ𝑥 = 0.07 µm and a constant diffuse interface thickness of
𝜂 = 1 µm. The ferrite nucleus is set to zero radius (theoretically, but numerically 𝑟𝑖𝛼 = 0.25 µm)
in this analysis, since we are not restricted in terms of the choice of mesh size or the interface
thickness.
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Figure 3.34: Convergence of interface kinetics with time step

The results post analysis are demonstrated in Fig.3.34, Fig.3.35 and Fig.3.36. Smaller time steps
clearly establish convergence in interface kinetics and interfacial concentrations. Moreover, the
quality of mass conservation demonstrates improvement with reduced time steps, as illustrated in
Fig.3.36. The choice of resolution time step becomes crucial to accurately capture topological
changes, especially in scenarios with rapid evolution kinetics.

Figure 3.35: Convergence in evolution behavior of interfacial
concentration with time step

Even if an implicit time scheme strategy is considered in this work, as a general rule of thumb
and as our time scheme is of the first order, the time step can be roughly estimated by ensuring a
CFL-like condition such that the maximum distance migrated by the interface within each time step
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Figure 3.36: Impact of choice of time step on solute mass conservation

remains within the bounds of the characteristic mesh size (Δ𝑥) to avoid important error in time:

Δ𝑡 = 𝑘Δ𝑡
Δ𝑥

max∥𝒗∥ , (3.17)

where 𝑘Δ𝑡 is a constant (< 1) and 𝒗 is the migration velocity.

Documented in [10], the direct reinitialization method contributes as a minor source of numerical
errors. Given that this reinitialization procedure is executed at each time step within the current
numerical formulation, employing extremely small time steps might result in the accumulation of
these errors. Hence, it’s equally essential to avoid excessively reducing time steps when unnecessary.
For computational efficiency, one could easily employ the strategy of adaptive time stepping
following the ideology outlined in Eq.3.17. However, within the scope of this work, constant time
stepping law is predominantly utilized across most simulations.

3.5 Proposition of a new 1D semi-analytical mixed-mode model
Most classical sharp interface semi-analytical models for phase transformation impose the hy-
pothesis of instantaneous diffusion in the product phase to simplify and close the mathematical
formulation. This enables to model and resolve only the concentration profiles in the parent phase.
The driving pressure is then only influenced by the interfacial concentration of the parent phase.
In this section, an attempt is made to allow for finite diffusion in the product phase as well, along
with that of the parent phase. A semi-analytical sharp interface formulation for mixed-mode phase
transformation is thus proposed for a bounded 1D domain. The bounded domains help provide
necessary conditions in the quest to close the mathematical formulation. This semi-analytical
formulation is based on an extension of the existing model proposed in the works of Chen et al.
[11] for a semi-infinite domain assuming instantaneous diffusion in the product phase.
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The proposed model has been published in the context of this Ph.D. work [12], and certain figures
shall be reproduced here to explain the formulation. As proposed in the works of Chen et al. [11],

(a) Initial concentration profile at
𝑡 = 0 s

(b) Expected concentration profile at 𝑡 >
0 s

Figure 3.37: Illustration of concentration profiles expected at different
instants

the idea is to assume the solute concentration profile in the 𝛾 phase (𝑥𝛾 (𝑧)) at time 𝑡 to be a quadratic
function of position (𝑧):

𝑥𝛾 (𝑧) = 𝐴1 + 𝐴2(𝑧 − Γ) + 𝐴3(𝑧 − Γ)2 ∀ {𝑧 : Γ(𝑡) < 𝑧 ≤ 𝑋} , (3.18)

where 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3 are pre-factors, Γ(𝑡) is the phase interface position at time t. However,
Chen et al. assumed diffusion to be instantaneous in the 𝛼 phase, thus immediately attaining the
equilibrium concentration, 𝑥𝛼 |𝑒𝑞. This assumption is however not mandatory. Instead, one can
assume that the solute concentration profile in the 𝛼 phase follows a similar quadratic function of
𝑧:

𝑥𝛼 (𝑧) = 𝐵1 + 𝐵2(𝑧 − Γ) + 𝐵3(𝑧 − Γ)2 ∀ {𝑧 : 0 ≤ 𝑧 < Γ(𝑡)} . (3.19)

Fig.3.37 illustrates an example of concentration profiles expected in a domain of length 𝑋 . The
length of 𝛾 side at any instant is given by 𝐿𝛾 (𝑡), such that 𝑋 = Γ(𝑡) + 𝐿𝛾 (𝑡). 𝑥𝛼Γ and 𝑥𝛾

Γ
are the

138



concentrations at the sharp interface of the 𝛼 and 𝛾 phases, respectively. Likewise, 𝑥𝛼0 and 𝑥𝛾0 are
the far-field concentrations in the corresponding phases.

The pre-factors of Eqs.(3.19) and (3.18) can be determined by applying the following boundary
conditions: 

𝑥𝛼 (𝑧 = Γ−) = 𝑥𝛼
Γ

𝑥𝛾 (𝑧 = Γ+) = 𝑥𝛾
Γ

𝑥𝛼 (𝑧 = 0) = 𝑥𝛼0 𝑥𝛾 (𝑧 = 𝑋) = 𝑥𝛾0
𝜕𝑥𝛼

𝜕𝑧

��
𝑧=0 = 0 𝜕𝑥𝛾

𝜕𝑧

��
𝑧=𝑋

= 0
∀𝑡 > 0. (3.20)

The concentration profiles are then found to be:
𝑥𝛼 (𝑧) = 𝑥𝛼0 +

(
𝑥𝛼
Γ
− 𝑥𝛼0

) (
𝑧
Γ

)2
, ∀ {𝑧 : 0 ≤ 𝑧 < Γ(𝑡)}

𝑥𝛾 (𝑧) = 𝑥𝛾0 +
(
𝑥
𝛾

Γ
− 𝑥𝛾0

) (
1 − (𝑧−Γ)

𝐿𝛾

)2
, ∀ {𝑧 : Γ(𝑡) < 𝑧 ≤ 𝑋}

∀𝑡 > 0. (3.21)

𝐿𝛾 serves as the width of the concentration profile (𝑥𝛾) on the 𝛾 side. Likewise, the width of the
profile (𝑥𝛼) on the 𝛼 side is controlled by Γ.

Considering the boundary conditions, the solute mass needs to be conserved at any time. So,
applying macroscopic solute mass balance at the time, 𝑡 > 0, we obtain:∫ Γ(𝑡)

0
𝑥𝛼 (𝑧)𝑑𝑧 +

∫ 𝑋

Γ(𝑡)
𝑥𝛾 (𝑧)𝑑𝑧 =

∫ Γ𝑖𝑛𝑖𝑡

0
𝑥𝛼𝑖𝑛𝑖𝑡𝑑𝑧 +

∫ 𝑋

Γ𝑖𝑛𝑖𝑡

𝑥
𝛾

𝑖𝑛𝑖𝑡
𝑑𝑧. (3.22)

By imposing that the solute concentrations at the interface redistribute at a constant ratio equal to
the partitioning ratio at equilibrium (Eq.(2.14)) and that the far-field concentrations also respect
this ratio at any instant, we obtain:

𝑥𝛼Γ = 𝑘 𝑝𝑥
𝛾

Γ
𝑎𝑛𝑑 𝑥𝛼0 = 𝑘 𝑝𝑥

𝛾

0 , (3.23)

with 𝑘 𝑝 computed using Eq.(2.95). Expanding Eq.(3.22) with the above hypotheses, we obtain:

𝑥
𝛾

0 =
𝑥
𝛾

Γ

[ (
Γ3 − 𝑋3) 𝑘 𝑝 − 𝐿𝛾Γ2] + 3Γ2Γ𝑖𝑛𝑖𝑡

[
𝑥𝛼
𝑖𝑛𝑖𝑡
− 𝑥𝛾

𝑖𝑛𝑖𝑡

]
+ 3𝑥𝛾

𝑖𝑛𝑖𝑡
𝑋Γ2

2𝐿𝛾Γ2 + 𝑘
[
4Γ3 − 𝑋3

] . (3.24)

The kinetic equation for interface migration is given by:

𝜕Γ

𝜕𝑡
= 𝒗 · 𝒏 = 𝑣𝑛, (3.25)

with 𝑣𝑛 = 𝑀𝛾𝛼Δ𝐺𝛾→𝛼 without capillarity effects. The driving pressure, Δ𝐺𝛾→𝛼 is given by the
linearization of the phase diagram as already detailed in the previous chapter (section 2.3.4):

Δ𝐺𝛾→𝛼 = Δ𝑆𝛾𝛼
[
(𝑇𝑅 − 𝑇) + 0.5𝑚𝛼/(𝛼+𝛾)

𝐴−𝑖
(
𝑥𝛼Γ − 𝑥

𝛼 |𝑅
)
+ 0.5𝑚𝛾/(𝛼+𝛾)

𝐴−𝑖
(
𝑥
𝛾

Γ
− 𝑥𝛾 |𝑅

) ]
. (3.26)

Considering no accumulation of solutes at the interface, the inward and outward solute fluxes at
the interface must respect the following balance equation:

𝑣𝑛
[
𝑥
𝛾

Γ
− 𝑥𝛼Γ

]
= J𝑱K

��
Γ
· 𝒏 = 𝐷𝑖𝛼

𝜕𝑥𝛼

𝜕𝑧

����
Γ

− 𝐷𝑖𝛾
𝜕𝑥𝛾

𝜕𝑧

����
Γ

. (3.27)
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Further expanding and making necessary substitutions, one can rewrite this equation as:

𝑓 (𝑥𝛾
Γ
) = 𝑀𝛾𝛼Δ𝐺𝛾→𝛼𝑥

𝛾

Γ

(
1 − 𝑘 𝑝

)
−

2𝐷𝑖𝛼𝑘 𝑝
Γ

(
𝑥
𝛾

Γ
− 𝑥𝛾0

)
−

2𝐷𝑖𝛾
𝐿𝛾

(
𝑥
𝛾

Γ
− 𝑥𝛾0

)
= 0. (3.28)

Since Δ𝐺𝛾→𝛼, and 𝑥𝛾0 are both functions of 𝑥𝛾
Γ
, the above Eq.(3.28) is a non-linear equation.

Resolution procedure:
• Eq.(3.28) is resolved iteratively for 𝑓 (𝑥𝛾

Γ
) = 0 to compute 𝑥𝛾

Γ
.

• From 𝑥
𝛾

Γ
; 𝑥𝛼

Γ
, and 𝑣𝑛 are computed.

• The interface is then migrated using Eq.(3.25) with an explicit Euler scheme:

Γ𝑛+1 = Γ𝑛 + 𝑣𝑛Δ𝑡,

where 𝑛 is the index for time stepping and Δ𝑡 is the chosen time step. 𝐿𝑛+1𝛾 = 𝑋 − Γ𝑛+1 can
then be computed.

• 𝑥𝛾0 , 𝑥𝛼0 , and the concentration profiles 𝑥𝛼 (𝑧) and 𝑥𝛾 (𝑧) at time 𝑡𝑛+1 = (𝑛 + 1)Δ𝑡 are then
computed

Figure 3.38: Carbon profiles predicted by the semi-analytical model for
the case with instantaneous cooling

Illustration test case: In order to compare the predictive capabilities of the above semi-analytical
model with that of the level-set based numerical model (LS-NM), the same pseudo-1D test case
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considered in section 3.2.1 under instantaneous cooling for Fe - 0.02 wt%C is utilized. Both the
methods use the same form of description for the driving pressure. Fig.3.38 shows the evolution of
carbon profiles along with the equilibrium concentrations predicted by the semi-analytical model
for the instantaneous cooling case. The concentrations obtained correspond closely with that of the
LS Simulation (𝑥𝛼𝑒𝑞

��
𝑛𝑢𝑚

= 0.0051456 wt%, and 𝑥𝛾𝑒𝑞
��
𝑛𝑢𝑚

= 0.10586 wt%).

