In order to accurately describe the 3D evolution of polycrystals (recrystallization, phase transformations), full-field methods such as the phase-field (PF) or the level-set (LS) methods have to be employed. In this context, a new FE numerical framework to model grain growth (GG) and recrystallization (ReX) based on a LS description of the interfaces and meshing/remeshing capabilities has been recently developed.
Interestingly, if the LS approach was extended to other self-diffusion mechanisms such as spheroidization in titanium alloys or sintering in powder metallurgy, solid-solid phase transformations (SSPT) was only newly adressed despite the obvious interest to couple phases and grains evolutions in the same LS numerical framework. In the proposed PhD project, the existing LS framework will be extended in order to model SSPT. The new proposed formalism will be investigated in context of austenite-ferrite transformations. The proposed numerical framework will be compared to pre-existing PF strategy dedicated to this topic.
Finally, the resulting developments will be prepared for integration in the DIGIMU® software package.
See the project form