Figure 3.39: Comparison of interface evolution predicted by the
semi-analytical and the LS based numerical model

Fig.3.39 compares the kinetics of interface evolution by the two methods. The kinetics and also the
steady state interface position obtained are in general good agreement between the two methods.
During the initial stages, the interfacial carbon concentrations predicted by the semi-analytical
method seem to be slightly lower as demonstrated in Figs.3.40. Lower local concentrations imply
higher driving pressure, and hence relatively faster kinetics as observed in the Fig.3.39 during the
early stages. Nevertheless, as the transformation proceeds, they seem to converge well, especially
as the equilibrium is approached. The strong hypothesis in Eq.(3.23) of forcing the far-field
concentrations to also respect the equilibrium partitioning ratio becomes more reasonable and
valid as the two phases tend towards their state of equilibrium. The general trends are similar and
congruent which explains the good agreement with the steady state interface position as well the
kinetics.

Figs.3.41 further demonstrate that the above semi-analytical model is reasonably capable of repro-
ducing certain trends of the transformation kinetics for the non-isothermal scenarios as well.
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(a) 𝑥𝛼
Γ

evolution

(b) 𝑥𝛾
Γ

evolution

Figure 3.40: Comparison of the evolution of carbon concentration at the
interface predicted by the semi-analytical and the numerical model
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(a) Rapid cooling, ¤𝑇 = −10 K·s−1

(b) Slow cooling, ¤𝑇 = −0.5 K·s−1

Figure 3.41: Comparison of interface evolution predicted by the semi-analytical and
the LS based numerical model for non-isothermal scenarios
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3.6 Summary
Austenite decomposition in steels is simulated in a pseudo-1D domain using the level-sets based
numerical framework. The expected carbon enrichment in the austenite phase is observed during
the migration of the interface as the ferrite phase rejects it. The minor yet critical influence of
capillarity effects on phase transformation kinetics and the equilibrium position is demonstrated
in a 2D matrix-precipitate case. The capillarity effects play an important role in controlling the
kinetics during the early stages of the transformation when the growing phase is in its nucleus form.
In the context of austenite decomposition, the capillarity effects slightly lower carbon equilibrium
concentrations. Validation with ThermoCalc estimations confirms the quantitative predictions of
the above simulations.

The level-set numerical model (LS-NM) is benchmarked against a state-of-the-art sharp interface
semi-analytical model (SAM), alongside comparisons with predictions from a corresponding phase-
field numerical model (PF-NM) for austenite decomposition in a steel alloy. The LS-NM is capable
of effectively reproducing the concentration profiles and the interface kinetics predicted by the
SAM and also the PF-NM. The LS-NM reflected a closer resemblance in predictions with the
SAM compared to the PF-NM, possibly due to the inherent sharp interface character of migrating
interfaces in a level-set method.

Convergence in predictions with better mesh resolution and time step is demonstrated through
a sensitivity analysis of the LS-NM. Additionally, the examination of diffuse interface thickness
parameter (𝜂), along with local mesh size, highlights the necessity of sufficient number of mesh
elements within the diffuse interface zone to accurately capture significant field variations across
the phase interface. The computational practicality of the underlying mesh resolution primarily
dictates the selection of interface thickness parameter. The predicted interface kinetics exhibit
relatively consistent behavior with varying interface thickness, showing minimal variation when
the underlying mesh resolution is fine enough and provides sufficient elements within the diffuse
interface. While mesh resolution remains a primary criterion for selecting 𝜂, other influencing
factors must be considered. Therefore, caution is necessary in choosing this parameter, aiming to
strike a balance between employing a reasonably coarse mesh with enough elements within the
diffuse interface and avoiding the use of unrealistically large 𝜂 values. Generally, aiming for around
7 to 20 mesh elements within the diffuse interface represents a reasonable compromise.

A semi-analytical sharp interface model is proposed to simulate mixed-mode transformation kinetics
within a bounded 1D domain. It extends an existing approach with additional hypotheses and
demonstrates the capability to reproduce the quantitative predictions achieved by the LS-NM
across various cooling scenarios in the pseudo-1D case.

The promising outcomes presented here set the stage for the next chapter, which will delve into
illustrations in a complex polycrystalline context using the proposed numerical model.
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Chapter 4

Illustration of diffusive solid-state phase
transformation: Biphasic polycrystals

Abstract

This chapter explores the capabilities of the proposed numerical model in replicating phase
transformation behavior in complex polycrystalline microstructures. Building upon promis-
ing outcomes from simpler test cases, the model’s adaptability to mimic intricate interactions
within realistic microstructures is investigated. The nexus between different input parameters
governing the phase transformation dynamics is analyzed in the context of austenite decompo-
sition in steels. Additionally, the model’s versatility is showcased by simulating other diffusive
solid-state phenomena. Through this exploration, the chapter aims to elucidate the model’s
range, identify potential challenges, and emphasize its applicability in scenarios pertinent to
industrial applications.

Résumé

Ce chapitre examine les capacités du modèle numérique proposé à reproduire le compor-
tement de transformation de phase dans des microstructures polycristallines complexes. La
capacité du modèle à reproduire des interactions complexes dans des microstructures réalistes
est étudiée sur la base des résultats positifs obtenus dans des cas d’essai plus simples. La cor-
rélation entre les différents paramètres d’entrée gouvernant la dynamique de la transformation
de phase est analysée dans un contexte de décomposition de l’austénite dans les aciers. La
polyvalence du modèle est également mise en évidence par la simulation d’autres phénomènes
diffusifs à l’état solide. Grâce à cette exploration, le chapitre vise à élucider la portée du modèle,
à identifier les défis potentiels et à souligner son applicabilité dans des scénarios pertinents
pour les applications industrielles.

4.1 Introduction
In the preceding chapter, our preliminary analyses on simpler test cases yielded promising results.
Now, we aim to push the boundaries of our numerical model by investigating more complex scenar-
ios that replicate realistic polycrystalline microstructures. This chapter serves as an exploration into

146



the capabilities of the model to reproduce complex transformation behaviors observed in real-world
contexts.

While our earlier demonstrations primarily focused on single nuclei or grains during transformation,
the context of polycrystalline materials introduces a new layer of complexity. Multiple nuclei or
grains contribute to the growing phase, significantly altering the dynamics of transformation. Here,
our aim is to evaluate the model’s ability to replicate these multifaceted interactions and their
consequential impact on transformation kinetics and microstructural topology.

Various factors come into play in shaping the final microstructure post-transformation. These
include the mode of nucleation, the selection of nucleation sites, the temperature range involved
in nucleation, cooling rates, duration of transformation, the influence of physical aspects like
capillarity, solute drag etc. The correlation among some of these parameters adds additional
complexity. In this chapter, we aim to explore the interplay of some of these factors using our
numerical model.

Our initial focus will be on DSSPT in binary alloys, in the context of austenite decomposition
in steels, utilizing simpler polycrystalline microstructures to investigate the impact of nucleation
parameters in tandem with cooling rates. Subsequently, we’ll simulate a large-scale microstructure
relevant to industrial settings. Additionally, we’ll touch upon the role of solute drag effects in a
ternary alloy scenario. Finally, we aim to showcase the model’s versatility by simulating other
diffusive solid-state phenomena without any alterations to the numerical framework.

The overarching goal of this chapter is to document the range of the numerical model’s capabilities,
identify potential challenges for future exploration, and demonstrate its applicability to scenarios
relevant in industrial applications.

4.2 DSSPT simulation in binary alloys: 2D polycrystals

4.2.1 Comparison with nucleation modes
In this study, we investigate the impact of different temporal modes of nucleation. As previously
discussed in Chapter 1 (Section 1.2.1.1.1) and Chapter 2 (Section 2.3.5), nucleation can occur
in a site-saturated or continuous manner. In site-saturated nucleation, all nuclei form simultane-
ously below the nucleation start temperature (𝑇𝑁𝑠

), causing the nucleation temperature range to
approach zero (𝛿𝑇𝑁 → 0) during non-isothermal transformations. In contrast, continuous nucle-
ation involves nuclei forming gradually over a period. In the context of transformations involving
continuous cooling, this translates to 𝛿𝑇𝑁 ≠ 0. To explore their influence on final grain statistics and
microstructure morphology, we examine austenite decomposition in a binary steel alloy, specifically
Fe - 0.02 wt%C. At atmospheric pressure, the austenitization temperature for this alloy is approx-
imately 𝑇𝐴3 = 1175 K. We consider an initial microstructure in a square domain of size 1 mm,
situated slightly above the 𝑇𝐴3 temperature with 𝑇 𝑖 = 1176 K. At this stage, the microstructure is
composed entirely of austenite grains. Fig.4.1 depicts the morphology of the initial microstructure,
featuring 317 austenite grains, and the respective grain coloration used to represent them.

The initial grain size distribution of the austenite grains is illustrated in Fig.4.2, where the mean
equivalent radius (calculated in number) of the grains is about 31 µm. In this context, the size of
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Figure 4.1: Grain coloration adopted for the initial austenitic grain
morphology (the grain interfaces are highlighted in black)

Figure 4.2: Grain size distribution of the initial microstructure
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a particular grain is defined as the radius of an equivalent circle (sphere in 3D) having the same
area (volume in 3D). Considering the available driving pressures for ferrite nucleation at different
temperatures below the austenitization temperature, and factoring in the capillarity effects, the
nucleation start temperature is established at 𝑇𝑁𝑠

= 1166 K. This temperature is selected to provide
ferrite nuclei a higher likelihood of entering the growth regime of the transformation. This delay
in nucleation could also loosely represent the concept of an incubation time. The final temperature
is set to, 𝑇 𝑓 = 990 K, where ThermoCalc [1] predicts a complete transformation to ferrite. The
temperature profile during the transformation is illustrated in Fig.4.3, with a cooling rate set to
¤𝑇 = −20 K·s−1. Considering the high cooling rate, the nuclei density is consequently expected to

Figure 4.3: Temperature profile imposed during the transformation

be higher. It is computed using the 2D equivalent of Eq.2.103 for 𝑓 𝛼
𝑓
= 1, and for an expected

mean ferrite grain size of approximately 15 µm. So, for the considered domain, and the computed
nuclei density, about 1400 ferrite nuclei are set to be imposed. Two scenarios are simulated in this
study: (i) Site-saturated nucleation, where all 1400 ferrite nuclei are imposed at 𝑇 = 1166 K, and
(ii) Continuous nucleation, with a nucleation temperature range of 𝛿𝑇𝑁 = 40 K, imposing 1400
nuclei steadily at a constant rate of 35 K−1. The radii of the nuclei are estimated using the scheme
outlined in Eq.2.101. Due to the rapid cooling and subsequent high nucleation density, nuclei can
form at both triple junctions and the austenite grain boundaries in this study.

The interface mobility and carbon diffusivity data used here are consistent with those listed in
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Chapter 3 (3.2.1), i.e.,

𝑀 = 6 × 1017 exp
(
−140000
𝑅𝑇

)
, in µm4·J−1·s−1

𝐷𝐶𝛼 = 2.2 × 108 exp
(
−122500
𝑅𝑇

)
, in µm2·s−1

𝐷𝐶𝛾 = 1.5 × 107 exp
(
−142100
𝑅𝑇

)
, in µm2·s−1

. (4.1)

The interface energy is set at 1×10−6 J·mm−2, as previously employed in section 3.2.2. In this
study, mobility and interfacial energy are assumed to be homogeneous and identical across phase
and grain interfaces of both phases. The resolution time step is fixed at, Δ𝑡 = 0.01 s. An adaptive
mesh with periodic remeshing is utilized following the strategy of mesh metric intersection detailed
in Chapter 2 (2.3.3). The local mesh size within the diffuse phase interface is set as 0.5 µm, and
the diffuse phase interface thickness is 𝜂 = 8 µm. The local mesh view at a particular instant of the
simulation in Fig.4.4 highlights the finer adaptive mesh around the phase interfaces, contrasting
with a relatively coarser mesh size (1 µm) adapting to the grain interfaces.

Figure 4.4: Illustration of the meshing strategy employed for simulation in
biphasic polycrystals: the interfaces are highlighted in black through
iso-contours of 𝜑𝑚𝑎𝑥 which is the max of all the 𝜑𝑖 functions involved

In Figs.4.5, the comparison of phase evolution in the two cases at various temperatures during
the transformation is depicted. Correspondingly, the carbon distribution maps for these two cases
are shown in Figs.4.6. In the site-saturated scenario, where all nuclei germinate simultaneously,
resulting in identical initial radii, the growth pattern of most nuclei is nearly uniform, as observed in
Fig.4.5b. The immediate onset of hard impingement between nuclei uniformly restricts the growth
of adjacent ferrite grains along the austenite grain interfaces. This interaction generates straight
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interfaces between the neighboring ferrite grains and they tend to grow into the bulk of the austenite
grains. Conversely, in the continuous nucleation case, the initial nuclei that form gain an early
advantage in growth over subsequently appearing nuclei. Initially, these first few nuclei experience
minimal hard impingement until new neighboring nuclei gradually emerge. This discrepancy leads
to a noticeable variation in the sizes of the final ferrite grains. The hard impingement in continuous
nucleation is only momentarily delayed due to rapid cooling, as the grains eventually make contact
forming straight interfaces as in the case of site-saturated nucleation. In both nucleation modes, the
elevated nucleation rate leads to the formation of ferrite nuclei arranged in a necklace-like structure
along the austenite grain boundaries, a common occurrence in metallic alloys. In Figs.4.6, as the

(a) Site-saturated nucleation

(b) Continuous nucleation case

Figure 4.5: Snapshots of phase evolution for different modes of nucleation
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transformation proceeds, a noticeable enrichment of carbon in the austenite phase becomes evident.
During the later stages, pockets of austenite grains trapped by the surrounding ferrite become
apparent, especially prevalent at higher cooling rates. The rapid evolution leads to a significant
influx of carbon atoms rejected by the neighboring ferrite grains into these austenite pockets. This
substantial carbon enrichment notably reduces the driving pressure for phase transformation in these
areas, as local equilibrium is rapidly achieved, resulting in trapped austenite grains characterized by
visible solute gradients. When given enough time, these gradients may diffuse into the bulk of the
grains, facilitating the additional growth of ferrite grains that extend into these confined austenite
islands. In Figs.4.7, the microstructure morphologies and phase distribution at the conclusion of

(a) Site-saturated nucleation

(b) Continuous nucleation case

Figure 4.6: Snapshots of carbon distribution for different modes of
nucleation

cooling are presented. Globally, both nucleation modes exhibit similar trends and features in the
microstructure, particularly regarding the austenite phase. However, in the continuous nucleation
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case, the ferrite grain sizes appear more dispersed compared to the site-saturated case, where the
distribution of ferrite grain sizes appears more compact and uniform. This distinction is further

(a) Site-saturated nucleation (b) Continuous nucleation
case

Figure 4.7: Final phase distribution at the end of the cooling for the two
nucleation modes

highlighted by the grain size distribution plots depicted in Figs.4.8. The relative difference in
variance among the normal distributions for the ferrite phase in both cases is apparent. Moreover,
the final mean grain sizes for both the phases are quite comparable as further suggested by the mean
grain size evolution plots in Figs.4.9.

(a) Site-saturated nucleation (b) Continuous nucleation
case

Figure 4.8: Final grain size distributions obtained for the two nucleation
modes
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(a) Austenite phase (b) Ferrite phase

Figure 4.9: Comparison of mean grain size evolution of both the phases
for different nucleation modes

Fig.4.10 illustrates the evolution of the ferrite fraction during the temperature cooling throughout the
transformation. During the transformation, the site-saturated nucleation case consistently predicts
a slightly higher fraction at any given temperature. This trend arises because the nucleation regime
completes faster in the site-saturated scenario, swiftly transitioning to the growth stage just below
the 𝑇𝑁𝑠

. On the other hand, the continuous nucleation case completes its nucleation stage only at
𝑇 = 1127 K. However, by 𝑇 𝑓 = 990 K, at the conclusion of cooling, the difference in predictions
between the two cases is minimal. In both instances, due to rapid cooling, there isn’t ample time to
approach closer to their final equilibrium fraction ( 𝑓 𝛼

𝑓
= 1, according to ThermoCalc).

Figure 4.10: Evolution of ferrite fraction during transformation for the
two nucleation modes
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In the context of these simulations within a polycrystal, Fig.4.11 showcases the error variation in
conserving solute mass. The site-saturated case demonstrates a maximum error of around 11%,
while the continuous nucleation case displays an error of about 8%. These error margins appear
reasonable considering the complex nature of a polycrystalline system with a high number of grains.

Figure 4.11: Variation of error in carbon mass conservation

4.2.2 Comparison with cooling rates
In this analysis, we are investigating the influence of cooling rates on transformation kinetics,
exploring subsequent topological evolution, and analyzing grain statistics. We maintain the identical
initial microstructure as in Fig.4.1 and the same simulation setup as the prior study. However, we
focus on two distinct cooling rates, both operating under continuous nucleation mode. Fig.4.12
indicates the temperature profiles for the two cooling rate cases of ¤𝑇 = −10 K·s−1 and ¤𝑇 =

−20 K·s−1. The resolution time step for the rapid cooling case is maintained at 0.01 s, while for
slower cooling case, a bigger time step of Δ𝑡 = 0.02 s is employed.

In the relatively slower cooling scenario, the nucleation density is anticipated to be lower compared
to the faster cooling case. For achieving an expected final mean ferrite grain size of about 25 µm,
we estimate imposing approximately 500 ferrite nuclei, contrasting with 1400 nuclei for the faster
cooling instance. As indicated in [2] and applied in works such as [3], the nucleation temperature
range is also expected to be lower in the slower cooling case. To replicate this trend, 𝛿𝑇𝑁 is set to
20 K for the slower cooling scenario, compared to the 40 K range used for the faster cooling case.
For comparison, ferrite nuclei in both scenarios are allowed to initiate at triple junctions and also
along austenite grain boundaries.

Figs.4.13 and 4.14 illustrate the evolution of phases and carbon redistribution for the slower cooling
rate case. Previously, faster cooling results were showcased in Figs.4.5b and 4.6b under continuous
nucleation mode. For a comprehensive view of the final microstructures in both scenarios, refer
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Figure 4.12: Temperature profiles imposed during the transformation for
the two different cooling scenarios

to Figs.4.15. Notably, the slower cooling scenario, characterized by reduced nucleation density,
exhibits less pronounced hard impingement effects than the faster cooling case. This scenario
favors coarser equiaxed grain formation due to the less restricted growth of ferrite nuclei. However,
even at ¤𝑇 = −10 K·s−1, which is considered a high cooling rate, there might be some local nuclei
clusters that hinder the growth of certain ferrite nuclei. This could cause a few elongated ferrite
grains to grow into the bulk of parent austenite grains, similar to what’s seen in the rapid cooling
scenario. Higher nucleation density in the rapid cooling case results in more local nuclei clusters
and enhanced impediment to ferrite growth, primarily yielding elongated plate like ferrite grains.
From the observations in Fig.4.15, it’s evident that equiaxed ferrite growth occurs less frequently at
cooling rates as high as ¤𝑇 = −20 K·s−1, particularly when the nuclei also germinate along the grain
boundaries. Comparing Figs.4.14 and 4.6b, the major difference is the longer time available for
carbon diffusion in the slower cooling case. The relatively prolonged diffusion period contributes
to the reduction in the size of the trapped austenite grains, allowing the continued growth of ferrite
grains into the parent austenite matrix, compared to the rapid cooling case.

The dispersion in ferrite grain size distribution associated with continuous nucleation is notably
more pronounced at lower cooling rates as demonstrated by the plots in Figs.4.16. As anticipated,
the slower cooling case shows a higher mean ferrite grain size. The mean grain size evolution
in Figs.4.17 affirms this trend, converging towards the expected mean ferrite grain size that was
utilized to determine the nucleation density for the respective cooling scenarios. Moreover, the
mean austenite grain size is notably smaller for the slower cooling case by the end of the cooling
process at 990 K, implying a higher ferrite fraction. This trend is corroborated by the ferrite
fraction curves in Fig.4.18. It appears that given more time, the rapid cooling case could potentially
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Figure 4.13: Phase evolution for the ¤𝑇 = −10 K·s−1 cooling case

Figure 4.14: Carbon concentration maps during the transformation for the
¤𝑇 = −10 K·s−1 cooling case

157



(a) ¤𝑇 = −10 K·s−1 (b) ¤𝑇 = −20 K·s−1

Figure 4.15: Final phase distribution at the end for the two different
cooling rates

converge towards a similar ferrite fraction as observed in the slower cooling scenario.

It’s important to emphasize that throughout these simulations, the effect of capillarity-induced grain
growth on the ferrite grains at the conclusion of the cooling phase is minimal. The triple junctions
established by these ferrite grains are far from the expected equilibrium configurations, which are
typically observed during isotropic grain growth. This behavior is entirely in line with the selected
range of final temperatures in these simulations. Consequently, the temperature-dependent mobility
decreases substantially to observe any grain growth effects of significance within a reasonable time
frame. Moreover, due to the high cooling rate employed, the magnitude of the phase transformation
driving pressure significantly outweighs that of the capillarity-induced driving pressure when the
nuclei start to establish as grains. Under conducive thermal conditions or with sufficient time,
the numerical model should seamlessly transition to simulating the grain growth regime of the
microstructure following the phase transformation.

In Fig.4.16a depicting the slower cooling case, there’s a noticeable prevalence (high frequency) of
extremely small austenite grains towards the end. The have been notably observed at the eventual
triple junction locations of the ferrite grains. Curiously, these grains appear to persist rather than
dissolve (as one might expect due to increased capillary effects in smaller grains). Two potential
scenarios might explain this behavior:

(i) The small austenite pockets could possess a concave surface as depicted in Fig.4.19a, causing
capillarity-induced driving pressure to orient to grow the grain. Simultaneously, carbon rejection
from surrounding ferrite could elevate the interface concentration closer to the local equilibrium
value, thus reducing the phase transformation’s driving pressure. In this case, the two driving
pressures would be oriented opposite to each other. This counterbalance might stall austenite grain
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(a) ¤𝑇 = −10 K·s−1 (b) ¤𝑇 = −20 K·s−1

Figure 4.16: Final grain size distributions obtained for the two cooling
scenarios

(a) Austenite phase (b) Ferrite phase

Figure 4.17: Comparison of mean grain size evolution of both the phases
for different nucleation modes

159



Figure 4.18: Evolution of ferrite fraction during transformation for the
two cooling rates

(a) A scenario with physical sense (b) Uncharacteristic scenario

Figure 4.19: Tiny trapped austenite islands at the eventual triple junctions
of ferrite grains

160



growth or decomposition if the magnitudes of these opposing pressures are similar. So some of
these tiny grains could be due to this scenario.

(ii) Alternatively, a high and rapid influx of carbon into the trapped austenite pockets could elevate
the interface concentration beyond the local equilibrium value. Such a situation might result in the
driving pressure description (Δ𝐺𝛾→𝛼) in Eq.2.92 turning negative. If the cooling rate is slower,
this negative value might persist for longer duration, as the anticipated equilibrium concentrations
for the current temperature would not increase rapidly enough to counter the rise in interface
concentration. This uncharacteristic negative driving pressure might either act opposite to the
capillarity-induced driving pressure, stalling grain kinetics (in the convex interface case) or might
encourage the austenite grain to grow into ferrite grains (in the concave interface case). This
scenario is depicted in Fig.4.19b.

The first scenario is a purely physical phenomenon. However, the second scenario appears to be
a numerical artifact potentially linked to factors like the mesh resolution, time step, or even the
diffuse interface thickness etc., requiring investigation. If grain kinetics stall due to the negative
driving pressure and simultaneously experience further carbon influx, it could compromise the mass
conservation by increasing the total solute mass for the given phase distribution. This could explain
the relatively higher error (at 16%) in mass conservation for the slow cooling case compared to the
8% error observed in the rapid cooling case. A potential solution might involve refining the mesh
resolution or improving the time step to mitigate this issue. When we reran the simulation for the
slower cooling scenario using a finer mesh resolution (0.3 µm) within the diffuse interface thickness,
the mass conservation error reduced to only about 5%, and there was a noticeable decrease in the
occurrence of trapped tiny austenite pockets. However, this improvement isn’t practically viable due
to the increased computational demands associated with a finer mesh. It’s intriguing that achieving
better mass conservation in the slower cooling case required a finer mesh resolution compared to
the scenario with rapid cooling.

Further investigation revealed that employing the semi-analytical method (utilizing Eq.(2.29)) to
compute the reactive term (R) for the diffusion equation encounters inaccuracies at the triple
junctions in a polycrystalline context. The issue might stem from the computation and utilization of
the Laplacian of the signed distance function, Δ𝜑𝛼, in Eq.(2.29). Δ𝜑𝛼 is known to be particularly
ill-defined at these triple junctions. In Chapter 3, it was observed that the method exhibited no
issues in simple domains lacking triple junctions and, in fact, was more accurate than numerical
computation. However, within a polycrystalline context, it appears that this method is generally less
accurate than numerically computing (R) using divergence operators and numerical transformation
to a P1 FE field. Consequently, for polycrystalline settings, numerical computation seems to be a
more suitable approach for determining the strongly varying reactive term, R. Curiously, it remains
unclear why these errors become more pronounced, particularly at slower cooling rates.

The same case was rerun without altering the time step or mesh resolution from the initial setup,
focusing solely on modifying the computation of the reactive term. Remarkably, the error in mass
conservation did not exceed 1.45%, indicating a significant improvement. Notably, the occurrence
of unusually small trapped austenite pockets at the triple junctions was significantly reduced.
Furthermore, when tested with much slower cooling rates, no issues were encountered. Fig.4.20
illustrates the final grain size distribution obtained for the rerun case after resolving the issue. It is
evident that the frequency of these small grains are reduced. However, it’s important to note that
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instances of negative driving pressure may persist if the resolution time step, or local mesh size
remains inadequate.

Figure 4.20: Final grain size distribution obtained for the slower case after
changing the approach to compute R

4.2.3 A step towards simulating large-scale microstructures
Now, we’ll showcase the simulation in a large-scale microstructure, emulating the complexity often
found in industrial settings, characterized by a multitude of grains. This scenario maintains the same
thermodynamic conditions and alloy composition as our previous cases within a similar domain.
The initial austenitic microstructure comprises 1592 grains, visually detailed in Fig.4.21. Notably,
the austenite grain size displays a well-dispersed distribution, evident from the representation in
Fig.4.22, with an average grain radius of approximately 14 µm. The mesh parameters are identical
to those previously used.

For this simulation, the cooling rate is set to ¤𝑇 = −10 K·s−1, and a time step of 0.02 s is selected.
The interface energy is assumed to be the same value as before (1×10−6 J·mm−2). The mobility
and the diffusion parameters likewise remain the same as in Eq.(4.1). Following the cooling phase
to the final temperature of 𝑇 𝑓 = 976 K, the microstructure is maintained at this temperature for
an additional 80 seconds to ensure complete transformation. It is then rapidly reheated to 1100 K
at a rate of 20 K·s−1 to increase grain boundary mobility and thus enhance grain growth effects.
Following the reheating stage, the microstructure is maintained at 1100 K for the remaining duration
of the simulation until 𝑡 = 1000 s. The thermal path corresponding to this scenario is depicted
in Fig.4.23. In contrast to previous cases, the nucleation in this scenario is setup to exclusively
generate ferrite nuclei at the triple junctions (grain corners), continuously, until these sites are
saturated. A total of 2207 ferrite nuclei are imposed, commencing at 𝑇𝑁𝑠

= 1166 K and spanning a
temperature range of 40 K.

In Fig.4.24, the evolution of the ferrite fraction over time is depicted. The ferrite fraction converges
to unity with time, aligning with the ThermoCalc prediction of complete transformation to a ferritic
microstructure below 990 K.
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Figure 4.21: Illustration of the initial austenitic microstructure with 1592
grains

Figure 4.22: Grain size distribution of the initial large-scale microstructure
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Figure 4.23: Thermal path imposed during the transformation: the broken
axis representation indicates that the same temperature is maintained

during that period

Figure 4.24: Time evolution of the ferrite fraction during the
transformation
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(a) 𝑡 = 1 s, 𝑇 = 1166 K (b) 𝑡 = 2 s, 𝑇 = 1156 K

(c) 𝑡 = 3 s, 𝑇 = 1146 K (d) 𝑡 = 5 s, 𝑇 = 1126 K

(e) 𝑡 = 10 s, 𝑇 = 1076 K (f) 𝑡 = 20 s, 𝑇 = 976 K

Figure 4.25: Snapshots of austenite decomposition into ferrite in a large-scale
microstructure, at different instants till the end of cooling
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(a) 𝑡 = 1 s, 𝑇 = 1166 K (b) 𝑡 = 2 s, 𝑇 = 1156 K

(c) 𝑡 = 3 s, 𝑇 = 1146 K (d) 𝑡 = 5 s, 𝑇 = 1126 K

(e) 𝑡 = 10 s, 𝑇 = 1076 K (f) 𝑡 = 20 s, 𝑇 = 976 K

Figure 4.26: Snapshots of carbon evolution between the phases at different instants in
a large-scale microstructure till the conclusion of cooling
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Snapshots of the transforming microstructure at various intervals until the conclusion of the cooling
stage are presented in Figs.4.25 along with the associated carbon redistribution shown in Figs.4.26.
In this cooling scenario, the ferrite nuclei formed solely at the triple junctions tend to develop into
finer equiaxed grains overall. This contrasts with the previous rapid cooling case, where elongated
ferrite grains were formed due to nucleation along grain boundaries, resulting in necklace-like
structures. Figs.4.27 illustrate the microstructure’s state, including the associated phase distribution
and concentration map after the transformation stage (at 𝑡 = 100 s). The minuscule dark regions
apparent in the concentration map are a result of the persisting tiny trapped austenite islands
previously discussed.

Figure 4.27: Configuration obtained post complete transformation to
ferrite at the end of 𝑡 = 100 s: Phase distribution (left), Carbon

concentration field (right)

Figs.4.28 showcase the grain size distribution achieved post phase transformation, while Figs.4.29
outline the evolution of mean grain size throughout this transformation regime. The mean grain
radius of the ferrite grains converges to approximately 12 µm. At this stage, the ferrite grain size
distribution exhibits reduced dispersion.

From Fig.4.27, it’s evident that the triple junctions formed by the ferrite grains are far from
equilibrium. With the correct activation, the system has the potential to further reduce the excess
free energy, primarily existing as surface energy, through grain growth phenomena. However, at
temperatures as low as 976 K, the interface mobility remains low, and the grain growth effects
are negligible within the timescales of interest. Therefore, to initiate the necessary activation, the
microstructure is reheated to a higher temperature (1100 K) and sustained there to enhance the grain
growth effects. It should be highlighted that the grain growth stage of the simulation is resolved at
a higher time step of 0.5 s in this case.

After the reheating stage, the impact of grain growth phenomena on the transformed ferrite grain
morphology is vividly depicted in Figs.4.30. The growth of larger grains at the expense of smaller
ones, aimed at reducing the interfacial area, is distinctly observed. Notably, the triple junctions
approach the equilibrium angles (120°) characteristic of isotropic grain growth. Furthermore,
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Figure 4.28: Grain size distribution obtained at the end of the
transformation stage (𝑡 = 100 s)

(a) Austenite grains (b) Ferrite grains

Figure 4.29: Mean grain size evolution during transformation stage
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(a) 𝑡 = 200 s, 𝑇 = 1100 K (b) 𝑡 = 400 s, 𝑇 = 1100 K

(c) 𝑡 = 700 s, 𝑇 = 1100 K (d) 𝑡 = 1000 s, 𝑇 = 1100 K

Figure 4.30: Snapshots of grain growth effects observed in ferrite grains at different
instants, post the transformation stage (after reheating)
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Figs.4.31 showcases the differences in ferrite grain size distributions before the onset of the grain
growth regime and at 𝑡 = 1000 s. As the grain growth progresses, the grain size distribution
becomes more dispersed, with the mean grain size gradually shifting to the right. Additionally,
Figs.4.32 further emphasize this phenomenon, illustrating the consistent decrease in the number of
ferrite grains and the gradual increase in the mean grain size over time.

(a) At the beginning of GG stage (𝑡 = 100 s) (b) At 𝑡 = 1000 s

Figure 4.31: Ferrite grain size distribution during the grain growth (GG) stage

Figs.4.34 use grain coloration to showcase both the initial and final microstructures resulting from
this thermal treatment. This scenario yields a relatively finer microstructure post the transformation
and the grain growth. The variation in solute mass conservation error during the entire simulation
of this large-scale microstructure is depicted in Fig.4.33. The maximum error incurred is only
about 2%, which is a positive outcome given the magnitude of the simulation case. Due to the
anticipated complete transformation, the final carbon concentration in the ferritic microstructure
should ideally align with the nominal alloy composition of 0.02 wt%. However, a marginally lower
average concentration of about 0.01961 wt% is obtained, correlating with the 2% loss in solute
mass. These results show promise for the application of the numerical model in industrial-specific
microstructures. It’s important to note that the current model does not consider the reverse phase
transformation during the reheating stage. However, since the driving pressure description remains
consistent, adapting the existing framework to control the direction of the phase transformation
should be relatively straightforward. This could be considered as a prospect for future work,
involving additional complexities such as nucleation for the reverse transformation.
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(a) Number of ferrite grains (b) Mean grain radius of ferrite grains

Figure 4.32: Evolution of ferrite grain statistics during the grain growth stage

Figure 4.33: Variation of error in mass conservation during the entire
simulation: the broken axis representation indicates that the same error %

persists during that period
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(a) Initial microstructure

(b) Final microstructure

Figure 4.34: Comparison of the microstructure morphologies before and
after the complete thermal treatment: represented by grain coloration
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4.3 DSSPT simulation in a ternary alloy: 2D polycrystals
In this section, we will examine DSSPT in the presence of a substitutional element, whose effects
on transformation kinetics are incorporated through solute drag aspects under para-equilibrium
hypothesis. We’re using the Fe-0.1 wt%C-0.5 wt%Mn steel alloy within the same basic microstruc-
ture as before (4.1) to illustrate this effect. The necessary thermodynamic data were obtained using
the para-equilibrium (PE) assumptions, and we’ve utilized Eq.(2.100) to model the driving pressure
(Δ𝐺𝛾→𝛼). For the Fe-0.1 wt%C-0.5 wt%Mn steel alloy, the calculated austenitization temperature
under the PE hypothesis is approximately 1118 K. We’ve set the initial temperature to this 𝑇𝑃𝐸

𝐴3
temperature. The microstructure is cooled to a final temperature of 𝑇 𝑓 = 910 K at a cooling rate
of −10 K·s−1. At end of cooling, the microstructure is maintained at the final temperature for
an additional 30 s as illustrated in Fig.4.35 to provide ample time for phase transformation and
the associated solute redistribution. The interfacial energy, mobility, diffusivity data, and most
numerical parameters remain the same as in the earlier section (4.2.1). The time step is chosen as
Δ𝑡 = 0.02 s for this case.

Figure 4.35: Thermal path imposed during the transformation

We’ve limited the appearance of ferrite nuclei exclusively to the triple junctions, introducing a total
of 300 ferrite nuclei. While in practical scenarios, the count might be higher and could potentially
extend to nucleation on grain boundaries owing to increased nucleation density, for the sake of
clarity, we’ve kept a straightforward setup. The nucleation start temperature is set to 𝑇𝑁𝑠

= 1112 K,
and the range is assumed as 𝛿𝑇𝑁 = 30 K.

To model solute drag aspects, as detailed in Chapter 2 (2.3.2), we use the simplified description by
Cahn’s model [4]. In practical scenarios, the intention is to utilize the two parameters introduced by
Cahn’s solute drag pressure as fitting model parameters to align with the experimental results, rather
than employing the analytical expressions provided by Cahn in Eqs.(1.58) and (1.59). However, for
the purpose of demonstration in this context, we utilize the analytical expressions based on literature
[5] to establish some parameters in Eqs.(1.58) and (1.59), aiming for a realistic representation as
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possible. Figs.4.36 provide a visualization of the Cahn’s parameters computed in this simulation,
depicting their variation with temperature. The graph depicting the variation of 𝛽2

𝐶
in Fig.4.36b

suggests an increase in solute drag pressure at higher temperatures, gradually weakening as the
temperature decreases. As a reminder, in the numerical formulation, the influence of solute drag
is represented by the solute drag pressure coefficient (ℳ𝑆𝐷) in Eq.(2.56). A higher value of ℳ𝑆𝐷

corresponds to stronger solute drag effects. This value approaches unity when no solute drag effects
are present.

(a) 𝛼𝐶 (𝑇) (b) 𝛽2
𝐶
(𝑇)

Figure 4.36: Evolution of Cahn’s solute drag parameters with temperature for the
chosen case

Fig.4.37 illustrates the evolution of the ferrite phase fraction over time for two scenarios: without
any solute drag effects, and with solute drag effects. In Fig.4.38, we observe the evolution of
the ferrite phase fraction with temperature throughout the cooling process. Fig.4.38 shows that
initially, enhanced drag effects at higher temperatures limit the phase fraction. However, with
sufficient time given, both the scenarios eventually converge to a similar ferrite fraction value as
depicted in Fig.4.37, since at lower temperatures the solute drag effects are significantly reduced.

The comparison between scenarios, one with solute drag effects and another without, is illustrated
in Figs.4.39 for the phase evolution, complemented by the respective solute distribution presented in
Figs.4.40. In both cases, where the nucleation density remains low and nucleation sites are restricted
to triple junctions, the inhibition by neighboring nuclei is minimal. Consequently, both scenarios
generally result in equiaxed grains. However, in the instance incorporating solute drag effects, the
growth of ferrite nuclei at initial higher temperatures is initially sluggish due to strong drag effects.
Generally, this could limit the potential dispersion in grain size distribution caused by continuous
nucleation, resulting in a relatively uniform distribution of grains. However, as evident in Figs.4.42,
in this case, the difference are minimal, possibly due to a smaller temperature range of nucleation
for the considered cooling rate. The comparison between the final microstructure morphologies
illustrated in Figs.4.41 demonstrates similar grain characteristics, including a comparable mean
ferrite grain size. The noticeable distinctions primarily lie in the transformation kinetics between
the two scenarios for the assumed solute drag parameters in this illustration.
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Figure 4.37: Evolution of ferrite fraction with time for the difference cases

Figure 4.38: Evolution of ferrite fraction with temperature until the
conclusion of cooling for different scenarios
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(a) Without solute drag effects

(b) With solute drag effects

Figure 4.39: Snapshots of phase evolution with and without the
consideration of solute drag effects
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(a) Without solute drag effects

(b) With solute drag effects

Figure 4.40: Snapshots of carbon distribution with and without the
consideration of solute drag effects
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The mass conservation depicted in Fig.4.43 appears to be quite reasonable for this alloy in this
specific illustrative case.

(a) No solute drag effects (b) With solute drag effects

Figure 4.41: Final phase distribution obtained with and without solute
drag effects

(a) Without solute drag
effects

(b) With solute drag effects

Figure 4.42: Final grain size distributions obtained for the two cases

Thus, these two Cahn’s solute drag parameters provide added flexibility in controlling the transfor-
mation kinetics, particularly when attempting to align with experimental transformation curves.
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Figure 4.43: Variation of error in mass conservation for the considered
simulations in the ternary alloy

4.4 Simulation of particle coarsening phenomenon but not quite
the typical Ostwald ripening

In the context of a matrix phase, after a first-order diffusive phase transformation where second-
phase particles (SPPs) separate, local equilibrium between the matrix and the SPPs might be
attained. However, this state may not represent the system’s minimum free energy configuration,
particularly when the matrix phase consists of a dispersed or multi-modal distribution of second-
phase particles. The interfacial energy of the SPPs contributes to the excess free energy in the
system, which is thermodynamically unfavorable. As a result, the system attempts to alleviate this
excess free energy by reducing the surface energy within the system. In the absence of any elastic
misfits at the phase boundaries, the system achieves this by dissolving smaller particles in favor of
larger ones. Consequently, the larger particles coarsen at the expense of the smaller SPPs, thereby
decreasing the surface energy in the system. This process is brought about by diffusional mass
transport from a region of higher concentration to an area of lower concentration. The variation in
composition is created due to the multi-modal distribution of the particles. The local equilibrium
concentrations (solubility limits) of the solute between the matrix and the SPPs are altered by
Gibbs-Thomson effects (capillarity effects), determined by the curvature of the SPP as elucidated
in Chapter 3 (3.2.2). Consequently, a gradient in concentration emerges, fueling the diffusive mass
transport. This phenomenon is commonly referred to as particle coarsening or Ostwald ripening
[6, 7]. In the typical Ostwald ripening phenomenon, diffusional mass transport occurs from smaller
particles to larger particles, assuming that the capillary-induced pressure increases solubility with
curvature for the underlying phase of the particles. However, as demonstrated in 3.2.2 with Fig.3.12,
Gibbs-Thomson effects might not consistently increase the solubility limits of the product phase
(particle phase).

Consider a hypothetical scenario with SPPs represented by the ferrite phase and the matrix as the
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austenite phase. Here, based on thermodynamic considerations, the capillary-induced pressure
reduces solubility with curvature. Consequently, smaller particles with higher curvature could
exhibit lower concentration at local equilibrium compared to larger particles. In such a scenario,
the diffusive mass transport would occur from larger particles to smaller ones. To understand the
underlying dynamics, the phenomenon of particle coarsening can be envisioned as a competition
between the chemical driving pressure (Δ𝐺𝛾→𝛼) and the capillarity driving pressure (𝜎𝛾𝛼𝜅). At
local equilibrium, these two driving pressures balance each other out. However, the solute flux
from larger particles would increase the interface concentration of smaller particles, reducing the
Δ𝐺𝛾→𝛼 pressure to a level where Δ𝐺𝛾→𝛼 < 𝜎𝛾𝛼𝜅. Consequently, this results in the dissolution
of the smaller particles. Conversely, the solute flux transported from the larger particle would
decrease its interface concentration. This decrease would raise the chemical driving pressure to a
level surpassing that of capillarity, leading to the growth of the larger particle. In a realistic scenario
where capillarity effects increase the solubility of the particle phase with curvature (typical Ostwald
ripening), similar principles of competition between driving pressures can explain the dynamics of
the phenomenon. The distinctive factor lies in the diffusional mass transport’s direction, alongside
the chemical driving pressure, where a higher interface concentration corresponds to a greater
Δ𝐺𝛾→𝛼.

To simulate this phenomenon, given the unavailability of realistic test cases and required thermo-
dynamic data for typical Ostwald ripening simulation due to time restrictions, we’ve chosen to use
a hypothetical scenario: representing the SPPs as the ferrite phase and the matrix as the austenite
phase. It’s crucial to highlight that despite this hypothetical setup not mirroring the conventional
appearance of Ostwald ripening, the inherent kinetics and dynamics remain identical. The primary
objective is to showcase the numerical model’s capability in simulating various diffusive solid-state
phenomena, including particle coarsening, utilizing the same kinetic framework. Therefore, our
simulation involves an austenite phase matrix within a 1 mm-sized domain, wherein the second
phase consists of ferrite, forming a bimodal distribution of particles, as illustrated in Fig.4.44. The
initial configuration is represented in Fig.4.45 through the grain coloration employed for this case.

Figure 4.44: Initial size distribution of second-phase particles (SPPs)

The initial condition is set to a slight offset (𝑇 𝑖 = 1162 K) from the isothermal simulation temper-
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Figure 4.45: Initial grain coloration of the matrix-SPPs setup

ature of 𝑇 = 1160 K for the Fe-0.02 wt%C alloy. This proximity ensures that the system is nearly
at local equilibrium for phase transformation and can swiftly transition to the particle coarsening
regime. The resolution time step is fixed at Δ𝑡 = 0.5 s. The diffuse interface thickness is set to 5 µm
with a local mesh resolution of 0.5 µm (adaptive mesh). The mobility and carbon diffusivity data
are consistent with previous cases. However, considering the long time scale of this phenomenon,
for illustrative purposes, the interfacial energy is set to a higher value (𝜎𝛾𝛼 = 2×10−6 J·mm−2) to
accentuate the coarsening process. The simulation is run for a duration of 10000 s.

Figs.4.46 present a series of snapshots illustrating the particle evolution at different instants, while
Figs.4.47 exhibit the corresponding concentration maps. The system is anticipated to reach local
equilibrium after the initial phase transformation at approximately 50 s. Thus, the particle coars-
ening regime is assumed to commence from 𝑡 = 50 s. The expected coarsening of larger particles
is visibly apparent, as the smaller particles dissolve over time. It’s important to note that physical
coalescence aspects are not accounted for in this simulation. However, numerical coalescence
is prevented due to the grain coloration technique employed. Interestingly, none of the particles
appear to make direct contact, likely due to the system’s proximity to local equilibrium and thus
exhibiting very slow kinetics. Nevertheless, soft impingement arising from the diffusion fields
of adjacent particles is noticeable. Whenever two particles approach close proximity, the local
diffusional flux and the interaction with capillarity pressure seem to flatten their interfaces.

Fig.4.48 depicts the ferrite fraction observed throughout the particle coarsening process. Theo-
retically, the ferrite fraction should remain constant. However, due to a non-negligible error in
mass conservation (approximately 15%), slight variations in the ferrite fraction are evident. The
red portion of the curve highlights the phase transformation regime, while the remainder illustrates
the coarsening stage. Particle coarsening is characterized by monotonous decrease of SPPs with
monotonous increase in the mean particle size. This is well reflected in Figs.4.49 showcasing the
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Figure 4.46: Snapshots of coarsening and dissolution of second phase
particles (SPPs)
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Figure 4.47: Snapshots of solute distribution (SPPs) during the particle
coarsening phenomenon
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evolution of number of particles and the evolution of the mean particle size, respectively. Fig.4.50
demonstrates the particle size distribution obtained at the end of the simulation. It seems evident
that, in comparison to Fig.4.44, there has been an increase in the frequency of larger particles over
time as a result of coarsening.

Figure 4.48: Evolution of the phase fraction of the SPPs

(a) Number of SPPs (b) Mean particle size

Figure 4.49: Evolution of particle statistics

In the Fig.4.51, the kinetics of the particle size evolution are compared with the modern Ostwald
ripening (OR) theories [8]. These theories are grounded on a generic expression:

�̄�3
𝛼 − �̄�3

𝛼 (0) = 𝑘𝑡, (4.2)
where �̄�𝛼 is the mean particle size, �̄�3

𝛼 (0) is the initial mean particle size, and 𝑘 is a parameter
characterized based on the concerned theory. It appears that the simulated mean particle size can be
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Figure 4.50: Final size distribution of second-phase particles (SPPs)

fit into the aforementioned expression, resembling the quantitative description provided by the OR
theories. Therefore, the hypothetical scenario we’ve adopted demonstrates kinetic characteristics
akin to those of a typical Ostwald ripening phenomenon. This serves as evidence of the numerical
model’s seamless potential to simulate a range of diffusive solid-state phenomena.

Figure 4.51: Comparison with modern Ostwald ripening theories
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4.5 Summary
The numerical model showcases its capacity to simulate complex biphasic polycrystals undergoing
diffusive solid-state phase transformation, demonstrated through austenite decomposition in steels.
Investigating nucleation aspects in conjunction with cooling rates, the study reveals distinct trans-
formation behaviors. At rapid cooling rates, nucleation on grain boundaries forms necklace-like
nuclei structures along parent phase grain boundaries, resulting in elongated grains due to hard
impingement effects. In contrast, nucleation limited to grain corners leads to the formation of
equiaxed grains. Site-saturated nucleation fosters uniform growth of ferrite grains, yielding com-
pact grain size distributions. Continuous nucleation introduces dispersion in grain sizes due to
differing appearance times of nuclei.

Slower cooling rates with lower nucleation density produce coarser grains, while faster rates with
higher nucleation density yield finer grains. Slower cooling allows ample diffusion time, leading
to smaller trapped parent phase islands and a higher ferrite fraction at the conclusion of cooling.
Addressing numerical artifacts, particularly the negative transformation driving pressure in some
cases when a cluster of nuclei traps the parent phase, is crucial to prevent aberrant grain kinetics and
maintain mass conservation. The semi-analytical computation of the reactive term in the diffusion
equation tends to produce errors at the triple junctions within a polycrystal context. Therefore,
it’s preferable to numerically compute the reactive term for polycrystal scenarios to enhance solute
mass conservation and reduce unphysical behavior at the triple junctions.

In ternary alloys, integrating solute drag aspects effectively replicates sluggish transformation kinet-
ics, observed at certain stages of transformation. By incorporating Cahn’s solute drag parameters
as adjustable model parameters, it provides added flexibility to control transformation kinetics, to
ensure alignment with experimental transformation curves.

The numerical model’s adaptability to simulate various diffusive solid-state phenomena, like par-
ticle coarsening, using a unified numerical framework, is exemplified through an academic case.
Overall, the model showcased promising outcomes, effectively capturing intricate transformation
dynamics reflective of real-world scenarios. These results pave the way for exploring practical
microstructures concerning industrial applications.
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Chapter 5

Conclusion and Perspectives

Abstract

This chapter consolidates the accomplishments and key takeaways from this work, em-
phasizing the proposed level-set based numerical framework. It delves into highlighting the
potential challenges encountered, and concludes with reflections on the framework’s outcomes.
Additionally, it outlines promising future directions facilitated by this work, offering a glimpse
into prospective avenues for exploration

Résumé

Ce chapitre synthétise les réalisations et les principaux résultats de ce travail, en mettant
l’accent sur le modèle numérique proposé, basé sur l’approche level-set. Il souligne les défis
potentiels rencontrés et conclut par des réflexions sur les résultats du modèle. En outre, il
expose les perspectives prometteuses facilitées par ce travail, en offrant des pistes d’exploration
potentielles.

5.1 Conclusions
Chapter 1 provided a brief introduction to the concept of microstructural instability and the resulting
array of transformation mechanisms, in the context of metallic alloys. Chapter 1 also elaborated
on the fundamental aspects of diffusive solid-state phase transformation (DSSPT) theory, aligning
with one of the primary objectives of this thesis: to model diffusive phase transformations at the
solid state. DSSPT typically involves nucleation of the new stable phase, followed by their subse-
quent growth. Chapter 1 highlighted the lack of a consistent and comprehensive description of a
nucleation event in phase transformation despite an abundance of literature in the field. The current
state-of-the-art nucleation models rely on various assumptions and complex parameters, allowing
for significant flexibility. Most of these parameters present enormous difficulties to precisely quan-
tify them with any conviction. Consequently, at the mesoscopic scale, describing nucleation often
involves relatively simple approaches based on strong assumptions. To capture transformation
kinetics accurately during the growth stage, it’s crucial to consider a mixed-mode transforma-
tion character. A portion of the driving pressure facilitating phase transformation is dissipated
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by interfacial processes involving lattice rearrangement between the phases, while the remaining
part is attributed to long-range solute diffusion in the bulk of the phase. In contrast to certain
diffusion-controlled models that assume instantaneous local equilibrium, achieving local equilib-
rium at the phase interface is a gradual process within a mixed-mode type phase transformation
model. In metallic alloys containing slowly diffusing substitutional solute elements alongside fast
diffusing interstitial elements, constrained phase equilibria assumptions are employed to describe
transformation kinetics. This is due to the challenge of achieving complete local phase equilibrium
for both types of solute elements simultaneously. A portion of the available driving pressure for
transformation is consumed by the potential interaction of substitutional solutes with the migrating
phase interface, resulting in solute drag effects. Therefore, it’s crucial to account for the drag
resistance caused by these solute drag effects to accurately replicate the sluggish transformation
kinetics observed in these scenarios.

While Chapter 1 reflected the physical aspects of phase transformation, Chapter 2 offers the
numerical modeling viewpoint of microstrucutral evolution. In the realm of DSSPT, the front
capturing based method of level-set (LS) has not been explored to its full potential in the current
state-of-the-art despite its successful application in simulating other microstructural changes like
recrystallization (ReX) and grain growth (GG). Most of the existing approaches are insufficient
to model the concomitant nature of microstructural transformations, especially in the context
of industrial applications involving high plastic deformation and other complex thermomechanical
treatments in multi-phase materials. This motivated the proposition of a global level-set formulation
with a generalized kinetic framework, capable of effectively accounting for different contributions,
enabling the modeling of diverse evolutions including DSSPT, ReX, and GG simultaneously.
Chapter 2 provides an in-depth description of this proposed numerical framework in a finite element
(FE) context, with a strong focus on modeling DSSPT in biphasic polycrystals at the mesoscopic
scale. While this work primarily explores the level-set method’s application for DSSPT using
the proposed model, the generalized kinetic framework presented in Chapter 2 offers a promising
avenue for future work, allowing seamless integration of additional physical aspects alongside
phase transformation. The LS-based framework for modeling DSSPT involves two pivotal stages:
a diffusion equation governing solute redistribution between the phases, and a level-set transport
equation governing the resultant migration of microstructure topology. A unified diffusion equation
across the computational domain is formulated by hypothesizing a diffuse interface description
across the phase interfaces. This reformulation is reminiscent of the phase-field method’s approach
to modeling diffusion. In the context of a polycrystal, the presence of a multitude of grains is
handled by utilizing the grain coloration scheme which effectively reduces the number of level-set
functions needed. The interface migration is effected via a classical level-set description of the
interface. While Cahn’s solute drag model lacks physical applicability across interphase boundaries
and is more suited for grain boundaries, its capacity to capture general trends in solute drag effects,
whether at grain interfaces or phase interfaces, is noteworthy. Its straightforward description
renders it attractive for numerical implementation. Hence, Cahn’s simplified description of solute
drag pressure is integrated into the existing kinetic framework to account for solute drag. This
integration provides flexibility in conjunction with the choice to use Cahn’s solute drag parameters
as adjustable model parameters. The final kinetic formulation is finally equivalent to decreasing the
interface mobility by a factor. This seems synonymous to some of the models in the current state-of-
the-art that consider an effective interface mobility reduced by a constant factor to account for solute
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drag. However, in our proposed formulation, this factor (referred as solute drag pressure coefficient)
is heterogeneous depending on the local interface kinetics, providing a richer description. A specific
adaptive meshing/ remeshing strategy is employed to ensure the required detailed mesh resolution
across the phase interfaces. Conversely, a less detailed resolution suffices across the grain interfaces,
optimizing computational efficiency. The successful coupling with ThermoCalc interface helps with
the piecewise linearization of the phase diagram, providing an enriched description for the phase
transformation driving pressure. Recognizing the challenges in accurately describing nucleation
events at the mesoscopic scale, Chapter 2 provided insight into the simplified nucleation model
utilized within the current framework. This model enables the nucleation of spherical-shaped
nuclei at grain corners, grain boundaries or other sites, as needed, subject to specific constraints.

An initial assessment of the proposed numerical framework is performed on benchmarking cases
in Chapter 3. The proficiency of the numerical model in reproducing expected physical behav-
iors is demonstrated within simple domains, focusing on austenite decomposition in steels. Their
quantitative predictions align well with the estimations obtained from ThermoCalc. The 2D matrix-
precipitate case effectively demonstrates the subtle yet pivotal influence of capillarity effects on
phase transformation kinetics and the equilibrium position. Capillarity plays a crucial role in gov-
erning the early-stage kinetics when the growing phase is in its nascent nucleus form, underlining the
importance of taking them into account. The proposed level-set numerical model is benchmarked
against a state-of-the-art sharp interface semi-analytical model and is compared with predictions
from a corresponding phase-field numerical model for simulating austenite decomposition in a steel
alloy. The results from this analysis demonstrated the level-set model’s effectiveness in reproduc-
ing the solute concentration profiles and interface kinetics akin to both the semi-analytical and the
phase-field model. A sensitivity analysis effectively demonstrated the convergence of numerical
predictions with changes in mesh resolution and the time step. It emphasized the importance of
having an adequate number of mesh elements within the presumed diffuse interface thickness to
accurately capture field variations and ensure good solute mass conservation. The predicted inter-
face kinetics exhibited consistent behavior with varying interface thickness, provided fine enough
mesh resolution with sufficient mesh elements within the diffuse interface is utilized. Caution must
be exercised when choosing the diffuse interface parameter, aiming to strike a balance between
employing a reasonably coarse mesh with enough elements within the diffuse interface and avoiding
the use of unrealistically large values. Aiming for 7 to 20 mesh elements within the diffuse interface
usually establishes a reasonable compromise. Yet, under specific cases and conditions, achieving
an acceptable level of mass conservation might necessitate a greater number of elements in the
diffuse interface.

The potential of the proposed numerical framework to replicate the phase transformation behavior
in complex polycrystalline microstructures is showcased in Chapter 4. Distinct transformation
behavior, typically expected, emerge when different nucleation aspects are taken into account in
conjunction with varying cooling rates. The numerical model also demonstrated its capability to
simulate large-scale microstructures with thousands of grains, relevant to industrial settings. An
illustrative case considering solute drag aspects in a ternary alloy showcased the model’s ability
to reproduce sluggish transformation kinetics. The adjustable Cahn’s solute drag parameters offer
additional flexibility to control the transformation kinetics, to be potentially in better agreement with
the experimental transformation curves. In certain scenarios, especially at slower cooling rates, the
transformation driving pressure has the tendency to become negative, stalling the grain kinetics and
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leaving behind tiny islands of the parent phase grains, especially at the eventual triple junctions of
the product phase grains. This issue is attributed to the semi-analytical approach used to compute
the reactive term in the diffusion equation, which tends to introduce errors at the triple junctions
within a polycrystal context. Therefore, it is preferable to numerically compute the reactive term
for polycrystal scenarios to enhance solute mass conservation and reduce unphysical behavior
at the triple junctions. Chapter 4 also illustrated the numerical model’s versatility to simulate
other diffusive solid-state phenomena such as particle coarsening, without any modifications to the
existing formulation.

Globally, the proposed level-set based numerical framework shows encouraging potential in simu-
lating diffusive phase transformations at the solid-state. The generalized nature of the framework
alongside the adaptive meshing capabilities offer diverse scope to seamlessly integrate other com-
plex evolution aspects into the model, including simulations in 3D. The positive outcomes of this
work are expected to guide future research, potentially expanding the range of modeling approaches
available alongside the established phase-field method in the realm of diffusive solid-state phase
transformation.

5.2 Prospective works
The proposed numerical framework in its budding stage offers an open field for exploring several
perspectives and potential improvements. Some of these propositions will potentially be part of the
future work within the current research team of our laboratory.

5.2.1 Experimental validation
In the context of this work, an intended validation using an experimental test case couldn’t be
realized as planned. We had arranged for the casting of a specific material composition for analysis
with an industrial partner (ArcelorMittal, Maizières). Unfortunately, unexpected circumstances led
to delays and altered our plans. We considered sourcing experimental curves from literature as
potential references for fitting the numerical predictions. However, caution is essential in using such
data by discussing the precision of the results, underlying choices in generating the experimental
data, and uncertainties regarding nucleation data and parameters. Relying on this data might indeed
provide too much flexibility for the numerical model to converge to these curves.

Nevertheless, this setback offers an opportunity for a comprehensive experimental analysis to
validate the proposed numerical model. It also enables improvements to the current nucleation
model, potentially refining it based on experimental observations. This would also provide a
latitude to apply the numerical framework to super alloys, pertinent to critical applications. The
existing model utilizes a steady nucleation rate, but there’s potential to enhance it by incorporating
principles from the Classical Nucleation Theory (CNT) [1–4]. The challenging aspect would then
be to precisely quantify some of the complex parameters introduced by CNT.

Enriching the interface mobility and energy description to include heterogeneity and anisotropy
aspects [5] is also an important prospective work to render realistic depiction of the microstructural
evolution.
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5.2.2 Extension to 3D simulations
While the illustrations in this work have primarily been in 2D, the numerical formulation presented
in 2.3 is generic, allowing for seamless transition to 3D simulations. A 3D simulation would offer
a more realistic and complete depiction of evolutionary aspects, offering insights that are typically
overlooked in 2D. However, a significant challenge arises from the computational demands of
adaptive meshing and remeshing operations in 3D, especially when ensuring the required precision
across phase interfaces. As discussed in [6], remeshing in 3D could be less effective compared to
utilizing a static fine mesh throughout, especially for large-scale microstructures. However, adopting
static fine meshes in 3D poses its own set of challenges due to high memory demands. Thus,
thoroughly considering the remeshing aspect in 3D becomes crucial for potential enhancements.

5.2.3 Short-circuit diffusion
The literature extensively details that solute diffusion occurs faster along the so-called short-circuit
paths compared to the bulk of the grain [7–9]. In a polycrystalline context, various defects such
as multiple junctions, triple lines (grain edges), grain boundaries, dislocations, etc., constitute as
potential short-circuit paths. Notably, experimental findings have validated a hierarchy in diffusion
rates: self-diffusion on a free surface demonstrates the highest diffusion rate (𝐷𝑠), succeeded by
diffusion along high-angle grain boundaries (𝐷𝑔𝑏), then low-angle grain boundaries or dislocation
lines (𝐷𝑑), and finally, bulk or volume diffusion (𝐷𝑣), i.e.,:

𝐷𝑠 > 𝐷𝑔𝑏 > 𝐷𝑑 > 𝐷𝑣 . (5.1)

In the proposed numerical framework, solute diffusion is assumed homogeneous within the bulk
of a grain and across the grains of the same phase. Consequently, exploring the impact of short-
circuit diffusion effects during phase transformation emerges as a potential avenue for future work.
Various models in the literature precisely capture short-circuited diffusion at lower modeling scales
by considering segregation aspects. At the mesoscopic scale within the current framework, the
primary emphasis isn’t on achieving high precision in modeling.

As an initial proposal, integrating short-circuited diffusion along grain and phase boundaries
could involve assuming heterogeneous activation energy for solute diffusion. Particularly, a lower
activation energy near the grain and phase boundaries could be considered. Thus, the activation
energy for solute diffusion (say 𝛼 phase) could be expressed as:

𝑄𝐶𝛼 (𝒙) = 𝑄𝐶𝛼

��
0

(
1 − 𝜒ℎ𝑔𝑏

𝑖
(𝒙)𝑘𝑠𝑐𝑑

)
, (5.2)

where 𝑄𝐶𝛼
��
0 is the activation energy for solute 𝐶 in the bulk of the grain, 𝑘𝑠𝑐𝑑 is a factor (< 1) by

which the activation energy is reduced near the grain boundaries, and 𝜒ℎ𝑔𝑏
𝑖
(𝒙) is a characteristic

function used to characterize a local region near the grain boundary of a particular grain depending
on a certain chosen distance (𝛿𝑠𝑐𝑑). This characteristic function could be defined as:
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For 𝑖 | 𝜑𝑘𝑖 (𝒙) ≥ 0

𝜒
ℎ𝑔𝑏

𝑖
(𝒙) =

{
1 if 0 ≤ 𝜑𝑖 (𝒙) ≤ 𝛿𝑠𝑐𝑑
0 otherwise

. (5.3)

The discontinuous characteristic function could be replaced by a smooth function to allow for a
continuous transition from the bulk value to the grain boundary value. Fig.5.1 gives an illustration
of this characteristic function within a grain. It would take 1 within the thin strip highlighted in
green and 0 in the bulk of the grain. A potential variation of this activation energy along the line A-A
is also demonstrated. With the computation of the heterogeneous activation energy, the temperature
dependent Arrhenius type law in Eq.(3.1) could be applied to compute the heterogeneous diffusivity
field with a higher diffusion rate near grain boundaries. A similar treatment could be extended to
the other phase as well.

Figure 5.1: Illustration of the characteristic function within a particular
grain to characterize the short-circuited region near the grain boundary

5.2.4 Switching to periodic boundary conditions
In the current numerical framework, the imposition of generic Robin-type boundary conditions for
the solute concentration field [10] is complemented by the utilization of null Neumann conditions for
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the level-set functions. However, periodic boundary conditions (PBC) emerge as an appealing and
widely used approach for modeling microstructural evolution in current state-of-the-art. PBCs offer
a more versatile representation than Neumann or other boundary conditions, allowing emulation
of a large system by simply considering a finite representative volume. They also potentially
circumvent issues that can arise when phase interfaces interact with domain boundaries, commonly
encountered with classical Neumann or Robin conditions. Most of the works in the literature based
on phase-field method in the realm of DSSPT make use of regular meshes, and hence PBCs are
generally easy to implement in this context. However, when employing adaptive meshes with
remeshing, achieving mesh uniformity across opposing domain boundaries becomes challenging,
posing numerical implementation difficulties. Notably, our current solvers lack the capability to
incorporate PBCs within an adaptive meshing/ remeshing finite element context. Consequently,
this stands as an area for potential future exploration and development.

5.2.5 Accounting for misfit elastic strains
During phase transformation, differences in lattice parameters between the crystal structures of
involved phases can induce lattice distortion as the product phase tries to fit within the volume of
the parent phase. This distortion leads to the incorporation of elastic misfit strains at interphase
boundaries [11, 12].

Experimental findings suggest that these misfit strains could influence interface kinetics and hence
the microstructural topology by contributing an additional driving pressure associated with elastic
energy. For instance, during particle coarsening of dispersed second-phase particles in a matrix
phase, the presence of misfit strains between the precipitate and matrix alters the equilibrium shape
of the precipitate from a sphere. Instead, the equilibrium shape is now determined by minimizing
both elastic and interfacial energies, often resulting in the formation of plate-shaped or rod-shaped
precipitates under the influence of elastic misfits.

Integrating these effects into the current kinetic framework could thus enhance our understanding
of interface kinetics, providing a more comprehensive description of the physics involved.

Elastic misfits play a critical role in diffusionless phase transformation, such as martensitic trans-
formation, involving significant lattice distortions. Such transformation do not involve solute mass
transport between the involved phases. Considering the influence of elastic misfits, it might be in-
triguing to extend the current numerical framework to simulate diffusionless phase transformations.
This adaptation would require modifying the phase transformation driving pressure description ac-
cordingly. The time scales of topological evolution in such transformations are extremely short,
demanding significantly smaller time step resolutions for precise capture of the topological evolu-
tion.

5.2.6 Improvements of computational efficiency
The primary focus of this work revolved around the numerical formulation and framework develop-
ment, rather than emphasizing computational efficiency. However, considering the computational
costs of the current framework, especially for large-scale cases, and anticipating even greater de-
mands in a 3D context, a special emphasis could be put forward to enhance the computational
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efficiency of the numerical model.

Looking ahead, there’s potential to adapt the current numerical formulation and concepts for
integration with a new and efficient front tracking method called ToRealMotion [13–15]. This
method is currently under development within our research team and exhibits promise in handling
diverse microstructural evolution with significant gains in computational efficiency.

5.2.7 Simulation of recrystallization with phase transformation
The global objective of this work was to establish a kinetic framework capable of encompassing
various evolution aspects simultaneously, notably in a high plastic deformation context. Several
works have been successfully carried out in the realm of recrystallization in a monophase material
using level-set method [16–20]. Consequently, the numerical tools and concepts devised for recrys-
tallization could be integrated into the current framework and attempt to simulate recrystallization
with phase transformation.

However, a significant challenge would be understanding the interplay between the nucleation
models governing recrystallization and those relevant to phase transformation. Extending the
nucleation criteria applied in recrystallization to phase transformation holds promise, as sites
showcasing high dislocation density might also facilitate the germination of a new phase under right
conditions. This aspect holds vast potential for extensive further research, including experimental
analyses of these intricate microstructural evolution.
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A Integrated expressions for the solute drag pressure of Purdy-
Brechet model

Figure A.1: Purdy and Brechet’s assumption of the interaction energy
profile, 𝐸 (𝑧), assumed across an interface of width 2𝛿

For the considered interaction energy profile (𝐸 (𝑧)) in Fig.A.1 and for constant interfacial solute
diffusivity (𝐷𝑋

Γ
), the solute segregation profile (𝑥𝑋 (𝑧)) obtained is given in Eq.(1.54). The solute

drag pressure could be computed using the definition in Eq.(1.52) as:

Δ𝐺𝑆𝐷 = −𝑥0
𝑋𝑁𝑉

∫ ∞

−∞

(
𝑥𝑋

𝑥0
𝑋

− 1

)
𝜕𝐸

𝜕𝑧
𝑑𝑧. (A.1)

From the 𝐸 (𝑧) profile, 𝜕𝐸/𝜕𝑧 could be easily computed and the integral could be rewritten as:

Δ𝐺𝑆𝐷 = −𝑥0
𝑋𝑁𝑉

[∫ 0

−1

(
𝑥𝑋

𝑥0
𝑋

− 1

)
(Δ𝐸 − 𝐸0) 𝑑𝑧 +

∫ 1

0

(
𝑥𝑋

𝑥0
𝑋

− 1

)
(Δ𝐸 + 𝐸0) 𝑑𝑧

]
= 𝐼1 + 𝐼2

, (A.2)

where,

𝐼1 = −𝑥0
𝑋𝑁𝑉

∫ 0

−1

(
𝑥𝑋

𝑥0
𝑋

− 1

)
(Δ𝐸 − 𝐸0) 𝑑𝑧

𝐼2 = −𝑥0
𝑋𝑁𝑉

∫ 1

0

(
𝑥𝑋

𝑥0
𝑋

− 1

)
(Δ𝐸 + 𝐸0) 𝑑𝑧

. (A.3)

By prescribing the segregation profiles in Eq.(1.54) into the above Eq.(A.3), the integrals could be
computed as:
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𝐼1 = −
𝑥0
𝑋
𝑁𝑉𝐷

𝑋
Γ
(Δ𝐸 − 𝐸0)2[

𝑘𝐵𝑇𝑣𝑛𝛿 + 𝐷𝑋
Γ
(Δ𝐸 − 𝐸0)

]2

[
𝑘𝐵𝑇𝐷

𝑋
Γ

(
1 − 𝑒

−
𝑘𝐵𝑇𝑣𝑛 𝛿+𝐷𝑋

Γ
(Δ𝐸−𝐸0)

𝑘𝐵𝑇𝐷𝑋
Γ

)
−𝑘𝐵𝑇𝑣𝑛𝛿 − 𝐷𝑋

Γ (Δ𝐸 − 𝐸0)
] (A.4)

𝐼2 = −𝑥0
𝑋𝑁𝑉

{
𝑘𝐵𝑇 (Δ𝐸 + 𝐸0)

𝑘𝐵𝑇𝑣𝑛𝛿 + 𝐷𝑋
Γ
(Δ𝐸 + 𝐸0)

[
𝑣𝑛𝛿 +

( (
𝐷𝑋

Γ

)2 (Δ𝐸 − 𝐸0) 𝑒
−

𝑘𝐵𝑇𝑣𝑛 𝛿+𝐷𝑋
Γ
(Δ𝐸−𝐸0)

𝑘𝐵𝑇𝐷𝑋
Γ

𝑘𝐵𝑇𝑣𝑛𝛿 + 𝐷𝑋
Γ
(Δ𝐸 − 𝐸0)

+
2
(
𝐷𝑋

Γ

)2
𝐸0𝑘𝐵𝑇𝑣𝑛𝛿[

𝑘𝐵𝑇𝑣𝑛𝛿 + 𝐷𝑋
Γ
(Δ𝐸 − 𝐸0)

] [
𝑘𝐵𝑇𝑣𝑛𝛿 + 𝐷𝑋

Γ
(Δ𝐸 + 𝐸0)

] ) (
1 − 𝑒

−
𝑘𝐵𝑇𝑣𝑛 𝛿+𝐷𝑋

Γ
(Δ𝐸+𝐸0)

𝑘𝐵𝑇𝐷𝑋
Γ

)]
− (Δ𝐸 + 𝐸0)

} (A.5)

The sum of the above two expressions gives the Purdy-Brechet’s solute drag driving pressure as a
function of velocity norm (𝑣𝑛).

B Thermodynamic data extraction using the TQ-interface
Regardless of the type of equilibrium conditions imposed, a full equilibrium calculation of the
actual state is performed as a precursor before getting into the process of thermodynamic data
extraction. This is highlighted by point 𝐸 in a representative binary phase diagram illustrated in
Fig.B.1. The process of data extraction is then dependent on the type of equilibrium conditions
imposed.

For ortho-equilibrium (OE) conditions, the data extraction step is fairly straightforward as it is
possible to seamlessly traverse anywhere on the true solvus surfaces (lines in 2D, indicated by solid
lines in Fig.B.1) using the built-in function handles of ThermoCalc TQ-interface. The computation
of equilibrium concentrations, the entropy difference between the two phases, or equilibrium
phase fractions ( 𝑓 𝛼

𝑅
, 𝑓 𝛾

𝑅
, if requested) at temperature, 𝑇𝑅, is a matter of some explicit function

calls to TQ-interface. If one wishes to compute the maximum driving pressure of nucleation
of 𝛼 phase (Δ𝑔𝛼

𝑉

��
𝑛𝑢𝑐

), and also the corresponding nucleus compositions (𝑥𝛼
𝑖

��
𝑛𝑢𝑐

) at 𝑇𝑅, a new
equilibrium calculation is performed by setting the status of the 𝛼 phase as "dormant" (included in
the calculation but not allowed to become stable). Now, with the help of relevant built-in function
handles, the necessary data on nucleation could be extracted. In order to compute the slopes of
the solvus lines, one needs to reach the point on the solvus line corresponding to the temperature
of interest at the equilibrium compositions. These points are highlighted by 𝑀 and 𝑁 in Fig.B.1.
To do so, the temperature constraint is dropped and set free, and instead, the phase fraction of
one of the phases is constrained by fixing it to 0 (the status of the other phase is maintained as
"entered"), i.e., 𝑓 𝛼

𝑅
= 0 to traverse over the 𝛾/(𝛼 + 𝛾) solvus line, and likewise 𝑓 𝛾

𝑅
= 0 for the other
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Figure B.1: A representative A-i binary phase diagram used to extract
thermodynamic data at 𝑇𝑅 under ortho-equilibrium conditions

solvus line. In addition, the concentration is set equal to that of the equilibrium concentration on
the relevant solvus line. After performing the equilibrium calculation under these constraints, the
𝑀 or 𝑁 points could be exactly localized. Now the slopes could be computed using the built-in
functions handles provided by TQ-interface. If one intends to compute the 𝑇𝐴3 temperature, and
the corresponding entropy difference at this temperature, the 𝐴3 point (in Fig.B.1) needs to be
localized on the solvus line. To do so, an equilibrium calculation is performed where the parent
phase is set as "entered" to take part in the equilibrium calculation while the product phase fraction
is fixed to 0, the temperature constraint is set free, and the compositions are set to be equal to the
nominal compositions. Following this equilibrium calculation, we localize the point 𝐴3, and the
corresponding temperature could be extracted easily with functions calls. To obtain the entropy
difference, the product phase is entered back into the calculation and the temperature is set to be
equal to the extracted 𝐴3 temperature. Δ𝑆𝛾𝛼

𝐴3 could then be extracted after performing an equilibrium
calculation.

For para-equilibrium (PE) conditions, the data extraction is quite involved, especially since the
underlying quasi-binary phase diagram and hence its solvus lines are imaginary. So, an implicit
approach is necessary involving manipulation of the status of a certain phase, carefully adjusting
the concentration constraints and then performing the usual equilibrium calculation to reach the
intended locations on these hypothetical solvus lines where the desired data has to be extracted.
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The extraction of the PE concentrations, the molar driving force for nucleation (Δ𝐺𝑛
𝑃𝐸

), and the
corresponding nucleus composition is relatively easy and involves only one call to a pertinent
function handle of TQ-interface. However, to express the molar nucleation driving force in the
form of driving pressure for nucleation, the molar volume of 𝛼 phase (𝑉𝛼𝑚) at the given conditions
need to be separately computed. This is done by suspending the 𝛾 phase from the equilibrium
calculation and by setting the composition equal to the 𝛼 nucleus composition. The molar volume
can then be computed by performing the usual equilibrium calculation and eventually invoking
the relevant TQ-interface subroutine. The driving pressure for nucleation is then computed as
Δ𝑔𝛼

𝑉

��
𝑛𝑢𝑐

= Δ𝐺𝑛
𝑃𝐸
/𝑉𝛼𝑚 . Following this, to be able to perform any further calculations, the primary or

the original equilibrium for the actual state needs to be recalculated. Under PE conditions, there are
no default function handles to compute the phase fractions. They are instead computed by applying
the Lever rule on the para-equilibrium concentrations (extracted previously). To compute the PE
entropy difference between the two phases (Δ𝑆𝛾𝛼

𝑃𝐸
) at any temperature, the entropy of the individual

phases is first computed and then their difference is calculated. A priori, in order to calculate the
entropy of individual phases, one of the phases is suspended from taking part in the equilibrium
calculation. Additionally, the concentration constraint is set equal to the PE concentration of the
other phase. Subsequently, an equilibrium calculation is performed based on these constraints,
and then the entropy can be determined by invoking the appropriate TQ-interface function handle.
To compute the 𝑇𝑃𝐸

𝐴3 , since there are no explicit approaches or function handles provided by TQ-
interface, an iterative approach is adopted. The iterative method involves invoking the pertinent
function handle to extract PE concentrations at any temperature 𝑇∗ of an iteration and subsequently
calculating the phase fractions and verifying if the phase fraction of the parent 𝛾 phase ( 𝑓 𝛾) is
close to 1.0 with a certain tolerance. An appropriate correction is applied to the temperature for
the next iteration in case 𝑓 𝛾 (𝑇∗) is not equal to 1.0 within the expected tolerances. The iteration
is continued until 𝑓 𝛾 (𝑇∗) converges to 1.0 or until the maximum number of iterations has been
surpassed. The entropy difference at this 𝑇𝐴3 temperature can then be computed as explained above
by setting the temperature constraint equal to the 𝑇𝐴3 temperature. In order to compute the slopes
of the hypothetical solvus lines at 𝑇𝑅 temperature, again there are no relevant function handles
provided by TQ-interface for this scenario. The slopes (1/ 𝜕𝑥

𝛼
𝐶

𝜕𝑇
, 1/ 𝜕𝑥

𝛾

𝐶

𝜕𝑇
) are instead computed using

a finite difference scheme. A set of closely spaced temperature points around the 𝑇𝑅 temperature
are chosen, and then the PE equilibrium concentrations are extracted for each of these temperature

points to generate a discrete data-set,
(
𝑇𝑘 , 𝑥

𝑗

𝐶

���𝑃𝐸
𝑇𝑘

)
, ∀ 𝑗 ∈ {𝛼, 𝛾}. In the current work, a fourth order

centered difference scheme is used on this data-set to compute the slopes at 𝑇𝑅:

𝑚
𝛼/(𝛼+𝛾)
[𝐴−𝐶]𝑃𝐸

=
1
𝜕𝑥𝛼

𝐶

𝜕𝑇

≈ 12ℎ𝑇
− 𝑥𝛼

𝐶

��𝑃𝐸
𝑇𝑅+2ℎ𝑇

+ 8 𝑥𝛼
𝐶

��𝑃𝐸
𝑇𝑅+ℎ𝑇

− 8 𝑥𝛼
𝐶

��𝑃𝐸
𝑇𝑅−ℎ𝑇

+ 𝑥𝛼
𝐶

��𝑃𝐸
𝑇𝑅−2ℎ𝑇

𝑚
𝛾/(𝛼+𝛾)
[𝐴−𝐶]𝑃𝐸

=
1
𝜕𝑥

𝛾

𝐶

𝜕𝑇

≈ 12ℎ𝑇
− 𝑥𝛾

𝐶

��𝑃𝐸
𝑇𝑅+2ℎ𝑇
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, (B.1)

where ℎ𝑇 is a small temperature step length.

201







MOTS CLÉS

Level-set, transformation de phase diffusive, décomposition de l’austénite, évolution de microstructure, ancrage par les
solutés

RÉSUMÉ

La structure intrinsèque des matériaux s’adapte en réponse à des stimuli externes. La capacité d’adaptation se caractérise par des
évolutions microstructurales qui peuvent impacter les performances du matériau, soulignant l’importance de comprendre et de prédire
l’évolution des microstructures. L’intégration de la modélisation numérique est indispensable pour mieux comprendre ces phénomènes
complexes. La numérisation des procédés d’ingénierie des matériaux est la force motrice qui permet de dessiner les matériaux de demain.
Les avancées récentes des ressources computationnelles ont stimulé l’émergence de modèles numériques mésoscopiques, permettant
des descriptions réalistes des aspects évolutifs. Au cours de la mise en forme à chaud des métaux comprenant une grande déforma-
tion plastique, l’évolution des alliages métalliques est caractérisée par une interaction complexe de multiples phénomènes simultanés
qui déterminent la microstructure finale. Actuellement, les prédictions numériques mettent l’accent sur les évolutions microstructurales
monophasiques ou isolent les transformations de phase, en négligeant souvent les contributions d’autres phénomènes concomitants. Cette
approche restrictive pourrait empêcher une meilleure compréhension de l’évolution de la microstructure. Une formulation numérique en
champ complet basée sur l’approche level-set avec un cadre cinétique généralisé adapté aux polycristaux métalliques biphasés est donc
proposée dans ce travail. Ce schéma cinétique global est capable de prendre en compte de diverses transformations microstructurales,
y compris la transformation de phase diffusive à l’état solide, la recristallisation et la croissance de grain. L’approche level-set permet
de simuler efficacement la recristallisation et la croissance de grains dans le cadre d’une grande déformation plastique. Cependant, son
potentiel pour traiter la transformation de phase diffusive à l’état solide restait peu approfondi. L’objectif principal de ce travail était donc
de simuler la transformation de phase diffusive à l’état solide dans les polycristaux métalliques en utilisant le modèle numérique proposé
afin d’explorer les possibilités de l’approche level-set dans ce contexte. Il est démontré que le modèle numérique reproduit efficace-
ment les comportements physiques attendus, notamment pour la décomposition de l’austénite dans les aciers. Ce modèle numérique est
évalué par rapport à un modèle semi-analytique performant. Le potentiel du cadre numérique proposé pour reproduire le caractère de la
transformation de phase dans des microstructures polycristallines complexes est mis en évidence. La versatilité du modèle pour intégrer
facilement d’autres évolutions complexes est également présentée.

ABSTRACT

The underlying fabric of materials adapts in response to external stimuli. This adaptability manifests through microstructural transforma-
tions that can significantly impact the material’s performance, emphasizing the importance of understanding and predicting microstruc-
tural evolution. Integrating numerical modeling is pivotal for gaining deeper insights into these complex phenomena. Digitizing material
engineering processes is the driving force behind shaping the materials of tomorrow. Recent progress in computational resources has
spurred a demand for mesoscopic numerical models, offering realistic descriptions of evolutionary aspects. During hot metal forming
involving high plastic deformation, the evolution of metallic alloys experiences a complex interplay of multiple simultaneous phenomena
that shape their microstructure. Currently, cutting-edge numerical predictions emphasize single-phase microstructural changes or isolate
phase transformations, often neglecting contributions from other coexisting phenomena. This narrow focus could impede a holistic un-
derstanding of microstructural evolution. A level-set-based full-field numerical formulation featuring a generalized kinetic framework
tailored for two-phase metallic polycrystals is thus proposed in this work. This inclusive kinetic framework is capable of proficiently ac-
commodating multiple microstructural transformations, including diffusive solid-state phase transformation, recrystallization, and grain
growth. The level-set method proves effective in simulating recrystallization and grain growth under high plastic deformation. However,
its potential in addressing diffusive phase transformation in the solid-state has not been extensively investigated. The primary focus of
this work is thus to simulate diffusive solid-state phase transformation in metallic polycrystals using the proposed numerical framework
to explore the potential of level-set method in this context. The numerical model is demonstrated to effectively reproduce expected phys-
ical characteristics, particularly emphasizing austenite decomposition in steels. The proposed level-set numerical model is benchmarked
against a state-of-the-art sharp interface semi-analytical model. The potential of the proposed numerical framework to replicate the phase
transformation behavior in complex polycrystalline microstructures is showcased. The versatility of the framework to seamlessly integrate
other complex evolution is highlighted.

KEYWORDS

Level-set, Diffusive phase transformation, Austenite decomposition, Microstructure evolution, Solute drag
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